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ABSTRACT

This paper presents an implementation of the process communication
and synchronization concepts of Per Brinch Hansen’s Distributed
Processes [6] built from an applicative framework. This system is an
object-oriented implementation of Steele and Sussman’s SCHEME [21] coded
in SIMULA. The system was expanded to include first facilities for
quasi-parallel processing and then the communication and synchronization
primitives of Distributed Processes.

SCHEME is a full-funarg dialect of LISP with lexical binding.
Distributed Processes 1is a concurrent programming language in which
communication between processes occurs when one process invokes a common
procedure defined within another process. These invocations (external
requests) must be handled one at a time by the invoked process; the
invoking process remains idle until the request is satisfied.

A special system process, the Distributor, initially interacts with
the user to execute single-process programs and to allow run-time
(rather than compile-time) process creation. The Distributor supervises
execution of user-created processes once the user initiates
multi-processing.

Several example programs are examined, including two dealing with
"inward" and "outward funargs" -- function closures used as arguments to
and results of external requests. The implementation presented is easy
to extend and would lend itself well to experimentation with other
models of concurrency.



INTRODUCTION

This paper describes SDP (SCHEME Distributed Processes), an
implementation of the process synchronization and communication concepts
of Per Brinch Hansen’s Distributed Processes model [6] in a SCHEME-based
system. SCHEME is a lexically-bound full-funarg dialect of LISP
described by Steele and Sussman [21]. Distributed Processes is a
high-level programming language for describing algorithms as sets of
essentially sequential processes executing in parallel with no common
variables and limited communication through "external requests" (similar

to "monitor calls" [2,4,5,16]) made of one process by another.

Implementation proceeded in three stages:

1. implementation of an object-oriented interpreter in SIMULA for
a subset of SCHEME (This interpreter was partially based on the
ALONZO interpreter [12], a terse non-recursive interpreter for

a subset of SCHEME which permits no side effects.),

2. implementaition of pure multi-processing, including facilities
for definition of process prototypes, creation of processes,

and quasi-parallel execution of processes,

3. graftage of the communication primitives of Distributed

Processes onto the multi-processing system.



Our implementation includes all of SCHEME’s [21] important features
except the fluid binding primitives FLUIDBIND, FLUID, and FLUIDSET, the
function definition form DEFINE (ASET suffices here), and the SCHEME
multiprocessing primitives. It differs slightly in some aspects from

standard SCHEME, specifically:

1. the "truth values" are represented by TRUE and FALSE, not T and

NIL;

2. a clear distinction is made between the atom FALSE and the

empty list () ;

3. only true lists [l] are implemented rather than arbitrary
S-expressions, i.e. no atom may appear in the CDR position of

a CONS-cell;

4. arrays and partial application of functions are implemented as

described in the brief user”s guide.

Brinch Hansen’s Distributed Processes is a descendant of his
earlier Concurrent Pascal language and is statement—oriented whereas
SCHEME is expression oriented. For this reason, and additionally
because of the added generality of some aspects of our system, our

interpretation of the DP model will be described in some detail.



A program in SDP consists of an expression to be evaluated by the
interpreter. It may be a simple SCHEME expression, in which case the
value of the expression is computed and printed. Or, it may be an
expression which defines process prototypes, uses them to create
processes, and then enters a multi-processing phase in which the created
processes execute in quasi-parallel. A process prototype is defined by
a GAMMA-expression, which has the form:

(GAMMA ( <process parameter>* )

( <common function definition>¥ )

<initial statement> )
(Note that we have replaced common procedures having input and output
parameters by common functions which take arguments and return a value.
This is more in keeping with the applicative style of SCHEME. Note also
the added generality of processes with parameters, allowing the initial
values of certain variables to be specified at process creation time

rather than at prototype definition time.)

Processes are created by invoking a process prototype with actual
parameters wusing a syntax exactly 1like that of SCHEME function
invocation. Several processes may be created using the same prototype
and the same or different parameters. Such processes have nothing in
common except the code of initial statements and function definitions.
Process creation does not begin execution of the process; rather, it
places a new process into the parallel processing queue so that its

execution will take place when the parallel processing phase begins.



Each process has its own "global environment" which can be accessed
only by the process itself. It also has access to a read-only
"orimitive environment", shared by all processes, which contains

definitions of primitive functions available to all processes.

Processes may be given names by assigning the result of the
prototype invocation to a variable or array element in the primitive
environment using the pseudo-function PSET. PSET is similar to ASET,
but operates on the primitive environment rather than the global
environment. PSET can only be used by the "main process" (or
Distributor -- see implementation notes); it cannot be wused by
processes to communicate through the primitive environment during the

parallel-processing phase.

Consider example 1, an implementation of a bounded buffer 1 e
This program defines three different process prototypes in the LABELS-
expression beginning at line 2: a consumer prototype CON (line 3) with
one parameter and no common functions; a producer prototype PROD (line
14) with one parameter and no common functions; and BUFFT (line 15) the
bounded buffer prototype, with the buffer length BLEN as a parameter,
and two common functions: PUT, for inserting into the buffer; and GET,

for removing from the buffer.



Producer and consumer processes are created and automatically
readied for execution in lines 37 and 39 respectively. The buffer
process must be referenced by the producers and consumers, and is
therefore assigned to the variable BUFF (line 34). (Alternatively, it

could be passed to the other processes as a parameter.)

Communication between processes is carried out by external
requests, or invocations of another process’s common functions. This
takes the following syntactic form:

(CALL <process—exp> <function-name-exp> <arg>* )
where <process—exp> evaluates to some process, but <function-name-exp>
evaluates to the name of a common function defined in that process, i.e.
an atom. Examples of CALLs are in lines 13 and 14 of example 1. When a
process makes an external request, it must remain idle until the request

is answered.

When the "main process" evaluates the RUN primitive, the
parallel-processing phase begins. Those processes which have been
created begin execution in quasi-parallel. No mnew processes may be

created once this phase begins.

Initially, each process executes its initial statement. Either the
initial statement executes to completion, or a guarded region with no
true guard is encountered. In either case, the process 1is freed to
handle external requests if any are present. Once the execution of an
external request is undertaken, it is executed until either it is

completed and a value is returned, or a guarded region is encountered.



Then the process is freed to handle other requests or return to its

initial statement, etc.

Our interpretation of guarded commands [8,9] and guarded regioms is
quite similar to Brinch Hamsen’s; the reader is referred to his work
[6] for a complete explanation. We use syntax similar to LISP’s COKD.
Briefly, when no guard is true, the COND expression causes an error
termination; DO terminates its repetition; WHEN "waits" by releasing
the process for other requests; and CYCLE '"waits" like WHEN, but
repeats without terminating. If some guards are true, an expression

corresponding to a true guard is selected and evaluated.

We will now consider the execution of our example. The '"main
program” (lines 36 - 43) creates a buffer named BUFF of length BLEN,
then creates NPROD producers, each with a unique stamp to put on its
work, and NCON consumers with their own indices. The parallel

processing phase is begun by RUN.

The producers and consumers are fairly simple. Producers
constantly try to put their product (their ME number) into the buffer by
calling the buffer”s PUT function (line 14). Consumers constantly try
to remove the product from the buffer by calling the buffer’s GET
function (line 13). They package the product and print it out (lines 9
- 13). Producers and consumers never handle external requests, and

their initial statements never terminate.

The buffer process has two variables —— SEQ and LEN -- which are



the focus of its efforts. SEQ is a list of the elements in the buffer,
and LEN is the number of elements. The buffer is initialized to be
empty, then the initial statement terminates and the process is freed to

handle PUT and GET requests (line 32).

When the buffer process handles a GET request, it checks to see if
the buffer is empty (lines 20 - 21). If so, the GET request must wait,
and the process is freed to handle other requests. If not, the first
element is removed from the buffer and returned as the value of CGET.
The consumer proceeds with this value, and the buffer advances to handle

another request.

When the buffer process handles a PUT request, it checks to see if
the buffer is full (lines 28 - 29). If so, the PUT request must wait;
otherwise, the argument passed to PUT is appended to the end of SEQ and
LEN is incremented (lines 30 - 31). The new value of LEN is returned,
but ignored by the producers. (Conceivably, more  sophisticated
producers might use this information to choose among short and long
production tasks, or to choose among several buffers as destinatiomns for

the next product.)

The output of an execution of this program is shown below. Several
more examples with sample execution output and short commentaries
follow. Section 2 deals with some implementation details; Section 3 is
a brief wuser”s guide. The code of the interpreter follows in the

appendix.



example 1: Bounded Buffer

1 ((LAMBDA(BLEN NPROD NCON)

(LABELS
((coN
(GAMMA
(ME)
O
(po
(TRUE
(PRINT
(LIST “CONSUMER
ME
“PRODUCER
(CALL BUFF “GET)))))))
(PROD (GAMMA (ME) () (DO (TRUE (CALL BUFF “PUT ME)))))
(BUFFT
(GAMMA
(BLEN)
((GET
(LAMBDA ()
(WHEN
((< 0 LEN)
(PROGN (ASET “LEN (SUBl LEN))
(ASET “RES (CAR SEQ))
(ASET “SEQ (CDR SEQ))
RES)))))
(PUT
(LAMBDA(NEW)
(WHEN
((< LEN BLEN)
(PROGN (ASET “SEQ (APPEND SEQ (LIST NEW)))
(ASET “LEN (ADD1 LEN))))))))
(PROGN (ASET “SEQ “()) (ASET “LEN 0)))))
(PROGN
(PSET “BUFF (BUFFT BLEN))
(Do
((< 0 NPROD)
(PROGN (PROD NPROD) (ASET “NPROD (SUB1 NPROD)))))
(Do
((< 0 NCON) (PROGN (CON NCON) (ASET “NCON (SUBl NCON)))))
(RUN))))
3 43)



—=—> distributor <----
#(DSKIN “BDBUFF.EXP)

run

~-—-> multi-processing <-—--

(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
( CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER
(CONSUMER

=R 0 = R W = R R WD e R WD R WD e PO LD e R WD

PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER
PRODUCER

2)
1)
4)
3)
2)
1)
4)
2)
1)
4)
2)
1)
4)
2)
1)
3)
2)
1)
3)
2)
1)
4)
2)
1)
4)



example 2: Fibonacci numbers

In this example [11], an array of three processes is created. Each
of these processes has a list SEQ of numbers. When this list contains 2
numbers (the last 2 Fibonacci numbers) they are added, the 1list 1is
emptied, and the result of the addition (a new Fibonacci number) is
passed on to the other two processes by calling their PUT functions. Imn

this way, each process computes every third Fibonacci number.

At creation time, each process is given its own array subscript as
well as the subscripts of the processes to which it must pass its

results. In addition, it receives an initial sequence and its length.

———=> distributor <-——-
#(DSKIN “FIBON.EXP)

(BETA () (LABELS ((FIBT (GAMMA (ME ...
#(FIBON)

run
———-> multi-processing <-——-

(FIB 1 COMPUTES 0)
(FIB 2 COMPUTES 1)
(FIB 3 COMPUTES 1)
(FIB 1 COMPUTES 2)
(FIB 2 COMPUTES 3)
(FIB 3 COMPUTES 5)
(FIB 1 COMPUTES 8)
(FIB 2 COMPUTES 13)
(FIB 3 COMPUTES 21)
(FIB 1 COMPUTES 34)
(FIB 2 COMPUTES 55)

10



(ASET “FIBON
(LAMBDA ()
(LABELS
((FIBT
(GAMMA
(ME ONE TWO SEQ LEN)
((PUT
(LAMBDA(X)
(PROGN (ASET “SEQ (CONS X SEQ))
(ASET “LEN (ADD1 LEN))))))
(CYCLE
((= LEN 2)
(PROGN
(PRINT
(LIST “F1B
ME
“COMPUTES
(ASET “RES (EVAL (CONS “PLUS SEQ)))))
(ASET “SEQ “())
(ASET “LEN 0)
(CALL (ACCESS (FIB ONE)) “PUT RES)
(CALL (ACCESS (FIB TWO)) “PUT RES)))))))
(PROGN (PSET “FIB (ARRAY 3))
(STORE (FIB 1) (FIBT 1 2 3 “(0 0) 2))
(STORE (FIB 2) (FIBT 2 3 1 “(1) 1))
(STORE (FIB 3) (FIBT 3 1 2 “() 0))
(RUN))))

11



example 3: dining philosophers

In this example (problem due to E.W. Dijkstra, outlined by C.A.R.
Hoare in [17]) five philosophers are seated around a table. Each
philosopher is assigned a number from 1 to 5. To the right of each
philosopher on the table 1lies a fork assigned the same number. A
platter of spaghetti which the philosophers share rests on the table.
When a philosopher wishes to eat he must use both the fork on his right
and the fork on his left, for example philosoper 3 must use forks 2 and

3 to eat.

A potential problem is that one or more philosophers may be starved
by bad timing. In the worst case all may be starved if each philosopher
holds one fork. The solution given here requires that odd-numbered
philosophers reach first for the right-hand fork and even-numbered
philosophers for the left—hand fork. Actually, only one left-handed

philosopher is needed in the group to prevent deadlock.

Two process prototypes, a FORK process and a PHIL process, are used
in this example. Forks are merely binary semaphores [7] defined very
elegantly with just one functionm, USE, taking advantage of the "inwaxd
funarg" capability of our system. USE simply evaluates the closure
(TO-DO) passed to it. (Binary semaphores are normally implemented with
two functions, P for getting the semaphore and V for releasing the
semaphore.) To use a fork a philosopher specifies to the fork process

what he wants to do, and the fork allows him to do it.

12



A philosopher first sets up THINK and EAT functions with the help
of BIND (see User’s Guide below). It then loops forever, THINKing, then

USEing one fork to USE another fork to EAT.

The main program sets up the philosophers and forks and runms

multiprocessing.

(ASET “GOPHIL
(LAMBDA (NPHILS)
(LABELS
((FORKP (GAMMA (I) ((USE (LAMBDA (TO-DO) (T0-D0)))) “()))

(PHILP (GAMMA
(ME FORK1 FORK2)
O
(LABELS
((ACT (LAMBDA (ACTION)
(PROGN (PRINT (LIST ME ACTION))
(PRINT (LIST ME “STOPPED ACTION))))))
(PROGN
(ASET “THINK (BIND ACT “ACTION “THINKING))
(ASET “EAT (BIND ACT “ACTION “EATING))

(DO (TRUE
(PROGN
(THINK)
(CALL FORK1 “USE (LAMBDA () (CALL FORK2 “USE EAT)))

131N
(LABELS
((RFORK (LAMBDA (X) (ACCESS (FORK X)))) _
(LFORK (LAMBDA (X) (ACCESS (FORK (IF (= X 1) NPHILS (SUBIL X))))))
(MAKEPHIL (LAMBDA (I) (IF (ODD I)
(PHILP I (RFORK I) (LFORK I))
(PHILP I (LFORK I) (RFORK I))))))
(PROGN
(ASET “FORK (ARRAY NPHILS))
(ASET “X NPHILS)
(po ((NOT (= X 0))
(PROGN (STORE (FORK X) (FORKP X)) (ASET “X (SUBL X)))))

(ASET “X NPHILS)
(D0 ((NOT (= X 0)) (PROGN (MAKREPHIL X) (ASET “X (SUBL X)))))

(RUN))))))

13



#(GOPHIL 5)

run

-—-—-> multi-processing <--—-

(2
(3
5
(1
(2
(1
(5
(3
(4
(4
(2
(5
(2
(5
(2
(4
{1
€2
(4
5
(1
(5
(4
(&4
(3
(3
(1
(1
(5
(3
(2
L2
(3
(5
(4
(2
(5
(1
(1
(&
(2
(5
(1
(4

THINKING)
THINKING)
THINKING)
THINKING)

STOPPED THINKING)
STOPPED THINKING)
STOPPED THINKING)
STOPPED THINKING)
THINKING)

STOPPED THINKING)
EATING)

EATING)

STOPPED EATING)
STOPPED EATING)
THINKING)

EATING)

EATING)

STOPPED THINKING)
STOPPED EATING)
THINKING)

STOPPED EATING)
STOPPED THINKING)
THINKING)

STOPPED THINKING)
EATING)

STOPPED EATING)
THINKING)

STOPPED THINKING)
EATING)

THINKING)

EATING)

STOPPED EATING)
STOPPED THINKING)
STOPPED EATING)
EATING)

THINKING)
THINKING)

EATING)

STOPPED EATING)
STOPPED EATING)
STOPPED THINKING)
STOPPED THINKING)
THINKING)
THINKING)
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example 4: sorting array

In this example [6], a series of numbers is sorted by an array of
processes. Each process has a list SEQ of 0, 1, or 2 numbers. When
this list contains two elements, the process sends the larger om to its

successor in the array.

A list of numbers is sorted by first PUTting each of the numbers in
the first process”s list, then GETting the sorted numbers one at a time

from the first process. This is the job of the USER process.

The "main program" sets up a USER process and an array of SORTP
processes of sufficient length to sort the given input. The process’s
subscript ME is passed so that the process can calculate the subscript

of its successor SUCC. SUCC = TRUE for the last element of the array.

——==> distributor <———-—
#(DSKIN “SORT.EXP)

(BETA (INPUT) (LABELS ....
#(RUNSORT “(11 44 66 55 22 33))

run
-——=> multi-processing <----
(66 55 44 33 22 11)

15



(ASET “RUNSORT
(LAMBDA (INPUT)
(LABELS
((SORTP
(GAMMA (ME)
((pUT
(LAMBDA(TI)
(WHEN ((< (LENGTH SEQ) 2) (ASET “SEQ (CONS I SEQ))))))
(GET
(LAMBDA ()
(WHEN
((= (LENGTH SEQ) 1)
(PROGN (ASET “RES (CAR SEQ)) (ASET “SEQ “()) RES))))))
(PROGN
(ASET “SEQ “())
(ASET “REST 0)
(ASET “SUCC (ACCESS (SORT (ADDI1 ME))))
(CYCLE
((= (LENGTH SEQ) 2)
(PROGN
(IF (< (CAR SEQ) (CAR (CDR SEQ)))
(ASET “SEQ (LIST (CAR (CDR SEQ)) (CAR SEQ)))
TRUE)
(CALL SUCC “PUT (CAR SEQ))
(ASET “SEQ (CDR SEQ))
(ASET “REST (ADD1 REST))))
((AND (= (LENGTH SEQ) 0) (< 0 REST))
(PROGN (ASET “SEQ (LIST (CALL SUCC “GET)))
(ASET “REST (SUB1 REST))))))))
(USERP
(GAMMA (INPUT INLEN)
O
(PROGN
(ASET “OUTPUT “())
(ASET “SORT1 (ACCESS (SORT 1)))
(Do
((NOT (NULL INPUT))
(PROGN (CALL SORT1 “PUT (CAR INPUT))
(ASET “INPUT (CDR INPUT)))))
(po
((NOT (= (LENGTH OUTPUT) INLEN))
(ASET “OUTPUT (CONS (CALL SORT1 “GET) OUTPUT))))
(PRINT OUTPUT)))))
(PROGN
(PSET “USER (USERP INPUT (LENGTH INPUT)))
(ASET "X (LENGTH INPUT))
(PSET “SORT (ARRAY (ADD1 X)))
(STORE (SORT (ADD1 X)) TRUE)
(po
((> X 0)
(PROGN (STORE (SORT X) (SORTP X)) (ASET “X (SUBL X)))))
(RUN)))))

16



EXE.‘II!Q].E 3t classroom

In this example, a teacher process supervises a class of 5 pupils.
Each pupil can focus his attention ATTN on his problems (ATIN =
PROBLEM), or he can gaze out the window (ATIN = WINDOW). The teacher
checks each pupil in turn, and assigns new problems to pupils who are
gazing through the window. Pupils may be gazing through the window
because they have no problems to do {the (NOT (NULL PROBSET)) condition
in the PUPILT process prototype} or because of a random fit of laziness

{the (> (TIMES ME 5) (RANDOM)) conditiomn}.

The teacher does not check the status of a pupil by making an
ordinary external request to the pupil via a common function -- if the
teacher did this, she would have to wait until the pupil was not working
to find out if he was working or not! Rather, the teacher collects
closures of status-checking functions (FOCUS) at the beginning of the
class session by making an external request to each pupil”s GETFOCUS
function, and stores these closures in her FOCI array. The teacher may
then invoke the closure to check a pupil”s status without waiting for

the pupil to process an external request.

In this way (by returning closures as values of common functions —--
an "outward funarg"), a process can grant permission to another process
to perform specific operations in (and on) its environment without

making an external request for each operation.

L7



Note that in this example, assigning a new problem is still an
external-request operation —- this insures that, if "team teaching" were
undertaken, a pupil would not miss assignments because two teachers were

talking to him at once!

——=—=> distributor <--—-
#(DSKIN “TEACH)

(LABELS ((TEACHER (GAMMA () () (CATCH QUIT ...
#
#(EVAL CLASS)

run

====> multi-processing <--—-
(STUDENT 2 SAYS 41 + 50 = 91)
(STUDENT 3 SAYS 64 + 43 = 107)
(STUDENT 4 SAYS 76 + 80 = 156)
(STUDENT 5 SAYS 43 + 75 = 118)
(STUDENT 2 SAYS 95 + 1 = 96)
(STUDENT 1 SAYS 97 + 17 = 114)
(STUDENT 3 SAYS 86 + 34 = 120)
(STUDENT 5 SAYS 18 + 29 = 47)
(STUDENT 4 SAYS 14 + 11 = 25)
(STUDENT 2 SAYS 82 + 92 = 174)
(STUDENT 3 SAYS 29 + 84 = 113)
(STUDENT 4 SAYS 94 + 21 = 115)
(STUDENT 1 SAYS 80 + 34 = 114)
(STUDENT 5 SAYS 27 + 100 = 127)
(STUDENT 1 SAYS 11 + 75 = 86)
(STUDENT 2 SAYS 20 + 61 = 81)
(STUDENT & SAYS 95 + 17 = 112)
(STUDENT 5 SAYS 25 + 74 = 99)
(STUDENT 3 SAYS 82 + 2 = 84)
(STUDENT 2 SAYS 99 + 86 = 185)
(STUDENT 4 SAYS 91 + 70 = 161)
(STUDENT 1 SAYS 17 + 44 = 61)
(STUDENT 5 SAYS 88 + 89 = 177)
(TEACHER QUITS)

(STUDENT 3 SAYS 43 + 65 = 108)
(STUDENT 2 SAYS 16 + 35 = 51)
(STUDENT 1 SAYS 70 + 70 = 140)

18



(ASET “CLASS
“(LABELS
((TEACHER
(GAaMMA ()
O
(CATCH
QUIT
(PROGN
(ASET “LEFT 25)
(ASET “FOCI (ARRAY 5))

(ASET "I 5)
(po
((> 1 0)

(PROGN (STORE (FOCI I) (CALL (ACCESS (PUPIL 1)) “GETFOCUS))
(ASET “I (SUBL I)))))
(ASET ‘I 1)
(DO ((< LEFT 0) (QUIT (PRINT “(TEACHER QUITS))))
((=1I 6) (ASET "I 1))
((< 1 6)
(IF (= ((ACCESS (FOCI I))) “WINDOW)

(PROGN
(CALL (ACCESS (PUPIL 1)) “NEWPROB (RANDOM) (RANDOM))

(ASET "LEFT (SUBl1 LEFT))
(ASET “I (ADD1 1)))
(ASET “I (ADDL I)))))))))
(PUPILT
(GAMMA (ME)
((GETFOCUS (LAMBDA () (LABELS ((FocUS (LAMBDA () ATTN))) FOCUS)))
(NEWPROB (LAMBDA (X Y)
(ASET “PROBSET (CONS X (CONS Y PROBSET))))))
(PROGN
(ASET “ATTN “WINDOW)
(ASET “PROBSET “())
(CYCLE
((AND (NOT (NULL PROBSET)) (> (TIMES ME 5) (RANDOM)))
(PROGN
(ASET “ATTN “PROBLEM)
(PRINT
(LIST “STUDENT ME ~SAYS
(CAR PROBSET) “+ (CAR (CDR PROBSET)) ‘=
(PLUS (CAR PROBSET) (CAR (CDR PROBSET)))))
(ASET “PROBSET (CDR (CDR PROBSET)))
(ASET “ATTN “WINDOW))))))))
(PROGN
(TEACHER)
(PSET “PUPIL (ARRAY 5))
(ASET ‘I 5)
(Do
((< 0 1) (PROGN (STORE (PUPIL I) (PUPILT I)) (ASET "I (SUBL I)))))

(RUN))))
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IT. IMPLEMENTATION NOTES

SCHEME

The implementation is coded in SIMULA and is object-oriented.
Corresponding to each SCHEME "magic form" is a SIMULA EXPR- (for
expression) class, e.g. an IFF class corresponding to the IF magic
form. The parser receives SCHEME code from the read routine in the form
of atoms and lists, examines the first element of every 1list, and
replaces the LIST-object with an object of the form indicated by the
first element, e.g. if the first element of a list is the atom QUOTE,
the list is replaced by a QUOTE-object which has a pointer to the quoted

expression (the second element in the list).

Each of these magic forms is evaluated in its own way. The method
of evaluation is coded in the INSTANCE classes, one (or more) of which
correspond to each magic form, e.g. IFFINST, IF1INST. INSTANCE objects
are the building blocks of the control stack. When it is necessary to
evaluate an EXPR-object (parsed expression), this is dome by calling
that EXPR-object’s INSTANTIATE function, which returms as its value a
new object of the proper INSTANCE-class, complete with return and
environment pointers. This INSTANCE-object becomes the new top of the
control stack and evaluation proceeds by RESUMEing the new stack-top
object. This stack of INSTANCE-objects corresponds to the C-link of

Steele and Sussman.

20



An environment is an object of class ENVIRON. A ribcage
implementation of environments is used, so that supplying too few or too
many arguments to a function is not necessarily a detectable error. The
former is detected only if the formal parameter with no corresponding
actual parameter is referenced. The latter is never detectable, but it
makes possible a programming trick -- supplying extra arguments in a
function call whose evaluation will cause side effects. The side
effects are carried out before the functioﬁ is invoked even though the
values of the extra arguments are not bound to formal parameters. (A

similar trick is possible in SNOBOL4[15].)

Objects of class ENVIRON cannot be created directly by a user
program, making it impossible for the user to manufacture arbitrary
environments to use in calls to EVAL in the manner possible in most LISP

systems.

Our SCHEME system is designed as a subsystem similar to the ILISP
subsystem. The top level of our system is a read-eval-print loop. We
have implemented standard LISP functions DSKIN and DSKOUT for saving
function definitions and variable bindings. A structure editor
containing the most useful commands from the UCI LISP editor is invoked
by calling the function EDIT with the expression to be edited as an
argument. Also, the system function ECHO can be used to record the

input and output of a SCHEME session on a disk file.
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Many interesting problems in distributed processing involve arrays
of processes. This implementation includes arrays which may contain
elements of any type —- processes, function closures, other arrays, or
simple atoms and 1lists. Arrays of any dimension are implemented as
one-dimensional arrays using dope vectors. A call to ARRAY with one or
more numeric arguments produces an array accessing function with a
pointer to the one-dimensional array representing it. Evaluation of
this function with the subscripts of an element in the array produces a

pointer to this element which is used by primitives STORE and ACCESS.

Processes and Parallel Processing

The base of the SCHEME multiprocessing system 1is a network of
processes. This network contains zero or more user-defined processes in
addition to one system process, the Distributor. Each process has its
own global environment and its own C-link. Initially the Distributor
runs alone and answers requests (runs user programs). With no other
processes running this 1is simply uni-processing running on the

Distributor.

The Distributor no longer answers requests from the user when there
are other processes running. It exists only to drive the processes that
have been placed in the circularly linked multi-processing queue. The
distributor randomly RESUMEs each process’s C-link between zero and ten
times as it goes around the multi-processing queue. Even after every
process has completed its initial statement, the Distributor continues

around the queue trying to find a process to RESUME. This loop 1is
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interrupted only when the user types "G. This returns the Distributor

to uni-processing mode, where it responds to user input.

Processes

The user may define process prototypes and create processes only in
the uni-processing mode. The definition of process prototypes is very
similar to the definition of functioms in SCHEME. Just as LAMBDA is

used for functions, GAMMA is used for processes.

GAMMA form is a SCHEME magic form with 3 elements. The second is a
"deflist" which is exactly the same as in a SCHEME LABELS expression.
This deflist defines functions which will be global to the process being
defined (These are necessary for implementation of Distributed Processes
-- see the following section). The first and third elements in a GAMMA
expression, the parameter 1list and the initial statement (body),

correspond to the 2 elements of a SCHEME LAMBDA expression.

Evaluation of a GAMMA expression results in a closure (called an
ALPHA-closure) with a special environment. This environment contains
only the function definitions given in the second element of the GAMMA

expression.

Application of an ALPHA-closure places a process in the

multi-processing queue with a global environment which now contains both

the arguments to the call and the global function definitions.
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The user may create as many processes as desired before running
multi-processing. Evaluation of the primitive RUN by the Distributor
causes it to drop any user program currently executing and begins
multi-processing. The multi-processing queue is circularly linked at

this time.

Process Environments

There is a hierarchy of environments in the parallel processing
system. Each process (including the Distributor) has its own global
environment. Also, as each C-link grows, so does the local environment.
In addition to these global environments there 1is a primitive
environment. This environment originally contains system functions
(primitives) such as CONS and ADDl. New variables and bindings may be
placed in the primitive environment only by a program executed by the
Distributor. Although all processes can “see” the primitive
environment, they cannot alter it. This means that once parallel
processing begins the primitive environment remains static, preventing
processes from communicating with or effecting another process through a

shared environment.

ASET is the standard SCHEME primitive used by a process to make
bindings in its own global environment. PSET is used to set the
primitive environment and can only be used in a program executed by the

Distributor.
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Distributed Processes Queueing Mechanism

The crux of the DP model is the CALL command with which processes
communicate. When the CALL command is invoked, the invoking process
requests that another process evaluate one of its common functions using
arguments supplied by the invoking process. Since the process invoked
can handle only one request at a time, some queueing mechanism is

appropriate. This mechanism will now be described.

Associated with each process are three 1local variables:  NEXTINQ
points to the process’s successor in its own queue when the process is
not waiting for the answer to a request from another process, and it
points to the process”s successor in another process’s queue when it has
made a request to that process. SAVEQ points to the process’s successor
in its own queue whenever the process is waiting for the answer to a
request. NOWSERVING points to the process for which the process is
currently handling a request. Note that a process may be in its own
queue, and that a NOWSERVING variable may point to its owner. In fact,
this is the case initially for each process as it is executing its own
initial statement. If a process makes a request to another process
(CALL), then it must save its successor in its own request queue in
SAVEQ and join the other process’s request queue by having its NEXTINQ
pointer changed. (It must also remove itself from the multiprocessing
queue, since it can proceed no further without the answer to its
request.) When the request is answered, it is removed from the called
process’s request queue and its own request queue successor is restored

from SAVEQ.
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The following situation involving three processes, A, B, and C,

should clarify the use of these variables:

Fig. 1: 1Initially, all processes are, intuitively speaking, handling
their own requests. They are in their own queues, and their NOWSERVING
pointers point back to themselves. All are in the multi-processing

queue and are executing their initial statements.

Fig. 2: A, in executing its initial statement, has made a CALL to one
of C’s common functions. A saves its own queue (it is its only member
currently) in SAVEQ, removes itself from the multi-processing queue, and

joins C’s queue. C continues to execute its initial statement.

Fig. 3: B has also made a request to C during the execution of its

initial statement.

Fig. &4: C has finished its initial statement. It removes itself from

its own queue and advances its NOWSERVING pointer around the queue to

handle A”s request.
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Fig. 5: C has completed A”s request. C has removed A from C's queue,
returned A to the multi-processing queue, restored A's saved queue, and
advanced its own NOWSERVING pointer to handle B’s request. With the

answer tc its request, A can resume execution of its initial statement.

Fig. 6: C, in handling B"s request, had to make a request to A.
(Fortunately this did not occur while A was in C”s queue —— C and A
would have waited for each other”s answers forever!) C has joined A’s

queue, but A continues with its initial statement.

Fig. 7: A has finished its initial statement, removed itself from its
own queue, and advanced its NOWSERVING pointer to handle C’s request

(made on B”s behalf).

Fig. 8: A has finished C“s request. A has removed C from A’s queue,
restored C to the multi-processing queue, and, since its queue is empty,
awaits further requests. (A"s initial statement is completed.) C

continues to work on B”s request.

Fig. 9: C has completed B's request, removed B from C’s queue, and
returned B to the multi-processing queue. C awaits further requests.

B, with the answer to its request, continues with its initial statement.

Fig. 10: B completes its initial statement and removes itself from its
own queue. All processes are waiting for requests, so the program has
practically terminated, although theoretically the processes continue to

make themselves available to answer requests forever.
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Guarded Commands and Regions

Other important components of the Distributed Processes model are
the guarded command and guarded region comstructs -- IF, DO, WHEN, and
CYCLE. All of these involve a group of predicates paired with
statements. When a guarded construct is evaluated, the predicates are
evaluated and a statement corresponding to one of the true predicates is
nondeterministically chosen for evaluation. In this implementation, the
choice is made by evaluating the predicates in the order they appear
until a true one is found and then evaluating the corresponding
statement, as with LISP’s COND. In fact, the syntax used is identical
to that of COND, and the atom COND is used instead of IF since IF has

another meaning in standard SCHEME.

The guarded constructs can be divided into repetitive (DO, CYCLE)
versus non-repetitive (COND, WHEN) and waiting (WHEN, CYCLE) versus
non-waiting (COND, DO). Repetition might easily be implemented by any
of several mechanisms, including macros with CATCH, and will not be

described further here.

The evaluation of the waiting contructs (WHEN and CYCLE) differs
from that of their non-waiting counterparts when none of the predicates
is true. For COND, this is an error. For DO, this is the signal to
terminate repetition. But WHEN and CYCLE wait until one (or more) of
the predicates becomes true. The request currently being handled by the
process relinquishes all control of the process. The process’s

NOWSERVING pointer (see above) is advanced to the next process in the
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request queue, but the waiting request remains in the queue.

Consider fig. 3 above. If C's initial statement contained a WHEN
construct, none of whose predicates were currently true, then the

situation of fig. 11 would be the result.

When the NOWSERVING pointer was advanced to C again, either upon
completion of the requests of A and B or upon encounter of guarded
regions in those processes” requests, the predicates of C’s guarded
region would be re-evaluated. The entire sequence would be repeated
until at least one of the predicates was found to be true. At this

point, C could continue evaluation with the corresponding statement.
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IIT. USER’S GUIDE

SCHEME and LISP primitives:
CAR, CDR, CONS, NULL, = (EQ), LIST, MEMBER
REVERSE, LENGTH, APPEND (*APPEND), REMOVE
ADD1, SUBl1, PLUS (*PLUS), TIMES (*TIMES), < (*LESS), > (*GREAT)
NOT, AND (*AND), OR (*OR)

PRINT, ASET, PROGN

SCHEME magic forms:
(IF <predicate> <exp> <exp>) {2-branch only}
(QUOTE <exp>) or “<Lexp>
LAMBDA, CATCH, LABELS

(MACRO (<atom>) <exp>)

Distributed Processes primitives:
(PSET <vble-name-exp> <exp>)
(CALL <process-name-exp> <function-name-exp> <arg>* )

(RUN)

Distributed Processes magic forms:
(GAMMA <param-list> <common-function-deflist> <initial-exp>)

(COND <option>* )

(po <option>¥ )
(WHEN <option>¥* ) where
(CYCLE <option>* ) <option> ::= (<guard> <exp>)
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Miscellaneous:

(BIND <closure—exp> <vble-name-exp> <exp>)
returns a new closure produced by adding a new binding to the
closure which is the value of <closure—exp>. This new binding
binds the variable name found by evaluating <vble-name-exp> to
the value of <exp>. If the newly bound variable is a parameter
of the closure, it is removed from the parameter list of the
new closure (partial application of the closure). E.g.:
(ASET “SUB4 (BIND (LAMBDA (X Y) (PLUS X Y)) ‘Y -4))

(EVAL <exp>)
evaluates the value of <exp> in the current environment.
An environment may NOT be specified.

(DSKIN <filename-exp> )
reads and evaluates one expression from the file specified
by the value of <filename-exp>, e.g. (DSKIN “F00.BAZ),

(DSKOUT <filename-exp> <vble-name-exp> )
saves the value of the value of <vble-name-—exp> on the file
specified by the value of <filename-exp>, e.g.
(DSKOUT “XVAL.FIL “X). The output is in a DSKIN-readable form.

(ECHO <filename-exp>)
causes all following terminal I/O to be echoed on the file
specified by the value of <filename-exp>. ECHOs may be nested
to an arbitrary depth =- if you are not in a hurry.

(NOECHO)
cancels the most recent ECHO and closes the corresponding file.

(ARRAY <dimension—exp>¥* )
returns an array function for an array with the dimensions
specified by the values of the <dimension-exp>’s.

(STORE (<array-vble> <subscript>* ) <exp>)
stores the value of <exp> in the array element specified by the
<array-vble> and the <subscript-exp>s.

(ACCESS (<array-vble> <subscript>* ))
returns the value of the array element specified, e.g.:

#(ASET “X (ARRAY 2 2))
(ARRAY 2 2)

#(STORE (X 1 2) 7)
7

#(ACCESS (X 1 2))
7
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SCHEME EDITOR

The scheme editor takes an expr as input. It creates the list
representation for this expr and edits this 1list. When OK is typed it
returns the parsed value of the expression.

Editing of closures is allowed. When the editor is entered, the
closure is "unclosed" (e.g. a BETA-closure is made into a corresponding
LAMBDA expression). At the end of an editing session the expression is
parsed and then reclosed with the same environment with which it entered.

This editor works much like the UCI LISP editor. To edit something,
type (ASET “E (EDIT E)) where E is the expr you wish to edit.

Commands :
note:
n = length of cursor expression
(1 <= i<= n) unless otherwise noted.
(iel e2 ... eN) replace ith expression with el e2 ... eN

(i) delete ith expression

(Aiel e2 ... eN) insert el e2 ... eN after expr. i (0 <= i <= n)

(sw i j) switch expressions i and j

(BI i j) place parens around expr. i to expr. j
(BO i) remove parens from around expr. 1

(p i) printlev to a level of i

P printlev cursor expressionto level of 2
PP print cursor expression completely.
UNDO undo last command

i focus cursor on ith expression

0 focus cursor up one level

focus cursor on top-level expression

OK to quit
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IV. CONCLUSION

We have implemented the essence of the Distributed Processes
model of concurrency within an expression-oriented system. Distributed
Processes is not only compatible with SCHEME but is also more powerful
and general in this form. This power and generality may not be advan-
tageous in some distributed computing environments, however, where
restrictions are used to ensure correct execution of concurrent
programs. Some of the interesting and useful modifications to
Distributed Processes made possible by the use of SCHEME as a base

are:

1. Common function invocations are more flexible than Brinch
Hansen’s common procedure calls. Instead of requiring simple
identifiers, we allow expressions to specify the process and
the function name in a call. The invocation itself is an
expression with a useful value and can therefore appear in many
more contexts than Brinch Hansen’s CALL statement. Lack of
output parameters presents no difficulties in a list-oriented

language such as SCHEME.

2. Guarded commands and regions were easily extended to return a

useful value —— that of the expression selected for evaluation,

3. Distributed Processes allows arrays of identical processes.
Process prototypes with parameters (GAMMA expressions)

allow creation of several similar processes. lacks this facility.
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4. Processes need not have a name, even if they are to be CALLed
by other processes (see example 3). References to
processes may be passed as arguments to external requests, or
returned as values of external requests. This may be useful,
for example, to allow process P to inform process Q that a
certain situation exists in process R by passing Q a reference

to R.

5. Function closures may be passed into or returned by common
functions. "Qutward funargs", closures passed out of the
common function, may be used to allow quick communication where
mutual exclusion is not essential or is guaranteed in some
other way (see example 5). "Inward funargs" may be used

to enforce certain scheduling constraints (example 3).

6. It is also possible to pass continuations into and out of
common functions. This "C-link swapping” is hard to justify in
a distributed computing system since it is probably more

dangerous than useful.

The simplicity and elegance of SCHEME as well as the exceptional
modularity made possible by SIMULA’s CLASS facilities permitted the
development of an easily extensible interpreter for SCHEME with minimal
programming effort. Further, with facilities for process creation and
quasi-parallel execution this system provides an excellent basis for
experiments with other models of process communication, e.g. Hoare’s

csp [17,18], Feldman’s PLITS [10], Ada [19,24], etc.
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APPERDIX

The code is divided into eleven separately compiled modules. DEC-
10 SIMULA provides separate compilation of classes and procedures. By
concatenating classes we were able to have ten "module classes", each
containing a share of the classes and procedures which would normally be
defined in one large file. The last file is the main program —-- a block
prefixed by the tenth module class and hence by all ten module classes.
The structure of the files is shown below along with a short explanation
of each module.

There is no explicit facility for declaring forward references in
DEC-10 SIMULA; however, within this file structure it is easy to delay
definition of a procedure by declaring it as a VIRTUAL attribute and

defining it further down the chain of modules.

Summary of Source Files:

I0.SIM CLASS io

BASIS.SIM io CLASS basis

ED.SIM basis CLASS ed
MAGIC.SIM ed CLASS magic

PRIM1 .SIM magic CLASS priml
PRIM2 .SIM priml CLASS prim2
DPBASIS.SIM prim2 CLASS dpbasis
DPMAGIC.SIM dpbasis CLASS dpmagic
DPPRIM.SIM dpmagic CLASS dpprim
PARSER.SIM dpprim CLASS parser

SCHEME.SIM parser BEGIN ... END



Brief Description of File Contents:

10 contains code for input and output, including the lexical
scanner.
BASIS contains definitions of the most basic data types —- environ-

ments, expressions, atoms, lists, and instances.
ED contains the code of the structure editor.
MAGIC contains definitions of standard SCHEME magic forms.
PRIM]l and PRIM2 contain standard SCHEME and LISP primitives.

DPBASIS contains definitions of the process and distributor classes
necessary for multi-processing.

DPMAGIC contains definitions of Distributed Processes magic forms --
GAMMA, COND, WHEN, DO, and CYCLE.

DPPRIM contains code for the Distributed Processes primitives -- RUN,
PSET, and CALL.

PARSER contains both the parser and the procedure to check for "G
interrupt used by the Distributor.

SCHEME contains the main program, a block prefixed by class PARSER.
It initializes the primitive environment and starts the
Distributor.



OPTIONS(/E);
CLASS io;
BEGIN

REF(input) inf; REF(noecho) outf;

CLASS input(file); REF(Infile) file;

BEGIN

TEXT 1,buf,prompt;

TEXT PROCEDURE readtoken;
BEGIN

END;

CHARACTER window;
INTEGER startpos;

CHARACTER PROCEDURE Getchar;
Getchar := window := IF 1.More THEN l.Getchar ELSE Char(0);

BOOLEAN PROCEDURE blank(c); CHARACTER c;
blank :=c¢c =~ “ OR ¢ = Char(9);

BOOLEAN PROCEDURE delim(c); CHARACTER c;
delim := blank(c) OR ¢ = Char(0) ORc = (" ORc = ")7;

WHILE blank(Getchar) DO;
WHILE window = Char(0) DO
BEGIN
outf.Outtext(prompt);
outf.Breakoutimage;
file.Inimage;
1 :- Blanks(buf.Length + file.Image.Length);
1.Sub(1l,buf.Length) := buf;
1.Sub(buf.Length + 1,file.Image.length) := file.Image;
buf :- NOTEXT;
outf.readecho(1l);
WHILE blank(Getchar) DO
END;

startpos := 1l.Pos -1;
IF window = Char(39) THEN readtoken :- Copy(""")
ELSE IF window = “)” THEN readtoken :- Copy('")")
ELSE IF window = “(° THEN readtoken :- Copy("(")
ELSE
BEGIN

IF Digit(window) THEN

BEGIN WHILE Digit(Getchar) DO END

ELSE WHILE NOT delim(Getchar) DO;

1.Setpos(1l.Pos = 1);

readtoken :- Copy(l.Sub(startpos,l.Pos — startpos))
END

prompt :— Copy("#")

END #*%%%% of class input %¥¥%%;



CLASS noecho(file); REF(Outfile) file;

VIRTUAL:

PROCEDURE readecho; PROCEDURE Outtext;
PROCEDURE Qutint; PROCEDURE Outimage;
PROCEDURE Breakoutimage;

BEGIN

PROCEDURE readecho(s); TEXT s;;

PROCEDURE Outtext(s); VALUE s; TEXT s; file.Outtext(s);
PROCEDURE Outint(i,n); INTEGER i,n; file.Outint(i,n);
PROCEDURE Qutimage; file.Outimage;

PROCEDURE Breakoutimage; file.Breakoutimage;

END *#*%%% of class noecho #*%%%%;

noecho CLASS echo(oldoutf); REF(noecho) oldoutf;
BEGIN
PROCEDURE readecho(s); TEXT s;
BEGIN
file.Outtext(s);
file.Outimage;
oldoutf.readecho(s)
END;

PROCEDURE Outtext(s); VALUE s; TEXT s;
BEGIN
oldoutf.Outtext(s);
file.Outtext(s)
END;

PROCEDURE Outint(i,n); INTEGER i,n;
BEGIN
oldoutf.Outint(i,n);
file.Outint(i,n)
END;

PROCEDURE Outimage;
BEGIN
oldoutf.Outimage;
file.Outimage
END;

PROCEDURE Breakoutimage;
BEGIN
oldoutf .Breakoutimage;
file.Breakoutimage
END;

END *¥%¥% of class echo ¥¥¥¥%%;

inf :- NEW input(Sysin);

outf :— NEW noecho(Sysout);
linesperpage(-1)

—————————— OF €lgss jges—ss=m—e—y



OPTIONS(/e);

EXTERNAL CLASS io;

io CLASS basis;

VIRTUAL: REF(expr) PROCEDURE parse;

BEGIN '
REF(list) primvars,primvals; REF(environ) primenv;
REF(proc) running; REF(litconst) t,f; REF(nils) nil;

CLASS expr;
VIRTUAL:
BOOLEAN PROCEDURE eecue; REF(expr) PROCEDURE getrep;
REF(expr) PROCEDURE first; REF(list) PROCEDURE rest;
PROCEDURE print; REF(instance) PROCEDURE instantiate;
BEGIN

PROCEDURE print; getrep.print;

REF(expr) PROCEDURE getrep; getrep :— THIS expr;

REF(expr) PROCEDURE first;

BEGIN
outf.Outtext("FIRST OF EXPR ");
print;
outf.Outimage

END;

REF(list) PROCEDURE rest;

BEGIN
outf.Outtext("REST OF EXPR ");
print;
outf.Outimage

END;

BOOLEAN PROCEDURE eecue(Exp); REF(expr) Exp;
eecue := THIS expr == Exp;

END #%%%%% of class expr *¥¥%¥%;

CLASS instance(Exp,env,ret);
REF(expr) Exp; REF(environ) env; REF(instance) ret;
BEGIN
1z Detach;
INNER;
GOTO 1
END %%%%% of class instance #¥*¥%¥¥;



instance CLASS forminst;
running.control :-
Exp.first.instantiate(env,NEW formlinst(Exp,env,ret));

instance CLASS formlinst;
running.control :— running.box.instantiate(env,ret,Exp.rest,nil);

list CLASS nils;
BEGIN
PROCEDURE print; outf.Outtext("()™);

PROCEDURE printrest; outf.Outtext(™)");

REF(instance) PROCEDURE instantiate(env,ret);
REF(environ) env; REF(instance) ret;
BEGIN
outf.Outtext ("ATTEMPT TO EVALUATE ()");
outf.0Outimage
END;
REF(expr) PROCEDURE first;
BEGIN
outf.Outtext ("FIRST OF ()");
outf.Qutimage
END;
REF(list) PROCEDURE rest;
BEGIN
outf .Outtext("REST OF ()");
outf.Outimage
END;
REF(expr) PROCEDURE getrep; getrep :- THIS nils;

BOOLEAN PROCEDURE eecue(Exp); REF(expr) Exp;
eecue := Exp IS nils;

REF(1ist) PROCEDURE reverse; reverse :— nil;

REF(list) PROCEDURE revl(last); REF(list) last; revl :- last;
REF(1list) PROCEDURE remove(s); REF(expr) s; remove :- nil;
REF(1ist) PROCEDURE append(1l); REF(list) 1; append :- 1;
BOOLEAN PROCEDURE member(s); REF(expr) s;;

INTEGER PROCEDURE Length; Length := 0;

END #*¥%%¥%% of list class nils ¥¥%¥%¥;



expr CLASS list(ff,rr); REF(expr) ff; REF(list) rr;

VIRTUAL: PROCEDURE printrest;
REF(1list) PROCEDURE reverse; REF(1list) PROCEDURE revl;
REF(1list) PROCEDURE remove; REF(list) PROCEDURE append;
BOOLEAN PROCEDURE member; INTEGER PROCEDURE Length;
BEGIN

PROCEDURE print;

IF f£f.eecue(NEW vble("QUOTE")) THEN

BEGIN
outf.Outtext(""");
rr.first.print

END

ELSE

BEGIN
outf.Outtext("(");
ff.print;
rr.printrest

END;

PROCEDURE printrest;

BEGIN
outf.Outtext(" ");
ff.print;
rr.printrest

END;

REF(instance) PROCEDURE instantiate(env,ret);
REF(environ) env; REF(instance) ret;

instantiate :- NEW forminst(THIS list,env,ret);
REF(expr) PROCEDURE first; first :- ff;

REF(1list) PROCEDURE rest; rest :— rr;

BOOLEAN PROCEDURE eecue(Exp); REF(expr) Exp;

IF Exp IS list THEN

eecue := ff.eecue(Exp.first) AND rr.eecue(Exp.rest);

REF(list) PROCEDURE reverse; reverse :- revl(nil);

REF(list) PROCEDURE revl(last); REF(list) last;
revl :- rr.revl(NEW list(ff,last));

REF(1list) PROCEDURE remove(s); REF(expr) s;
remove :- IF ff.eecue(s) THEN rr.remove(s)
ELSE NEW list(ff,rr.remove(s));

REF(1ist) PROCEDURE append(1l); REF(list) 1;
append :— NEW list(ff,rr.append(1l));

BOOLEAN PROCEDURE member(s); REF(expr) s;
member := IF ff.eecue(s) THEN TRUE ELSE rr.member(s);

INTEGER PROCEDURE Length; Length := 1 + rr.Length;
END *#%%** of expr class list #*¥¥¥%;



atom CLASS const;
BEGIN
REF(instance) PROCEDURE instantiate(env,ret);
REF(environ) env; REF(instance) ret;
instantiate :— NEW constinst(THIS const,env,ret);
END #%%%%* of atom class const *%¥%¥%¥;

instance CLASS constinst;
BEGIN
running.box :— Exp;
running.control :- ret;
END #*%%%% of instance class constinst #%¥%¥%¥;

const CLASS litconst(pname); VALUE pname; TEXT pname;
BEGIN
PROCEDURE print; outf.Outtext(pname);

BOOLEAN PROCEDURE eecue(Exp); REF(expr) Exp;
IF Exp IS litconst THEN
eecue := pname = Exp QUA litconst.pname;

END #%%%% of const class litconst #¥¥¥%;
const CLASS number(num); INTEGER num;
BEGIN

PROCEDURE print; outf.Outint(num,len);

INTEGER PROCEDURE len;

len := IF num = 0 THEN 1 ELSE Entier(ILn(num) / Ln(10)) + 1;

BOOLEAN PROCEDURE eecue(Exp); REF(expr) Exp;
IF Exp IS number THEN eecue := num = Exp QUA number.num;

END #*%%%% of const class number ¥%¥%¥¥;



expr CLASS atom;;

atom CLASS vble(pname); VALUE pname; TEXT pname;
BEGIN

PROCEDURE print; outf.Outtext(pname);
REF(instance) PROCEDURE instantiate(env,ret);
REF(environ) env; REF(instance) ret;
instantiate :- NEW vbleinst(THIS vble,env,ret);

BOOLEAN PROCEDURE eecue(Exp); REF(expr) Exp;
IF Exp IS vble THEN eecue := pname = Exp QUA vble.pname;

END #*%%%% of atom class vble ¥¥¥¥%;

instance CLASS vbleinst;

BEGIN
running.box :- env.atval(Exp QUA vble);
running.control :- ret

END #%%%% of instance class vbleinst #¥%¥%%;



expr CLASS functiom;;

instance CLASS funinst(unl,evl); REF(list) unl,evl;

IF unl =/= nil THEN

BEGIN
running.control :- unl.first.instantiate(env,
Exp.instantiate(env,ret,unl.rest,NEW list(running.box,evl)));
Detach

END

ELSE evl :- NEW list(running.box,evl).reverse.rest;

expr CLASS magexp;;

magexp CLASS closable;
VIRTUAL: REF(closure) PROCEDURE Close;
BEGIN
REF(instance) PROCEDURE instantiate(env,ret);
REF(environ) env; REF(instance) ret;
instantiate :— NEW closableinst(THIS closable,env,ret);
END *%%%% of magexp class closable #¥##*#%;

instance class closableinst;

BEGIN
running.box :—- exp QUA closable.Close(env);
running.control :— ret

END;

expr CLASS closure(envsav); REF(environ) envsav;
VIRTUAL:
REF(closure) PROCEDURE bind; REF(closable) PROCEDURE unclose;;

expr CLASS proc(globenv); REF(environ) globenv;
BEGIN

BOOLEAN donmne;

REF(expr) box;

REF(instance) control;
END %%%%% of expr class proc ¥¥¥¥%;



CLASS environ(nextenv,varrib,valrib);
REF(environ) nextenv; REF(list) varrib,valrib;

BEGIN
REF(environ) PROCEDURE pairlis(vars,vals);
REF(list) vars,vals;
pairlis :- NEW environ(THIS environ,vars,vals);
REF(environ) PROCEDURE bindl(var,val);
REF(atom) var; REF(expr) val;
bindl :- NEW environ(THIS environ,
NEW list(var,nil) ,NEW list(val,nil));
REF(environ) PROCEDURE adddefs(defs); REF(list) defs;
BEGIN
REF(environ) env;
adddefs :- env :- NEW environ(THIS environ,nil,nil);
INSPECT env DO
WHILE defs =/= nil DO
BEGIN
varrib :- NEW list(defs.first.first,varrib);
valrib := NEW list(
defs.first.rest.first QUA closable.Close(env),valrib);
defs :- defs.rest
END
END;
REF(list) PROCEDURE assoc(var); REF(vble) var;
BEGIN
REF(list) vars,vals;
vars :— varrib;
vals :- valrib;
WHILE NOT(vars==nil OR vals==nil OR var.eecue(vars.ff)) DO
BEGIN
vars :— vars.rr;
vals :— vals.rr
END;
assoc :— IF vars == nil THEN nil ELSE vals
END;



REF(expr) PROCEDURE atval(var); REF(vble) var;
BEGIN
REF(1list) riblet;
REF(environ) env;

END;

env

riblet

:— THIS

environ;

:— nil;

WHILE env =/= NONE AND riblet == nil DO
BEGIN

END;

riblet
IF rible

:— env.assoc(var);

t == nil THEN env :- env.nextenv

IF riblet == nil THEN
BEGIN

END

ELSE atval

outf.Out
var.prin
outf.Out

text ("ATVAL - unbound atom ");
t;
image

:= riblet.ff

PROCEDURE atset(var,val); REF(vble) var; REF(expr) val;
BEGIN
REF(list) riblet;
REF(environ) env;
BOOLEAN finished;

END;

riblet :- nil;

env :— THIS environ;
WHILE NOT finished DO
BEGIN
riblet :— env.assoc(var);
finished := riblet =/= nil OR env.nextenv == primenv;
IF NOT finished THEN env :—- env.nextenv
END;
IF riblet =/= nil THEN riblet.ff :- val
ELSE
INSPECT env DO
BEGIN
varrib :- NEW list(var,varrib);
valrib :- NEW list(val,valrib)
END

END #*%%%% of class environ %¥¥%¥¥;



REF(expr) PROCEDURE read; read :- readl(inf.readtoken);

BOOLEAN PROCEDURE checkint(s); VALUE s; TEXT s;
checkint := Digit(s.Getchar);

REF(expr) PROCEDURE readl(s); TEXT s;

INSPECT inf DO

readl := IF s = ")" THEN readl(readtoken)

ELSE IF s = "(" THEN readb(readtoken)

ELSE IF s = """ THEN list2(NEW vble("QUOTE"),readl(readtoken),nil)
ELSE IF checkint(s) THEN NEW number(s.Getint)

ELSE IF s = "TRUE" THEN t ELSE IF s = "FALSE" THEN f

ELSE NEW vble(s);

REF(list) PROCEDURE readb(s); TEXT s;
readb :- IF s = ")" THEN nil
ELSE NEW list(readl(s),readb(inf.readtoken));

REF(1list) PROCEDURE list2(e0,el,rest);
REF(expr) e0,el; REF(list) rest;
list2 :- NEW list(e0,NEW list(el,rest));

REF(list) PROCEDURE list3(e0,el,e2,rest);
REF(expr) e0,el,e2; REF(list) rest;
list3 :- NEW list(e0,1ist2(el,e2,rest));

REF(1ist) PROCEDURE listé4(e0,el,e2,e3,rest);
REF(expr) e0,el,e2,e3; REF(list) rest;
list4 :- 1list2(e0,el,list2(e2,e3,rest));

REF(1list) PROCEDURE list8(e0,el,e2,e3,e4,e5,e6,e7,rest);
REF(expr) e0,el,e2,e3,eb,e5,e6,e7; REF(list) rest;
list8 :- list4(e0,el,e2,e3,list4(ed,e5,e6,e7,rest));

nil :- NEW nils(NONE,NONE);
t :— NEW litconst("TRUE");
f :~ NEW litconst("FALSE");
primvars :- nil;
primvals :- nil;

of class basis 2



OPTIONS(/E);
EXTERNAL CLASS io,basis;

basis CLASS ed;
BEGIN
function CLASS edit;
BEGIN
PROCEDURE print; outf.Outtext("edit");

REF(instance) PROCEDURE instantiate(env,ret,unl,evl);

REF(environ) env; REF(instance) ret; REF(list) unl,evl;

instantiate :- NEW editinst(THIS edit,env,ret,unl,evl);
END;

funinst CLASS editinst;

BEGIN
INSPECT evl.first WHEN closure DO
running.box :- editproc(unclose) QUA closable.Close(envsav)
OTHERWISE running.box :- editproc(evl.first);
running.control :- ret

END;



