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Fancy Ferns Require Little Care”
(Extended Abstract)

by
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Abstract: A fern is a kind of tree with at : .. .

most one non-terminal node at every Hm<up._ It 1s defined as a
structure for encapsulating results of wnwznsnouocm. indetermi-
nate multiprocessing. ' Formal properties of two structure build-
ers, CONS and FRONS, are proved; most interesting are the
idempotence properties regarding FRONS and 1, . .

and the contrasting ordep-preserving behavior of CONS. i
We present a simple language using these operations through
axioms and mxwauwua. Finally, practical demands of shared
references, programming practice, wmn fairness are demonstrated
to refine the axiomatized language. This separation of reference-
sharing issues from the definitions on indeterministic choice,
and its subsequent derivation, are important steps toward formal

semantics for indrterminism.
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Introductio

Thi=s paper presents a formal Jdeveloprent of ferns and
integrates them intc the envirorment of applicative programming
practice. We have developed the opcrational semantics of ferns
elsewhere [ 6, 5] to a degree far in advance of the theoretical
thrust of this paper. Here we only put that work on as firm a loct-
ing as possible.

Ferns are defined as a data structure which may first he
perceived a2s a generalization of list structures (a la TLISI[1c ))

designed to include an (initially) unordered structure here dubbed

a gcun»uuo. Our perception of 1list is firmly rooted in an appli-

cative-style programming, that precludes mpaenmwnmnnm (assignment
imperatives). We derive our generalization from the rule that a
list's content, once the 1list is defined, is immutable. Since
content need not even be evaluated at the time a list is ccnstructed
[ 2 1, ‘a list bullt as a totally ordered object may include values
represented as "suspensions," immutable informetion .sufficient to
generate those values as in call-by-need [21,20,7) semantics for
parameter passing. Because these suspensions are analogous to
dormant processes, parallelism can be introduced thereby [ 3 1.

A nmultiset [9] (also bag [22]) is essentially a list built
without specifying explicit order. As we M:WHH see in the last
section of thls paper, one can argue that order can be impressed
upon the structure during its use, but for now we m:www.mpho: its
order to remain unspecified except for one convention. As an un-

ordered structure, its access is not deterministic and involves

choice. We constrain that choice through mechanisms to be assoclatec
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with EUREKA images or e¢-abstraction, so that alternatives involving ,

suspensions which are ill-behaved are avoided. In terms of p

denotational semantics [17], we will only allow choices assoclated
with non-. values (or with ordering forced at construction time -
i1.e., 1ist orderings).

In introducing awnu.oo:<osa905. which we assoclate with the
«ouuyupnamnouapzpma=. we argue briefly that owpwuuwubcoﬁupu a \
natural evaluation strategy for operational semantlcs. h eritical
ability of computers (aside from making decisions) is the wuuw»d«
to recall repidly values already known. Typically this is done
by fetching the value of a veriable from memory; in Hmaunwlowwncpcu_
the analog 1s nuoo<wupnm the bound value of a variable. 1In lambda-
ecalculus models various protocols are available to effect this
during the evaluation of an expression: call-by-name, call-by-value,
call-by-need; all have more or less the same effect in terms of
Church-Rosser equivalence. The last two, however, are operationally
closest to the "table=-look-up" behavior of computer memofy
efficient in time since no argument 1is evaluated twice. As we f
argue next, this avoidance of "twiceness" is necessary to grapple w
with indeterrinism. . _

Hnnmamuavuwua.»m a facility, often used by a programmer to !
incorporate external behavior into his program through selection
of "good" values and avoidance of "bad" ones. Such a faciltly !
specifies & choice which is not determined Just by program or by
input velues, but may involve time dependencles anong various

input streams. (It is not to be confused with the non-determinism

of automata theory, a styllstle convenlence Lol compressing
cxplosive deterministic computations.) A program whleh uses
indeterminism, having made an underspecified choice may refor
repeatedly to the results of that choice.

We present a formal definition of ferns for representing

.indeterminism., ..The first section includes some notation, def-

. v \
initions, and examples of ferns -- the generalization of lists

but built from multisets. The definitions of CONS - the 1ist
buklder, FRONS - the acuﬁpumnucszanw. and EUREKA - the choice
builder provide for building and probing ferns. Formal results
at this level establish the mathematical properties of these
definitions that later support the language built on them. A
congruence relation is established on the set of ferns and forms

the basls for several important results: that FRONS is insensi-

tive to 1 (Corollary 6.3 on idempotency), that FRONS avoids

only 4 (Corollary 7.1), and in contrast that CONS preserves

order regardless of whether or not its domain argument is 1
(Theorem 8), Infinite ferns are also considered. Theorem 10,
establishing that any choice available in decomposing an (under-
ordered) fern is also avallable if that fern were CONSed in the
first place, forms the foundation of the later language defini-
tion: that unordered ferns may be accessed as if they had been

constructed specifying some total order (as CONS does).
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This supports the semantlcs uvmmmsnma in the following
sectlon, which provides that a fern appears to be any one of 1ts
CONS » EUREKA images (where o denotes composition), the choice
of image being made on every application of the eg-abstraction. There
the user 1s wdodwamm a mutating frons, ufrons, constructor in

addition to McCarthy's cons [12]. Examples there include amb,

arblt, symmetric or, and merge of: arbitrary numbers cf streams.
In the final section we Justify the restriction of ufrons to a

non-mutating frons, available without changing any axioms. As

a result, an indeterministic cholce need only be made once within

the language and preserved within a fern structure.

aventional Nobatlier

w.mmmcm:om over an alphabet 1s any st aompasaed of
symbols from the alphabet. The empty sequence is A. IF V
is an alphabet, then V* denctes the set of all finite
sequences over V, including A. V™ denotes the set of all
infinite sequences over V. A sequence S may he perceived
as a partial function from the natural numbers, w, to the
alphabet. Thus we might write S ¢ V* as S = 89°8y°5, for
sy € V. DBecause there are symbols 'in our alphabet which are
not represented by a single character we require the syntactic
use of a concatenation symbol ":" between symbols in a sequence.
Some alphabets include sets as elements.

We also use the conventional powerset operator:
PS = {X | XeS} and function extension operator:
fly/x] = Au.(u=x + y, fu) where the (+,) form is the strict

conditional. Finally, we will be referring to an arbltrary

Scott Domaln, D, and its bottom element (u.).

A multiset over D 1s a mapping, M: D + w+1. We interpret

the multiset as a function mapping d ¢ D into the number of
ﬂuaww (perhaps infinite) that 1t oceurs in the multiset. The
set of multisets over D 1s M(D) abbreviated to M where obvious.
Singleton multisets are written using set notation; if d e D
then {d} = (Ax.x=d + 1, 0) e M(D). We define additive operators
on multisets analogous to set union and difference [9 22].
If M,N e M(D) then
MeN

Ax.M{x) + N(x);

Me N Ax.M(x) = N{x).

~Eo
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Definition: The set of ferns over D 1is

F(D) = {Agrag+hyra tA +... e (M(D)-D)*M(D) v (M(D):D)”

| vizo Ayylayy,,) > o).
We write an element of

F(D) in O1d English font: A e F(D). If A ¢ F(D) then we Write
A= Apra;Ayray+... where A,y € M(D) and 85{,1 € D. This
H:ammm:m is taken to be conventional so that the meaning
of A,, and a,y,, are all notationally implied once A is

known. Similarly By and b, hoo and c¢y) when B (respectively
€) 1s defined.

A trivial element of F 1s the empty fern Wil = Ax.0 .

Example of a simple fern

We next present a simple example of three related ferns.
That these ferns are built from one another reflects the

Operational nature of the sharing inhersrnt in an implementation.

The choice of the word "fern" (and later of "FRONS")
is motivated by the shape of these structures as illustrated (Figure
in the following examples. The reader 1s encouraged to
compare those figures with that of equisetum in Figure 2,

which 1s not quite a tree.

1)
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A 1list is a fern, X ¢ F, such that xmu is a singleton

Note that a list 1% ccompesed of
singleten mulfiiscets. For examplg, the LISP [327 128t (1 2 1 8)

is represented oy X = {1}-1-{2}.2-{12}-2-{3}:3-4x.0 .

The purpose of CONS and FRONS 1s to bulld up ferns as similar
constructors build up lists in LISP [12 ]. The function EURZKA
specifies a set of possible palrs which specify how a fern is to
be probed in a "bottom-avoiding" fashion. 1t is reminiscent of

other choice functions: amb [12 ], arblt[ 8 ], and mergel 1 ] which

avoid results ~f 1ll-defined or misbehaved computation, but we use

it only descriptively: it is not part of a user's language.
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Notation: For the following three definitions we specify a local

string notation on ¢ and Y. Define ¢ and y by A = .>a.e and,
if ¢ # A then ¢ = m».pu.e. This notation references the suffices
after the first one or three items in A.
CONS: D = FF =+ F
(d,A) ++ (d}-d-a
FRONS: D x F = F
(d,A) +- ﬁauepm.e
EUREKA: F =+ P(DxF) *
A ot Hnmu.n>m9>omﬁm»uv.ev_ hcummpu v mpxhv
u{<a,(Agef{al) -¢>| akL & Ag(a)>0 & (a=ay)>(A,(a)>1) }
One way of forming our example fern is by generating

7 from A and then € from B:

A

FRONS(1,FRONS(7,Ni1))
i

FRONS(2,FRONS (4 ,CONS(1,A)))
«

FRONS(8 ,FRONS(. ,FRONS(7,CONS(0,R)))).

EUREKA for ferns ), B, and € follows:
EUREKA(A) = {<1,(7}>, <7,{1}> }
EUREKA(D)

{<2,{0L,u}er-a>, <u,{1,2}1-2> }

EUREKA(C)

{<0,{1,1,2,4,8,7)s1A>,

'<7,{1,0,8}+0-%>, <B,{1,0,7}-0-> }.
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Theorem 1: FRONS(4,Nil) = {d}; COMS(c,mil) = (dl«d-(Ax.0}
Définition: If A ¢ F then a prometion Fis
sequence ﬁanu.wva.Vﬁ ¢ (DxEY"y(pxF)” sueh. thas A, = A and
<dy 0B € EUREKA(A;) for i = 0. A promotiosn scquence of length

n is maximal if either n < « and mcmmxrﬁwzu = ern = wu.

Mimﬂm are infinite ferns whose maximal promoiion sequences
are all finite: for example, Ax.L whose triviality

anticipates Corollary 3.2 and Corollary 6.3.

one (of several) promotion sequences of B 1is:

<4,B, >, <2,8,>, <1,B,>, <7,8,>, <1,B8.> where

3, = {L,2)}0A
3, = {1}-A

ﬁw = A

X, = {1}

4 = Nil.

Definition: We define the binary relation < on F by

4 < B when for every maximal promotion sequence ﬁn&w.»HvHHuo

{of A) there is a promotion sequence ﬁaaw.mwvu»vo (of B).
The promotion sequence of @ need not be maximal, but may
be longer than that of A so long as the ﬁn»u coincide for the

length of A's maximal promotion sequence.
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Theorem 2: A < B if and only if for every <d,A”> ¢ EUREKA(A)

there exists <d,B”> ¢ EUREKA(Z) such that A" < B~.

Corollarv 2.1: The < relation is reflexive and transitive.

Definition: The binary relation = on F is defined by

A =7 if and only if A < @ and % < A,

Corcllary 3.1: The = relation is an equivalence relation on F.

dm»:m the fern 1 = mo.Uu.mm from our earlier example,
iform ®° = FRONS(1,8) = {1)eB,b,+B, . The additional 1 in
dm interferes with the construction of maximal promotion
sequences for B equal in length to those for #. 1In particular
for each promotion sequence {<dj,By>};,q for @” there 1s no
nm = 1; whereas uu = 1 in every maximal promotion sequence
ﬁna».unvupvo for @. Hence B < B but R~ # B. On the other
hand consider ®° = B,*b,*B,e{1}. 1In this case there is no
such interference and the maximal promotion sequences of &~

and A are the same; hence B” = Z.

The next set of theorems explores what happens to promoticn
sequences as a fern 1s built nop using FRCNS and CONS. It turns
out that if A = FRONS(.,Nil) then EUREKA(A) = # and A has only
empty promotion sequences; hence A < Nil. As we expect, EUREKA
avoids 1 and so the promotlion sequences don't change with 1 in

the fern.

Corollary 3.2:' If A < Nil then A = Nil,

———

In general, however, FRONS(1,A) # A, but a weaker
relationship can be mmwﬁcuwu:mm. We explore this fact 1in the

general case of FRONS and later study CONS.
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Theorem 4: If A < B then FRONS(d,A) <« FRONS (d,3) .

Now we can justify the use of the congruence symbel, =,
Corollary 4.1: If A = R then FRONS(d,A) = FRONS(d,B).

Therefora, = acts like a lalt gongruence. K More

conventionally we would choose an infix "binary" operator,
&

& FRONS
1

congruence.

) ' as the operator preserving this

Theorem 5: FRONS(1,A) < A,

We are tempted by the discussilcn preceding Corollary 3.2
to establish 1 &as an analogous "left identity".
That would follow from a result symmetric to
Theorem 5, which is not available. Unfortunately, promotion

sequences of A can be disturbed by "FRONSing" a L: -Consider

A = FRONS(L,FRONS(1,Nil)),
7 = CON3(L,Nil) has the promotion sequence <i,Nil> of
length one, but EUREKA(A) = @. Thus A < T but not T < A, We
can, however, establish an idempotence result somewhat analogous

to Theorem 5.

Lemmz 6.1: Let A ¢ F then if ¥i a # L then A < FRONS(1,A

2i+1

An equivalence relation = is a left congruence with respect to

an operator @ if x = y impllies z © x = z & y.
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Corollary
Lemma 6.2: Let A ¢ F and k be the smallest integer . =
Then B < A 410
such that a, ., = 1. If k = w or if A, (1) > 1 or if
there exists J < k such that bmuﬁhw > 0, then A < FRONS(1,A). Nevertheless,
We now have our idempotence results. Theorsm © !
Theorem 6: FRONS(4,A) < FRONS(L,FRONS(1,A)). Theorem 10:

Corollary 6.3: FRONS(1,A) = FRONS(L,FRONS(L,A)).

Corollary 6.4: Ay.FRONS(1,y) 1is idempotent with respect to =.

Thus, FRONSing 1 once 1s the same as FRONSing it repeatedly.

_ Theorem 7: If d # L then FRONS(d4,A) < A iff

dksw (Yi<k a =dq mﬁmpnpﬁav = w where 0sisk) ).

2]+1

Corollary 7.1: wuet B = FRONS(4,A).

Then B < A iff @ = A or d = L.

‘ Now that we have thoroughly explained the behavior of FRONS

under the interpretation above, we present similar results about

the more familiar CONS operation. We, however, lose the idempotence.

Lemma 8.1: EUREKA(CONS(d,A)) = {<d,A>}.

Theorem 8: If CONS(d,A) < A then ﬁmbupnnv = w where 0sisw).

¥ then CONS(d,A) CON3(d,q).

If <d,B> ¢ EUREKA(A) then CONS(d,B)
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Semantics b

@113 = plI] where Ield (1) Identifier

In this sectlon we present a semanties for a language Elvruelp = g ¢2) Truth

that includes ferns as data structure for the user. Most ’ Liralselp = ©f (3) Falsehood
of the axloms are conventlonal -- lifted from Stoy [19]. 8[nillp = Wil ) {4} Empty fern
Ferns are embedded in an ::non<m3nuommw way, however, outside &_mo = mpao = ﬁmamogn = hww»wcv (5) Equality
that tradition. o

“Elstrictify(Ey,,Eq)lp = (EIEj)o=1 + 1, £IE ]p) (6) Sequencer
i Two perspectives, operationally motivated, are necessary to i
‘understand why we refrain from using traditional power domain The strictify operator 1s a cequencing operator, which is used
approaches to indeterminism. First is the call-by-need [21 ] or ! to control the convergence properties of indeterminate structures.

[l F:

call-by-delayed-value [20 ] approach to parazmeter passing and to _ _ We also specify a conditional®
data structure construction [ 2 ]. We intend that no expression ElLr Ey*then E, else E Jpo = mdmomb + &IE, 10, EIE,T0 (7) Conditional

ever be evaluated untll necessary to further the fabrication of an

outermest result. In delaying evaluation we 1lnclude specifically the
Function invocation 1s usually cecnventional, although

content of ferns and of environments (treated also as objects --
Axiom 12 is related in an unusual way.
albeit function-1like). Such content, therefore, may be shared

" through borrowed references before it is ever evaluated. Upon EIAI.Elp = M. 8Elolx/I] (8) A-abstraction
first access such postponed evaluation proceeds at most once. . mmmo muﬁo = mmmomn mmmﬁwu (9) Application

There is no loss in such an operational prctocol compared to
that of conventlonzl substitution for deterministic programs; we h
are considering more.

The second perspective, then, 1s the necessity to assure

consistent handling ef twice-used results of indeterminism. A

major .contributioni of this paper is the two-step approach to this *More cleanly we might have defined an additive conditional [19 ]
requirement. In the axloms which follow, indeterminism is and then defined "if E. then E, else E," = "strictify(Ey,adif Eg E, E,)!
introduced via Axiom 11 (FRONS) and is used via Axlom 12. 1In a but we do not need additive conditionals in this paper [ 4 J.

1

later section we use these same axloms to reach a more ccmfortable

solution to "twiceness", embedding all cholce within ferns.
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(10) Determinate

glcons(Ey,E ) lp = oozwamNMOuo.mnmpunv HetesuAnee

We use ufrons locally in the user language to specify a fern

which appears to mutate under Axiom 12. In the next section we

define another user primitve frons from ufrons.

(11) Indeterminate

£lurrons(E,E, Ylo = FRONS(EIE,Dp,EIE, 1e) inderarminy

While cons and ufrons are themselves always deterministilc,

they build ferns which can only be accessed using Axiom 12.

Elc1I.Elp = AA.(ElElp[d/I,B/J] where <d,B> ¢ EUREKA(A))
(12) e-abstraction

Axiom 12 uses the call-by-need perspective on environment --
that arguments are only evaluated once -- to bind two variables
consistently. The e-abstraction borrowed from A-abstraction
and "evpnka" specifies that one cholice of a pair is made on
each application, and that these two items simultaneously and

consistently become the values to which two variables are bound.

M

Delayed evaluation (call-bv-need) may poslpone thic
simultaneous binding, but it is not possible to use call-by-name
which might separate 1t. For example, a call-by-name protocol
might allow

El{eld.ufrons(1,J)) Flp
where &{Flp = F = {tt,rr)
to yield {frf,rf}

&
if I were bound to ff and J were bound to
{fr} independently. (But : i

EUREKA(F) = {<tt,{ff}>, <ff,{tt)> }.)

Axiom 12 does not allow the substitution to distribute the
choice across any other operator. Another way to perceive the
situation is that the choice 1s made using call-by-need in the
"envircnment" built on application of an e-abstraction.

Thus, the conventional pocwer domain constructions [16,18]
do not work here. The EUREKA-image of a fern, not in general
effectively computable, is only used as the domain of a cholce
function in Axiom 12. There, however, two bindings are effected

in a necessarily consistent fashion, precluding call-by-name.
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Examples

The examples in this section fall into three categorles:
simple, recursive on D, and recursive on D + F. The simple

functions are amb [12] and arbit [ 8]. The recursive on D

examples are the infinite seguence of integers, nn; a

permutation of the integers; sequential or(13,pg5E ]

symmdtric mmﬁwg.um¢au.. The recursive on D + F example merge streams.
The use of recursion in the programming language deserves

some justification. Since we have not established monotonicity

or continuty results we cannot use least-fixed-points to

guarantee a meaning for recursion. Instances of A-abstractions

are in the language, however, so from a syntactlc perspective

we can construct Curry's Y-combinator and apply 1t to functions

to admit recursive examples [ 19 , p.73] (solving no equations)

under normal order evaluation, which is provided through call-by-

need. ’

This scheme allows us to specify the construction of
infinite ferns, but never to actually construct one. As
long as A, is finite for any fern A, moreover, we can use
a scheduling strategy to compute the elements on_>c in
parallel in order to find one member of EUREKA(A). If A
is infinite, then the search for an element of EUREKA(A),
for A # 1, 1s more complicated; a schedullng strategy akin

to the conventional enumeration of the rational numbers

suffices,.
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We first present fern probing relaticns:
first = £13,%;
rest = glJ.J.

Since first(F) and rest{F) can have as many possible values as
the cardinality cf EUREKA(F) and these can be chosen independ-
ently on each application, it is difficult to use these protes

on ferns bullt directly by ufrons. Ve, therefore, don't use

&
first and rest here; in the next secticn this restriction will

be relaxed.

The simple functions are non-recursive and include

amb and arbit., Amb i1s a function which takes twae argumnents

and returns a non-1 one of them if it exists.

amb = AA.AB.(eXY.X) ufrons(A,ufrons(B,nil)) .

Arbit 1s similar to amb, but it returns tt if the first one

is non-i, false if the second one is non-., and 1 otherwise.

arbit = AA.AB. amb strictify(A,true) strictify(B,false)

Of the functions that are recursive on U we have the

& :
natural numbers, nn, and the sequential and symmetric or.

nn = AT.Cc(I,nn(I+1))

If ¢ 1is cons then we have an infinite sequence; if ¢ 1s ufrons

each of its promotion sequences is a permutation of the natural

numbers.
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or = Arf. 17 null F then false

else (eUV. if U then true else or V) F .

If a list is bound to F then the behavior is the sequential or;
if a multiset is bound to F then the behavior is the symmetric
or. Or has ?mm:wnw for any fern, not just lists and multisets.
fle next present one'pleceiof code, which
may be interpreted as four different programs. One of these
is the "interrupt handler"” or "input driver" required to
service zny active terminal in the airline reservation

problem [1, 23, 1.

Before presenting these examples we extend D, hitherto
an arbitrary domain, to include nmﬁﬂm.+ This provides for
ferns of ferns, sublists, and other nested data structures as

anticipated by McCarthy [ 12 ].

Consider the code

merge = AM. if null M then nil

else (eLR. if null L then merge R

else (eUV. ¢(U, merge X(V,R))}) L) M.

where C and X are the constructors ufrons or cons.

t
Showing that F is a domain 1is beyond the scope of this paper.
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This ccde 1s guite similar in effect to coce fer flatien
when C=cons=X. Such a funcltion reduces a list of lists (or a
matrix) into a single list of 1ts second level elements (or a
vector). When the argument 1is less well ordered more interesting
things happen.

Let us assume that each sublist of L (or row of the matrix)

has been constructed with Landin's prefix¥ [11], a version of
2 Sl v

cens which is strict in its first argument. Such sublists, or

streams, are characteristic of serizl input lines in a
communication network. If these streams are composed into a

multiset of substreams using Hfrons, then we have the analog of

a matrix with order and "seriality" with each row, but whose

rows occur in an unspecified order.

The effect of C=cons=X 1s then to append 2ll streamns,

the strzams to be chosen in an order depending on the
(temnoral) order ol convergence of the [irst elements in
the streams. Once a stream is chosen to be first, however,
it must be exhausted before another one i1s chosen to be
merged in. ’

. The effect of C=cons and K=Mfrons is the desired interrupt

handler. Urvon each recursion the multiset structure 1is
restored so that the output 1s a true merging of convergsnt

prefixes of active streams. The order of the merge is deternined.
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If C=yfrons=K, the result is a multiset of all elements in

all streams without regard to order eilther zpd:HJ streams or
ameng streams. The stream nature of input, however, tends to
assure that internal order within a stream will be reflectad in
the w:pmwpmu.ocnvcnu but this observation is based solely on
operational behavior rather than required semantics.

If C=¥frons and K=cons then the shuffling of the previous.

paragraph is restricted up to the first infinite stream

encountered., ¢ assures that the result i1s an unordered structure,

put XK forces a selected stream to be exhausted before admitting

the next one into the shuffle.
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. Coping with anomalous behavior -- frons

The programmer working with indeterminism and the language
of the previous section has mcwwpnpmnm power to solve some
interesting problems, but he has some irritation as well.

For example, let mnm_n = ¥ be a fern and let EUREKA(F) have
two elements <d,®> and <d',8'>. Now within the scope of one
application of €, say

; Bleli (I =1) Elp
the values of I and J are consistently paired, so that this
evaluation yilelds tt always: either I is bound to d or to d'
exclusively. However, every application of € allows a new
choice for the pair:

£l(eIJ.I E) = (¢IJ.T E)lp
may evaluate either to ff or to tt depending on whether d and d°
are chosen by either application of € or not. That the equality
of this example might not hold should be quite disturbing to
the applicative programmer because the syntax is identical on
elther side of the equal sign.

The headaches compound if one grapples with "falrness,"

A fair implementation of Axiom 12 would have to select an
element from a fern's EUREKA image with probability equal to
all the rest. Consider the infinite multiset of natural
numbers ; @ possible result of € [AF.F an(0)]p:

E[F)p =N = Ax.1 e F(w).
Then W<mwe fair evaluation

£l(ers. 1) Flp
should turn up "yet another" integer; this should act like a
random integer mm:mﬂm«ow; zr»ar ls not effectively computable.

Fairness iz, therefore, hopeless.

*

This observation about fairness and multisets is due to
Robert E. Filman,
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Recalling our early discussion of "twiceness" and call-
by-need, our programmer perceives that the problem lies in
repcated applications of Axiom 12 to the same fern, ylelding
(lezally) inconsistent results ané precluding fairness.
Theorem 10 shows a way out: fix it so that the application

of ¢ is embedded within a fern. msms the restrictions on

mcwujwnuzm arguments once will apply Axiom 12 only once per fern: .
frons = AX.AY.(eIJ.cons(I,J)) ufrons(X,Y).
By Theorem 10 Zlfrons(X)Y 1o « Slufrons(X,¥)lp so that frons

is a correct, but weak replacement for ufrcons; its behavior

is one of the possible behaviors of ufrons.

In effect, a fern built with frons in place. of ufrorns

everywhere, 1s built as a list incorporating one of the
.mcmmx¢ cholces possible at each step of a promotion seguence.
That 1list reflects one, not all, maximal promotion seguences.
Of course, the call-by-need convention serves to delay
selection of preclsely which one; the cholce unfolds simul-

taneously with the need for such a sequence.

The anomalous behavior of ﬂmnmmwma.muuwunmnuozm of €,
seen to yield inequality between syntactic identlcals before,
now disappears., Every application of € yields consistent
unique results, as if the consistency rules for e have moved

outside its scope. (Indeed, this is just what the cons in

the definition of frons does: it freezes the e-scope in which

1t is evaluated.) Frons is no more a function than is ufrons,
L] AP —

but first and rest become deterministic functions in a style

where frons awmuwrnmm all uses of ufrons.

= 151 -

Mereover, the fairness of frons 1s an issue different

from the fairness of €. If frons replacez ufrons in alil

code (e.g. the examples of the previous section), then there
is no longer any falrness debate on €. All remaining occurrences

¢ (aside from that in the definition of frons itself) are

deterministic, so we need only concern curselves with the
wmwﬁﬁmmm of frons (or that one occurrence of €). An important
refinement has been made 1f € 1s only indeterministic within
frons: we kncw that € 1s never necessarily applied to the

same fern, A, twice unless Ay = *uwu a singleton.

Thus, a concern for fairness need not account for falr
relational (as opposed to functicnal) behavior mw Axicm 12
choosing from the EUREKA image of one fern repeatedly. Under
frcens only one indeterminate choice is ever made for evVEeTY
fern, so that fairness need naver be defined over independent
applications of Axiom 12; instead we can establish some
amumﬂuwsnw according to the order of the maximal promoticn
sequance selected. Just such a proposal was the original

goal of our work [ 5 , appendix].

of
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Conmclusion

We have developed a theoretical perspective on indeterminism
for applicative multiprogramming. There have been several other
approaches to incorporating indeterminism in pure applicative
languages. .om these, the earliest.is McCarthy's amb operator
[12 ] which returned one or the other of its two arguments,,

avoiding L as a value when possible. Bottom-avoidance is also

the essence behind Kosinski's arbiter [10 ] and Keller's arbit

[ 8 ). Hone of these extends to consideration of fairness.

By embedding the indeterminism within a structure --
the fern -- we allow references to the contention to be
passed as arguments, establishing shared references to the
choice before it is made. Call-by-need protocol for
application and for structure definition not only allous
reference to an unmade (but specified) choice, but also
guarantees normazl order evaluatlon and allows us recursive

‘definitions using the Y combinator,

Encapsulating indeterminism inside an oblect allows us
to attack falrness of that object, rather than having to
relate falrness to overall control structure, If choic=z 1is
made fairly as an object 1s bullt up and torn down -- over
a period of time -~ then the system has a falr choice mechanism
: ;
AVALLABTE t6LE, _HJ the'preceding section we only anticipated

sélutions to mm»q:mmww here we offer a conjectural definition
']

of what a fair implementation of ferns should do.
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Fairness Principle : An interpretation of cons and uyfrons may
be said to be fair if there exists f: F + w, some
monotonically increasing function with respect to < on F
and to the total order on w, such that £(A) is bounded
by the length of all maximal promotion sequences of A and
f meets the following requirement. When [Flp = Aj with
maximal promotion sequence {<d;,A;>};,q andglufrons (d,F)]p =

By with maximal promotion sequence .Hamp.u»uwpvo then either
d = 1 and ¢9ﬂm» =dy) ord# 1 and ey = dy for i « £(ag),
OHJH»DV = d, and Qu—.—.u- = QH for 1 » H.ﬁsﬂﬁuvo

i L}
esmuwmuaammm principle conjectures a function which
identifles the prefix of a promotion sequence which is not

altered by pfronsing new elements into the fern. Thus, new

values are lInserted after such an (ever increasing) prefix.

This guarantees that every element in a fern will occur

"early" in a maximal promotion sequence regardless of how

many ,items are adjoined to that fern with yfrons; eventually \
the new values will take their place after already extent
elements. Eventually any non-. element occurs'first" as the

fern 1s traversed using Axiom 12. (The conjectured function,

', need not ba locally properly increasing, but it must be
asymptctically increasing for fairness to hold.) We have im-
plemented one such scheme [ 5 ] using timestamps (birthdatus)

to effect the function f.
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In mcaamdw. we have defined ferns as a data structure
encapsulating indeterminism by extending lists. We have
proven several results regarding the mathematical properties
of ferns, particularly relating to the idempotency resulting
from adding a contending process that doesn't behave;
semantics of 1ist structures are retained, however. Following
a mm&muaunw WOﬁ.m language incorporating ferns we presented
a few examples; others are avallable elsewhere (6557
Having stated the case for ferns carrying indeterminism
within applicative languages, we offered a simple refinement
to solve the twiceness anomaly of other formulations of
indeterminism in applicative languages. That twist allows us

to confront issues of fairness, set forth Just above.

The challenge of fairness 1s that contention of processes
in an applicative system could neither be ignored nor honored
without any explicit scheduler to assure such effect. It is
this challenge which we expect ferns to meet. Future work
will refine the concept of fairness and reconcile It within

a generallzed rormulation of denotational semanties.’
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