CONTEXT-FREE GRAMMARS FOR THE
BALANCED, OVERBALANCED AND UNBALANCED

BINARY LANGUAGES

by
George Epstein
Casper Martin
Computer Science Department
Indiana University

Bloomington, Indiana 47405

TecunicaL Report No. 103
ConTEXT-FREE GraMMARS FOR THE
BALANCED, OVERBALANCED AND UNBALANCED
BINARY LANGUAGES
GEORGE EPSTEIN
CasPER MARTIN

MarcH, 1981

| Introduction

The exercise of giving grammars for the balanced and cver-
balanced binary languages was performed approximately 20 years
ago by S. Ginsburg, the first author of this technical repcrt, and
others. The feature of the work given in this technical report is
its transparent structure.

First, a candidate grammar i1s hypothesized which preserves
key features of the language to be generated. Second, there is an
attempt to show that an arbitrary sentence of the language can be
generated by this grammar (if the attempt fails, the candicate
grammer must be widened, then sharpened as needed). Third, to
obtain an extension or generalization of the language, add appro-
priate production rule(s) to the grammar as it stands. Exemples
of extension or generallzation are provided as the last part of this

technical report.

CONTEXT-FREE GRAMMARS FOR THE
BALANCED AND OVERBALANCED
BINARY LANGUAGES
George Epstein

Casper Martin

Balanced Binary Language

The balanced binary language is defined as the set of all
strings over the symbols 0 and 1 for which the number of (C's in
any string is equal to the number of 1's in that string. This

langueage is a context-free language given by the following rewriting

rules:

(1) 8 » 081

(2) S =+ 180
(3 8= 01
(4) s » 10
(5) 8 + 88

Proof
It is obvious that this grammar generates only those strings
for which the number of 0's is equal to the number of 1's. To
prove that this grammar generates all such strings, note that
I. Rule(5) followed by rules (3) and (4) produce the rule
g <+ 0LLD
II. Rule(5) followed by rules (1) and (4) produce the rule
S - 08110
ITI. Rule(5) followed by rules (3) and (2) produce the rule
S =+ 01130
IV. Rule(5) followed by rules (1) and (2) produce the rule

S =+ 081180

In similar fashion, one obtains these rules with 1's and 0's
interchanged:

Ia. S = 1001

ITa. S =+ 1S001
IITa. S = 10081
IVa. S8 -» 1S0081.

Now the rules 1-4, I-IV, and Ia-IVa exhaust all possible
rewriting rules for a string with the number of 0's equal to the
number of 1l's. For if the string has a 0 at one end and ¢ 1 at
the other, then apply one of the rules (1)-(4) to obtain it; if
the string has 0's at both ends, then apply one of the rules
I-IV to obtian it; if the string has 1l's at both ends, then
apply one of the rules Ia-IVa to obtain it.

The first of these instructions 1s clearly applicable.
Suppose that the string has 0's at both ends. Then the inner

string must have an excess of two 1's and be one of the forms

(1) 11
(11) s11
(idd) 118
(iv) S118

where in each of these forms S is again & string with the number
of 0's equal to the number of 1's. To prove this statement,
consider the string o = o(l) a(2)...0(n) which has two more 1l's
than 0's, where each a(i), 1 =1, 2,... n is either O or 1.

Let N(i) be the excess in the number of 1l's over the number of 0's

in the string o(l) a(2)...c0(i), 1 = 1, 2,...n. It is obvious

that |IN(j + 1) - N(j)| =1 for j =1, 2,...n - 1; i.e., the
function N(i) must either increase or decrease by 1 as 1 noves
from j to J + 1. In the case when N(i) = 0 for some i, trere
must be a maximum i = io such that N(io) = 0 and N(i) > N(io)
for all i > i . Then 1t is clear that a(io + 1) = a(ij + 2) =1,
for otherwise 1 = io is not maximum. Hence, in this case the
inner string is of the form (ii) or (iv) and either rule 11 or
rule IV is applicable. Since 2 - N(i) is the excess in tle
number of 1l's over the number of 0's in the string

g1 + 1) afl + 2Yesalni)y 15 Ly 24048 ~ 1y £F there ds 4n 1
such that 2 - N(i) = 0, then there 1s a minimum i = ip such that

2 - Nﬂip) = 0 and 2 - N(i) > 2 - N(ip) for all 1 < i It is

5
clear that a(ip - 1) = a(ip - 2) =1, for otherwise i = ip is not
minimum. In this instance the inner stfing is of the form (iii)
or (iv) and either rule III or rule IV is applicable. The only
remaining case is when N(i) # 0 and 2 - N(i) # O for all =L.
Since IN(j + 1) - N(J)I =1 for all J and N(n) = 2, it “ollows
that in this last case N(i) > 0 for all i. Similarly, sihce
I[2 - N(3)1 -[2 -0N(j +1)1 1] =1 for all J and 2 - N(1) 1is
either 1 or 3, it follows that 2 - N(i) » 0 for all 1. Hpnce,
the only permissible value of N(i) is N(i) = 1; that is, che
string is of the form (i). Hence, in this last case rule I is
applicable.

In similar fashion rules Ia-IVa can be proven to be

applicable when there are 1l's at the ends of the string. Continued

application of these rules will yield any arbitrary strinz in which

the number of 0's is equal to the number of 1's.

Overbalanced Binary Language, An Extension

The 0- overbalanced binary language is defined as the set
of all strings over the symbols 0 and 1 for which the numkter of
0's in any string is greater than or equal to the number cf 1l's
in that string. This unbalanced binary language is given by
the rules (1)-(5) above and the additional rule

(6) S » 0.
Proof

These rules obviously produce only strings with this property.
Let Z(1i) be the excess in the number of 0's over the number of 1l's

in the string a(l) o(2) a(3)...0(n). Then, if Z(i) = 0 fcr some i,

there is a maximum value 1 = iO such that Z(io) 0. If B. =n,

o
then a(i0 + 1) = 0 and there is a maximum value i = i, such that
Z(il) = 1. Continuing in this fashion, there 1s a string

o(l) a(2)...a(io)0 a(ij + 2)...a(il)0 a(i + 2)...a(12)...a(n)
with the property that the 0's are markers for strings (pcssibly
null) which have as many 0's as 1l's. A similar string is produced
in the case that Z(i) # 0 for all i by starting with 0 markers in
the first m positions, where Z(i) # m - 1 for all 1 > m ard m 1is
maximum, and then proceeding in the same manner as above, finding
a maximum i = 1 such that Z(im} = m, and so forth.

If the number of non-null strings between markers 1s A, then
application of rule (5), A + Z(n) - 1 times, followed by epplication
of rule (6), Z(n) times will produce a string in which the symbol

S represents only strings for which the number of 0's is equal to

the number of 1's. Rules (1) - (5) will then yield the firal

string.

Unbalanced Binary Language, A Generalization

The following context free grammar will generate precisely
those strings of ones and zeroes where the number of zeroes in
the string does not equal the number of ones in the string.

From now on these will be called unbalanced strings. As before,

such strings are not ordered.

1. S=4A

2« S % B

3. A1 1« B=+0
h, A - AA 8. B - BB
5. A -+ CA 9. B ~+ CB
6. A + AC 10. B =+ BC
11. C =+ 10

12. €+ 0l
13. € = 1C0
14. C » 0Cl

Proof

Clearly, this grammar can not generate a balanced string of
ones and zeroes. Therefore, it remains to show that 1t car generate
all unbalanced strings of ones and zeroes. Since producticns three
through six are analogous to productions seven through ten, we can,
without loss of generality, assume that we will use production one

and prove that we can generate any string with more ones than zeroes.

Consider the addition of a fifteenth production of the form
C + CC. We know that productions eleven through fifteen wculd
generate all balanced strings of ones and zeroes, due to tre first
result above. We will use this fact in the proof and then demonstrate
that the addition of this fifteenth production is not required.
The proof will be by induction on the length of the string.
There is only one string with more ones than zeroces of length
one and it is 1. This string is generated by A - 1. Assune that
the grammar can generate all strings with more ones than zeroes
of length n or less. We now must show that any string witlk more
cnes than zeroes of length n + 1 can be generated by the grammar.
Assuming that w is a string of length n + 1 with more ones
than zeroes, there are three cases we must check out. Thejy are
w = 1lw' (w has a 1 on its left end), w = Ow'l (w has a 0 or its
left end and a 1 on its right end), and w = Ow'0 (w has a (on both
ends). Note that in each case w' is the remaining substrirg of w.
In the first case, we know that w' 1s either balanced or it has
more ones than zeroes. If w' is balanced, we can use the productions
A - AC and A - 1. The fact that we can generate all balanced strings
from C takes care of the rest. If w' has more ones than zeroes we
can use the productions A = AA and A > 1. 1In this case the
induction hypothesis handles the generation of w'. It 1s clear that
the case where w = 0w'l can be handled in a similar manner. We now
have to deal with the case where w = Ow'O. We can scan from left to
right zcross w keeping track of the count of ones and zeroes. When

the ones and zeroes counts are equal (they must be equal scmetime

before we reach the end of w) we will have divided w into two
substrings, w = xy, where x is balanced and y has more ones than
zeroes. We can now use the production A -+ CA. From the first
result of this report, we know that x can be generated fromn C
and by the induction hypothesis, y can be generated from A.
This concludes the proof for the 15 production grammar.

Assume that the fifteenth production is required to allow
thls grammar to generate all unbalanced strings of ones anc zeroes.
This means that, at some point, the only way to add C adjacent to
an existing C is by using production fifteen. Therefore, &t no
time did that existing C ever have a B or an A on either side of
it, else production five, six, nine or ten would have served the
same purpose. Note that the only way to generate a C initially
is through one of these same productions, and each of them leaves
an A or a B adjacent to the C. This is a contradiction. Therefore,

the fifteenth production is redundant.

