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In [6] David Rine takes the view that there may be more
connections between 2-valued logic and n-valued logic than we
commonly suppose. He considers the n-valued case when n=¢,
then discusses the generalization of results for the 2-valued
case to the n-valued case. His main example is the generzlization
of the symmetric difference x + y, which in the 2-valued case
is the ring sum, the binary addition or exclusive-or of two binary
variables x,y.

There has been some recent question about the relative
character of investigations into 2-valued logic and n-valued logic
(5]. It may be that an extension of Rine's observations will help
to clarify this issue. The discussion which follows deliterately
enters into major subject areas of switching theory with this in
mind. These major subject areas include minimization, stste assign-
ment, and special functions.

It will be convenient to use the same n-valued systen used by
Rine, but it will be sufficient for purposes of illustration to 1limit
the velue of n to n=3. The resulting contrast between the binary
case n=2 and ternary case n=3 is easily extended to higher values of
n. The equation version of thls system first appeared in [1]. An
abbreviated form of this system for n=3 appeared in [2].

A common starting point for these systems is provided by

lattices which are distributive and bounded. The zero bound is



denoted by z, the unit bound is denoted by Uu. In the 3-valued
case, there is a third intermediate constant denoted by e. The
lattice operations join (x v y), meet (x A y) correspond o the
logic operators OR, AND, respectively, each being distributive
with respect to the other. Details about these operations within
bounded distributive lattices may be found through the reerences.
The case n=2 and Boolean algebras arises through the intro-

duction of an unary operator and two axioms:

X A X =

|3

™|

vV X = U,
The complementation operation X corresponds to the logic coperator
NOT. The first rule corresponds to the law of contradiction, the
second to the law of excluded middle.

Before proceeding to the case n=3, it will be helpful to
restate these two rules using two unary operators, one for
complementation (CD) and one for identity (Cl). The result is:

X = Cl(x)

Colx) A Ci(x) =2

Co(x) v €1 (x) = u.
Each of the 3 rules in this restatement will have a generalization
for the case n=3. However, this will not suffice for n=3. Certain
provable properties for n=2 such as Co(g) = u and CO(X Ay) =
Co(x) v Co(y) must be included among the axioms when n=3. The
result which follows shows a total of 10 axioms appearing within
5 groupings. The first 3 groupings generalize the above restatement;

the second 2 groupings give the required additional properties.



x = (e Cl(x)) v C,(x)

Colx) A Ci(x) = 25 Co(x) A Cx(x) = 2 ; Ci(x) A Cy(x) = 2
Co(x) v Cy(x) v Ch(x) = u

Coz) = u 5 Ci(e) =u ; Chlu) =u

Colx A y) =Culx) v Culy) 5 Chlx v y) = Ch(x) v C, (¥).

As the 2-valued system has illustration with 2-valued
switching functions and truth tables, so can the 3-valued
system be illustrated with 3-valued switching functions and
corresponding truth tables. In the table which follows, the
constant entries might alternately be written as logic values

F (FALSE), I (INTERMEDIATE), T (TRUE).

(%) e, (x) G LX)
. = n 5 0 1 2
0 ;! 2 2 0 0
0 1 2 0 2 0
0 A 9 0 0 2

Many properties which hold in this system can be confirmed
through the use of such tables. These include each of the axioms
above, and further properties such as Colx v y) = Co(x) A CO(y)
and Cg(x Ay) = Cz(x) A Cg(y).

For what follows, it is important to observe that CO is a
pseudo-complement operator which generalizes 2-valued comrlementation.
It has just been notified that CO satisfies both DeMorgan's laws.

The table below shows all three operators which complements the



extremal value 0,2. The operator N is the strong 3-valued negation

of Lukasiewicz---it is given in this system by N(x) = (e n Cl(x)) v CO(X).

. co(x) N(x) Co(ca(X))=A1(X)
0 2 2 2
s 0 1 2
2 0 0 0

This last table is helpful in considering the genera.ization
of results in the 2-valued case when the complementation operation
X is involved. 1In particular, conclusions which are reached for
one of these three operators need not extend to the other operators.
Thus, for example, while both of DeMorgan's laws hold for each of
these three operators, the law of double negation holds only for the
operator N. It 1is easy to verify that N(N(x)) = x. However,
CO(CO(CU(x)))=CO(x} with a similar rule of triple negation for the
third operator.

Rine begins by considering the generalization of the 2-valued
symmetric difference x + y = (X A y) v (x A ¥) to the 3-velued
x + y=(Cy(x) Ay) Ay) v (xaCpyly)). He shows that the
assoclative feature of the former w + (x + y) = (w + x) v
is not preserved by the latter generalization. He mentiors
further that associativity is also lost using the 3-valued
generalization x + y = (Co(x) A Cg(y)) v (Cz(x) A Co(y)}. L
is straightforward to use the above tables to verify these state-
ments. For each generalization just stated, associativity is

lost when the variables assume the values w=1, x=1, y=2.



Other generalizations might be considered. The generalization
X * y= (Al(x) Ay) v (x A Al(y) is another candidate which is not
assogiative. This can be seen by using the values w=l, x=:2, y=2.
The generalization x + y = (N(x) A y) v (x A N(y)) succeeds in
being associative, butumay not be considered successful in other
regards. There is no solution s to the equation 1 + s ==’0, S0
that 1 does not have an additive inverse and the opergtion t

does not yield an additive group. Finally, the generalizetion

x + vy
5

= (e A ((Cux) A Cy(¥)) v (C1(x) A Coly)) v (Colx) A Chly]))
v (Co(x) A Co(y)) v (Co(x) A Co(y)) v (C1(x) A Ci(3))

i1s another operation which is associative. This latter operation

also ylelds an additive Abelian group, and corresponds to the

ternary addition of two ternary variables x,y, where the ternary

diglits are 0, 1, 2.

Thus it would be difficult to generalize work on the 2-valued
assoclative symmetric difference using any of the first three of
the above five candidates. Either of the last two candidectes,
however, could lead to success, depending on the nature of the
problem at hand.

There is a somewhat diﬁferent situation for the problem of
state assignments. It is known that this problem is sensitive to
the kind of stable devices under use and the nature of their
defining equations. Hence the state assignment problem fcr flip-
flops which are inherently bistable without easy generalization

beyond the case n=2, such as JK flip-flops, 1s essentially a



2-valued problem rather than a multiple-valued problem. Cther
flip-flops, such as D flip-flops, have defining equations which
are not easily given in n-valued form as in 2-valued form. They
are easily programmed in an integer format restricting the integer
values to n=0,1, ... , n-1. The naming or assignment for each
state can use the binary digits 0,1 or the ternary digits 0,1,2.
The actual design procedure for the assignment of names can apply
to eilther the binary or ternary case. Here the assignment of
names to each state could as well be done for the case n=3 as for
the case n=2. The binary formulation is usually most convenient
because of its conciseness.

With regard to minimization, it will be encugh to give two
examples of simplification problems. Each of these are eesy, well
known examples from 2-valued switching theory.

First, consider the 2-valued simplification X v (x A y) = X v y.
Verification by truth tables is immediate. The simplificstion
follows directly from distributivity: X v (x A y) = (X v x) A (X Vvy)
=uaA(XxVvy)=%xxvy. Evident 3-valued expressions are below:

Co(x) v (x A ¥)

N(x) v (x A ¥)

A (x) v (x A y).
Neither of the first two has such simplification. The last does
simplify: Al(x) v (x Ay) = (Al(x) vV X) A (Al(x) vy)s=
u s (A(x) vy)=~2(x) vy. This leads to a modification of the
first expression which allows a similar type of simplification.

The expression Co(x) v (CO(CO(x)) A y) may be obtained by replacing



X with Co(x) and x with CO(CO(X)). This new expression has the
same type of simplification to Co(x) vV y.

Second, consider the 2-valued simplification
(wayg)vixay)viiwax)=(way)v (xay). Verification by
fruth tables is again immediate. Simplification follows Irom
the partial ordering whereby a v b = a stands for b < a sftands for
a Ab=">b. Using the right hand expression for a and w A x for b,
((WwaAy) vixay) (wax)=((WwWAXAY)V (WAXAY) =
(waAax)a(yvy)=wax. It is clear from this simplification
that again replacement of y with either Co(y) or N(y) will fail
to generalize, but replacement of y with Al(y) will. It is again
possible to create a new expression involving CO and having a
parallel simplification. This 3-valued simplification is given
below:

(v A Coly)) v (waCi(y)) v (xaCyly)) v (vawax)
= (v A C2(y)) v (w A Cl(y)) v (x A Co(y)).

Thus the possibilities for n-valued simplifications cppear
quite rich. The bounds on such simplifications can become severe,
however, as the number of variables and the value of n increases.
For example, Karnaugh maps for 6 or fewer variables are feasible
in the binary case n=2, but for higher values of n are only feasible
for 3 or fewer variables.

Finally, there are important classes of switching furctions in
the 2-valued case which can generalize to the n-valued case. The
symmetric difference may be considered as an example of ar arithmetic

function. Other important functions are the symmetric, urate,



threshold, and fan-out free functions. To illustrate, consider
the two variable symmetric functions. The 2-valued symmetric
difference 1s one such function. For n=2 there are three funda-

mental symmetric functions:

fo = X A Y
fi=((xaAay)v(xay)
f2 =X A Y.

Note that generalizations of fl alone were discussed in a
different context at the beginning of this paper. The interest
here 1s in developing a decomposition theory for symmetric
functions, and so generalizations which occur here may be quite
different. There are many different generalizations for

fo, fl’ f2, and many of these have occurred within the literature.
The 2-valued decomposition theory in [0] was recently generalized
to the n-valued case in [3, 4]. The difficulty in making this
generalization lay with the factorization theory, not wittr the
generalization of the fundamental symmetric functions. Nevertheless,
it is instructive to note the generalization to the case r=3.
There are 6 resulting fundamental s?mmetric funetions, anc¢ they
are listed below. The decompositions are from [3]. Each
fundamental symmetric function is a conjunction of terms Ci, for
certain 1, where the arguments in two variables are x v y and

X A y. This generalizes the 2-valued result in [0], where a
similar decomposition occurs. These 6 functions and their

decompositions are:



CO(X) A CO(Y) = CO(X v Y)

C (x) A Cq(y) Ci(x A y) A Cy(x v y)

Co(x) A Co(y) = Chlx A )

(Colx) A Ci(y)) v (O (x) A Cu(y)) = Cyulx A y) A Cylx v y)
(Cy(x) A Coly)) v (Ch(x) A Ci(y)) = Ci(x A y) A Chlx v y)
(Colx) A Cx(y)) v (Chlx) A Culy)) = Culx A y) A Colx v y).

While the whole set of 6 is the generalization of the previous
set of 3, the first 3 of these 6 appear to generalize fo end f2,
and the latter 3 appear to generalize fl. The last was already
discussed in the earlier context.

Other generalizations using other operators can lead to
decompositions which are quite complex or lengthy. For ary given
class of functions, i1t may be a difficult matter to determine the

best generalization beyond the case n=2.
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In [1;1 David Rine takes the view that there may be more
connections between 2-valued logic and n-valued logic than
we commonly suppose. He considers the n-valued case wheén n=2,
then discusses the generalization of results for the 2-valued
case to thz n-valued case. His main example is the generalization

of the symmetric difference x{® y, which in the 2-valued case
is the ring sum, the binrry addition or exclusive-or of two
binary variables x,y.

Thare hes Leen soue recent question about the relative
character of investigations into 2-valued logic and n-valued
logic[}j}; It may be that an extension of Rine's observations
will help to clarify this issue. The discussion which 7ollows
deliberately enters into major subject areas of switching theory
with this in mind. These major subject areas include mini-
mization, state assignment, and special functions.

It will be convenient to use the same n-vezlued system
used by “ine, but it will be sufficient for purnoses of illustra-
tion to limit the wvalue of n to n=3. The resulting con:rast
between the binary case n=2 and ternary case n=3 is eas.ly
extended to higher values of n. The equational version of
this system first appeared in.[i]. An abbreviated forn of

thig system for n=3 appeared inlg%J .



A common starting point for these systems is proviied
by lattices which are distributive and bounded. The zero
bound isadenoted by z, the unit bound is denoted by u. In the
3-valuedICase, there is a third intermediate constant d:znoted
by 2. The lattice operations join (xy y), meet (xAy) correspond
to the ... logic operators OR, AND, respectively, each
being distributivs with respect to the other. Details about -
these operations within bounded distributive lattices may
be found through the references..
The case n=2 and Boolean algebras arises through the

introduction of an unary operator and two axioms:

XAXx =2

E\fk = U.
The complementation operation x corresponds tc the logic
operator NOT. The first rule corresponds t¢ the .law of contra-
diction, the second to the law of excluded middle.

Before proceeding to the case n=3, it will be helpful te
restate these two rules using two unary operaters, one for
comnlementation (80) and one for identity (Cl). The rezult is:

x = Cl(x)

Co(x)AC (x) = 2

Co(x)\/ Cl(x) = s
Each of the 3 rules in this restatement will have a gen:zralization
for the case n=3. However, thls will not suffice: for nz3,

Certainn - . provable properties for n=2 such as CO(i) = u
and Co(xAy) = Co(x)V Cu(y) must be included among the axioms
when n=3. The result which follows shows a total of 10 axioms
appearing within 5 groupings. The first 3 groupings generalize
the above restatement; the second 2 groupings give the required

additional properties.
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x = (e

C;(x)) V Cy(x)
Colx)ACy(x) = 25 cu(x)A Co(x) =2 3 Ci(x)AC (x) = 2
Colx) VC1(x)V Cyh(x) = u
Colz) =15 Cy(e) =u s Cy(u) =u
Colxhy) = Cplx) V Culy) 5 Colx V) = Co(x)V C,(y).
As the 2-valued system has illustration with 2-valued
switching functions and truih tables, so can the 3-valuved
system be i1llustrated with 3-valued switching functions and
corresponding truth tables. In the table which follows, the

constant entries . " might alternately be written zs logic

values F (FALSE), I (INTERMEDIATE), T (TRUE).

Co(x) Cy(x) Co(x)
z e u
% z e u
0 1 2 2 0 0
0 1 2 0 2 0
0 1 4 0 0 2
NMany ~ properties which hold in this system can be
confirmed through the use of such tables. These include each of the

axioms above, and further properties such as ColxV y) = Co(x)f\co(y)

and Cz(xl\y) = Cz(x)f\cz(y)-
For what follows, it is important to observe that %o
“/is a pseudo-complement operator which generalizes 2-valued
complementation. It has just been noted that C, satisfizs both
Delorgan's laws. The table below chows all three operators
/ which complements the extremal value 0,2. The operator N

is the strong 3-valued negation of Lukasiewicz---it is ziven



in this system by N(x) = (g]\cl(x)fv Co(x).

. Colx) N(x) ColCo(x)) =4 (x)
0 2 & 2
{5 0 1 ' 2
2 0 0 0

This last table is helpful in considering the generalization
of results in the 2-valued case when the complementaticn
operation x 1is involved. In marticular, conclusions
which are reached for one of these three operators need not
extend to the other operators. Thus, for example, while
both of Dellorgan's laws hold for each of these three orperators,
the law of double negation holds only for the operator N.

It is easy to verify that N(N(x)) = xi- However, Cq(Cy(C(x)))=Cy(x)
with a similar.rule of triple.négation for!thé third operator.

-Rine begins by considering the generalization of the
2-valued symmetric difference x® y = (X Ay) V(xAY) to the
3-Valued{£zg§y =(Co(x)/\y) V’(x.ﬂco(y)). He shows that the
associative feature of the former w@.-(x@y) = '(*:.-'.@E’-x)@-y
i1s not preserved by the latter generalization. He mentions
further that asscciativity is also lost using the 3-valued
generalization x[ﬂzy = (Co(x) ACz(y)) 1% (Cz(x) A\E]O(y)). T 18
straightforward to use the above tables to verify these state-
ments. For each generalization just stated, associativity is

lost when the variables assume the values w=1l, x=1, y=2.
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Cther generalizations might be considsred. The generalizatioﬁ
XZ}_);.Y =(Al(x)f\y) \;""_(XAAl(y) is another candidate whinh is
not associative. This can be seen by using the values w=1,
x=2, y=2. The generalization x&_ty =(N(x) Ay) v (x AN(y))
succeeds in-being associative, b&i may not be considered
successful 1in other regards. There is no solution s to the
equation lZEgs = 0, so that 1 does not have an additive inverse
and the operationlﬁ,does not yield an additive group. Finally,
the generalization zzity

. = = .
= (2 hEo(x)AC )V (C1 () A cy(y) v E,(x) Acy(y)
V(S0 A oIV (e,(x) AC )V (e1(x) A, (1)

is 2nother operation which is associative. This latter operation
also yields an additive Abelian group, and corresponds to the
ternary addition of two ternary variables x,y, where th: ternary
digits are 0,1,2.

Thus it would be difficult to generalize work on the 2-valued

‘asgoclative symmetric difference using . . any of the first

three of the above five candidates. Either of the last two

candidates, however, eould lead to success, depending on the
nature of the problem at hand. : N M Fuad y
.Thereiis..a.somewhat different situation for the problem
of state assignments. It is known that this problem is sensitive
to the kind of stable devices under use and the nature of their
defining equations. Hence the state assignment problem for
flip-flops which are inherently bistable without casy general-
ization beyond the case n=2, such as JK flip-flopns, is essentially
a 2-valued problem ra’"er than a multiple-valued problen. Other
fiip—flops. such as D flip-flops, have defining a@ﬁtions which
are as easlly given in n-valued form as in 2-valued formn. They are

easily programmed in an integer format restricting the integer



values to n=0,1, «++ , n-1. The naming or assignment for each
state can use the binary digits 0,1 or the ternary digits
0,1,2. The actual design procedure for the assignment of names
can apply to either the binary or ternary case. Here the
assignment of nemes to each state could as well be done for the
case n=3 as for the case n=2. The. binary forrulaticn is usually
mogt convenient because of its conciseness.
With regard to minimization, it will be enough to give
two exemples of simplification problems. Each of these
QT &~ easy,well known examples from 2-valued switchinz theory.
First, consider the 2-valued simplification x V(x4 y)= xVy.
Verification by truth *ables is immediate. The simplification
follows directly from distributivity: x V(x4 y)=(xvx)A (Xv v)
= uA(X¥y) = xVy. Evident 3-valued expressions T are below:
Colx) v (x4Avy)
N{x) V (xAy)

A (x)V (x4hy).
Neither of the first two has such simplification. The last
does simplify: A;(x)v (xAy) = (A4, (x)Vx) A (A1 (xX)V y)
= Hfd(Al(x)Lfy} = Al(x)V’y. This leads. tc g modifi¢atiin of
the, first expresion which allows'a:similar. typé of.simpLification.
fhe exprecsicn Cd(gjjj (COLCO(X))f\ y) may be obtained by

replacing x with CO(X) and x with CO(CO(X)). This new

expression has the same type of simplification to Cy(x) V y.

Second, consider the 2-valued simplificztitn
(WAY) V (x4 y)V (wAx) = (wAy)V (xAY). Verification by
truth tables is again immediate. Simplification follows from

the partial ordering whereby a§/b = a stands for bgﬂ; stends for



afAb = b. Using the right hand expression for a and w4 x for b,
((WAY) v (xAY)) " (wAx) = (WAxAY) V (Wl xhY)

= (wix)A(y v vy = WA X It is clear from this simplification
that again replacement of y with either Coly) or N(y) will

fail to generalize, but replacement of y with Al(y) will.

It is again possible to crzmte a new exrression involving

CO and having a parallel simplification. This 3-valued
simplification is given below:

(vAT,(3)) V (WA Ci(y)) V (xpcy(y)) \«/[Vﬂw AX)

= (VACL(3)) V (w4C (¥)) V (xACH(¥)).

Thus the possibilities for n-valued simplifications
appear quite rich. The bounds on such simplifications can
become severe, however, as the number of variables and the
value of n increases. For example, Karnaugh maps for 6 or fewer
variables azre feasible in the binary case n=2, but for .
higher values of n are only feasible for 3 or fewer variables.

Finally, there are important classes of switching functions
in the 2-valued case which can -generalize to the n-valuad case.
The symmetric difference ray be considered as an exampl2 of an
arithmetic function. Other important functions are the
symmetric, unate, threshocld, - .. and fan-out free functions.

To illustrate, coﬁsider the two variable symmetric functions.
The 2-vzlued symmetric diffence is one such function. For n=2
there are three fundamental symmetric functions:

fg = XAY

£, =(xAY) V(XA Y)

f2 = XAY-

Kete that generalizations of T1 alone were discussed. in a



different context at the bginning of this paper. The interest
here is in developing a decomposition theory for symmetric
functions, and so generalizaticns which occur here may oe
quite different. There are many different generzlizations
for fo, fl. fz, and many of these have occurred within the
literature. The 2-valued decomposition theory in [Q] was
recently generalized to the n-valued case in [;3)¢E] : The
difficulty in making this generalization lay with the
factorization theory, not with the generalization of the
fundamental symmetric functions. Nevertheless, it is_instruc-
tive to note the generalization to the case n=3. There

are 6 resulting fundamental symmetric functions, and they

are listed below. The decompositions are from [3] « Each
fundamental symmetric function is a conjunction of terms Ci'
for certain i, where the arguments in two variables are

xV y and xAy. This generalizes the 2-valued result in LﬁiL
where a similar decomposition occurs. These 6 functions

and their decompositions are:

Co(x)ftCo(y)

Co(x\" V)

i

Cr(x)AC (y) = Ci(xA y) ACy(xv )

Czix)A Coly) = ColxAy)

(cotx} A cl(yﬂ v(cl(x)A co(y)) = ColxA ¥IAC(xV )

{e1(x) Ac,(yDV (0 (x) AC (¥) = ci(xAy) ACu(x Vy)

(Cotx) A tr) V(e (x) Acy(y) = Colx A¥) AC,(x V ¥).

While the whole set of 6 is the generalization of the
previous set of 3, the first 3 of these 6 appear to gensralize

fyo and f,, and the latter 3 appear to generalize . The last

was already discussed in te earlier context.



Cther generalizations using other operators can lead to
decompositiong hich are gquite complex or lengtay. Tor any
given clasz c¢f functions, it may be a difficult motter to

determine the best generalization beyond the case n=2..
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