Computer Science Department
Indiana University
Lindley Hall 101

Bloomington, Indiana 47401

Key Words and Phrases:
structured programming, control structures,
looping, while statement, until statement,

exlt statement, flowchart, ease of programming.

CR Categories: 4.22; 4.42; 5.24

TecHni1cAL ReporT o, 10

A CAse FoOR WHILE-UNTIL

DANIEL P, FRIEDMAH
STuAarT C. SHAPIRO

ApriL 5, 1974

Appeared in SIGPLAN Notices 9, 7 (July, 1974), 7-14.

A CASE FOR WHILE-UNTIL

Daniel P. Friedman
Stuart C. Shapiro
Indiana University

Abstract

A new control structure construct, the while-until, is introduced
as a syntactic combination of the while and the until. Examples are
shown indicating that use of the while-until can lead to structured
programs that are conceptually more manageable than those attainable
without it. The while-until statement is then extended to a value-
returning expression which is shown to be more powerful than either
the while or the until.

A major suggestion of structured programming is to employ looping
control structures in order to break the program down into concep-
tually manageable units. The purpose of this paper is to propose an
additional looping control structure construct (the while-until) that,
in certain instances, yields program loops that are closer to the
conceptual organization of the segment than is possible with the
existing constructs. The while-until as a statement will be shown
to be equivalent to the existing looping control structures. The
while-until as a value (Boolean) returning expression will be shown
to be a more powerful control structure than the while or until struc-
tures discussed by Dijkstra [1].

The existing constructs that we are concerned with are

The syntactic construct we are proposing is
while Bl repeat s until 82

which is presented graphically in Figure 3.

Fig. 3 while Bl repeat s until 82

The while-until does not involve nesting, but is some other com-
bination [2] of the features of the while and the until loops. The
while-until may be replaced by the until or the while as the only
looping structure since

while Bl repeat s until 82
is equivalent to

if B, then repeat s until ;ﬁ(Bz then true else ﬂBl)
and also to

;g_gl then begin sj; while 22(82 then false else Bl) repeat s end

If escape (or break or exit) were employed, another equivalent form is
A: while 81 repeat

begin s; 1f 82 then escape A end

end A

-2

In those cases where Figure 3 is the desired control structure it
appears that the while-until yields clearer, more understandable
code than any of the above alternatives. We can paraphrase the
semantic content of the while-until as: "while it is possible to
try, keep trying until you succeed." The while and the until loops
can be defined in terms of the while-until in the following way:

while B repeat s while B repeat s until false

=def

repeat s until B =d - while true repeat s until B
e

The while-until is a natural control structure for searching,
since every search terminates either by finding the desired element
or by determining that it is not present. As an example, we show
its use for a binary search:

comment Find item A in table T[1:N] ;
low :=0;
high := N + 1;
while low < high - 1 repeat
(low + high) / 23
if T[try]l < A then low := try else high := try
until Tltry] = A;

and

try

An appropriate application for the while-until occurs whenever a loop
includes two operations, one of which requiring a test prior to its
execution and the other requiring a test which can only be performed
after its execution. An example of this is: copy a file up to and
including the end-of-file mark onto an output file, however, nothing
may be written on the output file unless there is enough space for

a record.

comment Copy file INPUT onto the file OUTPUT;
while Spaceleft(OUTPUT) repeat
Inbuffer(INPUT, b);
Outbuffer(OUTPUT, b)
until Eof (INPUT);
In languages in which statements are expressions having values,
for example LISP [3], ALGOL 68 [4] and BLISS [5], the while-until
can be assigned a value in an especially useful way. We define the

value of the while-until expression to be the value of the last eval-
uated Boolean. That is, the value of

while Bl repeat s until 82

is false if and only if the loop terminates due to the evaluation of
B, (see Pigure U4). A non-Boolean value could be returned on certain
términation conditions (e.g. exit in BLISS or predicates in LISP).

]
| I
| I
| |
| | while Bl
' |
|
I
|
|
: S
| s I
| |
| |
I | yntlil &
| I ===
| |
I I
| |
! Return last l true false
| value of B3y !

Fig. 4 value returning while-until, illustrated as standard flowcharts
and a proposal for structured flowchart [6].

There are two ways in which the loop may be terminated: the programmer
will want to ascertain which of the two Booleans caused termination.
This is precisely the information provided by the value of the while-
until.

Using the value of the while-until, we may easily incorporate the
above search routine into an insertion.

comment T[1:M] is a table containing N < M active elements.
Insert A in T if it is not already present;

low := 0;
high := N + 1;
ifq(while low < high - 1 repeat
try := (low + high) / 2
if T[try]l < A then low := try else high := try
until T[try] = A)
then Insertafter(A,T,low);

The previously presented copy routine can be incorporated into an
algorithm that uses up to N output files, depending on the length of
the input file:

comment Place one copy of file INPUT onto QUTPUT[1:N] as needed;
1 =0
while i < N repeat
if 1 > 0 then Close(OUTPUT[i]);
L =% % 1
Open(QUTPUT[i])
until (while Spaceleft(Output[i]) repeat
Inbuffer(INPUT, b)
Qutbuffer(QUTPUT[i], b)
until Eof (INPUT));
Close(OUTPUT[i])

Earlier, we showed that the while-until statement is definable
in terms of just the while or just the until. This is not true,
however, for the while-until expression. Peterson, Kasami, and Tokura
[7], p. 506, have shown that "There exist flowcharts that cannot be
translated into [if and until] programs with single-level exits, even
if node splitting is allowed." Their example of such a flowchart is
shown in Figure 5. The following program using value-returning while-
until and if expression is a translation of this flowchart.

S; while (if A then
(if (while true repeat a, until true)
then (if (while B repeat b,

until (if C then true

else —(while true repeat Cy until true)))

then (while true repeat ¢y until true)

else -(while true repeat b, until true))
else false)

else (while true repeat a, until true))

repeat until (if D then <(while true repeat d. until true)

1
else (while true repeat d, until true)); T

Fig. 5 Flowchart from Peterson, Kasami, and Tokura

[7].

-7

Similarly, Ashcroft and Manna [8] have exhibited a flowchart, shown
in Figure 6, which cannot be translated into an if and while programn.
The following while-until program, due to M. Wand and D. Wise, is a
translation of this flowchart.

if (while (if (while P repeat h until false) then true

else Q)
repeat h
until S(while (if (while Q repeat g until false) then true
else P)

repeat g until true))

then g else h

We have introduced the while-until as an additional control struc-
ture for structured programming. We have demonstrated cases in which
use of the while-until results in more readable programs and allows
programmers to program closer to the way they think. Although the
while-until statement can be defined in terms of the while or the
until, we have shown that the while-until expression is a stronger
control structure than either.

_8-

L T [
- P ’
\ \ s ;o |
| F 7 |
R 2~ l 5
~~ 4 e S| i
TJH)]
h 3 h : ’f
| L
| L
: S . J |
L™ B A g |
; \ S i
i | i e —
' g ! g

Fig. 6

Flowchart from Asheroft and Manna [8].

Where test P means "is 'a' the leftmost letter in tail"; test

Q means "is 'B' the leftmost letter in tail'; operation g
means "erase the leftmost letter in tail and add 'e!' on the
right of head"; and operation h means "erase the leftmost

letter in tail and add

IhT

on the right of head".

References

1. Dijkstra, E.W. 1972. Notes on structured programming. Structured

2.

Programming, pp. 1-82. Academic Press, London.

Wise, D.S.; Friedman, D.P.; Shapiro, S.Q.g' and Wand, M.
Computer Science Department, Boolean-valued loops, Technical Report
No, 21, June, 1975

McCarthy, J., et al. 1962. LISP 1.5 Programmer's Manual. MIT Press,
Cambridge, Mass.

van Wijngaarden, A.; Mailloux, B.J.; Peck, J.F.L.; and Koster, €.H.A.
1969. Report of the Algorithmic Language ALGOL 68. ACM, New York.

Wulf, W.A.; Russell, D.B.; and Habermann, A.N. December 1971. BLISS:
a language for systems programming. CACM 14, 12:780-90.

Nassi, 1., and Shneiderman, B. August 1973. Flowchart techniques
for structured programming. SIGPLAN Notices 8, 8:12-26.

Peterson, W.W.; Kasami, T.; and Tokura, N. August 1973. On the capa-
bilities of while, repeat and exit statements. CACM 16, 8:503-12.

Asheroft, E., and Manna, Z. 1972. The translation of 'go to' pro-
grams to 'while' programs. Information Processing 71, pp. 250-5.
North-Holland Publishing Co.

Typed by Christopher Charles

