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Abstract

A new class of digital halftoning algorithms is introduced. Anti-correlation digi-

tal halftoning (ACDH) combines the idea of a well-known dangerous game, Russian

roulette, with the statistical approach to bilevel quantization of digital images. A rep-

resentative of the class, serpentine anti-correlation digital halftoning, is described and

compared to error di�usion, ordered dither, and other important digital halftoning

techniques. Serpentine ACDH works very well. It causes fewer unpleasant correlated

artifacts and less contouring than the benchmark algorithms. The quantization noise

spectra associated with serpentine ACDH possess bene�cial characteristics related

to properties of the vision system. The term \violet noise" is proposed to describe

quantization noise with stronger bias in favor of high-frequency components than

that of blue noise. Novel techniques for color visualization of the noise spectra and

the corresponding phase spectra are introduced, and the relative signi�cance of the

magnitudes and phases of the discrete Fourier transform of the quantization noise is

studied. Unlike popular algorithms based on error di�usion, serpentine ACDH does

vi



not enhance edges. This should be good for its application to digital holography. A

simple input preprocessing technique allows one to introduce edge enhancement if de-

sired, while keeping it more isotropic than that of error di�usion. The relation between

unwanted transient boundary e�ects and edge enhancement accompanying error dif-

fusion is examined, and approaches to reduction of boundary e�ects are considered.

Serpentine ACDH does not cause signi�cant boundary e�ects. The average intensity

representation by di�erent algorithms is studied for constant input levels (serpentine

ACDH does remarkably well). The results of subjective testing are compared to the

predictions of the popular one-channel models of the vision system. Printing at high

resolutions and its application to medical imaging are studied. ACDH is shown to

be extendable to multilevel halftoning and color quantization. Prospects for ACDH

research are discussed.
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1

Introduction

Inherent limitations of devices for image visualization and printing (displays, print-

ers) often require quantization of two-dimensional digital images to a limited number

of grayscale levels. The case of bilevel quantization is of particular interest when an

image is to be printed on a printer that can only produce black-and-white pictures.

Digital halftoning [222] means image quantization by algorithms that exploit prop-

erties of the vision system to create the illusion of continuous tone. Many related

neurobiological aspects of vision are discussed in [94]. Digital halftoning has been

applied in such areas as digital holography [195], desktop publishing [206], medical

imaging [167, 188], image compression/restoration [90], non-uniform sampling [147],

video rendering [226], pattern recognition [83], veri�cation of monochrome vision

models [80, 131], and three-dimensional computer graphics [210].
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This thesis will be dealing with rectangular input and output digital images con-

sisting of pixels (dots) on a common square grid. Other cases are considered elsewhere

[207, 222, 251].

Chapter 2 will provide an overview of existing digital halftoning techniques |

ordered dither, error di�usion, etc.

Chapter 3 will cover di�erent approaches to halftone image quality evaluation. The

term \violet noise" will be introduced to describe quantization noise with stronger

bias in favor of high-frequency components than that of blue noise as it is de�ned by

Ulichney [222].

A new class of digital halftoning algorithms, anti-correlation digital halftoning

(ACDH), will be introduced in Chapter 4. A representative of the new class, ser-

pentine anti-correlation digital halftoning, will be de�ned. We will also discuss some

aspects of texture perception that a�ect asymmetric anti-correlation �lter design.

Chapter 5 will report results of visual examination of test image representations

produced by di�erent digital halftoning algorithms. Comparison of quantization noise

spectra associated with the corresponding image-algorithm pairs will be discussed in

parallel. It will be shown that serpentine ACDH causes fewer unpleasant correlated

artifacts and less contouring than the benchmark algorithms, and that quantization

noise spectra associated with the new method possess bene�cial characteristics related

to properties of the vision system. Novel techniques for color visualization of the noise

2



spectra and the corresponding phase spectra will be introduced.

Chapter 6 will be devoted to the study of the relative signi�cance of the magni-

tudes and phases of the discrete Fourier transform of the quantization noise.

Unlike popular algorithms based on error di�usion, serpentine ACDH does not

enhance edges, nor does it cause signi�cant transient boundary e�ects. In addition to

that, it preserves average intensities very well. Corresponding measurement results

will be presented in Chapter 7, which will also establish a relation between the un-

pleasant boundary e�ects and edge enhancement accompanying error di�usion, and

discuss approaches to reduction of boundary e�ects. While edge enhancement gener-

ally means extra distortion of the input image, it is sometimes considered pleasant, so

we will describe a simple input preprocessing technique allowing one to add relatively

isotropic edge enhancement to any digital halftoning algorithm.

In Chapter 8, the results of a subjective rating experiment will be compared to

the predictions of the popular one-channel models of the vision system.

Image printing at high resolutions and its application to medical imaging will be

studied in Chapter 9.

Extension of ACDH to multilevel halftoning and color quantization will be dis-

cussed in Chapter 10.

Chapter 11 will present conclusions and outline prospective directions of research.
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2

Overview of Digital Halftoning

Techniques

For the purposes of our discourse, we de�ne the input of a digital halftoning

algorithm to be a two-dimensional digital grayscale image G represented by an N1 �

N2 matrix of real values gi;j 2 [0; 1]. Most of the thesis is devoted to the case

of bilevel quantization where a binary image B represented by an N1 � N2 matrix

of bi;j 2 f0; 1g serves as output of the algorithm. The symbols gi;j and bi;j stand

for intensities of pixels on a common square grid, where i = 0; 1; : : : ; N1 � 1 and

j = 0; 1; : : : ; N2 � 1 indicate line and column of a pixel respectively, thus describing

its location in terms of the grid coordinates. An intensity value 0 means \black", and

1 means \white". It may be di�cult to translate the intermediate intensity values

into physically measurable quantities. We will return to this problem later in this

4



thesis. Other sources may assign other meanings to the word \intensity" [68, 103].

In many algorithms, the values bi;j are computed as outputs of an internal nearest-

level binary quantizer. Whenever such a quantizer is present, the values of its inputs

will be denoted ai;j. Then

bi;j =

8><
>:
1 if ai;j � 1=2,

0 if ai;j < 1=2.

(2.1)

The di�erences between the binary quantizer inputs and the corresponding input

intensities will be referred to as

si;j = ai;j � gi;j: (2.2)

2.1 Ordered Dither and Other Similar Algorithms

The case when si;j = s is simply a constant corresponds to ordinary bilevel quan-

tization with a �xed threshold, which is well-known not to be a good halftoning al-

gorithm ([222], Chapter 1). Chapter 3 will review the techniques of image quality

evaluation. Figures 2.1 (a) and (c) feature two test image representations obtained

by quantization with a �xed threshold equal to 1=2, s = 0: Both 256 � 256 images

are printed at the resolution of 100 dots per inch (dpi). This low resolution is used

so that the defects of each algorithm are more noticeable and the printer distortion

5



of pixels is negligible.

If si;j are uncorrelated random numbers uniformly distributed on [�1=2; 1=2], then

we get dithering with white noise ([222], Chapter 4). Figures 2.2 (a) and (c) show

output images of dithering with white noise.

Ordered dither [17, 130, 136] is a popular digital halftoning technique that can be

de�ned by setting

si;j = 1=2� (�(i mod `1);(j mod `2) + 1=2)=`1`2; (2.3)

where �(i mod `1);(j mod `2) are elements of an `1 � `2 dither matrix �.

Figures 2.3 (a) and (c) feature two test image representations obtained by ordered

dither with an 8� 8 matrix from [114]:

� =

0
BBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 32 8 40 2 34 10 42

48 16 56 24 50 18 58 26

12 44 4 36 14 46 6 38

60 28 52 20 62 30 54 22

3 35 11 43 1 33 9 41

51 19 59 27 49 17 57 25

15 47 7 39 13 45 5 37

63 31 55 23 61 29 53 21

1
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

: (2.4)
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Such dither matrices were popularized by Bayer [17] and subsequently found to be a

subset of those produced by the method of recursive tesselation [223].

Mitsa and Parker [150] used Ulichney's concept of blue noise [222], which is going

to be discussed in detail in the next chapter, to design dither matrices they called

blue noise masks (these matrices are also known as stochastic screens [39]). Other

approaches to blue noise mask generation were proposed by Ulichney [225] (the pop-

ular void-and-cluster method) and other researchers [132, 133, 203, 247]. Images in

Figures 2.4 (a) and (c) were obtained by ordered dither with a 128� 128 blue noise

mask generated using the void-and-cluster method. The method's internal parameter

� = 1:5, as recommended by Ulichney.

An interesting generalization of ordered dither is called look-up-table (LUT) based

halftoning [128, 213, 233]. In LUT based halftoning, the interval [0; 1] is divided

into non-intersecting subintervals, each of which is associated with an `1 � `2 matrix

of zeros and ones called a binary pattern, or a dot pro�le. Whenever gi;j is within

a certain subinterval, bi;j is the element in position ((i mod `1); (j mod `2)) in the

corresponding binary pattern. Suppose that gi;j < gi0;j0 for some (i; j), (i
0
; j

0), such

that (i mod `1) = (i0 mod `1) and (j mod `2) = (j 0 mod `2). In LUT based halftoning,

bi;j = 1 does not have to imply bi0;j0 = 1, and, similarly, bi0;j0 = 0 does not have to

imply bi;j = 0. In other words, the stacking constraint inherent to ordered dither can

be relaxed, and this is what makes LUT based halftoning more general. (Wash and
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Hamilton [230] showed that ordered dither can be performed using look-up tables,

but they did not violate the stacking constraint.)

2.2 Error Di�usion and Its Modi�cations

The di�erence

�i;j = ai;j � bi;j (2.5)

is commonly called the quantization error [59], binary quantizer error [79], or simply

error [21, 114, 222]. Knox [111] introduced the term error image meaning a visual

representation of an N1�N2 matrix with elements equal to ��i;j, i = 0; 1; : : : ; N1�1,

j = 0; 1; : : : ; N2 � 1. (He de�ned the \error" as bi;j � ai;j, which makes sense but

contradicts the established tradition.) Following [21, 59], we shall call

ei;j = bi;j � gi;j (2.6)

the quantization noise, or just the noise. The visual representation of an N1 � N2

matrix of ei;j would then become a noise image (Dalton [39] used this term with

a di�erent meaning). The reader should beware of cases when other meanings are

assigned to \quantization error" and/or \quantization noise" [70, 79, 189, 60, 58].

Floyd and Steinberg [66, 67] proposed a digital halftoning technique called error
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di�usion (ED) (a similar but more complex method had been previously published

by Schroeder [194]). In error di�usion, si;j is a sum of weighted errors,

si;j =
`�1X
�1=0

2(`�1)�`�`�1;�1X
�2=0

w�1;�2�i�(`�1)+�1;j�(`�1)+�2: (2.7)

In the de�nition above,

�i;j =

8<
:
0 if i 6= j,

1 if i = j,

(2.8)

is the Kronecker delta function, and w�1;�2 are weights, or error di�usion coe�cients,

elements of a wedge-shaped ` � (2` � 1) matrix W , which is occasionally called the

error di�usion kernel [237]. By W being \wedge-shaped" we mean that w`�1;�2 = 0

for �2 = `� 1; `; `+1; : : : ; 2(`� 1) (error di�usion algorithms are sometimes classi�ed

by the number of non-zero weights [222]). The outputs bi;j are computed line-by-

line, from left to right, and the values of �i;j outside the image are assumed to be

zeros. Figures 2.5 (a) and (c) show images produced by the classical (four-weight)

Floyd{Steinberg error di�usion algorithm [67]: ` = 2 and

W =

0
B@
1=16 5=16 3=16

7=16 �

1
CA ; (2.9)

where the symbol � marks the location of w`�1;`�1.

Subsequent modi�cations of ED employed the following main approaches: design a
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di�erent kernelW [58, 99, 222]; change the order in which the pixels are processed [36,

222, 228, 236, 257] (this usually involves a change of W as well; sometimes, features

of other digital halftoning techniques are also incorporated [36, 257]); randomize W

[116, 222]; makeW input-dependent [50, 237, 238]; substitute a binary quantizer with

a modulated and/or randomized threshold for the nearest-level one [19, 51, 53, 112,

188, 222]; combine error di�usion with another digital halftoning technique [19, 49,

55, 76, 114, 121, 188, 206]; add optimization based on a vision system model [116,

163, 166, 212]; design an iterative (multi-pass) technique based on error di�usion [165,

166]. Several important algorithms emerged.

Ulichney [222] (Chapter 8) studied error di�usion on a serpentine raster, also

known as serpentine error di�usion (SED). In this algorithm, the ouput image is

also computed line-by-line, but pixels in the lines with odd numbers are processed

right-to-left (pixels in the even-numbered lines are processed left-to-right, as usual).

In SED,

si;j =
`�1X
�1=0

2(`�1)�`�`�1;�1X
�2=0

w�1;�2�i�(`�1)+�1;j�(1�2(i mod 2))((`�1)��2): (2.10)

Images produced by four-weight SED with

W =

0
B@
3=16 5=16 1=16

7=16 �

1
CA ; (2.11)
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recommended by Ulichney, can be seen in Figures 2.6 (a) and (c).

Sandler et al. [188] explained the advantage of SED (unlike ordinary error di�usion,

it allows each output pixel to depend on results of computations performed on all

previously processed pixels without ` having to reach N2) and considered SED with

three deterministic non-zero weights instead of four. Figures 2.7 (a) and (c) display

binary images produced using their

W =

0
B@
10=38 14=38 0

14=38 �

1
CA : (2.12)

Ulichney [222] recommended SED with 50% random weights,

W (i; j) =

0
B@
3=16 + r0(i; j) 5=16 + r1(i; j) 1=16� r0(i; j)

7=16� r1(i; j) �

1
CA ; (2.13)

where r0(i; j) and r1(i; j) are values of independent random variables uniformly dis-

tributed on [�1=64; 1=64] and [�5=64; 5=64] respectively. For brevity, we will refer to

this technique as randomized SED (RSED). Figures 2.8 (a) and (c) contain binary

images produced by RSED.

Eschbach [49] combined error di�usion with another digital halftoning technique,

pulse-density modulation (PDM), �rst proposed in [52]. Halftone images produced

by the resulting hybrid algorithm can be seen in Figures 2.9 (a) and (c). The areas
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where 1=4 < gi;j < 3=4 were treated by ED withW from Eq. (2.9), and the rest of the

image was processed by PDM as follows. Summation of gi;j (dark areas) or (1� gi;j)

(light areas) over diamond-shaped regions of the image was being performed; once

the sum reached or exceeded 1, a pulse (1 or 0, respectively) was placed in the center

of gravity of the current region. The error was then computed and di�used. Eschbach

recommended use of ED to process regions touching the areas with 1=4 < gi;j < 3=4

as well, in order to break up the seams you can see at the switching points, Fig. 9

(c). However, this causes highly visible patches to appear in very light and very dark

areas adjoining the switching points.

Eschbach [50] then tried error di�usion with

W =

8>>>>>>>>>>>><
>>>>>>>>>>>>:

0
B@
1=16 5=16 3=16

7=16 �

1
CA if 40

255
+ r2(i; j) � gi;j � 215

255
+ r3(i; j),

0
BBBBB@

0 1=48 1=12 1=24 1=24

1=48 1=24 5=24 3=24 1=24

1=12 7=24 �

1
CCCCCA otherwise,

(2.14)

where r2(i; j) and r3(i; j) are values of independent random variables uniformly dis-

tributed on [�2=255; 2=255]. Images produced by this algorithm are shown in Figures

2.10 (a) and (c).

Eschbach [51] proposed a more complex algorithm, error di�usion with threshold

modulation based on a dynamic threshold imprint function. Figures 2.11 (a) and (c)
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feature images obtained by this technique (internal parameter C = 40).

2.3 Other Algorithms

German physicists from the University of Essen have designed a number of in-

teresting so-called iterative algorithms for digital halftoning | the iterative Fourier

transform algorithm [23], threshold accepting [191], the iterative convolution al-

gorithm (ICA) [252], gradient-controlled iterative convolution [253], and iterative

wavelet transform algorithms [61, 62]. Figures 2.12 (a) and (c) represent test im-

ages halftoned by the iterative convolution algorithm of Zeggel and Bryngdahl (30

iterations; internal parameters � = 0:29, � = 0:005, and a = 0:4).

Other digital halftoning algorithms employed patterning [85, 109, 172, 182] (this

technique is also known as pulse-surface-area modulation, or PSAM [222]), neural

networks [6, 8, 38, 72, 115, 200, 220, 221], hill climbing and simulated annealing [3, 5,

29, 129], least-squares model-based halftoning [163, 165, 166], nonlinear programming

[197, 249], fractal analysis [149], evolutionary computation (genetic algorithms) [124,

185], and fuzzy logic [93].
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a) b)

c) d)

Fig. 2.1. Quantization with a �xed threshold (s = 0):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:17, max = 8:5)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0, max = 9:2)
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a) b)

c) d)

Fig. 2.2. Dithering with white noise:

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:56, max = 5:7)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:42, max = 5:8)
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a) b)

c) d)

Fig. 2.3. Ordered dither with a recursive tesselation matrix (Eq. (2.4)):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:16, max = 9:5)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0, max = 9:7)
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a) b)

c) d)

Fig. 2.4. Ordered dither with a blue noise mask (void-and-cluster):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:14, max = 6:2)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0, max = 6:4)
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a) b)

c) d)

Fig. 2.5. Classical Floyd{Steinberg error di�usion (Eq. (2.9)):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:12, max = 6:0)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:15, max = 7:2)
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a) b)

c) d)

Fig. 2.6. Four-weight serpentine error di�usion, deterministic weights (Eq. (2.11)):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:27, max = 6:0)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:041, max = 7:5)

19



a) b)

c) d)

Fig. 2.7. Three-weight SED, deterministic weights (Eq. (2.12)):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:39, max = 6:0)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:12, max = 6:6)
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a) b)

c) d)

Fig. 2.8. Four-weight serpentine error di�usion, 50% random weights (Eq. (2.13)):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:26, max = 6:1)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:29, max = 6:8)
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a) b)

c) d)

Fig. 2.9. Error di�usion combined with pulse-density modulation:

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:35, max = 6:3)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:24, max = 7:2)
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a) b)

c) d)

Fig. 2.10. Error di�usion with intensity-dependent weights (Eq. (2.14)):

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:27, max = 6:1)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:27, max = 7:0)
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a) b)

c) d)

Fig. 2.11. Error di�usion with threshold modulation using threshold imprints:

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:31, max = 6:3)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:08, max = 7:0)
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a) b)

c) d)

Fig. 2.12. The iterative convolution algorithm:

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:27, max = 6:1)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:27, max = 6:3)
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3

Halftone Image Quality Evaluation

No single technique of image quality evaluation has gained universal acceptance

[37].

The known techniques are divided into two large groups.

Subjective evaluation requires participation of human observers. They examine

the images visually and either rate the quality according to some criteria, or per-

form speci�c detection tasks. The subjective evaluation techniques are reviewed in

Subsection 3.1.

Objective evaluation involves direct computation of quality metrics. A numerical

quality metric may or may not be based on a vision model playing the role of an ideal

observer. Yet, even the metrics that are not explicitly model-based tend to rely upon

some assumptions about the properties of the vision system. Subsection 3.2 provides

a review of the objective evaluation techniques.
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3.1 Subjective Evaluation

Numerous techniques of subjective testing were studied [37, 126, 138, 150, 167,

176, 187].

In the so-called rating experiments, a set of images is shown to a panel of observers

who rate them according to some criterion [187]. There has been no standardization

for rating still images [37]. A distinction is made between na��ve observers and experts.

In the case of medical images, trained radiologists serve as experts [37, 126]. Pratt

[176] opined that at least 20 na��ve observers are needed to ensure statistical reliability

of the results of a rating experiment. The numbers of experts involved in the studies

on subjective evaluation of medical image quality tend to range from 3 to 11.

The task of measuring diagnostic accuracy di�ers substantially from that of mea-

suring subjective quality. The most common approach to diagnostic accuracy evalua-

tion is based on receiver operating characteristic (ROC) analysis [37]. This approach

involves detection experiments. The experts are asked to determine if one or more

medical abnormalities (signals) are present in the image. Such experiments are called

the signal detection experiments and distinguished from the noise detection experi-

ments, in which the experts are asked to determine if noise is present [187]. The

relationship between true positive rate and false positive rate is then studied. For
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radiological applications, this involves asking radiologists to provide a subjective con-

�dence rating of their diagnoses. ROC analysis have been extended to the case of

multiple abnormalities so that their respective sizes and locations can be taken into

account [37]. Parker et al. [167] studied lesion detection in the low-resolution halftone

representations of a grayscale MRI (magnetic resonance imaging) phantom image.

The results of a subjective rating experiment designed by the author and Jun Li to

compare the quality of the halftone images produced using di�erent digital halftoning

algorithms will be described in Section 8.1.

3.2 Objective Evaluation

3.2.1 Fourier analysis: Essential background

The two-dimensional discrete Fourier transform (DFT) F applied to an N1 �N2

matrix X of elements xj;k, j = 0; 1; : : : ; N1 � 1, k = 0; 1; : : : ; N2 � 1, produces an

N1 �N2 matrix F = F(X) consisting of elements

fu;v = fX(u; v) =
N1�1X
j=0

N2�1X
k=0

xj;k exp(�i2�(uj=N1 + vk=N2)); (3.1)

where i denotes the square root of �1; u and v are called spatial frequencies. F =

F(X) is sometimes called the discrete Fourier spectrum of X [21, 161].
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The following paragraph is a quote from [176], p. 237.

\The two-dimensional Fourier transform of an image essentially is a Fourier series

representation of a two-dimensional �eld. For the Fourier series representation to be

valid, the �eld must be periodic. Thus... the original image must be considered to

be periodic horizontally and vertically. The right side of the image therefore abuts

the left side, and the top and bottom of the image are adjacent. Spatial frequencies

along the coordinate axes of the transform plane arise from these transitions."

The two-dimensional inverse discrete Fourier transform F�1 yieldsX = F�1(F(X)),

xj;k = f�1F (j; k) =
1

N1N2

N1�1X
u=0

N2�1X
v=0

fu;v exp(i2�(uj=N1 + vk=N2)): (3.2)

We will call the matrix jF(X)j consisting of

jfX(u; v)j =
q
(Re(fu;v))2 + (Im(fu;v))2 (3.3)

the two-dimensional discrete magnitude spectrum of X. Re(x) is the real part of x,

Im(x) is the imaginary part of x. (Gonzalez and Wintz [78] called jF(X)j the \dis-

crete Fourier spectrum". The name \magnitude spectrum" is more common [161].

The name \amplitude spectrum" is occasionally used as a synonym of \magnitude

spectrum" [161], but some authors assign a di�erent meaning to it [71].) Compo-

nents jfX(u; v)j of the discrete magnitude spectrum will be referred to as magnitudes
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[161, 176] of the corresponding Fourier transform coe�cients fu;v (some authors call

jfX(u; v)j amplitudes, Scheermesser and Bryngdahl [191] preferred the word moduli).

Let

tp(x) = arctan

 
Im(x)

Re(x)

!
� �

2

 
sign

 
arctan

 
Im(x)

Re(x)

!!
�

�����sign
 
arctan

 
Im(x)

Re(x)

!!�����+ sign (Im(x))�
����sign(Im(x))

����
!
; (3.4)

where function arctan is the conventional arctangent function [48] expected to return

its value in the radian measure, arctan(x) 2 (��
2
;
�
2
) for any real x, and

sign(x) =

8>>>>><
>>>>>:

1 if x > 0,

0 if x = 0,

�1 if x < 0,

(3.5)

is the signum function.

�X(u; v) =

8>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>:

0 if Re(fu;v) � 0 and Im(fu;v) = 0,

�
2

if Re(fu;v) = 0 and Im(fu;v) > 0,

� if Re(fu;v) < 0 and Im(fu;v) = 0,

3�
2

if Re(fu;v) = 0 and Im(fu;v) < 0,

tp(fu;v) otherwise,

(3.6)

are phases [78] of fu;v. The phases lie in the interval [0; 2� ). The matrix of phases
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will be denoted �(X) and referred to as the two-dimensional discrete phase spectrum

[161].

P(X) = jF(X)j � jF(X)j; (3.7)

where � stands for direct (element-by-element) product of matrices, is the two-dimensi-

onal discrete power spectrum [161] of X. (Marple [140] prefers the term \peri-

odogram". This choice has to do with the periodogram averaging technique used

to estimate power spectra of analog signals/images subjected to digital processing.)

Broja and Bryngdahl [21] called discrete Fourier spectra F(B � G) of the noise

images the quantization noise spectra, or simply the noise spectra. However, they

visualized only the corresponding magnitude spectra. Chapter 5 of this dissertation

will cover color visualization of the noise spectra and the corresponding phase spectra.

We visualize the magnitude spectra of the noise images by representing

lu;v = ln(1 + jfB�G(u; v)j) (3.8)

as grayscale values [78, 176] ranging from \black" (min
u;v

lu;v) to \white" (max
u;v

lu;v).

Here ln stands for the natural logarithm. Other researchers [58, 250] used more

general transformations of the type

lu;v = ln(1 + �N (jfB�G(u; v)j))=ln(1 + �); (3.9)
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where N is a linear normalization function such that its output is always in [0; 1],

and � is a constant between 4 and 70. The exact value of � is given by the user and

depends on the spectrum that has to be visualized.

For the visualization purposes, the quadrants of the Fourier transform are rear-

ranged to move the origin ((0; 0), the dc component) to the center of the image in

compliance with the standard practice [78, 176]. (In the previous sentence and the

rest of the thesis, the popular abbreviation dc stands for \direct current".) The ori-

gin shift is performed as follows. Whenever we are about to calculate F(X) (X is an

N1 �N2 matrix, as before), F
0 = F0(X) consisting of elements

f
0
u;v = f 0X(u; v) =

N1�1X
j=0

N2�1X
k=0

(�1)j+kxj;k exp(�i2�(uj=N1 + vk=N2)); (3.10)

is computed instead. As a result, the low-frequency components are gathered near

the center of the spectrum, and the high-frequency ones are moved away from the

center. Then

xj;k = f�1F (j; k) =
(�1)j+k
N1N2

N1�1X
u=0

N2�1X
v=0

f
0
u;v exp(i2�(uj=N1 + vk=N2)): (3.11)

Several authors [97, 160, 173, 214] have reported that the organization of image

phase information appears far more critical to visual perception than the image prop-

erties measured by the power spectrum. In particular, if the phases of fX(u; v) are
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randomized while the magnitudes stay the same, then the inverse Fourier transform

may yield an image having little resemblance to X. Although the use of the magni-

tude spectra as means of image quality evaluation may appear to be limited due to

these results (important information contained in the phases is being disregarded),

one might argue that

B
0 = G+ F�1(C(F(B �G))); (3.12)

where C denotes a phase change operation, is not very likely to be binary. Also,

whenever the magnitude of a component is small, the phase does not matter much.

Visual textures are de�ned as aggregates of image pixels or simple patterns [105],

also known as texels [192]. Texels are not to be confused with textons [105], elongated

blobs (e.g., rectangles, ellipses, or line segments) with a number of speci�c properties.

Yellott [248] discovered very distinct binary textures that have identical Fourier power

spectra and very similar statistical properties. Chapter 6 will provide new data on

how relatively signi�cant magnitudes and phases of the quantization noise images are.

Figures 2.1{2.12 (b) and (d) show grayscale representations of the magnitude

spectra of the noise images for the image-algorithm combinations covered in Chapter

2. Color visualization of the noise spectra and the corresponding phase spectra will

be covered in Chapter 5.
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3.2.2 Model-based evaluation

Allebach [2] pioneered evaluation and design of digital halftoning algorithms on the

basis of vision system models in 1981. By then, important results had been obtained

in a number of psychophysical experiments concerned with visual detectability of

gratings. So-called simple gratings are two-dimensional patterns with the intensity

function described by the expression

I(x; y) = I0 + P(2�f0 � (x cos � � y sin �)); (3.13)

where I0 is some constant intensity, P is a periodic function with period 1, f0 is the

fundamental frequency, and the bars of the grating are oriented at angle � to the

vertical y-axis. Note that sinusoidal gratings have very simple magnitude spectra,

each consisting of two non-zero components symmetric with regard to the origin,

once the quadrants are properly rearranged. The main parameters measured in the

psychophysical detection experiments are known as two types of contrast sensitivity

[187]. The physical contrast of simple images such as sinusoidal gratings or single

patches of light on a uniform background is well de�ned and agrees with the perceived

contrast, but this is not so for complex images [170]. Contrast metrics are extensively

studied [74, 171, 218].

We are interested in numerical distortion measures dV(G;B) for halftone image
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quality assessment (V in the subscript means that a measure may depend on the image

viewing conditions; in the rest of the dissertation, this subscript will be dropped). The

rest of the chapter is devoted to examination of di�erent approaches to development

of more or less meaningful distortion measures.

Campbell et al. [26, 27] showed that the contrast sensitivity depends on �. The

sensitivity is greatest and nearly equal for � = 0� or 90� (vertical or horizontal grat-

ings) and decreases monotonically to a minimum at � = 45� where the sensitivity is

about 3 dB less. Halftoning algorithms are known to take advantage of this fact by fa-

voring diagonal correlated artifacts over horizontal and vertical ones. For this reason,

we will be primarily interested in distortion measures that take this anisotropy into

account, directly (by relying upon appropriate vision system models) or indirectly (by

su�ciently asymmetric windows being involved in the process of their computation).

(Numerous techniques of image quality evaluation assuming radial symmetry of the

vision system have been proposed and studied [18, 72, 84, 131, 138, 153, 156, 157,

216, 222, 231, 256].)

Let X be the input of a linear shift-invariant operator [97] representing a channel

of the vision system, and let Y be this channel's output. Then the corresponding

modulation transfer function (MTF) H can be de�ned [176] to be an N1�N2 matrix

such that

jF(Y )j = H � jF(X)j: (3.14)
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Components of H will be denoted by h(u; v). (Jain [98] gave a di�erent de�nition of

the MTF | he normalized it with regard to h(0; 0).)

Sakrison [187] proposed a multi-channel vision system model that would help to

determine transmission rates (in bits/pixel) for visually lossless coding of images. In

our case, however, the transmission rate is �xed, so we would like to modify this

model in order to obtain a meaningful distortion measure d(G;B) based upon known

properties of human vision. The results of this measure's application must strongly

correlate with those of subjective evaluation tests.

First, let's compute zj;k = '(G;B; j; k) for j = 0; 1; : : : ; N1�1, k = 0; 1; : : : ; N2�1

to account for ganglion cell adaptation to changing levels of background illumination,

and let Z be the matrix of zj;k. Sakrison [187] recommended

'(G;B; j; k) = '(gj;k; bj;k) = lg(L(bj;k))� lg(L(gj;k)); (3.15)

where lg stands for the logarithm base 10, and L is a transformation needed to

express intensity in terms of luminance, i.e., luminous ux emitted per unit solid

angle (steradian) and unit projected area of source [103], measured in candelas per

m2 (cd=m2), thus accounting for the lighting conditions. Sakrison warned that the

logarithmic approximation of the nonlinear part of the vision system is valid only if the

values of jL(bj;k)�L(gj;k)j are small compared to jL(gj;k)j. In other words, the vision
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system is assumed to be working in its photopic region, i.e., the image has to be well-

lit for the model to work. There may be a need to modify the function '(G;B; j; k) in

order to incorporate the inuence of gamma correction [68] or its analog for printers,

tone scale adjustment (TSA) [222], also known as dot gain compensation [43]. Roetling

and Holladay [181] proposed the popular dot-overlap model as means of accounting for

device distortions. It was then studied and modi�ed by a number of researchers [207,

209]. Pappas et al. [166] showed that the dot overlap model can be inadequate for

some printers and recommended direct photometric measurement. For laser printers,

the output is known to depend on the toner level [188], which further complicates

the process of tone scale adjustment. Generally, for devices unable to display G

without resorting to halftoning, adjustment and veri�cation of any vision system

model remain complex tasks. We will discuss TSA some more in the next chapter.

When no modi�cation of '(G;B; j; k) can successfully compensate for the device

distortions, other means of adding a device model should be considered.

The N1�N2 matrix Z of zj;k becomes input to multiple channels with narrow-band

modulation transfer functions H0
�;� de�ned by their elements

h0�;�(u; v) =
expf�2[(~�(u; v)� ��)=�1]

2g+ expf�2[(� � j~�(u; v)���j)=�1]
2gq

1 + [1:8(~!r(u; v)� 
�)=
� ]2
;

(3.16)

37



where 
� (expressed in cycles/degree) are the radial center frequencies of the channels,


� = 4:5 � (3:5)�; � = 0;�1;�2; : : : ; (3.17)

and �� are their angular center frequencies

�� = ��=9; � = 0; 1; : : : ; 8: (3.18)

The angular bandwidth of each channel is ��1=2. The radial bandwidths are equal

to �
�=1:8, � = 0;�1;�2; : : :. Note that we allow h0�;�(u; v) to be non-zero outside

the band, i.e., the channels overlap. Other researchers studied multi-channel models

with non-overlapping (orthogonal) channels [153, 216]. Such models allow successful

resolution of in�nitely close frequencies near the band edges, contradicting the classi-

cal experimental results that led to development of the multi-channel concept in the

�rst place [184].

In Eq. (3.16),

~�(u; v) = �(u; v)� �

2
(sign(�(u; v))� jsign(�(u; v))j); (3.19)

where

�(u; v) = arctan(!y(v)=!x(u)); (3.20)
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!x(u) and !y(v) being spatial frequencies expressed in cycles/degree.

In Eq. (3.16),

~!r(u; v) =
!r(u; v)

s(�(u; v))
; (3.21)

where

!r(u; v) =
q
([!x(u)]2 + [!y(v)]2); (3.22)

and

s(�(u; v)) =
1� w
2

cos(4�(u; v)) +
1 + w

2
: (3.23)

In Eq. (3.23), w = 0:7 is a symmetry parameter. It was Daly [40], who �rst suggested

that ~!r(u; v) is used (instead of !r(u; v)), in order to account for the radial asymmetry

of the system. He modi�ed the earlier, simpler model of Mannos and Sakrison [138].

That model had a single linear shift-invariant channel. Daly excluded the nonlinear

part that required computation of the cube root of luminance and made the MTF

at at low frequencies. Daly's approach was applied to introduce orientational depen-

dency into other models. Kolpatzik and Bouman [116] used it to modify N�as�anen's

contrast sensitivity function [156] they took to be the MTF. Analoui and Allebach

[5] did the same thing to an MTF derived from the data of Campbell, Carpenter,

and Levinson [25]. Section 8.2 compares the predictions of the popular one-channel

models with the subjective testing results from Section 8.1.
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For images subtending small angles,

!x(u) �
��(u�N1=2)

180N1 arctan(1=D)
; (3.24)

!y(v) �
��(v �N2=2)

180N2 arctan(1=D)
; (3.25)

where D is the viewing distance, expressed in inches (the normal viewing distance is

usually taken to be 10 inches [213]), and � dpi is the resolution of the image.

From

max
u;v

!r(u; v) = !r(0; 0) �
��

180
p
2 arctan(1=D)

(3.26)

and

min
u+v>0

!r(u; v) �
��

180max(N1; N2) arctan(1=D)
(3.27)

we can determine that the channels that really matter are those with

$
1 + log3:5

 
��

180max(N1; N2) arctan(1=D)

!%
� � �

&
log3:5

 
��

360
p
2 arctan(1=D)

!'
:

(3.28)

For a 256 � 256 image printed at 100 dpi and viewed at the normal viewing

distance, Inequality (3.28) becomes �2 � � � 2, so 45 channels are involved. Figure

3.1 illustrates the shape of their MTFs (intensity is proportional to h0�;�(u; v)).
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For each channel,

F
00
�;� = H0

�;� � F0(Z) (3.29)

is calculated. Note that we could �nd jf 0Z(u; v)j and �0Z(u; v) by substituting f 0u;v for

fu;v in Eqs. (3.3) and (3.6), respectively. Then, from

Z
0
�;� = (z0�;�(u; v)) = H0

�;� � jF0(Z)j (3.30)

elements of F 00
�;� could be obtained by the equation

f
00
�;�(u; v) = z

0
�;�(u; v) cos(�

0
Z(u; v)) + iz

0
�;�(u; v) sin(�

0
Z(u; v)): (3.31)

Let Z 00
�;� be matrices consisting of

z
00
�;�(j; k) = (�1)j+kf�1F 00

�;�
(j; k): (3.32)

The responses of the channels are

t�;� =
N1�1X
j=0

N2�1X
k=0

"
z
00
�;�(j; k)

s(j; k)

#6
; (3.33)

where s(j; k) are elements of S(X), a matrix that describes how the decrease in noise

stimulus sensitivity depends on the distance between the stimulus and a background
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patch with substantial gradient. One option o�ered by Sakrison is let

s(j; k) =vuuut 1

N1N2

N1�1X
x=0

N2�1X
y=0

"
 (x; y) exp

 
4320(ln 0:35) arctan(1=D)

��

q
(j � x)2 + (k � y)2

!#2
;

(3.34)

where  (x; y) form a �ltered version of G, the �lter having a broad isotropic pass

band through the midrange of spatial frequencies (say, 2:0 � 20 cycles/degree), with

the absolute values of elements of its MTF increasing for a while with radial frequency

to make  (x; y) approximate the magnitude of the gradient of G. The other option is,

set s(j; k) = 1 for all j, k, thus ignoring the background gradient problem altogether.

The Sakrison model involves thresholding t�;� and computing the logical OR of

the outputs to determine if noise is detected. I have yet to �nd a function of t�;�

that would be a good distortion measure d(G;B), i.e. match results of subjective

evaluation of halftone images. However, the Sakrison model is based on large volume

of data gathered in multiple psychophysical experiments (see references in [187]),

which makes it important, in my opinion. Hall and Hall [84] cited evidence in favor

of placing a low-pass �lter in front of the logarithmic part, which, in its turn, would be

followed by a high-pass �lter. Once orientational dependency is added to their model,

an interesting alternative to the Sakrison model may emerge. More psychophysical
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data raising questions as to the site(s) and nature of the vision system nonlinearity

have been published [44, 45, 155]. Given that the issue is closely related to the

aforementioned studies of contrast in complex images, one should expect models of

pattern masking like the one by Watson and Solomon [232], based on contrast gain

control, to be employed to design distortion measures in the future.

Bock et al. [20] proposed the so-called distortion measure adapted to human per-

ception (DMHP) involving weighted multiplication of separate error assessments for

edges, textures, and at regions. Alas, this measure does not depend on the view-

ing conditions (lighting, resolution, viewing distance, etc.) | in particular, the sizes

of the �lters used to separate images into regions are expressed in pixels and �xed.

Hosaka [91] and Eskicioglu [54] developed multidimensional measures of image quality

based on quadtree decomposition of the original image into certain activity regions.

Eskicioglu reported that his dc-shift-invariant measure captures notions like \block-

iness" and \blurriness". Daly proposed an interesting technique for computation of

the so-called di�erence maps [41], which was later modi�ed by Taylor et al. [215].

3.2.3 Halftone image quality and the properties of noise

Quantization noise is de�ned by Eq. (2.6). It has to be present whenever the

original image is not binary. The relation between the spectral properties of the noise

and image quality has been extensively studied. Ulichney [222] considered radially
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averaged power spectra of constant level representations. He de�ned blue noise as

high-frequency noise with a at radially averaged power spectrum, and postulated

that \blue noise is pleasant". Ulichney's de�nition seemed too narrow to be ade-

quate, so other researchers attempted to change it, adding more bias in favor of high

frequencies [72, 116] and introducing orientational dependency otherwise ignored in

the process of radial averaging [116]. Adding to the confusion, FS-1037C [227] de-

�ned blue noise as follows: \In a spectrum of frequencies, a region in which the

spectral density, i.e., power per hertz, is proportional to the frequency". This means

power density increase at the rate of 3dB per octave with increasing frequency. Risch

[180] characterized purple noise by power density increasing 6dB per octave with

increasing frequency (density proportional to the square of frequency). Lau, Arce,

and Gallagher [125] de�ned green noise to be \the mid-frequency component of white

noise" and studied green noise digital halftoning. An earlier alternative de�nition

of green noise [235] describes \supposedly the background noise of the world" with

the power spectrum averaged over several outdoor sites. This version of green noise

is similar to pink noise, power density of which decreases 3dB per octave with in-

creasing frequency (density proportional to 1/f) over a �nite frequency range which

does not include the dc component, but an extra hump is added around 500Hz. I

propose that the name violet noise is given to a spectral region where the spectral

density increases with increasing (radial) frequency. This would give us a convenient
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general de�nition incorporating purple noise, blue noise of FS-1037C, modi�ed blue

noise from [116], parts of modi�ed blue noise from [72], but not blue noise as de�ned

by Ulichney, or green noise. Moreover, due to the averaging property of the vision

system, high-frequency noise tends to be less visible than low-frequency noise. Am-

ple experimental evidence suggests that good halftoning algorithms produce radially

asymmetric violet noise, possibly with at spectrum parts included. The reverse is

not necessarily true (some violet noise algorithms may produce pictures that aren't

even binary, and others may render images poorly because of bad phase properties).

3.2.4 Mean-square error, signal-to-noise ratio, and other sim-

ilar criteria

Perhaps, the most famous distortion measure used in image quality evaluation is

the mean-square error (MSE), often estimated by the formula

E = 1

N1N2

N1�1X
j=0

N2�1X
k=0

e
2
j;k: (3.35)

One can estimate the normalized mean-square error (NMSE) by computing

EN =

PN1�1
j=0

PN2�1
k=0 e

2
j;kPN1�1

j=0

PN2�1
k=0 g2j;k

: (3.36)
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In many applications the MSE is expressed in terms of a signal-to-noise ratio (SNR),

several di�erent de�nitions of which are known [37, 78, 98, 176]. The MSE is well-

known to be incompatible with human sensory perception [7, 106, 138, 139], and

explanations of this fact exist [176, 189]. Essentially, the assumption that addition of a

quantization noise component to the grayscale value of a pixel cannot be compensated

by adding noise of the opposite sign to the grayscale value of a nearby pixel fails due

to the averaging property of the vision system. Still, the MSE (SNR) is often used

because of its simplicity, and because it is possible to calculate the rate-distortion

function and simulate the optimum encoding scheme for it [138].

The point-transformed mean-square error (PMSE) [176] is

ET =

PN1�1
j=0

PN2�1
k=0 [T (bj;k)� T (gj;k)]2PN1�1

j=0

PN2�1
k=0 [T (gj;k)]2

; (3.37)

where T may stand for a power law transformation of the type T (x) = x
c0, or a

logarithmic transformation of the type T (x) = c1 logb(c2 + c3x), where b is the base

of the logarithm, and ci are constants, i = 0; 1; 2; 3.

The Laplacian mean-square error (LMSE) [176] is

ET 0 =

PN1�2
j=1

PN2�2
k=1 [T 0(bj;k)� T 0(gj;k)]

2PN1�2
j=1

PN2�2
k=1 [T 0(gj;k)]2

; (3.38)
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where

T 0(xj;k) = xj+1;k + xj�1;k + xj;k+1 + xj;k�1 � 4xj;k (3.39)

is the Laplacian edge-sharpening operator.

The convolution mean-square error (CMSE) [176] is a generalization of the LMSE

where T 0 stands for taking elements of the matrix obtained by convolution of an

image and some linear shift-invariant �lter, and the ranges of summation depend on

the �lter dimensions as well as the image ones. Mannos and Sakrison [138] tried

the (non-normalized) frequency-weighted PMSE. Their single-channel model used to

introduce pixelwise nonlinearity and perform frequency weighting was mentioned in

Subsection 3.2.2, and we will return to it in Section 8.2.

Marmolin [139] tried several measures of the form

ET 00 =

2
4 1

N1N2

N1�1X
j=0

N2�1X
k=0

jcj;kT 00(ej;k)jc
3
5
1=c

; (3.40)

with limited success.

Katsavounidis and Kuo [106] proposed to compute the generalized MSE (GMSE)

as a weighted sum of elements of the MSE vector. For the case of N1 = N2 = N = 2r,

where r is a non-negative integer, they de�ned these elements to be

Ei =
2i�1X
j=0

2i�1X
k=0

2
42r�i�1X

x=0

2r�i�1X
y=0

bj�2r�i+x;k�2r�i+y �
2r�i�1X
x=0

2r�i�1X
y=0

gj�2r�i+x;k�2r�i+y

3
5
2

; (3.41)
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for i = 0; : : : ; r. Note that Er = N
2E . No suggestion as to the exact values of weights

has been made.

Matsumoto and Liu [141] proposed a metric they called edge correlation,

�̂e =
1

N1(N2 � 1)

N1�1X
j=0

N2�2X
k=0

(gj;k+1 � gj;k)(bj;k+1 � bj;k) +

1

(N1 � 1)N2

N1�2X
j=0

N2�1X
k=0

(gj+1;k � gj;k)(bj+1;k � bj;k): (3.42)

(Larger values of �̂e are supposed to indicate better rendition of edges!)

Mitsa [148] studied maximum local error. For the case of N1 = 5n1, N2 = 5n2,

where n1 and n2 are some positive integers, this distortion measure can be computed

by the formula

�A = max
j=0;:::;n1�1
k=0;:::;n2�1

vuuut 1

25

4X
x=0

4X
y=0

"
e5j+x;5k+y

exp(0:025A(5j + x; 5k + y))

#2
; (3.43)

where

A(j; k) =

1+�j;0��j;N1�1X
x=�1+�j;0��j;N1�1

1+�k;0��k;N2�1X
y=�1+�k;0��k;N2�1�����gj+x;k+y � 1

9

1+�j+x;0��j+x;N1�1X
x0=�1+�j+x;0��j+x;N1�1

1+�k+y;0��k+y;N2�1X
y0=�1+�k+y;0��k+y;N2�1

gj+x+x0;k+y+y0

����� (3.44)

is a local activity measure.
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Thurnhofer and Mitra [217] recommended the weighted MSE (WMSE)

EA =
1

N1N2

N1�1X
j=0

N2�1X
k=0

"
ei;j

exp(0:025A(j; k))

#2
(3.45)

and the well-known statistical estimate of the correlation coe�cient,

�̂G;B =

PN1�1
j=0

PN2�1
k=0 (gj;k � �g)(bj;k � �b)qPN1�1

j=0

PN2�1
k=0 (gj;k � �g)2

PN1�1
j=0

PN2�1
k=0 (bj;k � �b)2

; (3.46)

where

�g =
1

N1N2

N1�1X
j=0

N2�1X
k=0

gj;k (3.47)

and

�b =
1

N1N2

N1�1X
j=0

N2�1X
k=0

bj;k (3.48)

are the sample means of G and B, respectively. (Higher �̂G;B is expected to mean

better halftoning!)

None of the distortion measures d(G;B) given by Eqs. (3.35 { 3.38, 3.43, 3.45)

or derived from Eqs. (3.42, 3.46), say, by inverting the signs of the metrics, or in a

similar fashion, depends on the image viewing conditions, so one should not expect

these metrics to correlate with the subjective evaluation results consistently. Indeed,

in di�erent viewing conditions the observers may rank the same images di�erently

[131].
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3.2.5 The anti-correlation approach

Sandler et al. [188, 190] proposed to interpret outputs bj;k of a digital halftoning

algorithm as values of random variables �j;k (Ulichney [222] (Section 3.2) did it earlier

for the case of constant level input). Using this interpretation, Sandler et al. [188]

developed the following local quasi-optimality criterion. Let S be an area of the

image, consisting of pixels that are close together (no exact measure of \closeness"

speci�ed), and let T (S) be the set of all possible two-element subsets f(j1; k1); (j2; k2)g

of S. Let the covariance of �j1;k1 and �j2;k2 be denoted by cov(�j1;k1; �j2;k2). Sandler et

al. postulated that it is desirable to construct �j;k so that the variance

V (
X
S

�j;k) =
X
S

V (�j;k) + 2
X
T (S)

cov(�j1;k1; �j2;k2) (3.49)

is minimum on the condition that the expected values

E(�j;k) = gj;k (3.50)

for all (j; k) in S.

Ulichney claimed that Eq. (3.50) (Eq. (3.27) in [222]) is always true in the case of

constant level input for halftone processes which do not produce output by thresh-

olding with a deterministic, periodic threshold array. However, it is straightforward
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to design a counterexample algorithm that cannot be described in terms of ordered

dither. Moreover, statistical measurements discussed in Chapter 7 will show that

error di�usion can be considered a counterexample, due to boundary e�ects.

The authors of the local quasi-optimality criterion pointed out that the underlying

assumption that the vision system averages intensity levels of pixels in S with equal

weights is just an approximation. For the purposes of digital halftoning algorithm

design, they suggested that, \the closer together any two pixels are, the less correlated

the corresponding random variables should be (on the condition that their expected

values coincide with the inputs)." Radial anisotropy of the vision system can be

accounted for by picking a measure of closeness based on non-Euclidean distance.

For any given pair of pixels, signi�cance of correlation between the random variables

depends on the viewing conditions.

The approach of Sandler et al. �ts the results of psychovisual experiments con-

ducted by Burgess et al. [24] and Myers et al. [154]. According to these results, the

human observer is strongly inuenced by correlated noise, and the detection perfor-

mance for even a simple task is degraded substantially in its presence. As Myers and

Barrett [153] put it, \the human observer acts approximately as an ideal observer

who does not have the ability to prewhiten the noise" (the notion of blue noise was

not known to them).

A new class of digital halftoning algorithms based on the anti-correlation approach
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is introduced in the next chapter.

52



a)

b)

Fig. 3.1. MTFs of linear shift-invariant channels in the modi�ed Sakrison model:

a) Coordinate system with the axes u+ 1, v + 1, �+ 1 (� = 0);

b) Coordinate system with the axes u+ 1, v + 1, � + 3 (� = 8).
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4

Digital Halftoning by Generalized

Russian Roulette

4.1 Generalized Russian Roulette

Russian roulette is a well-known dangerous game consisting of spinning the cylin-

der of a revolver loaded with one cartridge, pointing the muzzle at one's own head,

and pulling the trigger [143] Lermontov [127] (Part II, Chapter 3, \The Fatalist")

described an experimental study of a primitive version of Russian roulette in 1839.

Due to unavailability of actual revolvers (the device was invented around 1835), the

number of cylinder chambers n was reduced to one, but the probability } that a shot

is �red successfully if a cartridge is aligned with the barrel when the trigger is pulled

was less than one. In our model, } is taken to be one, and the number of loaded
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cartridges ~g is allowed to range between 0 and n. Further generalization is achieved

by considering the case of multiple players. We then assign numbers 0; 1; : : : ; n � 1

to the chambers of each revolver cylinder counterclockwise (looking at the muzzle).

We will concentrate on the case of white-blooded players on an N1 � N2 square

grid. The grid is superimposed over a rectangular part of a geometric plane covered

with black snow. Whenever a shot is �red, the corresponding player's blood produces

a white pixel. Lines and columns of the grid are enumerated as described in the

beginning of Chapter 2. Let Ci;j indicate the revolver cylinder of a player at the

position (i; j), and let

Ci;j[k] =

8><
>:
1 if the kth chamber of Ci;j contains a cartridge,

0 otherwise,

(4.1)

for k = 0; 1; : : : ; n�1. Let rand(n1::n2) denote a function returning a random integer

uniformly distributed on fn1; n1 + 1; : : : ; n2g, where n1 � n2, and let int(x) be a

function that takes a real number x, and returns an integer obtained by some rounding

operation.
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4.2 One-Dimensional Anti-Correlation Russian

Roulette and Delta-Sigma Modulation

The line-by-line version of one-dimensional anti-correlation Russian roulette can

now be described algorithmically as follows.

s0;0  0; r rand(0::n� 1);

for i from 0 to N1 � 1 do

for j from 0 to N2 � 1 do

f

for k from 0 to n� 1 do

Ci;j[k] 0;

~gi;j  int(gi;jn);

=� load revolver (i; j) : �=

for k from 0 to ~gi;j � 1 do

f

k
0  (si;j + k) mod n;

Ci;j[k
0] 1;
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g

=� ensure reduced correlation in 1D: �=

k  ((k0 + 1) mod n);

if j < N2 � 1 then si;j+1  k;

else

if i < N1 � 1 then si+1;0  k;

=� player (i; j) may now pull the trigger: �=

bi;j  Ci;j[r];

g

The outputs bi;j can be interpreted as values of the corresponding random variables

�i;j with the expected values

E(�i;j) =
~gi;j

n
� gi;j: (4.2)

Denoting (i + �j;N2�1) and (j + 1)(1� �j;N2�1) by i
0 and j 0 respectively, we can write

the covariances

cov(�i;j; �i0;j0) =
1

n

n�1X
k=0

Ci;j[k]Ci0;j0[k]�
~gi;j~gi0;j0

n2
(4.3)
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for all integer i; j such that i � 0, j � 0, and ij < (N1�1)(N2�1). Our manipulations

with k and k0 minimize the sums
Pn�1

k=0 Ci;j[k]Ci0;j0[k].

Delta-sigma (or sigma-delta) modulation [28, 158, 205] is a popular data trans-

formation technique applied in digital signal processing and communication systems.

Single-loop delta-sigma modulation (more sophisticated con�gurations are known [35,

87]) over the range [0; 1] (linear transformations cover arbitrary ranges [�1; �2], �1 <

�2) of the input values gi 2 [0; 1], i = 1; 2; : : : ; N , can be described by the formula

from [189] that determines the outputs of the procedure,

bi =

8><
>:
1 if gi +

Pi�1
k=1(gk � bk) � 1=2,

0 if gi +
Pi�1

k=1(gk � bk) < 1=2,

(4.4)

for i = 1; 2; : : : ; N .

Anastassiou [7] showed that delta-sigma modulation can be interpreted as one-

dimensional error di�usion, and, conversely, that one-weight error di�usion with

W =

0
B@
0 0 0

1 �

1
CA (4.5)

can easily be modi�ed to coincide with line-by-line delta-sigma modulation (the error

accumulated at the end of one line should be transferred to the beginning of the next

line). Figure 4.1 shows images produced by line-by-line delta-sigma modulation and

the magnitude spectra of the corresponding noise images.
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Sandler et al. [189] established a relation between delta-sigma modulation and a

well-known statistical model, Poincar�e's roulette [57] (pp. 62{63). This allowed them

to prove that the (unbiased) sample mean estimates of averages of consecutive input

elements are most e�cient in their class (that is, variances of sample means computed

from consecutive outputs bi are minimum among variances of such sample means

computed from random binary sequences xi, i = 1; 2; : : : ; N , such that E(xi) = gi for

all i) for a wide variety of inputs allowing randomization of the encoding procedure.

The result followed from the correlation coe�cients �(�i; �i+1) being minimum in their

class for i = 1; 2; : : : ; N � 1, where �i is the random variable which bi is considered to

be a value of after randomization.

One-dimensional anti-correlation Russian roulette can simulate single-loop delta-

sigma modulation in�nitely well if b(n� 1)=2c is substituted for r in the algorithmic

description above, and the cylinder capacity n goes to in�nity. Indeed, the di�erence

between the two algorithms is then due solely to the distortions caused by the function

int, and the rounding errors ((~gi;j=n)�gi;j) all go to 0 when n!1. If the substitution

of b(n � 1)=2c for r is not performed, then one-dimensional anti-correlation Russian

roulette becomes in�nitely close to randomized delta-sigma modulation of Sandler

et al. as n approaches in�nity. If instead r is computed many times independently,

inside the loop over j, just before a trigger is pulled, then we end up performing

dithering with white noise.
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4.3 Simulating Error Di�usion by Generalized Rus-

sian Roulette

Randomized discrete error di�usion by generalized Russian roulette is described

by

r  rand(0::n� 1);

for i from 0 to N1 � 1 do

for j from 0 to N2 � 1 do

f =� remember: �i;j = 0 if i < 0, j < 0, or j � N2 �=

si;j  int

�P`�1
�1=0

P2(`�1)�`�`�1;�1
�2=0 w�1;�2�i�(`�1)+�1;j�(`�1)+�2

�
;

for k from 0 to n� 1 do

Ci;j[k] 0;

~gi;j  int(gi;jn);

=� load revolver (i; j) : �=

for k from 0 to ~gi;j � 1 do

f

k
0  si;j + k;
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if k0 < 0 then k
0  k

0 + n;

Ci;j[k
0] 1;

g

=� compute error: �=

k  k
0 + 1;

if k > r then �i;j  k � n; else �i;j  k;

=� player (i; j) may now pull the trigger: �=

bi;j  Ci;j[r];

g

When n ! 1, this algorithm reduces to ordinary ED once r is replaced with

b(n � 1)=2c. It can be easily modi�ed to add processing on a serpentine raster.

The name of the algorithm does not say \anti-correlation", because the error dif-

fusion coe�cients w�1;�2 only approximately tell us how strongly anti-correlated �i;j

and �i�(`�1)+�1;j�(`�1)+�2 should be. Moreover, both generalized Russian roulette al-

gorithms we have considered so far involve loading cartridges so that at most one

\gap" consisting of empty chambers is allowed to remain in each loaded revolver

cylinder. Results of Sandler et al. [189] suggested that this restriction would not

hurt a viewer, whose vision system perceives an image as a single line and averages

over consecutive outputs in order to reconstruct averages of consecutive inputs. I
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am about to show that removal of the restriction facilitates design of better digital

halftoning algorithms.

4.4 Anti-Correlation Digital Halftoning by Gener-

alized Russian Roulette

Anti-correlation digital halftoning (ACDH) is a new class of digital halftoning

algorithms. It is based on generalized Russian roulette, and multiple gaps are allowed

in the revolver cylinders. More control over correlation properties of (unordered)

random variable pairs f�i;j; �i�(`�1)+�1;j�(`�1)+�2g is achieved by using input-dependent

anti-correlation �lters K = (k�1;�2). Other techniques incorporated in ACDH are

boundary randomization (BR) and the average intensity control (AIC). To describe

sequential and parallel versions of ACDH in detail, we need more de�nitions �rst.

By average intensity of an area of a digital image we mean the ratio of the sum

of pixel intensities for this area and the overall number of pixels in it. The average

intensity control mechanism helps to keep the average intensity of the part of the

halftone image already computed closer to the average intensity of the corresponding

part of the input image. This is achieved by using the global histogram of the cartridge
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distribution H, an array of

Hk =
X
i;j

Ci;j[k]; (4.6)

k = 0; 1; : : : ; n� 1.

Local weighted histograms of the cartridge distribution H(i; j) are arrays of

Hk(i; j) =
X
�1�0;
�2�0

k�1;�2Ci�(`K�1)+�1;j�(`K�1)+�2 [k]; (4.7)

where `K > 0 is a constant integer associated with the local anti-correlation �lter K.

Let S(H(i; j)) be a permutation of f0; 1; : : : ; n� 1g such that

HS0(H(i;j))(i; j) � HS1(H(i;j))(i; j) � � � � � HSn�1(H(i;j))(i; j); (4.8)

and

HSx(H(i;j))(i; j) � HSy(H(i;j))(i; j) (4.9)

whenever x < y and HSx(H(i;j)) = HSy(H(i;j)). If more than one permutation sati�es

these conditions, S(H(i; j)) is selected among the eligible permutations at random.

Condition (4.9) is responsible for the AIC.

Let ~S(H(i; j); ~gi;j), an equivalent of S(H(i; j)) with respect to ~gi;j; be de�ned as a

permutation of S(H(i; j)) such that the elements of subsets fS0(H(i; j));S1(H(i; j));
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: : : ;S~gi;j�1(H(i; j))g and fS~gi;j(H(i; j));S~gi;j+1(H(i; j)); : : : ;Sn�1(H(i; j))g are per-

muted independently. In other words, all elements that are to the left of S~gi;j (H(i; j))

in S(H(i; j)) stay to the left of it in ~S(H(i; j); ~gi;j), and all elements to the right of

S~gi;j (H(i; j)) in S(H(i; j)) stay to the right of it in ~S(H(i; j); ~gi;j). ~S(H(i; j); ~gi;j) can

often be computed faster than S(H(i; j)).

Let C(m) be the con�guration (state of the revolver cylinders) after the mth itera-

tion, and let C(0) be some starting con�guration. Each iteration involves processing

of all pixels in some order, which may depend on m and G.

Sequential iterative anti-correlation digital halftoning (SIACDH) is a subclass of

ACDH de�ned algorithmically as follows.

r  rand(0::n� 1); m 1; set C(0); initialize H;

while the last iteration is not over

f =� remember: all pixels have to be processed �=

for i0 from 0 to N1N2 � 1 do

f

compute pixel coordinates (i; j) depending on i0, m, and G;

~gi;j  int(gi;jn);

select K (it may depend on i; j;m; and G);
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compute H(i; j); =� BR: values of Ci;j[k] outside

the image are random �=

compute ~S(H(i; j); ~gi;j);

=� change the state of cylinder Ci;j: �=

for k from 0 to n� 1 do

f

k
0  ~Sk(H(i; j); ~gi;j);

if k < ~gi;j then Ci;j[k
0] 1; else Ci;j[k

0] 0;

update Hk0 ;

g

g

m m+ 1; =� current Ci;j for all (i; j) form configuration C
(m) �=

g

=� players may now pull the triggers: �=

for i from 0 to N1 � 1 do

for j from 0 to N2 � 1 do

bi;j  Ci;j[r];
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The case of one iteration can be reduced to an equivalent of one-dimensional anti-

correlation Russian roulette on a space-�lling curve by setting K = (0), `K = 1 for

all pixels. Removal of Condition (4.9) from the de�nition of S(H(i; j)) would then

disable the AIC, the resulting algorithm getting closer and closer to dithering with

white noise as n!1.

Parallel iterative anti-correlation digital halftoning (PIACDH) can be explained

in terms of each player holding two revolvers, one in each hand (more memory is

required). The initial con�guration C(0) now describes the original states of revolvers

held in the left hands. The �rst iteration changes the states of revolvers held in the

right hands. These states form the next con�guration, C(1). Based on C(1), the states

of revolvers held in the left hands are modi�ed on the second iteration, and so on.

The AIC is o�, so Condition (4.9) is dropped from the de�nition of S(H(i; j)). If the

overall number of iterations is odd, then the players attempt to �re revolvers they

are holding in their right hands, otherwise the triggers of revolvers held in their left

hands are pulled. Once the cylinders of revolvers currently being loaded are marked

~Ci;j, the algorithmic description becomes

r  rand(0::n� 1); m 1; set C(0); initialize H;

while the last iteration is not over

f =� remember: all pixels have to be processed �=
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for i0 from 0 to N1N2 � 1 do

f

compute pixel coordinates (i; j) depending on i0, m, and G;

~gi;j  int(gi;jn);

select K (it may depend on i; j;m; and G);

compute H(i; j); =� BR: values of Ci;j[k] outside

the image are random �=

compute ~S(H(i; j); ~gi;j);

=� change the state of cylinder ~Ci;j: �=

for k from 0 to n� 1 do

f

k
0  ~Sk(H(i; j); ~gi;j);

if k < ~gi;j then ~Ci;j[k
0] 1; else ~Ci;j[k

0] 0;

g

g

m m+ 1;

swap Ci;j and ~Ci;j for all (i; j); =� current Ci;j for all (i; j)
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form C
(m) �=

g

=� players may now pull the triggers: �=

for i from 0 to N1 � 1 do

for j from 0 to N2 � 1 do

bi;j  Ci;j[r];

E�cient implementation of the swaps is straightforward.

Serpentine anti-correlation digital halftoning (SACDH) processes pixels on a ser-

pentine raster, using wedge-shaped input-dependent anti-correlation �lters. The

starting con�guration C(0) corresponds to all revolver cylinders being empty. SACDH

is a representative of SIACDH, but only one iteration is performed. In the versions of

SACDH I implemented (n = 255 and n = 192 were tried, and the value of r was �xed

at (n� 1) after a couple of other values were checked to make sure that the resulting

di�erence is negligible), BR is performed by taking the values Ci;j[k] for (i; j) outside

the image to be

Ci;j[k] =

8<
:
1 if rBR < n�,

0 otherwise,

(4.10)

where

� = j~gi;j � n=2j=n; (4.11)
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and rBR is a value of a random variable uniformly distributed on f0; 1; : : : ; dn=2eg

and computed independently whenever an attempt is made to look up the value of

Ci;j[k] for (i; j) outside the image. The process of �lter selection for my versions of

SACDH is described in Appendix A. The asymmetry of the chosen �lters is seemingly

needed to compensate for the asymmetry of sequential processing. Figure 4.2 shows

halftone images produced by SACDH (n = 255) and the magnitude spectra of the

corresponding noise images.

When examined visually, the gray scale ramps for the case n = 192 did not di�er

signi�cantly from those for n = 255. Chapter 7 will explain why the version with

n = 192 was used to test SACDH for presence of transient boundary e�ects and

inherent edge enhancement.

No tone scale adjustment was performed in order to produce 100 dpi halfone rep-

resentations of the gray scale ramp. Appendix B describes photometric measurements

and other research conducted by the author to determine how much tone scale ad-

justment was needed for printing of the halftone images at di�erent resolutions on

HP LaserJet IVsi printers. Figure 4.3 shows representations of the portrait of Anya

Pogosyants created using di�erent digital halftoning algorithms and printed at 300

dpi. Tone scale adjustment function \c1" from Appendix B was applied. Yet another

tone scale adjustment function had been applied to the 256� 256 version of the por-

trait of Anya Pogosyants before its 100 dpi halftone representations were generated.
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Figure 4.4 contains halftone representations of the gray scale ramp printed at 300

dpi. Again, TSA function \c1" was applied.

4.5 Texture Perception, Visual Examination of

Halftone Images, and Anti-Correlation Filter

Design

Presence of correlated artifacts [222], which are sometimes called \worms" or \ze-

bra stripes", is a problem common for the algorithms that do not generate regular

periodic patterns.

When the pixel at the position (i; j) is being processed by SACDH, the values

of the coe�cients k�1;�2 of the local anti-correlation �lter K signify how strongly we

want �i;j and �i�(`K�1)+�1;j�(1�2(i mod 2))((`K�1)��2) to be anti-correlated. Note that,

while rather strict conditions have to be imposed on error di�usion coe�cients w�1;�2

to ensure numerical stability [7, 56, 234], making sure that the computation of sums

from Eq. (4.7) never causes an overow is enough to achieve stability when designing

anti-correlation �lters. As a result, it is relatively simple to break up any unwanted

regular binary pattern or correlated artifact by adjusting K. But which periodic

patterns are \bad"? This is not an easy question to answer, and more de�nitions are
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needed before we can tackle the problem.

In halftone images, arti�cial contours may sometimes appear in the areas with

slowly varying [222] or constant [192] input intensity. This e�ect is called contouring

[222].

In Chapter 3, we have already mentioned studies on binary textures. Regular

periodic patterns generated by halftoning algorithms are called halftone dot textures

[156]. Texture visibility and texture segregation are extensively studied [105, 156,

159, 192, 193, 248]. Presence of highly visible textures usually means poor rendition

of small details of the image.

Figure 4.5 illustrates a \texture paradox" that a�ected the design of the SACDH

algorithm. While simple periodic patterns often provide visually pleasing represen-

tations of constant intensity levels, many of them tend to have very visible borders.

This leads to contouring. Figures 2.3 (a) and (c), 4.3 (b), and 4.4 (b) provide numer-

ous examples of that. Not surprisingly, visibility of the texture borders depends on

the image resolution and the viewing distance. This is easy to notice, say, by looking

at the center of Fig. 4.5 from di�erent distances and by comparing Fig. 2.3 (a) and

(c) to Fig. 4.3 (b) and Fig. 4.4 (b), respectively.

Zeggel and Bryngdahl [252] opined that \the allowed texture for grayvalues of 0:5

is a checkerboard pattern". Ulichney used to share this opinion [222], but changed

his mind [225], and a comparison of the midsections of Fig. 2.8 (c) and Fig. 2.4 (c)

71



clearly shows that. (The halftone images in these pictures were produced using the

algorithms designed and liked the most by Ulichney in 1987 and 1993, respectively.)

Let's denote constant grayscale intensity levels by g. I tried to eliminate all

periodic patterns that either seemed obnoxious by themselves, or caused contouring

at 72 dpi, 100 dpi, or 300 dpi. The checkerboard pattern, the pattern for g = 3=4 that

can be seen next to the left bottom corner of Fig. 4.5, and its counterpart for g = 1=4

were among such patterns. Note that the problem with the checkerboard pattern at

300 dpi is largely due to the printer distortions [113], and not the \texture paradox"

itself. While it proved straightforward to eliminate any given periodic pattern by

changing the coe�cients of anti-correlation �lters, other unwanted textures would

often emerge instead, so I had to perform multiple \trial-and-error" cycles similar to

those described in [2]. In addition to that, it turned out that some patterns suppressed

in the halftone ramp may occasionally surface in test images with more gradient. For

the diehard fans of the checkerboard pattern, I recommend using

K =

14 16 23 7 3

15 46 65 23 4

15 62 �

(4.12)
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when � < 13=255, in place of the corresponding �lter from Appendix A. My versions

of SACDH suppress contouring, worm-like artifacts like those in Figures 2.8 (c) and

2.12 (c), and similar �shbone-like artifacts (Fig. 2.8 (c)) near g = 1=2 at the cost of

increased granularity in that area.

In the next chapter, we will discuss what else visual examination of the halftone

images can tell us about SACDH and other digital halftoning techniques in connection

with the properties of the corresponding noise spectra.
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a) b)

c) d)

Fig. 4.1. Line-by-line delta-sigma modulation:

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:25, max = 5:9)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:0, max = 6:3)
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a) b)

c) d)

Fig. 4.2. Serpentine anti-correlation digital halftoning:

Halftone representations of test images (left);

the magnitude spectra of the corresponding noise images (right).

a) Portrait of Anya Pogosyants

b) Magnitude spectrum of the noise image (min = 0:15, max = 6:1)

c) Gray scale ramp

d) Magnitude spectrum of the noise image (min = 0:16, max = 6:3)
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a) b) c)

d) e) f)

Fig. 4.3 (Part I). Portrait of Anya Pogosyants, 300 dpi

a) Dithering with white noise

b) Ordered dither with a recursive tesselation matrix (Eq. (2.4))

c) Ordered dither with a blue noise mask (void-and-cluster)

d) Classical Floyd{Steinberg error di�usion (Eq. (2.9))

e) Four-weight serpentine error di�usion, deterministic weights (Eq. (2.11))

f) Three-weight serpentine error di�usion, deterministic weights (Eq. (2.12))
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g) h) i)

j) k) l)

Fig. 4.3 (Part II). Portrait of Anya Pogosyants, 300 dpi

g) Four-weight serpentine error di�usion, 50% random weights (Eq. (2.13))

h) Error di�usion combined with pulse-density modulation

i) Error di�usion with intensity-dependent weights (Eq. (2.14))

j) Error di�usion with threshold modulation using threshold imprints

k) The iterative convolution algorithm

l) Serpentine anti-correlation digital halftoning
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a) b) c)

d) e) f)

Fig. 4.4 (Part I). Gray scale ramp, 300 dpi

a) Dithering with white noise

b) Ordered dither with a recursive tesselation matrix (Eq. (2.4))

c) Ordered dither with a blue noise mask (void-and-cluster)

d) Classical Floyd{Steinberg error di�usion (Eq. (2.9))

e) Four-weight serpentine error di�usion, deterministic weights (Eq. (2.11))

f) Three-weight serpentine error di�usion, deterministic weights (Eq. (2.12))
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g) h) i)

j) k) l)

Fig. 4.4 (Part II). Gray scale ramp, 300 dpi

g) Four-weight serpentine error di�usion, 50% random weights (Eq. (2.13))

h) Error di�usion combined with pulse-density modulation

i) Error di�usion with intensity-dependent weights (Eq. (2.14))

j) Error di�usion with threshold modulation using threshold imprints

k) The iterative convolution algorithm

l) Serpentine anti-correlation digital halftoning
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Fig. 4.5. The \texture paradox": Periodic and aperiodic patterns
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5

The Noise Spectra, the

Corresponding Phase Spectra, and

Halftone Image Quality

We visualize the phase spectra of the noise images in the HSV color model [68].

Saturation S and value V are both set to 1, and hue is

Hu;v = 360�0B�G(u; v)=2� (5.1)

for u = 0; 1; : : : ; N1 � 1, v = 0; 1; : : : ; N2 � 1. Let hxi denote the fractional part of x.

Then the coordinates in the RGB color space (each of them in [0; 1]) can be computed
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as follows.

Ru;v = �0;bHu;v=60c+�5;bHu;v=60c+hHu;v=60i�4;bHu;v=60c+(1�hHu;v=60i)�1;bHu;v=60c; (5.2)

Gu;v = �1;bHu;v=60c+�2;bHu;v=60c+hHu;v=60i�0;bHu;v=60c+(1�hHu;v=60i)�3;bHu;v=60c; (5.3)

Bu;v = �3;bHu;v=60c+�4;bHu;v=60c+hHu;v=60i�2;bHu;v=60c+(1�hHu;v=60i)�5;bHu;v=60c: (5.4)

Note that the luminance of (Ru;v; Gu;v; Bu;v) may di�er for di�erent �
0
B�G(u; v). This

allows it to play a supplementary role in visualization, because the human vision

system is more sensitive to changes in luminance than to those in chromaticities

[176].

Our approach to color visualization of the discrete Fourier spectra of the noise

images is as follows. Let

l
0
u;v = ln(1 + jf 0B�G(u; v)j) (5.5)

for u = 0; 1; : : : ; N1 � 1, v = 0; 1; : : : ; N2 � 1.

Yu;v = 0:3 +
0:6l0u;v
9:7

(5.6)

will be interpreted as values of luminance in the YIQ color coordinate system [176].
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In this system

Yu;v = 0:299Ru;v + 0:587Gu;v + 0:114Bu;v: (5.7)

In Eq. (5.6), 0:3 and 0:6 are constants empirically selected so that 0 < Yu;v < 1. (9:7

happens to be the largest value of l0u;v I have encountered so far in the course of my

study of the noise spectra.) Let ~Sk(u; v), k = 0; 1; : : : ; 5, be the Euclidean distances

(in the RGB color space) from (Yu;v; Yu;v; Yu;v) to the lines of intersection of the faces

of the RGB cube and the plane �u;v perpendicular to the vector [0:299; 0:587; 0:144]
>

and containing (Yu;v; Yu;v; Yu;v). (The symbol > denotes the matrix transpose; we

preserve a slight notational distinction between the vectors and the triples describing

coordinates of points.)

~Su;v = min
k

~Sk(u; v) (5.8)

play the role of saturation. ~Su;v depend on Yu;v. My experiments showed that if

some constant saturation, say, min
0:3�Yu;v�0:9

( ~Su;v), is maintained, then the chromaticity

changes are too di�cult to notice, while, as the next chapter will demonstrate, the im-

portance of the phase information is high. We compute coordinates (Ru;v; Gu;v; Bu;v)

of a point in �u;v such that

q
[Ru;v � Yu;v]2 + [Gu;v � Yu;v]2 + [Bu;v � Yu;v]2 = ~Su;v; (5.9)

and the angle between vectors [(Yu;v=0:299)�Yu;v;�Yu;v;�Yu;v]> and [Ru;v�Yu;v; Gu;v�
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Yu;v; Bu;v � Yu;v]> is equal to �0B�G(u; v). This is achieved by using the formula

2
666664

Ru;v

Gu;v

Bu;v

3
777775 = R(u; v)

2
666664

((Yu;v=0:299)�Yu;v) ~Su;vp
((Yu;v=0:299)�Yu;v)2+2Y 2

u;v

�Yu;v ~Su;vp
((Yu;v=0:299)�Yu;v)2+2Y 2

u;v

�Yu;v ~Su;vp
((Yu;v=0:299)�Yu;v)2+2Y 2

u;v

3
777775 +

2
666664

Yu;v

Yu;v

Yu;v

3
777775 ; (5.10)

where

R(u; v) =

2
666664

c+ n
2
r(1� c) nrng(1� c)� nbs nrnb(1� c) + ngs

ngnr(1� c) + nbs c+ n
2
g(1� c) ngnb(1� c)� nrs

nbnr(1� c)� ngs nbng(1� c) + nrs c+ n
2
b(1� c)

3
777775 (5.11)

is a matrix representing three-dimensional rotation about the axis [0:299; 0:587; 0:144]>.

In Eq. (5.11),

nr =
0:299p

0:2992 + 0:5872 + 0:1442
; (5.12)

ng =
0:587p

0:2992 + 0:5872 + 0:1442
; (5.13)

nb =
0:144p

0:2992 + 0:5872 + 0:1442
; (5.14)

c = cos�, and s = sin�.

� = �
0
B�G(u; v): (5.15)

A test 256� 256 two-dimensional discrete phase spectrum with � = �
0(u; v) com-

puted from Re(f 0u;v) = (v � 128) and Im(f 0u;v) = (128 � u) using the appropriate
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modi�cations of Eqs. (3.4) and (3.6) is shown in Figure 5.1 (a). A test 256 � 256

discrete Fourier spectrum with the same �0(u; v) and

l
0
u;v =

9:7
q
(u� 128)2 + (v � 128)2

128
p
2

(5.16)

is visualized in Figure 5.1 (b). Figures 5.2{5.15 visualize the phase spectra and the

a) b)

Fig. 5.1. Visualizations of the test spectra:

a) Phase spectrum

b) Discrete Fourier spectrum

discrete Fourier spectra of the noise images corresponding to the image-algorithm

pairs studied in Chapters 2 and 4.

Quantization with a �xed threshold can be interpreted as ordered dither with a

1 � 1 dither matrix. Interestingly enough, considering Figures 2.1 (d), 2.3 (d), and

2.4 (d), we observe that dithering of a 256� 256 gray scale ramp with a 1� 1 dither
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matrix causes the noise spectrum to have 1 strip of nonzero values, application of an

8�8 matrix forces 8 strips of nonzero values to appear, and dithering with a 128�128

matrix produces 128 parallel strips of nonzero DFT coe�cients. Figures 2.1 (a) and

(c) are the extreme cases of contouring, less contouring is seen in Fig. 2.3 (a) and (c),

and virtually no contouring can be seen in Fig. 2.4 (a) and (c). This improvement

is due both to the increase in size of the dither matrix and advances in the matrix

design. Figures 2.1 (b), 2.3 (b) and 2.4 (b) illustrate how peaks in the magnitude

spectrum of the quanization noise image are �rst shifted to the higher frequencies

and then reduced in size and scattered over the high-frequency region, as the dither

technique improves. Figures 5.2 (a), 5.4 (a), and 5.5 (a) form a sequence showing

reduction of wavy correlated phase patterns, which are, perhaps, \relatives" of the

strips from Figures 5.2 (c), 5.4 (c), and 5.5 (c).

Figures 2.2 and 5.3 show that dithering with white noise results in poor rendition

of images while leading to almost at magnitude spectra and clustery phase spectra of

the noise images. The noise spectra for the portrait and the ramp show more apparent

similarity than those for the same pair of grayscale images subjected to ordered dither.

It even seems that a little bit more e�ort is needed to distinguish between the two

halftone images from Fig. 2.2 than is required for the other portrait-ramp pairs of

halftone images in this thesis. Note that the quantization noise characteristic for

dithering with white noise is not exactly white. This is due to presence of the binary
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quantizer.

The versions of the void-and-cluster dither and the iterative convolution algorithm

used to make Fig. 2.4 (a) and (c), Fig. 2.12 (a) and (c), and Fig. 4.3 (c) and (k) were

designed so that the magnitude spectra are close to being radially symmetric. (These

spectra are shown in Fig. 2.4 (b) and (d), Fig. 2.12 (b) and (d).) Vertical and

horizontal harmonics not being suppressed better than diagonal ones, characteristic

worm-like artifacts emerge in both cases. Problems with representation of very dark

and very light tones are due to a phenomenon known as the low-frequency leakage

[150].

Radial asymmetry of the kind seen in the spectra associated with the algorithms

based on error di�usion on an ordinary raster (Figures 2.5, 2.10, 2.11, 5.6, 5.11, 5.12)

can be linked to presence of diagonal correlated artifacts similar to zebra stripes in

the regions of very high and very low average intensity. The problem can be allevi-

ated somewhat by using serpentine raster (Figures 2.6{2.8, 5.7{5.9) or larger �lters

(Figures 2.10 and 5.11). Sometimes, other problems emerge, the vertical \worms"

near g = 3=4 (the middle of Fig. 4.4 (e)) being a good example.

Strips of high-amplitude low-frequency components with the same phases visible

in Figures 5.6{5.9, 5.11, and 5.12, appear to mark presence of upleasant transient

boundary e�ects. We will talk more about them in Chapter 7. The light strip in Fig.

2.9 (d) is related to the texture seams in Fig. 2.9 (c).
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As you can see in Fig. 4.2, my version of SACDH (n = 255) supresses vertical

and horizontal harmonics of the magnitude spectra of noise images, so the less visible

diagonal correlated artifacts are favored over those oriented vertically or horizontally,

and the magnitude spectra are close to being cross-shaped. The noise generated is

pretty close to being violet. The images in Figures 4.2 (a) and (c), 4.3 (l), and 4.4 (l)

show very little or no contouring. Very dark and very light areas look nice.
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a) b)

c) d)

Fig. 5.2. Quantization with a �xed threshold (s = 0):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.3. Dithering with white noise:

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.4. Ordered dither with a recursive tesselation matrix (Eq. (2.4)):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.5. Ordered dither with a blue noise mask (void-and-cluster):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.6. Classical Floyd{Steinberg error di�usion (Eq. (2.9)):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.7. Four-weight serpentine error di�usion, deterministic weights (Eq. (2.11)):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.8. Three-weight SED, deterministic weights (Eq. (2.12)):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.9. Four-weight serpentine error di�usion, 50% random weights (Eq. (2.13)):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.10. Error di�usion combined with pulse-density modulation:

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.11. Error di�usion with intensity-dependent weights (Eq. (2.14)):

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.12. Error di�usion with threshold modulation using threshold imprints:

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp

99



a) b)

c) d)

Fig. 5.13. The iterative convolution algorithm:

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.14. Line-by-line delta-sigma modulation:

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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a) b)

c) d)

Fig. 5.15. Serpentine anti-correlation digital halftoning:

The phase spectra of the noise images (left);

the discrete Fourier spectra of the noise images (right).

a), b) For the portrait of Anya Pogosyants

c), d) For the gray scale ramp
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6

Relative Importance of the

Magnitudes and the Phases

Figure 6.1 features hybrid images obtained by replacing magnitudes (phases) of

the DFT of one noise image by magnitudes (phases) of another noise image, perform-

ing the two-dimensional inverse discrete Fourier transform, adding the result to the

original grayscale image, and clipping the output values so that none of them stays

below that assigned to \black" or above that assigned to \white". It appears that the

algorithms that produce \good" halftone representations generate quantization noise

with \good" magnitudes and \good" phases, while the noise of quantization with a

�xed threshold has a discrete Fourier spectrum with \bad" magnitudes and \bad"

phases. Now, suppose that we start with two distinct grayscale digital images and

compute the quantization noise matrix as the di�erence between the binary output
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produced by a high-quality halftoning algorithm when given one of them as input,

and the grayscale data for the other image. Fig. 6.2 shows the noise spectrum that

emerges when one pretends that the halftone ramp produced by SACDH (n = 255)

and shown in Fig. 4.2 (c) is representing the portrait of Anya Pogosyants. Notice the

similarity between Fig. 6.2 and Fig. 5.2 (b).
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a) b)

c) d)

Fig. 6.1. Hybrid images generated starting with the portrait of Anya Pogosyants:

a) Noise magnitudes: Quantization with a �xed threshold (s = 0);

Noise phases: Three-weight serpentine ED, deterministic weights

b) Noise magnitudes: Three-weight serpentine ED, deterministic weights;

Noise phases: Quantization with a �xed threshold (s = 0)

c) Noise magnitudes: SACDH;

Noise phases: Three-weight serpentine ED, deterministic weights

d) Noise magnitudes: Three-weight serpentine ED, deterministic weights;

Noise phases: SACDH

105



Fig. 6.2. The noise spectrum for the case of the portrait of Anya Pogosyants

represented by a halftone ramp (SACDH)
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7

Average Intensity Representation,

Boundary E�ects, and Edge

Enhancement

7.1 Average Intensity Representation

To get an idea of how well average intensities are preserved by di�erent digital

halftoning algorithms, I decided to compute global intensity distortion

M =
N�1X
i=0

N�1X
j=0

ei;j (7.1)
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for N � N halftone images representing the input images such that gi;j = g for

all i = 0; 1; : : : ; N � 1, j = 0; 1; : : : ; N � 1. Computations were performed for

N = 16; 32; 48; : : : ; 464, g = 1=64; 2=64; : : : ; 63=64. (Zeremba [255] and Shirley [199]

developed similar criteria in order to evaluate how well the sampling points are dis-

tributed on the image plane.) The results are plotted in Figure 7.1. The special

boundary randomization technique applied to obtain the data for Fig. 7.1 (e) will be

discussed later in this chapter. This technique is not to be confused with the BR

method described earlier, in Chapter 4.

Intensity distortion for an area of a halftone image is, in essence, the di�erence

between the actual number of white pixels in the area and the number of white pixels

needed to preserve the average intensity. The latter may be non-integer. For my

computation, I chose the sets of possible values g and N so that this was never the

case for the whole image. For SACDH, the number of cylinder chambers n was set

to 192 to avoid rounding.

Intensity distortion per pixel

d =
M

N2
(7.2)

was also computed and plotted for some of the algorithms, see Figure 7.2.

Figures 7.1 (a) and (b) demonstrate that the absolute value of global intensity

distortion for two popular error di�usion algorithms grows approximately linearly in
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N and jg � 1=2j, and the sign of distortion tends to be that of (g � 1=2) most of

the time, i.e., the light squares often have too many white pixels in them, and the

dark squares tend to contain too few white pixels. I am about to show that this

phenomenon is due to the transient boundary e�ects like the ones seen near the tops

of Fig. 2.5 (c) and Fig. 2.6 (c). These boundary e�ects are characteristic of error

di�usion [51, 222]. Periodicity seen in Fig. 7.1 (c) is due to the use of a dither matrix

containing each of the values 0; 1; : : : ; `1`2 � 1. For this particular version of the

void-and-cluster algorithm, `1 = `2 = 128, so M is zero whenever N is a multiple of

128. The same kind of periodicity causes our method to indicate absence of intensity

distortion when an 8 � 8 dither matrix from Eq. (2.4) is used, see Fig. 7.1 (f). This

shows that our primitive measurement technique is not infallible. While the data

for SACDH looks good, one should keep in mind that the rounding operation int

may cause additional intensity distortion with the absolute value of N2
=2n or more

when gn is not an integer. For N = 464, n = 192, N2
=2n = 1682=3 � 560:67,

and this value is well above those plotted in Fig. 7.1. The reason of why this is not

much of a problem is that this distortion gets spread over the whole image, so the

additional intensity distortion per pixel is small everywhere, and, in particular, no

extra boundary e�ects are caused.
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7.2 Boundary E�ects and Edge Enhancement

Edge enhancement in digital halftoning means distortion of average intensity near

the borders separating image areas with di�erent input intensities, such that the av-

erage intensity is below the input intensity on the dark side of the edge and above

it on the light side of the edge. Presence of quantization noise decreases contrast

sensitivity [47], and edge enhancement is widely believed to be needed to compen-

sate for that [53]. On the other hand, edge enhancement is unwanted when a digital

halftoning algorithm is applied in digital holography [59], because, in this case, one

is binarizing the Fourier spectrum of the image [195]. Enhancing uctuations in the

Fourier spectrum would thus have the e�ect of brightening the outer regions of the

reconstructed image. In ordinary image visualization and printing, edge enhancement

may cause some of the undesirable optical illusions discussed in [81]. This suggests

that inherent edge enhancement may also be unwanted in digital halftoning algo-

rithms for medical imaging. In the meanwhile, presence of quantization noise may

compensate (undercompensate, overcompensate) for the so-called Mach-band e�ect

[179] (when two regions with di�erent gray levels meet at an edge, the eye perceives

a light band on the light side of the edge and a dark band on the dark side of the

edge; in other words, edges appear to be enhanced even if they aren't). Pappas and

Neuho� [165] opined that \the halftoning algorithm should not compensate for the

Mach-band e�ect".
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Knox [110] showed by measurement that an inherent mechanism for asymmetric

edge enhancement was built into the classical Floyd-Steinberg error di�usion algo-

rithm. In a later paper [111], he demonstrated that the edge enhancement was even

stronger in the 12-weight error di�usion algorithm by Jarvis, Judice, and Ninke [99],

but could not be detected in the halftone images produced using line-by-line delta-

sigma modulation. Knox [111] gave a partial explanation of the phenomenon, linking

it to a component linear in the input image G being present in the error image. This

component is subjected to high-pass �ltering. The output of the high-pass �lter �nds

its way into the quantization noise, causing edge enhancement. The mechanisms

causing the linear component to appear remained unknown.

Fetthauer and Bryngdahl [59] estimated strength of the linear component for error

di�usion on an ordinary raster and used the estimates to modify the original image

so that the discrete Fourier spectrum of the noise accompanying error di�usion of the

modi�ed image was close to not containing a spectral component proportional to the

DFT of the high-pass �ltered original image. While the apparent reduction in edge

enhancement was achieved, no results of measurements similar to those conducted

by Knox [110] for step functions were reported, so it remained unclear just how well

their pre-blurring technique worked. The intensity values of the modi�ed image can

sometimes wander outside the range [0; 1], causing problems with stability of the error

di�usion algorithm.
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Subsequent attempts were made [58, 60] to link edge enhancement to a quantiza-

tion noise component somewhat di�erent from the aforementioned high-pass �ltered

component of the error image linear in the input image, expose one of the mechanisms

causing this quantization noise component to appear, and predict its strength for a

particular set of weights for error di�usion on an ordinary raster. These attempts

were only partly successful. In particular, it turned out that the strength of the noise

component supposedly responsible for edge enhancement is hard to predict.

From the results of Sandler et al. [189], it follows that, in line-by-line delta-sigma

modulation, the sums si;j of weighted errors are uniformly distributed on [�1=2; 1=2)

for a wide variety of inputs. As a result, the expected values E(�i;j) remain close

to gi;j for all (i; j). This explains why line-by-line delta-sigma modulation causes no

detectable edge enhancement.

I studied how the sums si;j and errors �i;j are distributed for N �N constant in-

tensity level representations produced by the classical Floyd{Steinberg error di�usion

algorithm with the weights from Eq. (2.9), and Ulichney's four-weight serpentine error

di�usion with the deterministic weights given by Eq. (2.11). The resulting histograms

of the sums and the errors are plotted in Figure 7.3. The histograms were computed

for g = 1=64; 2=64; : : : ; 63=64. In Fig. 7.3, h0 stands for \histogram", and the plotted

values of h0 approximate the corresponding probability densities. Comparison of Fig.

7.3 (a) (four-weight SED, N = 16) and Fig. 7.3 (b) (four-weight SED, N = 464)
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shows that the distributions of si;j do not become uniform for large N . Instead,

highly visible peaks emerge in the distributions for g = 1=4, g = 1=2, and g = 3=4. In

the meanwhile, Fig. 7.2 (a) suggests convergence to other (non-uniform) distributions

such that E(�i;j) = g. For the case of the constant input g 2 [0; 1], Eqs. (2.1, 2.2, 2.5)

yield

�i;j = g + si;j � bg + si;j + 1=2c; (7.3)

i.e., �i;j are linked to si;j so that the distributions of errors are uniquely determined

by the distributions of the sums of weighted errors. Comparison of Figures 7.3 (b)

and (c) con�rms that.

Near the borders of areas with di�erent input intensities, transitions between

di�erent non-uniform distributions of si;j and �i;j occur. In particular, whenever the

binary quantizer errors are di�used from the pixels with the input intensity g1 to a

pixel at some �xed position (i0; j 0) with the input intensity gi0;j0 = g2 6= g1, E(�i0;j0)

may di�er signi�cantly from g2, so the average intensity distortion may occur. Indeed,

even if the ow of error di�usion went through a large area with the input intensity

g1 before it reached the neighborhood of (i0; j 0), all it would mean is that si0;j0 is

distributed so that E(�i0;j0) would be close to g1 if gi0;j0 were equal to g1. But we

assumed that gi0;j0 = g2 is not equal to g1, so E(�i0;j0) does not have to be close to g2.
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The intensity distortion data plotted in Fig. 7.1 (e) was obtained by using bound-

ary randomization as follows. Instead of setting the errors outside the image to zero,

I computed them as uncorrelated random numbers with the distribution depending

on g according to the histogram in Fig. 7.3 (c). The linearity in g disappeared, and

the absolute values of intensity distortion were reduced up to three times. The re-

duction was especially drastic for the values of g close to zero and one. Alas, the

transient boundary e�ects were not completely eliminated, apparently because the

errors generated by error di�usion would not be uncorrelated.

Extending the approach of Knox [110], I measured edge enhancement in N � N

halftone images obtained from the digital images of vertical and horizontal grayscale

steps using di�erent halftoning algorithms. The input intensity values for the vertical

steps were computed according to the formula

gi;j =

8><
>:

1�h
2

if j < N=2,

1+h
2

otherwise,

(7.4)

and the input intensity values for the horizontal steps were computed as

gi;j =

8><
>:

1�h
2

if i < N=2,

1+h
2

otherwise,

(7.5)

for h = �1;�31=32; : : : ; 0; : : : ; 31=32; 1. N was set to 256. Intensity distortion per

pixel was computed for the columns of the halftone vertical step images and for the
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lines of the halftone horizontal step images. The results are plotted in Figures 7.4{

7.9. \Black" means intensity distortion per pixel of �0:25 or less, \white" means

intensity distortion per pixel of 0:25 or higher. The plots are made using Maple,

which performs bilinear interpolation between the data points. Note that I studied

edge enhancement only for the steps with the intensity values symmetric with respect

to 1=2.

As you can see in Figures 7.4 and 7.8, error di�usion on an ordinary raster is ac-

companied by asymmetric edge enhancement of both vertical and horizontal grayscale

steps. The edge enhancement seen on the left side of the vertical steps in Fig. 7.4

is due solely to w0;2 = 3=16 being nonzero. The coe�cients to the right of column

(`� 1) allow such algorithms to \see" the approaching edge.

The serpentine raster ensures symmetric edge enhancement of the vertical steps,

see Figures 7.5 (a), 7.6 (a), and 7.7 (a). However, the resulting one-pass error di�usion

algorithms with wedge-shaped kernels cannot \anticipate" horizontal steps. This is

illustrated by Figures 7.5 (b), 7.6 (b), and 7.7 (b). Note that the edge enhancement

is not signi�cantly stronger for the three-weight SED algorithm (Fig. 7.6) than for

the four-weight one (Fig. 7.5). It appears that the three-weight algorithm enhances

the horizontal steps more, and the vertical ones less than the four-weight algorithm

does.

Fig. 7.9 shows that serpentine ACDH does not lead to enhancement of symmetric
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grayscale steps. In addition to that, the stripes of alternating dark and light dots

marking the cases of strong correlation in the columns (rows) are not present in Fig.

7.9, while being easy to spot in Figures 7.4{7.8. This con�rms that SACDH is good

at suppressing vertical and horizontal correlated artifacts.

In Figures 7.4{7.9, intensity distortion per pixel for the rows and columns close

to the image boundaries was not plotted. This trick allowed us to zoom in on the

edges and ignore intensity distortion near the boundaries. Figure 7.10 shows how

intensity distortion linked to the transient boundary e�ects can sometimes divert

attention from, or even completely hide edge enhancement. Figure 7.11 demonstrates

that this is not a problem in the case of SACDH for two obvious reasons. There is

no edge enhancement to hide, and no signi�cant intensity distortion occurs near the

boundaries.

7.3 Adding Edge Enhancement

Whenever edge enhancement is needed to compensate for reduction in contrast

sensitivity caused by presence of quantization noise, it can be added to any digi-

tal halftoning algorithm, and this extra edge enhancement does not have to be as

anisotropic as that embedded in the popular error di�usion algorithms. The rest of

this chapter describes how this is accomplished.
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Knuth [114] reformulated the so-called \constrained average" method of Jarvis

and Roberts [100] to obtain the following edge enhancement technique.

For i = 0; 1; : : : ; N1 � 1, j = 0; 1; : : : ; N2 � 1, let

�gi;j(`1; `2) =

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

1
`1`2

b
`1�1

2
cX

�1=�b
`1
2
c

b
`2�1

2
cX

�2=�b
`2
2
c

gi+�1;j+�2 if b `1
2
c � i < N1 � b `1�12

c and

b `2
2
c � j < N2 � b `2�12

c,

gi;j otherwise.

(7.6)

Note that

�gbN1=2c;bN2=2c(N1; N2) = �g (7.7)

is the (global) sample mean of the input image (Eq. (3.47)). Generally, �gi;j(`1; `2) are

local sample means computed over rectangular areas of the image.

Knuth, in essence, proposed to replace each input value gi;j with

g
0
i;j =

gi;j � �1�g(3; 3)

1� �1

(7.8)

before a digital halftoning algorithm is run. In Eq. (7.8), �1 is a constant parameter.

Knuth had it set to 0:9. (His actual formulas did not specify how the processing is

done near the image boundaries. Eq. (7.6) incorporates one way to take care of the

boundaries. Another simple approach was used to obtain Eq. (3.44). Eq. (7.6) also
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allows `1 and/or `2 to be even.)

Let

�2 =
�1

1� �1

: (7.9)

For �1 6= 1, Eq. (7.8) can be rewritten as follows.

g
0
i;j =

gi;j(1� �1) + �1(gi;j � �gi;j(3; 3))

1� �1

= gi;j + �2(gi;j � �gi;j(3; 3)): (7.10)

From Eq. (7.10), it is obvious that g0i;j are not guaranteed to stay within the interval

[0; 1]. Many digital halftoning techniques are capable of handling such input, ordered

dither and error di�usion among them. However, no ACDH algorithm can process

input values outside [0; 1], where the meanings of the input intensity values 0 and 1

are as de�ned in Chapter 2. Luckily, a simple modi�cation takes care of the problem.

The new inputs become

g
00
i;j(`1; `2) = maxf0;minf1; gi;j + �2(gi;j � �gi;j(`1; `2))gg: (7.11)

Note that the outputs of error di�usion performed on the N1 � N2 input images

composed of g0i;j and g
00
i;j(3; 3) respectively, for i = 0; 1; : : : ; N1�1, j = 0; 1; : : : ; N2�1,

may be di�erent for the same G and �2. The corresponding outputs of ordered dither

are guaranteed to match.
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Figure 7.12 illustrates how the preprocessing technique described by Eq. (7.11)

can a�ect the output of SACDH printed at 100 dpi. Only positive values of �2 lead

to edge enhancement, as shown in Figures 7.12 (d), (e), and (f). �2 = 0 means no

preprocessing (see Fig. 4.2 (a)). If (�1) � �2 < 0, the input image is blurred (Figures

7.12 (b) and (c)). In particular, �2 = �1 means, in essence, averaging over `1 � `2

windows (Fig. 7.12 (b)). Finally, setting �2 to negative values less than (�1) causes

amusing \edge anti-enhancement" (Fig. 7.12 (a)). Optimum selection of �2, `1, and

`2 may present a formidable challenge, the outcome likely depending on the input

image G, the output resolution, other viewing conditions and device properties, etc.

Other edge enhancement techniques are known [34, 176].
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Fig. 7.1 (Part I). Intensity distortion (Eq. (7.1)):

a) Classical Floyd{Steinberg error di�usion (Eq. (2.9))

b) Four-weight serpentine error di�usion, deterministic weights (Eq. (2.11))

c) Ordered dither with a blue noise mask (void-and-cluster)

d) SACDH (n = 192)
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Fig. 7.1 (Part II). Intensity distortion (Eq. (7.1)):

e) Four-weight serpentine error di�usion, deterministic weights, special BR

f) Ordered dither with a recursive tesselation matrix (Eq. (2.4))

121



0

50

100

150

N

0
0.2

0.4
0.6

0.8
1

g

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

d

Intensity distortion per pixel, SED

a)

0
20

40
60

80
100

120
140

160

N

0
0.2

0.4
0.6

0.8
1

g

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

d

Intensity distortion per pixel, V&C

b)

0
20

40
60

80
100

120
140

160

N

0
0.2

0.4
0.6

0.8
1

g

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

d

Intensity distortion per pixel, SACDH

c)

Fig. 7.2. Intensity distortion per pixel (Eq. (7.2)):

a) Four-weight serpentine error di�usion, deterministic weights (Eq. (2.11))

b) Ordered dither with a blue noise mask (void-and-cluster)

c) SACDH (n = 192)
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Fig. 7.3. Histograms of the sums si;j and the errors �i;j:

a) Histogram of the sums si;j, four-weight SED (Eq. (2.11)), N = 16

b) Histogram of the sums si;j, four-weight SED, N = 464

c) Histogram of the errors �i;j, four-weight SED, N = 464

d) Histogram of the errors �i;j, four-weight ED (Eq. (2.9)), N = 464
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Fig. 7.4. Edge enhancement: The classical Floyd{Steinberg ED (Eq. (2.9)), N = 256

a) Symmetric vertical grayscale steps

b) Symmetric horizontal grayscale steps
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Fig. 7.5. Edge enhancement: Four-weight SED (Eq. (2.11)), N = 256

a) Symmetric vertical grayscale steps

b) Symmetric horizontal grayscale steps
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Fig. 7.6. Edge enhancement: Three-weight SED (Eq. (2.12)), N = 256

a) Symmetric vertical grayscale steps

b) Symmetric horizontal grayscale steps
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Fig. 7.7. Edge enhancement: RSED (Eq. (2.13)), N = 256

a) Symmetric vertical grayscale steps

b) Symmetric horizontal grayscale steps
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Fig. 7.8. Edge enhancement: ED with intensity-dependent

weights (Eq. (2.14)), N = 256

a) Symmetric vertical grayscale steps

b) Symmetric horizontal grayscale steps
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Fig. 7.9. Edge enhancement: SACDH

a) Symmetric vertical grayscale steps

b) Symmetric horizontal grayscale steps
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Fig. 7.10. Intensity distortion per pixel: Four-weight SED (Eq. (2.11)), N = 256

a) Columns of symmetric vertical grayscale steps

b) Rows of symmetric horizontal grayscale steps
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Fig. 7.11. Intensity distortion per pixel: SACDH, N = 256

a) Columns of symmetric vertical grayscale steps

b) Rows of symmetric horizontal grayscale steps
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a) b)

c) d)

Fig. 7.12 (Part I). The preprocessed portrait of Anya Pogosyants, SACDH,

100 dpi, `1 = `2 = 3: a) �2 = �9; b) �2 = �1; c) �2 = �0:5; d) �2 = 1
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e) f)

Fig. 7.12 (Part II). The preprocessed portrait of Anya Pogosyants, SACDH,

100 dpi, `1 = `2 = 3: e) �2 = 3; f) �2 = 9
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8

Results of Subjective and

Objective Evaluation

8.1 Subjective Testing

This section describes a subjective rating experiment designed by the author and

Jun Li. Our approach is very close to the one recommended by Pratt [176]. Twenty

na��ve observers were asked to sequentially compare the 100 dpi halftone images shown

in Figures 2.1{2.12, 4.1, and 4.2 to the corresponding reference images printed at 300

dpi. All images were well-lit when viewed. The observers examined them from the

normal viewing distance of (approximately) 10 inches in the same pseudo-random

order. Each 100 dpi halftone image was assigned a grade (rating value) by each

observer. The rating values were allowed to range from 0:0 to 10:0 with one decimal
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GRADE INTERPRETATION

0:0 � U(G;B) � 0:4 Unsatisfactory

0:4 < U(G;B) � 1:7 Poor

1:7 < U(G;B) � 3:9 Fair

3:9 < U(G;B) � 7:3 Good

7:3 < U(G;B) � 10:0 Excellent

Table 8.1: Interpretation of the subjective grades

place. The grades were going to be interpreted as shown in Table 8.1, and each

observer was informed about it before he/she examined and rated the images. In

Table 8.1, U(G;B) stands for the subjective grade. The test form mentioned that the

\optical intensity (brightness)" of the gray scale ramp was supposed to grow linearly

along the vertical axis of the image. Each observer worked independently.

Throughout the rest of this chapter, the following additional abbreviations are

used. FT stands for quantization with a �xed threshold (s = 0). WN denotes dither-

ing with white noise. Ordered dither with a recursive tesselation matrix from Eq. (2.4)

is abbreviated to OD. VAC means ordered dither with a blue noise mask computed

using the void-and-cluster method. Three-weight serpentine error di�usion with the

weights from Eq. (2.12) is denoted by SED3. For error di�usion combined with PDM,

error di�usion with intensity-dependent weights, and error di�usion with threshold

modulation using threshold imprints, we employ the abbreviations E90, E93, and

E97, respectively, derived from \Eschbach '90", \Eschbach '93", and \Eschbach '97".

131



Line-by-line delta-sigma modulation abbreviates to DSM.

In this chapter, the abbreviations ED and SED �rst introduced in Section 2.2 will

stand for the classical Floyd{Steinberg error di�usion algorithm and Ulichney's four-

weight serpentine error di�usion with the deterministic weights given by Eq. (2.11),

respectively.

The subjective rating experiment was conducted by Jun Li. Its results are sum-

marized by the author in Tables 8.2 and 8.3 as follows. Let g1; g2; : : : ; g20 be the

grades assigned by our observers to a halftone image from our set. Then the number

to the left of the symbol � in the corresponding table entry is their sample mean

�g =
1

20

20X
j=0

gj; (8.1)

and the number to the right of � in that entry is

�� =

vuut 1

20 � 19

20X
j=1

(gj � �g)2; (8.2)

a common statistical estimate of the standard deviation of the sample mean.

SACDH is the only algorithm such that the corresponding 100 dpi renditions of

both test images (the portrait of Anya Pogosyants and the gray scale ramp) were

rated \good" on average. The SACDH gray scale ramp was rated No. 1, and all
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ALGORITHM RATING

FT 2:48� 0:37

WN 1:14� 0:25

OD 3:42� 0:33

VAC 3:63� 0:36

ED 4:71� 0:47

SED 4:55� 0:45

SED3 5:64� 0:50

RSED 4:43� 0:48

E90 3:94� 0:49

E93 4:70� 0:49

E97 4:34� 0:51

ICA 3:53� 0:43

DSM 2:79� 0:37

SACDH 4:30� 0:45

Table 8.2: Subjective testing results for the portrait of Anya Pogosyants

ALGORITHM RATING

FT 0:49� 0:20

WN 3:10� 0:36

OD 3:52� 0:45

VAC 4:25� 0:42

ED 3:15� 0:36

SED 3:00� 0:37

SED3 3:16� 0:41

RSED 3:17� 0:36

E90 3:02� 0:38

E93 3:15� 0:41

E97 3:35� 0:41

ICA 3:76� 0:33

DSM 3:30� 0:46

SACDH 4:85� 0:45

Table 8.3: Subjective testing results for the gray scale ramp
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halftone representations of the portrait of Anya Pogosyants rated higher than the

one made using SACDH were produced by the algorithms with the inherent edge

enhancement property, which apparently gives them an edge, so to speak. (At the

time when the subjective test was conducted, the images shown in Fig. 7.12 were

not available.) The three-weight version of SED yielded the highest-rated 100 dpi

rendition of the portrait. Interestingly enough, most halftone ramps were rated lower

than the corresponding representations of the portrait.

In the next section, the results of the subjective rating experiment will be com-

pared to the predictions of the popular one-channel models for objective evaluation.

8.2 One-Channel Models for Objective Evaluation

Due to their simplicity, one-channel models have been more popular with the

researchers involved in halftone image quality evaluation than multi-channel mod-

els. Almost all one-channel models for objective evaluation of halftone image quality

studied in this section do not have a non-linear part accounting for ganglion cell adap-

tation. In terms of the notation introduced in Subsection 3.2.2, each of these models

has Z, the N1 � N2 matrix that serves as input to the model's only channel (linear
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shift-invariant operator), composed of the elements

zj;k = '(G;B; j; k) = '(gj;k; bj;k) = L(bj;k)� L(gj;k); (8.3)

where

L(x) = 13 + 156 � x (8.4)

is a function that performs an approximate transformation from intensity to lumi-

nance based on the results of the luminance measurements given in Appendix B.

The only exception is the classical frequency-weighted PMSE (FWPMSE) Mannos{

Sakrison model [138]. For that model,

zj;k = '(G;B; j; k) = '(gj;k; bj;k) = (L(bj;k))0:33 � (L(gj;k))0:33: (8.5)

Several di�erent MTFs will be applied. The models based on N�as�anen's contrast

sensitivity function [156] modi�ed according to the recommendations of Daly [40] as

described in Subsection 3.2.2 will have their MTF H0 consist of the elements h0(u; v)

computed by the formula

h0(u; v) = 131:6 � �L0:3188 exp

 
� ~!r(u; v)

0:525 � ln(�L) + 3:91

!
; (8.6)
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where

�L =
1

N1N2

N1�1X
j=0

N2�1X
k=0

L(gj;k) (8.7)

is the average luminance in cd=m2, and ~!r(u; v) comes from Eq. 3.21. In this thesis,

these models will be referred to as the N�as�anen{Daly models and classi�ed according

to the distortion measures employed. N�as�anen{Daly models were applied to design

the digital halftoning algorithms described in [3, 116].

A model with the MTF obtained by substituting !r(u; v) from Eq. 3.22 for ~!r(u; v)

in Eq. 8.6 will be called a N�as�anen model.

The MTF for the FWPMSE Mannos{Sakrison model [138] consists of

h0(u; v) = 2:6(0:0192 + 0:114!r(u; v)) exp(�(0:114!r(u; v))1:1) (8.8)

This function has a peak of value very close to 1:0 at !r(u; v) = 8:0 cycles/degree.

The MTF for the Mannos{Sakrison{Daly models is composed of the elements

h0(u; v) =

8<
:
2:6(0:0192 + 0:114~!r(u; v)) exp(�(0:114~!r(u; v))1:1) if ~!r(u; v) > 8:0,

1:0 otherwise.
(8.9)

Essentially, in addition to replacing !r(u; v) with ~!r(u; v) in an attempt to account

for the radial anisotropy of the vision system, the low-frequency part of this MTF

is made at. Digital halftoning algorithms based on a Mannos{Sakrison{Daly model
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with 0:192 substituted for 0:0192 for an unknown reason are described in [212, 213].

The elements of the MTF for the Nill{Bouzas models [131, 157] are computed

according to the formula

h0(u; v) = (0:2 + 0:45!r(u; v)) exp(�0:18!r(u; v)): (8.10)

This function peaks at !r(u; v) = 4:0 cycles/degree. We will call the models with the

MTF consisting of the elements

h0(u; v) = (0:2 + 0:45~!r(u; v)) exp(�0:18~!r(u; v)) (8.11)

the Nill{Bouzas{Daly models, where ~!r(u; v) is determined by Eq. 3.21, as usual.

Analoui and Allebach [5] used Daly's approach to modify a model by Campbell,

Carpenter, and Levinson [25]. The elements of the resulting MTF are

h0(u; v) = exp(�2�~!r(u; v) � 0:012)� exp(�2�~!r(u; v) � 0:046); (8.12)

and the maximum occurs at ~!r(u; v) = 6:3 cycles/degree. We will call the models

with this MTF the Analoui{Allebach models.
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By analogy with Eq. (3.29), let

F00(Z) = H0 � F0(Z); (8.13)

F00(G) = H0 � F0(L(G)); (8.14)

and

F00(B) = H0 � F0(L(B)); (8.15)

where H0 is an MTF. The elements of the frequency-weighted spectra F00(Z), F00(G),

and F00(B) will be referred to as f 00Z(u; v), f
00
G(u; v), and f

00
B(u; v), respectively.

By analogy with Eq. (3.32), let Z 00 be a matrix composed of

z
00(j; k) = (�1)j+kf�1

F00(Z)(j; k): (8.16)

Four distortion measures will be studied. The traditional approach [138] employs

the frequency-weighted MSE (FWMSE),

EFW =
1

N1N2

N1�1X
j=0

N2�1X
k=0

(z00(j; k))2: (8.17)

Almost all models using this approach will be called the FWMSE models, the FW-

PMSE Mannos{Sakrison model being the only exception because of its non-linear
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part described by Eq. (8.5). The distortion measure I had actually computed for the

FWMSE/FWPMSE models was

d(G;B) = N1N2EFW : (8.18)

All images involved in the evaluation had the same dimensions, so this choice could

not inuence the outcome.

The second distortion measure I tried was

d(G;B) =
N1�1X
u=0

N2�1X
v=0

jf 00Z(u; v)j; (8.19)

the sum of the noise magnitudes. Again, this is something one might want to nor-

malize, i.e. divide over N1N2, when dealing with images of di�erent sizes. The corre-

sponding models will be called the noise-magnitude models. Kolpatzik and Bouman

[116] earlier attempted to minimize

EKB =
1

N1N2

N1�1X
u=0

N2�1X
v=0

jf 00Z(u; v)j2: (8.20)

Using Eq. (8.19) or Eq. (8.20) means ignoring the phases of the noise, and the results

from Chapter 6 suggest that this may be a bad idea. Moreover, the assumption is

made that presence of a peak in one part of the weighted magnitude spectrum can
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be compensated by the magnitudes being lower elsewhere. As a result, the notions of

blue noise and violet noise may be relatively hard to capture. If the MTF is chosen

to account for the radial anisotropy of the vision system, then it turns out that the

model does not o�er enough protection against strong diagonal correlated artifacts

[4].

The third distortion measure was computed by the formula

d(G;B) =
N1�1X
u=0

N2�1X
v=0

(jf 00B(u; v)j � jf 00G(u; v)j)2; (8.21)

and the corresponding models were called the no-phase models, because the phase

information from the Fourier spectra of L(G) and L(B) was discarded.

The models that employ the fourth distortion measure,

d(G;B) =
N1�1X
u=0

N2�1X
v=0

(jf 00Z(u; v)j � jf 00Z(u; v)j)2; (8.22)

where jf 00Z(u; v)j is the average weighted noise magnitude, were called the noise-color

models, since only the shape of the weighted magnitude spectrum mattered. However,

ignoring the absolute amount of the noise energy present and assuming that the ideal

shape of the magnitude spectrum is the same for all images is likely to be dangerous.

I compared the predictions of 19 one-channel models for objective evaluation of
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image quality to the subjective test results from Section 8.1. The resulting scatter

charts where the logarithms base 10 of the distortion measures d(G;B) are plotted

against the average subjective grades U(G;B) can be found in Figures 8.1{8.19. The

larger values of lg(d(G;B)) mean poorer predicted quality and the larger average

subjective grades mean better subjective quality.

The lines on the scatter charts were drawn from �g� �� to �g+ ��. The labels follow

the convention on abbreviations explained in Section 8.1. Ideally, in each scatter

chart, we would like the line segments to lie on a graph of a monotonically decreasing

function. That would indicate good correlation between the subjective and objective

ratings.

The FWPMSE Mannos{Sakrison model, all Mannos{Sakrison{Daly models, the

FWMSE Nill{Bouzas model, all Nill{Bouzas{Daly models, and all Analoui-Allebach

models (Figures 8.6{8.19) did poorly. They consistently overrated the images pro-

duced by quantization with a �xed threshold (s = 0) and by ordered dither with a

recursive tesselation matrix from Eq. (2.4). This is largely due to the low-frequency

parts of their MTFs being either at (the Mannos{Sakrison{Daly models), or de-

creasing from a peak towards the dc component (the other models listed in this

paragraph). This means that the contrast sensitivity data for the low-frequency grat-

ings do not fully reect how harmful the low-frequency noise really is. Presence of

the background/surround appears to be part of the problem, due to the violation of
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Fig. 8.1. Veri�cation of the FWMSE N�as�anen{Daly model
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Fig. 8.2. Veri�cation of the FWMSE N�as�anen model
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Part II (see the next page)

Fig. 8.3 (Part I). Veri�cation of the noise-magnitude N�as�anen{Daly model
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Fig. 8.3 (Part II). Veri�cation of the noise-magnitude N�as�anen{Daly model
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Fig. 8.4. Veri�cation of the no-phase N�as�anen{Daly model
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Fig. 8.5. Veri�cation of the noise-color N�as�anen{Daly model
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Part II (see the next page)

Fig. 8.6 (Part I). Veri�cation of the FWPMSE Mannos{Sakrison model
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Fig. 8.6 (Part II). Veri�cation of the FWPMSE Mannos{Sakrison model
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Fig. 8.7. Veri�cation of the FWMSE Mannos{Sakrison{Daly model
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Fig. 8.8 (Part I). Veri�cation of the noise-magnitude Mannos{Sakrison{Daly model
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Fig. 8.8 (Part II). Veri�cation of the noise-magnitude Mannos{Sakrison{Daly model
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Fig. 8.9. Veri�cation of the no-phase Mannos{Sakrison{Daly model
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Fig. 8.10. Veri�cation of the noise-color Mannos{Sakrison{Daly model
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Part II (see the next page)

Fig. 8.11 (Part I). Veri�cation of the FWMSE Nill{Bouzas model
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Fig. 8.11 (Part II). Veri�cation of the FWMSE Nill{Bouzas model
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Part II (see the next page)

Fig. 8.12 (Part I). Veri�cation of the FWMSE Nill{Bouzas{Daly model
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Fig. 8.12 (Part II). Veri�cation of the FWMSE Nill{Bouzas{Daly model
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the assumption of the two-dimensional image being periodic and in�nite (see a rele-

vant quote from [176] in Subsection 3.2.1). Also, the basis functions of the Fourier

transform are not gratings, and the nature of the relationship between the contrast

sensitivity functions and the MTFs is unclear, the very notion of contrast getting

sometimes fairly complex [170, 171].

The FWMSE N�as�anen{Daly model (Fig. 8.1) and the noise-color N�as�anen{Daly

model (Fig. 8.5) did relatively well, yet they both visibly underrated the SACDH

ramp. The FWMSE N�as�anen{Daly model also overrated ordered dither with a re-

cursive tesselation matrix.

Can the global minima of the distortion measures computed using one-channel

models correspond to high-quality halftone image representations? This problem

is still open. Scientists from the School of Electical and Computer Engineering,

Purdue University, showed that, by cleverly selecting binary starting con�gurations

and �nding local minima with a hill climbing algorithm, it is possible in many cases

to achieve good results [3, 129]. Another interesting problem to investigate is if

and when the model-based algorithms using hill climbing and/or simulated annealing

enhance edges.
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Part II (see the next page)

Fig. 8.13 (Part I). Veri�cation of the noise-magnitude Nill{Bouzas{Daly model
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Fig. 8.13 (Part II). Veri�cation of the noise-magnitude Nill{Bouzas{Daly model

161



Portrait

Ramp

lg(d(G,B))

U(G,B)
11.85

11.90

11.95

12.00

12.05

12.10

12.15

12.20

12.25

12.30

12.35

12.40

12.45

12.50

12.55

12.60

12.65

12.70

12.75

12.80

12.85

12.90

12.95

13.00

13.05

13.10

0.00 1.00 2.00 3.00 4.00 5.00 6.00

FT

WN

OD

VAC

SED3
RSED, ED, SED

E90

E93

E97, SACDHICA
DSM

FT

WN

OD

VAC

E90, RSED, ED, SED, E93, SED3
E97 ICA

DSM

SACDH

Fig. 8.14. Veri�cation of the no-phase Nill{Bouzas{Daly model
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Fig. 8.15. Veri�cation of the noise-color Nill{Bouzas{Daly model
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Part II (see the next page)

Fig. 8.16 (Part I). Veri�cation of the FWMSE Analoui{Allebach model
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Fig. 8.16 (Part II). Veri�cation of the FWMSE Analoui{Allebach model
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Part II (see the next page)

Fig. 8.17 (Part I). Veri�cation of the noise-magnitude Analoui{Allebach model
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Fig. 8.17 (Part II). Veri�cation of the noise-magnitude Analoui{Allebach model
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Part II (see the next page)

Fig. 8.18 (Part I). Veri�cation of the no-phase Analoui{Allebach model
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Fig. 8.18 (Part II). Veri�cation of the no-phase Analoui{Allebach model
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170



9

Printing at High Resolutions and

Its Application to Medical Imaging

9.1 Image Printing at High Resolutions

Figure 9.1 features halftone representations of the portrait of Anya Pogosyants.

They were computed using eight digital halftoning algorithms and printed at 600 dpi

and 1200 dpi on an HP LaserJet 4000 laser printer. Two nonlinear functions, \cfo"

and \c12b", were used to perform tone scale adjustment for printing at 600 dpi and

1200 dpi, respectively. The graphs of the functions can be found in Appendix B.

The \toner density" parameter was set to 3. (Other toner densities available in the

HP LaserJet 4000 would require di�erent TSA functions, yet it looked like the overall

halftone image quality was unlikely to bene�t from a di�erent choice of toner density.)
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a) b)

c) d)

Fig. 9.1 (Part I). Portrait of Anya Pogosyants, high resolutions

a) Dithering with white noise, 600 dpi

b) Dithering with white noise, 1200 dpi

c) Ordered dither with a recursive tesselation matrix (Eq. (2.4)), 600 dpi

d) Ordered dither with a recursive tesselation matrix (Eq. (2.4)), 1200 dpi
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e) f)

g) h)

Fig. 9.1 (Part II). Portrait of Anya Pogosyants, high resolutions

e) Ordered dither with a blue noise mask (void-and-cluster), 600 dpi

f) Ordered dither with a blue noise mask (void-and-cluster), 1200 dpi

g) Classical Floyd{Steinberg error di�usion (Eq. (2.9)), 600 dpi

h) Classical Floyd{Steinberg error di�usion (Eq. (2.9)), 1200 dpi
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i) j)

k) l)

Fig. 9.1 (Part III). Portrait of Anya Pogosyants, high resolutions

i) Four-weight SED, deterministic weights (Eq. (2.11)), 600 dpi

j) Four-weight SED, deterministic weights (Eq. (2.11)), 1200 dpi

k) Three-weight SED, deterministic weights (Eq. (2.12)), 600 dpi

l) Three-weight SED, deterministic weights (Eq. (2.12)), 1200 dpi
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m) n)

o) p)

Fig. 9.1 (Part IV). Portrait of Anya Pogosyants, high resolutions

m) Line-by-line delta-sigma modulation, 600 dpi

n) Line-by-line delta-sigma modulation, 1200 dpi

o) Serpentine anti-correlation digital halftoning, 600 dpi

p) Serpentine anti-correlation digital halftoning, 1200 dpi
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a) b) c) d)

Fig. 9.2. Dithering with white noise:

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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a) b) c) d)

Fig. 9.3. Ordered dither with a recursive tesselation matrix (Eq. (2.4)):

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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a) b) c) d)

Fig. 9.4. Ordered dither with a blue noise mask (void-and-cluster):

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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a) b) c) d)

Fig. 9.5. Classical Floyd{Steinberg error di�usion (Eq. (2.9)):

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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a) b) c) d)

Fig. 9.6. Four-weight SED, deterministic weights (Eq. (2.11)):

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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a) b) c) d)

Fig. 9.7. Three-weight SED, deterministic weights (Eq. (2.12)):

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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a) b) c) d)

Fig. 9.8. Line-by-line delta-sigma modulation:

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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a) b) c) d)

Fig. 9.9. Serpentine anti-correlation digital halftoning:

Halftone representations of the gray scale ramp

a) No tone scale adjustment, 600 dpi

b) No tone scale adjustment, 1200 dpi

c) The \cfo" TSA function, 600 dpi

d) The \c12b" TSA function, 1200 dpi
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Figures 9.2{9.9 show high-resolution halftone representations of the gray scale

ramp computed with and without tone scale adjustment and printed on an HP Laser-

Jet 4000 laser printer. The same set of eight digital halftoning algorithms was applied.

A number of factors can limit the image quality improvement achieved due to the

resolution increase.

1. At the distances from which people usually look at halftone pictures, the reso-

lution capacity of their vision system lies between 100 and 130 dpi [188]. As a

result, many �ne patterns signi�cantly a�ecting the quality at low resolutions

become invisible and no longer matter much as the resolution increases.

2. An increase in resolution may require more tone scale adjustment. The number

of distinct reproducible levels of gray may be reduced as a result of that, and

the quality of their reproduction can be a�ected as well. One's ability to choose

a digital halftoning algorithm so that the required tone scale adjustment is

minimum is restricted by the inuence of such algorithm-dependent phenomena

as contouring, correlated artifacts, unpleasant boundary e�ects, loss or poor

rendition of small details, etc.

3. Printer streaks tend to be stronger at higher resolutions.

4. The positive e�ect of what amounts, in terms of the information theory, to the

rate increase as the ratio of the number of pixels of the output image and the
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number of pixels of the input image goes up can sometimes be partly o�set by

an increase in \blockiness" if the resolution of the original image is su�ciently

low.

5. Some low-frequency periodicities virtually unnoticeable at low resolutions be-

come visible at high resolutions. The void-and-cluster dither and the error

di�usion algorithms provide good examples of that, see Figures 9.1 (f), 9.4 (d),

9.5 (d), 9.6, and 9.5 (d). For the error di�usion algorithms, the area around

g = 3=4 is the one most strongly a�ected by this phenomenon. Figure 9.9 shows

that serpentine ACDH handles this problem area very well.

6. As Figures 9.1 (c, d) and 9.3 demonstrate, contouring remains a problem for

ordered dither with a recursive tesselation matrix even at high resolutions.

7. Correlated artifacts still pose a problem occasionally, line-by-line delta-sigma

modulation o�ering the most striking example, see Figures 9.1 (m, n) and 9.8

(c, d). Figures 9.5 (b), 9.6 (b), and 9.7 (b) show that such artifacts are prac-

tically invisible in the very light areas at 1200 dpi for the other error di�usion

algorithms. However, this appears to be a peculiar feature of the HP LaserJet

4000 printer, which may very well be absent in other printing devices.

8. In the case of dithering with white noise, the magnitude spectrum of the noise

image remains almost at, so its e�ect does not change much with resolution
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(Figures 9.1 (a, b) and 9.2).

Nevertheless, some improvement can be achieved, and that's why Sandler et al.

[188] recommended to print medical images at high resolutions (600 dpi and above).

Medical image printing will be discussed in the next section.

9.2 Medical Image Printing

Figures 9.10{9.17 show halftone representations of two grayscale computer to-

mography images. One of the images shows the cyst (a closed sac having a distinct

membrane and developing abnormally in someone's brain) as the obnoxious dark area

in the right-hand side of the picture. The other image features the head of a healthy

man. The halftone representations were computed using eight digital halftoning al-

gorithms and printed at 600 dpi and 1200 dpi on an HP LaserJet 4000 laser printer.

These and some other halftone representations of medical images were included in

[82].

Two empirically chosen TSA functions were used to make the halftone represen-

tations for printing at 600 dpi and 1200 dpi, see Appendix B. Medical images are

often viewed on hardcopy �lm, with a standard \windows and levels" adjustment to

the dynamic range applied to each image before �lming [37]. One possible TSA tech-

nique might involve forcing the reection density of paper to mimic the behavior of
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a) b)

Fig. 9.10 (Part I). Dithering with white noise:

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.10 (Part II). Dithering with white noise:

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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a) b)

Fig. 9.11 (Part I). Ordered dither with a recursive tesselation matrix (Eq. (2.4)):

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.11 (Part II). Ordered dither with a recursive tesselation matrix (Eq. (2.4)):

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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a) b)

Fig. 9.12 (Part I). Ordered dither with a blue noise mask (void-and-cluster):

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.12 (Part II). Ordered dither with a blue noise mask (void-and-cluster):

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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the transmission density of the �lm as measured by a transmission densitometer. The

author did not have the technical means to actually try this approach. The dynamic

range of the paper is many times smaller than that of the �lm [68], and this factor,

along with the background/surround inuence, could seriously a�ect the resulting

halftone image quality. One wonders if using a TSA equivalent of Lloyd{Max quan-

tization [137, 142], where the emulated quantization levels are mapped to be spaced

more closely near the peaks of the histogram of gi;j, is a better idea.

While it seems to me that SACDH causes fewer unpleasant correlated artifacts

and less contouring than the other algorithms, and no visible boundary e�ects, I don't

believe that any de�nite conclusion regarding the quality of medical image printing

can be reached without a thorough subjective evaluation by trained radiologists.
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a) b)

Fig. 9.13 (Part I). Classical Floyd{Steinberg error di�usion (Eq. (2.9)):

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.13 (Part II). Classical Floyd{Steinberg error di�usion (Eq. (2.9)):

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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a) b)

Fig. 9.14 (Part I). Four-weight SED, deterministic weights (Eq. (2.11)):

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.14 (Part II). Four-weight SED, deterministic weights (Eq. (2.11)):

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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a) b)

Fig. 9.15 (Part I). Three-weight SED, deterministic weights (Eq. (2.12)):

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.15 (Part II). Three-weight SED, deterministic weights (Eq. (2.12)):

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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a) b)

Fig. 9.16 (Part I). Line-by-line delta-sigma modulation:

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.16 (Part II). Line-by-line delta-sigma modulation:

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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a) b)

Fig. 9.17 (Part I). Serpentine anti-correlation digital halftoning:

Halftone representations of medical images

a) The cyst (600 dpi)

b) The cyst (1200 dpi)
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c) d)

Fig. 9.17 (Part II). Serpentine anti-correlation digital halftoning:

Halftone representations of medical images

c) The head of a healthy man (600 dpi)

d) The head of a healthy man (1200 dpi)
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10

Extension to Multilevel Halftoning

and Color Quantization

10.1 Extension to Multilevel Halftoning

For devices capable of displaying more than two di�erent levels of gray (displays,

thermo printers, etc.), multilevel halftoning algorithms are designed [11, 12, 22, 117,

120, 144, 146, 174, 194, 203, 211, 222, 254]. Some bilevel halftoning algorithms, such

as patterned serpentine di�usion [188], can be interpreted as multilevel halftoning with

subsequent representation of the pixels by apropriate binary patterns. (An implied

scale change occurs.)

It is straightforward to extend ACDH to the multilevel case if the quantization

levels are equidistant, 0 (\black") and 1 (\white") being among them. Let q > 1
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be an integer, and let 0; 1=q; : : : ; (q � 1)=q; 1 be the equidistant quantization levels.

The matrix of hqgi;ji becomes the input of a bilevel ACDH algorithm. Then, for

i = 0; 1; : : : ; N1 � 1, j = 0; 1; : : : ; N2 � 1, the element of the resulting matrix in the

position (i; j) is added to bqgi;jc. The sums divided by q are the quantization levels

we assign to the appropriate pixels of the output image.

If the quantization levels are not equidistant solely because Weber quantization

[108] is used as means for having coarser quantization in the areas of low contrast

sensitivity than in the areas of high contrast sensitivity, then we should translate gi;j

to a coordinate system in which the Weber quantization scale becomes equidistant.

Among such coordinate systems, the one in which all Weber quantization scales are

equidistant is preferred. (A more extensive discussion of the Weber quantization can

be found in Appendix B.) The technique described in the previous paragraph is then

applied to the transformed input. Alas, this modi�cation cannot be applied when

the Lloyd{Max quantization [137, 142] is used, i.e., when the quantization levels are

spaced more closely near the peaks of the histogram of gi;j. Ideally, these levels for

monochrome image quantization should be computed in the system in which all Weber

scales are equidistant. Multilevel error di�usion can work when the quantization levels

are selected according to the Lloyd{Max criterion [146]. More research is needed to

determine if ACDH can be successfully modi�ed to work in this case.
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10.2 Extension to Color Quantization

Techniques used in digital halftoning are often extended to color quantization

[196, 222], and such terms as color dithering [152, 202] and color halftoning [107, 145,

198] are sometimes used to describe the resulting algorithms. Color quantization is

a separate �eld of study with its own extensive literature [1, 10, 14, 15, 30, 32, 33,

42, 46, 63, 64, 65, 73, 75, 77, 86, 89, 92, 101, 102, 107, 117, 122, 134, 135, 145, 152,

162, 164, 168, 177, 198, 202, 204, 208, 229, 230, 240, 241, 242, 243, 244, 245, 246].

In the recent years, a lot of interest was paid to color image sequence quantization [9,

69, 183]. Studies of color image quality [31, 95, 119, 151, 201, 219] are often closely

related to the color quantization problem.

Two essential steps in color quantization are color palette design [13, 96, 118] and

mapping the available color gamut to the color palette. ACDH is easily extendable

to the case when the color space is a cube (say, the RGB cube), and the color palette

consists of all triples of the form (k1=q1; k2=q2; k3=q3), where q1, q2, and q3 are positive

integers, each color coordinate is normalized to �t in [0; 1], k1 = 0; 1; : : : ; q1, k2 =

0; 1; : : : ; q2, and k3 = 0; 1; : : : ; q3. Namely, we can apply multilevel ACDH algorithms

from the class described in this chapter to the color component arrays. For each

pixel, the three independently computed levels are interpreted as the coordinates of a

palette color. For four-color printing (CMYK), one needs to perform color separation

before doing halftoning [230], so the same approach may su�ce. One should beware
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the possible moir�e e�ect due to the interference of overprinted patterns, though. It is

not clear if ACDH can be modi�ed to work in the case of an arbitrary palette. (Error

di�usion was extended to this case long ago by Heckbert [89].)
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11

Conclusions and Future Research

We introduced a new class of digital halftoning algorithms, anti-correlation digi-

tal halftoning (ACDH), and studied a representative of the class, serpentine ACDH.

Visual comparison of test images produced by our version of serpentine ACDH and

numerous popular benchmark algorithms shows that serpentine ACDH causes fewer

unpleasant correlated artifacts and less contouring than the benchmark algorithms.

The quantization noise spectra associated with serpentine ACDH possess bene�cial

characteristics related to properties of the vision system. In particular, the inspection

of the magnitude spectra showed that the quantization noise associated with serpen-

tine ACDH tends to come close to meeting the requirements of the newly introduced

de�nition of \violet noise". New techniques for color visualization of the noise spectra

and the corresponding phase spectra were introduced, and the relative signi�cance

of the magnitudes and phases of the discrete Fourier transform of the quantization
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noise was studied. Unlike some of the benchmark algorithms, serpentine ACDH does

not cause signi�cant transient boundary e�ects. Our measurements indicated that

serpentine ACDH does not possess an inherent edge enhancement property, either.

They also demonstrated that serpentine ACDH is good at reproducing average inten-

sities correctly. We showed that relatively isotropic edge enhancement can be easily

added to any digital halftoning algorithm if desired. The predictions of several one-

channel models of the vision system were compared against the subjective testing

results. We studied printing at high resolutions and its application to medical imag-

ing. Serpentine ACDH is a computationally intensive algorithm, but it may serve as

an important benchmark for the developers of fast digital halftoning algorithms for

medical image printing. Other important issues, such as tone scale adjustment, the

impact of texture perception on the anti-correlation �lter design, and extension of

ACDH to multilevel halftoning and color quantization, were discussed.

The prospective directions of the future research are as follows:

1. I am planning to study sequential and parallel iterative (multi-pass) ACDH al-

gorithms. The parallel algorithms using SACDH to determine the initial state

of the revolver cylinders and applying cross-shaped anti-correlation �lters sym-

metric with respect to the vertical and horizontal axes and the diagonals are

likely to be of special interest due to the vision system anisotropy.
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2. Sequential ACDH algorithms (both one-pass and multi-pass) with the order

of pixel processing determined by one or more space-�lling curves should be

studied.

3. Comprehensive subjective and objective testing of halftone image quality is

needed to both evaluate the existing digital halftoning techniques and compare

di�erent monochrome vision models. Once a reliable and relatively easy-to-

compute distortion measure emerges, model-based digital halftoning techniques

using halftone images produced by the ACDH algorithms as starting con�gura-

tions will be developed. These \re�nement" techniques are likely to employ hill

climbing and/or simulated annealing and perform very high quality halftoning.

4. ACDH algorithms are computationally intensive. I am planning to modify

ACDH for designing rectangular binary patterns for look-up-table based halfton-

ing, which is fast. Three-dimensional anti-correlation �lters will be used to look

at the con�gurations corresponding to di�erent grayscale levels, for which the

binary patterns are about to be generated, so that the correlation between the

binary patterns is high for the levels that are close together, and yet the stacking

constraint is relaxed. The rectangular constant grayscale input images, from

which the binary patterns are going to be generated, will be considered periodic

horizontally and vertically as described in Chapter 3, so no boundary random-

ization will be involved. The resulting binary patterns will possess the so-called
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two-dimensional wrap-around property [224]. The average intensity distortion

measurements discussed in Chapter 7 show that the ratio of the number of

white pixels and the overall number of pixels in a binary pattern may deviate

from what the grayscale intensity level prescribes. One way to correct the ratio

is to employ a modi�cation of Ulichney's algorithm [225] that removes minor-

ity pixels (white pixels are the minority pixels if g < 1=2, black pixels are the

minority pixels otherwise) from the tightest clusters and inserts them into the

largest \voids".

5. Visualization of the covariances from Eq. (4.3) and/or the sums from the right-

hand side of that equation may improve our understanding of ACDH. The

problem is nontrivial due to the high dimensionality.

6. A comprehensive study of edge enhancement is needed.

7. It would be interesting to establish a �rm link between digital halftoning and

the information theory. (Sakrison's paper on model-based image coding [186]

may provide important insights.) One wonders how the e�ect of scaling can be

factored in (the rate increases, but the \bits" are spread over the corresponding

areas of the output image).
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A

Filter selection in SACDH

Anti-correlation �lters used in my versions of SACDH are obtained from six similar

wedge-shaped basic �lters,
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K1 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 14 16 20 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 21 21 5 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 14 18 28 34 45 16 6 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 34 46 64 34 13 5 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 20 21 45 50 �

;

(A.1)
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K2 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 14 16 16 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 20 21 6 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 14 18 28 34 44 16 7 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 20 34 46 64 34 13 6 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 44 50 �

;

(A.2)
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K3 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 14 16 16 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 20 21 6 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 14 18 23 29 32 13 8 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 20 29 45 64 32 13 6 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 32 64 �

;

(A.3)

215



K4 =

4 4 5 5 5 5 5 5 6 6 6 6 1 1 0 0 0 0 0 0 0 0 0

4 5 5 5 5 5 6 6 6 6 6 6 1 1 1 1 1 0 0 0 0 0 0

5 5 5 5 6 6 6 6 7 7 7 7 1 1 1 1 1 1 0 0 0 0 0

5 5 5 6 6 6 7 7 7 8 8 8 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 6 7 7 8 8 9 9 9 1 1 1 1 1 1 1 1 0 0 0

5 5 6 6 7 8 8 9 10 10 11 11 2 2 1 1 1 1 1 1 1 0 0

5 6 6 7 7 8 9 10 11 12 13 13 2 2 2 2 1 1 1 1 1 1 0

5 6 6 7 8 9 10 11 13 20 16 16 4 3 3 2 2 1 1 1 1 1 0

6 6 7 7 8 10 11 13 15 18 20 21 6 5 4 3 2 1 1 1 1 1 0

6 6 7 8 9 10 12 20 18 23 32 32 13 8 5 3 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 20 32 45 64 32 13 6 4 2 2 1 1 1 1 1

6 6 7 8 9 11 13 16 21 32 64 �

;

(A.4)
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K5 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 2 5 7 8 2 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 2 5 17 26 26 6 3 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 7 26 45 64 24 5 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 8 26 64 �

; (A.5)
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K6 =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 1 2 5 7 6 2 1 1 1 1 1 1 1 1 1 0

1 1 1 1 1 1 1 2 6 17 26 26 6 3 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 7 26 45 64 24 5 2 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 2 5 26 64 �

; (A.6)

by the operator R( ~K; `K; "(`K)). This operator is de�ned only for `K � ` ~K, where
~K

is an ` ~K � (2` ~K � 1) basic �lter. R( ~K; `K; "(`K)) returns an `K � (2`K � 1) wedge-

shaped �lter K such that its columns with numbers less than (`K�"(`K)) are formed

of elements of ~K located in the appropriate positions with respect to �. The other

columns of R( ~K; `K; "(`K)) are �lled with zeros. For example,
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R(K6; 4;�1) =

2 5 7 6 2 0 0

6 17 26 26 6 0 0

7 26 45 64 24 0 0

5 26 64 �

: (A.7)

Table A.1 explains howK is computed, depending on � from Eq. (4.11). Each random

value of the form rand(n1::n2) has to be computed independently for di�erent (i; j),

whenever its computation is necessary.
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� K(�)

� 2
�
0;

13

255

�
R(K1; 6;�5)

� 2
�
13

255
;
28

255

�
R(K2; 6;�5)

� 2
�
28

255
;
31

255

�
R(K3; 3 + rand(0::1);�`K + 1)

� 2
�
31

255
;
45

255

�
R(K3; 5 + 2 � rand(0::1);�`K + 1)

� 2
�
45

255
;
49

255

�
R(K3; 5 + rand(0::2);�`K + 1)

� 2
�
49

255
;
88

255

�
R(K3; 5 + rand(0::2);�1)

� 2
�
88

255
;
94

255

�
R(K4; 5;�1)

� 2
�
94

255
;
95

255

�
R(K4; 5 + rand(0::1);�1)

� 2
�
95

255
;
100

255

�
R(K5; 7;�2)

� 2
�
100

255
;
106

255

�
R(K6; 7;�2)

� 2
�
106

255
;
111

255

�
R(K6; 7;�2� rand(0::1))

� 2
�
111

255
;
120

255

�
R(K6; 5;�3)

� 2
�
120

255
;
121

255

�
R(K4; 6;�5)

� 2
�
121

255
;
122

255

�
R(K4; 6 + rand(0::1);�`K + 1)

� 2
�
122

255
; 1

�
R(K4; d255�e � 116;�`K + 1)

Table A.1: Filter selection in SACDH
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B

Photometric Measurements and

Tone Scale Adjustment

Tone scale adjustment (TSA) ([222], Subsection 1.3.1) means image preprocessing

intended to compensate for device distortion of the perceived brightness. It is usually

performed by replacing the N1 � N2 matrix G of the input intensity values gi;j (i =

0; 1; : : : ; N1 � 1, j = 0; 1; : : : ; N2 � 1) with the N1 �N2 matrix G
0 of

g
0
i;j = f(gi;j); (B.1)

where f is a function such that the values g0i;j always lie between 0 and 1. The tone

scale adjustment function f(g) should not be confused with f and fu;v found in the

main text of this dissertation. We will call the graphs of the TSA functions the tone

scale adjustment curves, because of their shape.

Some authors draw distinctions between brightness and lightness [16, 103, 169],

Pratt mixes the two notions ([176], Subsection 7.3.1). The perceived brightness (light-

ness) of an image area is hard to compute exactly even if the values of such parameters
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as the area's own luminance, the luminance of background/surround, the luminances

of \white" and \black", etc. are known. This is due, in part, to a number of optical

illusions [81, 176]. However, we are still interested in the approximations proposed

by di�erent researchers, for the following reason.

In Chapter 2, meanings were assigned to the numerical intensity values g = 0

(\black") and g = 1 (\white"). In general, this is not enough to determine how a

digital image should be reproduced. We need to assign meanings to the intensity

values in (0; 1), too. Since the number of di�erent values of g that can be stored

in a computer is always �nite, we would like to assign the meanings so that, for

any two ordered pairs of intensity levels (g1; g2) and (g3; g4), if g1 � g2 = g3 � g4,

then the perceived brightness di�erence between any two output image areas with

their respective digital image intensities equal to g1 and g2 tends to remain close to

the perceived brightness di�erence between any two output image areas with their

respective digital image intensities equal to g3 and g4. The exact version of the

requirement above is stricter than the usual conditions imposed in the ordinary Weber

quantization, where the multiple quantization levels are selected to be equidistant in

a coordinate system such that the just noticeable di�erences are the same for each

g. Furthermore, the just noticeable di�erences cannot simply be integrated to give

information about the perceived brightness di�erences [169], so the exact version of

the requirement is impossible to meet. (Other phenomena, such as the optical illusions
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and the inuence of background/surround, share the blame for this.) For the image

printing purposes, we are interested in �nding an approximate solution that would

ensure that the perceived brigntness of the linear-intensity gray scale ramp appears

to change approximately linearly when the printed image is well-lit. The image is

assumed to be printed on white paper.

Note that, if the input digital image was adjusted to be \correctly" displayed on

a monitor such that the linear-intensity gray scale ramp does not seem linear on it

when the background/surround is bright, then a di�erent solution is needed. For

example, the display luminances corresponding to di�erent grayscale levels could be

measured, and the behavior of luminance replicated on paper. In other words, if we

want to fully bene�t from Weber printing, we should use Weber display, too. The

speci�cs of grayscale computer tomography image display are discussed in [175].

The choice of a digital halftoning algorithm a�ects the amount of tone scale adjust-

ment needed [188], as you can see in Fig. 4.4. I performed a number of photometric

measurements on the halftone ramps of the same size and orientation as those in Fig.

4.4. The ramps were produced by SACDH (n = 255) using di�erent TSA functions

and printed at 300 dpi or 600 dpi.

I used a precalibrated Minolta LS-100 luminance meter to study how the lumi-

nance changes along the vertical axes of the ramps. Between measurements, the

halftone ramp was moved in 5 mm increments under a 150 mm � 150 mm square
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mask made of black matte art paper and a�xed to an almost horizontal surface

of a wooden chair placed in a well-lit (indoor) area in my o�ce. The mask had a

20 mm� 5 mm rectangular window in the middle of it. The shorter edge of the win-

dow was kept approximately parallel to the vertical axis of the halftone ramp during

the measurement. The luminance meter was mounted on a tripod, approximately

three feet above the surface of the chair, and focused on the window in the black

mask. Typically, I performed 190 luminance measurements per halftone ramp. A

round of measurements consisted of measuring luminance of the round areas corre-

sponding to 18 di�erent positions of the ramp under the mask, one of these positions

causing only white paper to be seen through the window, and a separate measurement

corresponding to an area covered with black toner being seen through the window.

The latter was conducted using a black rectangular image printed on the same printer

as the corresponding ramp shortly before or after the ramp was printed. Up to 10

rounds of measurements (passes) per halftone ramp were performed. Note that the

round area, the average luminance of which was measured with the luminance meter,

included part of the black mask, as well as part of the window, so the absolute values

of luminance were irrelevant, only the behavior of the resulting graphs mattered. For

each new TSA function, the average luminance graph was obtained by averaging over

the data for four halftone ramps printed almost simultaneously on four departmental

HP LaserJet IVsi laser printers. The standard deviations of luminances for separate
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halftone ramps remained small compared to the di�erences between the ramps. Each

iteration meant a change of the TSA function. The goal was to make the next graph

of the average luminance function as linear as possible.

Figure B.1 shows, among other tone scale adjustment curves, the graphs of two

\linear average luminance" TSA functions for printing the halftone ramps (produced

using SACDH) at 300 dpi and 600 dpi, marked \c6" and \c7", respectively. The

empirical \c1" curve, originally developed by Sandler, Gusev, and Milman in 1992

for printing near-linear average brightness halftone ramps produced by their three-

weight version of SED [188] at 300 dpi on LaserJet II laser printers, served as the �rst

approximation. The �rst iteration of the process described in the previous paragraph

led to a new TSA curve I had marked \c3". This curve is not shown in Fig. B.1.

It is pretty close to the curve marked \c6", and Fig. B.1 is rather busy as it is.

Additional measurements led to two di�erent curves, \c4" and \c5", for printing at

300 dpi and 600 dpi, respectively. These curves were very close to \c6" and \c7",

respectively, and are not shown in Fig. B.1, either. Each of the curves marked \c6"

and \c7" is, therefore, three iterations away from \c1". (The mnemonic \c2" was

used to denote an experimental curve for printing at 600 dpi. I did not �nd that

function especially useful.) I stopped when it became obvious that the inuence of

changes in the printer conditions occurring between the iterations became comparable

to the di�erences between the TSA curves I was getting. Throughout the process,
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the luminance di�erences between the 600 dpi halftone ramps produced using the

same TSA functions, but printed on di�erent HP LaserJet IVsi printers, remained

disappointingly large compared to the (still very visible) di�erences between the 300

dpi halftone ramps. Eventually, the TSA curves shown in Figure B.2 were chosen

empirically for high-resolution halftone image printing on a newer HP LaserJet 4000

laser printer, which appeared to be relatively stable.

Figure B.3 (a) shows the halftone ramp produced using the linear average lumi-

nance TSA function \c6". This ramp is apparently too light, which is not surprising,

given that the human vision system in the photopic region tends to be more sensi-

tive to the luminance changes in the darker areas of images [88]. (Luminance was

formerly called \photometric brightness" [103]. Apparently, the old name went out

of style once it became clear that this measure is not close enough to being directly

proportional to the perceived brightness.)

The halftone ramp in Figure B.3 (b) was produced using the \c1" TSA function

of Sandler et al. While the behavior of the perceived brightness of such ramps tends

to be close to linear for 300 dpi ramps printed on the laser printers belonging to

the HP LaserJet II, III, and IV families, the primitive method of empirical curve

adjustment does not seem to be convenient enough if one needs the ability to quickly

and reliably �nd near-linear average brightness TSA functions for Weber printing at

di�erent resolutions on di�erent printers.
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The halftone ramps produced without tone scale adjustment tend to be too dark

(see Figure B.3 (j)), because the printer dots are almost round, so the nearby dots on

a square grid have to overlap.

Let �r denote reected ux (ux reected by sample and used), and let �rs denote

reference reected ux (ux reected by reference standard and used). Reection

density ([239], Section 15.2) is

Dr = �lg
�r

�rs

: (B.2)

Reection density can be measured with a reection densitometer, as described in

[239]. According to Roetling and Holladay [181], \If Weber's law holds, spacing

available levels evenly in density will be the best way to distribute levels for equal

visual detectability."

I used a Speedmaster Universal Densitometer with accuracy �0:02 to perform

19 � 5 = 95 measurements on a \c3" halftone ramp image and the corresponding

black rectangle, for which the luminance measurements had been performed before.

That particular halftone ramp image was chosen for its average luminance being very

close to linear. Between the measurements done on the ramp, the densitometer was

moved along the vertical axis of the ramp in 5 mm increments. This allowed me to

perform 18 measurements per pass, starting near the top of the ramp. The nineteenth

measurement was performed separately on an area covered with black toner in order
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to measure the reection density of \black". The densitometer was calibrated once,

just before the series of measurements began. Given the construction of the device,

no mask was needed. Three sheets of high-grade white paper were placed beneath the

sheet with the image on which the measurements were conducted. The results of the

�ve passes were averaged, and the estimates of the standard deviations of the sample

means were computed, none of them above 0:02. The average reection densities

ranged from 1:40 for \black" to 0:11 for \white". The �rst TSA curve for near-linear

average reection density was then computed numerically from the near-linear average

luminance curve \c6". This curve is marked \cd" in Fig. B.1, and the corresponding

halftone ramp is shown in Fig. B.3 (g). Note that, since the TSA functions were

being designed for SACDH with n = 255, each f(g) was, in fact, a function from

f0; 1=n; 2=n; : : : ; (n� 1)=n; 1g into f0; 1=n; 2=n; : : : ; (n� 1)=n; 1g. Having 19 average

reection density values and 19 average luminance values, I used linear interpolation

whenever an intermediate value was needed.

Using the \cd" curve, I applied SACDH to compute a new halftone ramp, which

I printed on �ve departmental HP LaserJet IVsi laser printers, along with the corre-

sponding black rectangles. 20� 10 = 200 reection density measurements were then

performed with the same densitometer, 2 20-measurement passes per halftone ramp.

This time, two measurements of the reection density of \white" were performed dur-

ing each pass (one near the ramp, one away from the ramp), and the densitometer
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was recalibrated several times between the passes. The di�erences between the read-

ings corresponding to the same position in the same ramp proved small compared to

the di�erences between the readings for the same position in the ramps printed on

di�erent HP LaserJet IVsi printers. In particular, the reection density readings of

\black" were between 1:31 and 1:34 for three of the printers, and between 1:40 and

1:42 for the other two printers. The reection density readings of \white" remained

between 0:07 and 0:09, 0:08 being the average. Due largely to the di�erence between

the states of the four printers used several weeks earlier to develop the \c6" curve,

and the �ve printers used in this experiment, the \cd" ramps turned out to be too

light on average in terms of their reection density. The second near-linear average

reection density TSA curve was computed from the new measurement data. It is

marked \cd2" in Fig. B.1, and the corresponding halftone ramp can be seen in Fig.

B.3 (h). The ramps that measure close to being linear in reection density seem too

dark to me, so I doubt that the perceived brightness is linear in reection density.

(Note that if it were, the coe�cient of Dr would have to be negative.)

Bartleson and Breneman [16] conducted subjective measurements to determine

how the perceived brightness P in complex images (photographic reproductions and

transparencies) depends on luminance L. They came up with the formula

P = 102:037+0:1401�lg(0:3142L)�c1(Lw) exp(c2(Lw)lg(0:3142L)); (B.3)
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where Lw is the luminance of \white", and the values of the constants c1(Lw) and

c2(Lw) depend on whether the surround is bright or dark. 0:3142L is luminance

expressed in millilamberts [103]. (L is measured in cd=m2.) The luminance mea-

surements conducted in a well-lit area of my o�ce estimated the average luminance

of \black" Lb at 13 cd=m2 and the average luminance of \white" Lw at 169 cd=m2.

While no mask was used in these measurements, so the absolute values make sense,

one should keep in mind that luminance varies wildly with the lighting conditions. In

particular, the outdoor luminances may be signi�cantly higher than those measured

indoors ([94], Chapter 3). My measurements conducted outdoors on a sunny after-

noon yielded Lb = 512, Lw = 7790. However, the values of c1(Lw) and c2(Lw) do not

change all that much within the photopic range. From a graph in [16], I estimated

c1(Lw) = c1(169) = 2 and c2(Lw) = c2(169) = �0:28 for the case of the bright sur-

round. Having these values substituted into Eq. (B.3), I numerically computed the

\cbb" TSA curve for near-linear average perceived brightness from the \c6" curve.

The \cbb" curve is shown in Fig. B.1, and the corresponding halftone ramp can be

seen in Fig. B.3 (d).

Judd [104] introduced a \lightness" scale that incorporates the background lumi-

nance level LB. According to Judd, \lightness"

P =
(L� Lb)(LB + Lw � 2Lb)

(Lw � Lb)(LB + L� 2Lb)
: (B.4)
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Judd's formula for the bright background (LB = Lw) becomes

P =
2(L� Lb)

L+ Lw � 2Lb
: (B.5)

We want to �nd a TSA function fJ(k=n), k = 0; 1; : : : ; n, such that the \lightness" of

the resulting halftone ramp is close to linear. Given the \c6" TSA function fL(k=n)

approximately ensuring that the luminance

L(fL(k=n)) = Lb +
k

n
(Lw � Lb); (B.6)

we can �nd fJ(k=n) as fL(k
0
=n), where k0 2 [0; n] does not have to be an integer, so

fL(k
0
=n) will be computed using interpolation. Indeed,

P (fJ(k=n)) =
k

n
=

2(Lb + (k0=n)(Lw � Lb)� Lb)
Lb + (k0=n)(Lw � Lb) + Lw � 2Lb

; (B.7)

so

k

n
=

2k0

k0 + n
; (B.8)

k
0 =

kn

2n� k ; (B.9)

and

fJ(k=n) = fL(k
0
=n) = fL

 
k

2n� k

!
: (B.10)
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The values of fJ(k=n) form the TSA curve marked \cju" in Fig. B.1. The correspond-

ing halftone ramp is shown in Fig. B.3 (c).

Note that the \cbb" curve and the \cju" curve are very close to the independently

designed \c1" curve and to each other, well within the \error range" suggested by

the di�erence between the two near-linear average reection density curves, \cd" and

\cd2". Naturally, it is not easy to distinguish between the three corresponding ramps

(Fig. B.3 (b,c,d)).

Pearson [169] recommended the formula

P =

�
L� Lb
Lw � Lb

�
; (B.11)

where

 =

8><
>:
1=3 if the surround is dark [123],

1=2 if the surround is bright [178].

(B.12)

A simple derivation analogous to the previous one allows to compute the TSA func-

tions with the graphs marked \cpe" (square-root average luminance) and \clp" (cube-

root average luminance) in Fig. B.1 from the \c6" TSA function fL(k=n) by the

formula

f(k=n) = fL

�
(k=n)1=

�
: (B.13)

(k0 = n(k=n)1= .) The resulting halftone ramps are shown in Fig. B.3 (e) and (i). Not
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surprisingly, the cube-root average luminance ramp is obviously too dark.

Foley et al. ([68], Subsection 13.1.1) wrote that \the intensity levels should be

spaced logarithmically rather than linearly, to achieve equal steps in brightness."

According to their recommendations, we should select a TSA function fF (k=n) such

that

L(fF (k=n)) = Lb

�
Lw

Lb

�k=n
: (B.14)

Substituting fL(k
0
=n) for fF (k=n) in the left-hand side of Eq. (B.14) and applying

Eq. (B.6) to express L(fL(k
0
=n)), we get

Lb +
k
0

n
(Lw � Lb) = Lb

�
Lw

Lb

�k=n
: (B.15)

Then

k
0 =

nLb

Lw � Lb

 �
Lw

Lb

�k=n
� 1

!
(B.16)

and

fF (k=n) = fL

 
Lb

Lw � Lb

 �
Lw

Lb

�k=n
� 1

!!
: (B.17)

The resulting \cfo" TSA curve is shown in Fig. B.1, and the corresponding halftone

ramp can be seen in Fig. B.3 (f).

Some of the TSA curves in Fig. B.1, including the curves \c6", \cpe", and \cd2",
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were actually smoothed \by hand" a little bit to reduce jaggedness after their proto-

types were computed numerically.
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Fig. B.1. Tone scale adjustment curves for SACDH

on the HP LaserJet IVsi laser printers:

\c1" | a curve (by Sandler et al.) for linear average perceived brightness (300 dpi);

\c6" | a curve for linear average luminance (300 dpi);

\c7" | a curve for linear average luminance (600 dpi);

\cd" | the �rst curve for linear average reection density (300 dpi);

\cd2" | the second curve for linear average reection density (300 dpi);

\cbb" | a curve for linear average Bartleson{Breneman brightness (300 dpi);

\cju" | a curve for linear average Judd \lightness" (300 dpi);

\cpe" | a curve for square-root average luminance (300 dpi);

\clp" | a curve for cube-root average luminance (300 dpi);

\cfo" | a curve computed using recommendations of Foley et al. [68] (300 dpi);

\noa" | no tone scale adjustment.
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c12b

cfo
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255g’

255g
0.00

50.00

100.00
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250.00

0.00 100.00 200.00

Fig. B.2. Tone scale adjustment curves for high-resolution printing

on the HP LaserJet 4000 laser printer:

\c12b" | a curve for printing at 1200 dpi;

\cfo" | a curve for printing at 600 dpi;

\noa" | no tone scale adjustment.
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a) b) c)

d) e) f)

Fig. B.3 (Part I). Gray scale ramp, 300 dpi, SACDH

a) Linear average luminance (the \c6" TSA function)

b) The \c1" TSA function (Sandler et al.)

c) Linear average Judd \lightness" (the \cju" TSA function)

d) Linear average Bartleson{Breneman brightness (the \cbb" TSA function)

e) Square-root average luminance (the \cpe" TSA function)

f) The \cfo" TSA function (Foley et al.)
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g) h) i) j)

Fig. B.3 (Part II). Gray scale ramp, 300 dpi, SACDH

g) Linear average reection density, function 1 (the \cd" TSA function)

h) Linear average reection density, function 2 (the \cd2" TSA function)

i) Cube-root average luminance (the \clp" TSA function)

j) No tone scale adjustment
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