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Abstract. Case-based classification is normally based on similarity be-
tween a query and class members in the case base. This paper proposes
a difference-based approach, class-to-class siamese network (C2C-SN)
classification, in which classification is based on learning patterns of both
similarity and difference between classes. A C2C-SN learns patterns from
one class C; to another class C'j. The network can then be used, given two
cases, to determine whether their similarity and difference conform to the
learned patterns. If they do, it provides evidence for their belonging to
the corresponding classes. We demonstrate the use of C2C-SNs for classi-
fication, explanation, and prototypical case finding. We demonstrate that
C2C-SN classification can achieve good accuracy for case pairs, with the
benefit of one-shot learning inherited from siamese networks.

Key words: Case-based reasoning, Classification, Inter-class pattern,
Class-to-class, Difference measure, Prototypical cases, Siamese network,
Similarity

1 Introduction

The success of neural networks in deep learning has underlined both their capa-
bilities and limitations. As they are applied in safety-critical task domains, such
as for autonomous and semi-autonomous vehicles, there has been much effort
to exploit their capabilities while providing explainability (e.g., [8]), as well as
interest in harnessing their capabilities while requiring fewer training examples.
This has prompted interest in the case-based reasoning (CBR) [16] community in
integrations of network methods with CBR (e.g., [10]). For example, case-based
reasoning, paired with a “black box” system, can provide explanations based on
similar cases [12].

Case-based classification is normally based on similarity between a query and
an already-classified case—not on the differences between the query and cases
from other classes. Interestingly, learning the difference between classes has been
considered an essential part of human cognition [22]. For example, in counseling
psychology, both schizophrenia and delusional disorder are psychoses. To learn



to classify instances of the two illnesses, a counselor may put the cases of the two
classes side-by-side and focus on the differences: schizophrenia causes functional
impairment, while delusional disorder may not; furthermore, schizophrenia is
associate with hallucination, while delusional disorder may cause “non-bizarre”
delusions—that is, perceptions that might ordinarily occur.

Early research on case-based interpretation focused extensively on both simi-
larities and differences, through processes such as “compare and contrast” [1] and
the use of differences for indexing, to replace a retrieved case with a nearby alter-
native [2]. Automated classification methods for learning similarity have made
impressive progress, including the use of deep learning—in particular, applying
siamese networks [3]—to learn similarity [18, 19]. However, such work generally
focuses on capturing similarity, with difference captured implicitly.

This paper presents an approach that uses inter-class patterns, the patterns of
similarity and difference between two classes, in case-based classification. Specifi-
cally, it applies a class-to-class (C2C) approach for learning to distinguish inputs
that belong to different classes, implemented with siamese networks, to create
what we call a class-to-class siamese network (C2C-SN). This work can be con-
sidered as a counter part of [19].

The proposed C2C-SN method is a knowledge-light approach that can make
and explain classification decisions using inter-class patterns. We demonstrate
that it can support classification tasks, one-shot learning, an enriched form of
explanation by cases, and prototype finding. For explanation, as in standard
case-based reasoning (CBR) systems, a system using C2C-SN can explain classi-
fications by retrieving a case similar to the query (“The patient Q has delusional
disorder because a similar patient A also has delusional disorder”). However, a
C2C-SN can also offer explanations for negative conclusions by providing a con-
strastive argument (“The patient Q does not have schizophrenia. Although both
Q and schizophrenia patient B have delusions, Q’s delusion is far less bizarre”).

The paper is organized as follows. First, we present background, briefly de-
scribing the class-to-class approach to classification, siamese networks, and ex-
planation by presentation of cases. We next describe the C2C-SN approach and
an evaluation of its performance for classification and one-shot learning. We then
illustrate its value for providing explanations for classifications and for gener-
ating prototypical cases, which can in turn be used for classification. We close
with conclusions and future directions.

2 Background

2.1 The Class-to-class (C2C) Approach

The C2C approach is based on the assumption that there exist consistent simi-
larity and difference patterns between different classes. Such inter-class patterns
can be learned and reused for various purposes.

The C2C approach was initially tested as a feature weighting method (C2C
weighting) for a k-nearest neighbors classification algorithm. In general, the tra-
ditional weighting methods assume that similar cases share similar (non)important



features [17,23]. C2C weighting adds another assumption: that cases of different
classes differ from each other, with respect to certain features, in a consistent
manner. Unlike traditional weighting methods, which focus on finding the pat-
tern of features within a class, C2C weighting aims to learn the patterns between
pairs of classes and to apply these patterns as an additional information source
for classification [24,25]. C2C weighting can be used in classification, case re-
trieval, and explanation. However, C2C weighting has limitations as well, such as
poor classification accuracy when the inter-class patterns involve hidden relations
between features. The approach presented here does not use C2C weighting.

2.2 Siamese Networks

Siamese networks (SN) were introduced in the 1990’s by Bromely et al. [3]. A
siamese network consists of a pair of identical networks, each receiving different
input vectors, but joined together at a distance measure layer, which outputs a
result value. The twin networks share the same weights and configuration and,
therefore, perform identical feature extraction on each of the two inputs. At
the distance layer, the distance between the extracted features is computed and
transformed to a value between 0 and 1 using a sigmoid function [4]. A siamese
network can be used for classification, similarity assessment, as well as feature
extraction in CBR [18,19].

In contrast to a neural network that learns to directly classify input cases into
classes, a siamese network learns a similarity function between cases. While a
neural network for classification needs many samples from every class, a siamese
network may even require only a single instance of a new class to achieve one-shot
learning ability [13].

An important benefit of siamese networks for learning from limited data is
that training is based on pairs of cases, rather than single cases [13]. If there are
n cases in a case base, a neural network for classification can train on n input
cases and their expected classifications, while a SN can train on n X n pairs
of input cases and their expected similarities (which, in the absence of other
information, can correspond to 0 if they belong to different classes and 1 if they
belong to the same class). When given a single case from a new class, a neural
network for classification can only train once for the new class, while a siamese
network can train on n + 1 pairs of cases involving the new case, by pairing the
new case with n old cases and itself. This enables much more rapid training.

2.3 Explanation by Cases in CBR

From the early days of CBR, the ability to explain the outputs of CBR sys-
tems by presenting the cases on which they are based has been an important
benefit of case-based reasoning [14]. The value of such explanations has received
experimental support [6]. A recent focus is explaining black-box systems such
as neural networks by “twinning” them with CBR systems [11]. In the twin
system, the artificial neural network (ANN) component is expected to produce
high-quality predictions while the CBR component provides explanations for



the ANN’s outputs. The explainability provided by the CBR system is post-
hoc, meaning that the CBR system provides explanation of the ANN’s output
after the ANN makes the prediction. Displaying the conclusion along with the
retrieved case is expected to boost the user’s confidence compared to simply
displaying the solution or displaying a rule used in finding the solution [6].

For explaining classifications based on cases, multiple approaches have been
advanced for providing convincing evidences. Doyle et al. [7] suggest that cases
between the query and the class boundary are more convincing support than the
nearest neighbor of the query. By using a metric based on explanation utility
rather than on similarity, their CBR system retrieves cases to best explain the
class prediction. To aid users of a design feasibility assessment system in assessing
the severity of design problems, Leake et al. [15] use bracketing cases (the most
similar cases and without the problem) to illustrate the limits of the problem.
Nugent et al. [20] illustrate an example of a fortiori arguments: A child pleading
to her parent to see the movie Harry Potter will use the example of a much
younger child who has seen the movie, instead of the example of a similar-age
child, based on the assumption that “the older you are, the more likely you are
allowed to see the movie.” The authors frame this in terms of the concept of
nearest unlike neighbor (NUN), the nearest neighbor of a different class. If the
difference between NUN and the query case is large, this contrastive evidence
suggests that the query is far from the class boundary and the prediction is thus
convincing.

3 Class-to-class Siamese Networks

To combine C2C weighting with siamese networks for case-based classification,
we propose a new network approach, the class-to-class siamese network (C2C-
SN). The general structure of a C2C-SN is shown in Figure 1. The network is
trained by pairs of cases to extract features that can be used to characterize a
pattern between two specific classes. The twin networks extract features from the
input cases. The difference between the extracted features is passed to a neural
network learning the inter-class pattern, which outputs a number between 0 and
1 indicating the extent to which the extracted feature difference matches with
the target pattern.

A premise of the approach is that, because the pattern between every pair
of classes is unique, so is the feature extraction procedure for this pattern. For
example, considering classifying psychotic diagnoses such as schizophrenia, delu-
sional disorder, and schizotypal personality disorder: The difference between
schizophrenia and delusional disorder may be focused on functional impairment;
while the difference between schizophrenia and schizotypal personality disorder
may be on delusions and illusions.

In the following, a C2C-SN learning the pattern from a class C; to a class
C; will be denoted as a C; — C; SN. When ¢ = j, the corresponding siamese
network C; — C; SN learns the similarity pattern within the class C;.
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Fig. 1: The Structure of a C2C-SN

Each C; — C; SN can be trained by back propagation. The features of a pair
of cases (case,cases) are the input. A pair of cases is a positive pair (with
output label 1) if the case; is an element of C; and cases is an element of Cj.
All other pairs of cases are negative pairs (with output label 0). If there are m
classes, then there can be a family of up to m? C2C-SNs as there are m? pairs
of classes. If the inter-class patterns are symmetric, then the number of patterns
and networks is reduced by half.

3.1 Benefits of the C2C-SN Approach

A C2C-SN combines benefits from both the C2C approach and neural network
learning. The C2C approach enables explaining membership in a class C; by the
fact that that the input case is different from C; cases in a way that existing C;
cases are different from C; cases, as shown in the C2C weighting [24]. In other
words, C2C-SN can offer a supportive/contrastive explanation by providing a
case of the same class or a different class.

The use of a siamese network provides several benefits beyond prior work on
the C2C approach: (1) Hidden Features and Relationships: Prior work on C2C
weighting assigns weightings to surface features to reflect inter-class patterns.
Use of the network in C2C-SN enables learning patterns in both surface features
and implicit features. (2) Flexible Patterns: A major flaw of C2C weighting is
that one weighting can only capture one pattern. If there exist multiple patterns
between two classes, multiple weightings are needed and training convergence
is more difficult. The ability of networks to represent rich concepts enables the
C2C-SN approach to capture complex relationships between two classes with
one network. (3) Difference Direction and Magnitude: C2C weighting learns the
direction of a inter-class pattern. In addition to the direction, C2C-SN also learns
the magnitude of an inter-class pattern. (4) Lastly, inherited from siamese net-
works, a C2C-SN has one-shot learning ability.

3.2 Building a C2C-SN

Given a working SN for a task domain, a C2C-SN learning the C; — C; pattern
can be generated by converting the existing SN with following steps.



Assemble the network:

1. Reuse the upper layers of the network: If the SN performs well (as a clas-
sification tool or a similarity measure), then the upper layers are powerful
enough to extract hidden features for the task domain. The same configura-
tion (layers and connections) for the upper layers of the SN can be used in
a C2C-SN, however the trained weights and biases will be different.

2. Reconfigure the lower layers of the network: A SN’s lower layers are used
to calculate the distance between two extracted features, while a C2C-SN’s
lower layers are used to learn the pattern between the two extracted features.
Therefore the lower layers of the SN need to be replaced. Because the inter-
class pattern might be hidden, a dense network is recommended.

Train the network:

1. Assemble and relabel training/testing pairs: Collect pairs of cases for training
and testing. If the first case of the pair is of class C; and the second case is
of class C}, then the pair label is 1, otherwise 0.

2. Retrain: Train the network weightings using back-propagation.

4 Experiments

This section illustrates and tests the performance of a C2C-SN for classification,
one-shot learning, explanation, and prototypical case finding. Most experiments
were conducted on the MNIST dataset. The dataset contains 60,000 training
cases and 10,000 testing cases. Each case is a 28 x 28 image of a handwritten
numerical digit, with each digit considered a class, providing ten classes labeled
Cy through Cy for digits 0 through 9. Each digit appears in roughly the same
number of cases.

The standard SNs and C2C-SNs were trained and tested on pairs of cases.
Training pairs were assembled from the training set and testing pairs from the
testing set.

We modified an existing SN implementation for classification in MNIST [5] to
build C2C-SNs. In its original form, the upper layers first extract features from
two cases, and the lower layer is a distance layer that computes the Euclidean
distance between extracted feature vectors. The feature extraction layers are
optimized by contrastive loss. This SN is referred to as the standard SN.

We reused the same initial configuration for the upper layers because the
standard SN proved to be capable of extracting feature vectors for the classi-
fication task. The lower layers, however, are replaced with a subtraction layer,
calculating the element-wise difference between two hidden vectors, followed by
four fully connected ReLU (rectified linear unit) layers of 128 nodes, and a final
output layer with a single node using sigmoid activation.

For a C2C-SN learning the C; — C; pattern, we assembled C; — C; pairs as
the positive examples (labeled 1), and Cp —Cy(x # ¢ or y # j) pairs as negative
examples (labeled 0). Note that a C; — Cy pair and a C, — C; pair are both
negative examples. Lastly, we retrained the network using contrastive loss [9].



Table 1: Pair Accuracies for the MNIST Dataset

i=|0 1 2 3 4 5 6 7 8
C; — C; SN|0.991/0.994/0.982|0.981(0.985[0.985(0.987(0.978(0.978
C; — Ciy1 SN|0.992(0.987|0.982(0.981(0.984(0.985|0.980(0.978|0.969

4.1 Classification Accuracy of Pairs

Pair accuracy is defined as the percentage of correctly identified labels for pos-
itive and negative pairs. To illustrate the classification performance, we tested
the classification accuracies of multiple C2C-SNs. The C; — C; SNs illustrate the
capability of C2C-SNs that learn the similarity patterns within each class, while
the C; — C;41 SNs illustrate the capability of C2C-SNs that learn inter-class
patterns.

For both training and testing, 5,000 positive and 5,000 negatives pairs were
used. For a C; — C; SN, all of the 5,000 positive pairs were C; — C; pairs. Of
negative pairs, 35% pairs were C; — C,, pairs, 35% were C, — C; pairs, and the
remaining 30% were C, — Cy pairs, where = # i and y # j. The breakdown of
negative pairs is intended to emphasize pairs that partially mismatch. Table 1
shows the performance of the best validation run chosen among 20 epochs.

In comparison, the original implementation of the standard SN (from which
we derived our C2C-SNs) achieved a pair accuracy of 97.2% after 20 epochs,
each epoch with 60,000 positive pairs and 60,000 negative pairs [5]. Note that
the meanings of accuracy are different for a standard SN and a C2C-SN, therefore
they are not directly comparable: (1) For the standard SN, a positive pair is a
pair of cases in the same class C;, where ¢ is unspecified (2) For a C; — C; SN,
a positive pair is of C; — C;, where ¢ and j are determined.

4.2 One-shot Learning

We tested the one-shot learning ability of C2C-SNs in comparison with SNs.
One-shot learning ability is the ability to learn when a minimum number of
training cases for a certain class are presented.

In this experiment, we restricted the number of C5 cases, ns, in the training
set, and compared the performance of the standard SN, the C5 — C5 SN, and
the C5 — Cg SN. The number of C5 training cases ns is set to 1, 10, 100, and
1,000, for four different experiments.

To ensure fairness and consistency in the comparison, each network was
trained with 1,000 positive pairs and 1,000 negative pairs. The pairs were dif-
ferent for different networks. For the standard SN and the Cy5 — C5 SN: the
positive pairs were 1,000 C5 — C5 pairs (which may include repeated pairs be-
cause Cs cases are limited); the negative pairs were 350 C5 —C;(j # 5) pairs, 350
C; — Cs(i # 5) pairs, and 300 C; — C;(i # 5 and j # 5) pairs. For the C5 — Cg
SN: the positive pairs were 1,000 C5 — Cg pairs; the negative pairs were 350



W standard SN A standard SN (without bonus) C5-C5SN m C5-C6 SN

1

0.9

0.8

Accuracy

0.7

0.6

0.5
1 5 10 100 1000

Number of Samples in C5

Fig. 2: The accuracies of networks under different one-shot learning constraint

C5—C;(j # 6) pairs, 350 C; — Cg(i # 5) pairs, and 300 C; —C;(i # 5 and j # 6)
pairs.

Additionally, the standard SN received 100 C; — C; training pairs for ev-
ery i except when ¢ = 5. The extra training pairs were available only for the
standard SN but not for C2C-SNs, because the standard SN learns a distance
measure across all classes. We tested the performance of the standard SN with
and without the extra training pairs.

After training, each SN was tested with 1,000 positive pairs and 1,000 nega-
tive pairs assembled from the testing dataset, in which the number of C5 cases
was not restricted. We recorded the highest validation accuracy across 20 epochs
of training and testing. The experiment was run 10 times and the average was
used as the final results. The results are shown in Figure 2. We observe:

— The standard SN benefits strongly from the extra training pairs. A distance
measure trained for all classes rather than only for Cj, giving additional
data, benefits performance on C5 as well. This contributes to the standard
SN being superior when a minimum number of C5 cases is available.

— The Cs —Cg SN performs better than the C5 —C5 SN. The positive examples
for the C5 — C5 SN are pairs of few Cy cases. Both sides of the Cs — C5 pairs
have few cases and the knowledge available to exploit is minimal. On the
other hand, the positive examples for the C5 — Cs SN are C5 — Cg pairs.
While Cj cases are limited, Cg cases are abundant, leading to more variety
of training pairs and thus more knowledge to exploit.

— The C5 — Cg SN has the fastest accuracy growth throughout the multiple
experiments. As more Cj cases are available, the first case of C5 — Cg pairs
is no longer restricted to a single case, and the C5 — Cg pattern becomes
easier to learn. In Figure 2, when n5; = 5 and ns = 10, the C5 — Cs SN
achieves superior accuracy, even in comparison to the standard SN with
bonus training pairs.
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A second experiment was conducted using the same settings but for 10 C; —C;
SNs and and 10 C; — C; 41 SNs where 0 < ¢ < 9. The highest validation accuracy
across 10 training epochs was recorded for each SN. As shown in Figure 3, C; —
Cji+1 SNs generally outperformed C; — C; SNs in one-shot learning settings, and
they eventually converged to similar accuracy when more cases were available.

4.3 Explanation By Cases

Here we illustrate the ability of C2C-SNs to support explanation. We start with
showing conventional CBR explanation (by presenting a similar case), followed
by explaining contrastively (by presenting a relevant different case from a non-
target class). Finally, we demonstrate its ability to find prototypical cases.

Explanation by a Similar Case in the Target Class: Given a query ¢, we
can pair it with C; cases to form ¢ — C; pairs for each 4, then apply a C; — C;
SN to the pairs. The highest activation achieved by a ¢ — C; pair indicates g
is of class C;. The second case of the ¢ — C; pair is a similar case of class C;,
thus offering an explanation by a similar case in the target class. This follows
the usage standard SNs for classification.

Figure 4a and Figure 4b show examples of explanation by a similar case.
Figure 4c shows a misclassification where a badly written digit 5 was misclassified
as 6. In this experiment, when the activation threshold was lowered to 0.9, there
were 4,998 instances of digit 5s and 5,824 instances of digit 6s achieving the
activation threshold. This shows that although classification by C2C-SN is not
perfect, it has the potential to indicate the query case as an outlier which is
difficult to classify.

Note that the C5 — C'5 pairs were not selected based on their similarity, but
based on the extent of which the pattern matches an average pattern between
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two digit 5s. The second cases of C5 — C'5 pairs in Figure 4a and 4b were not
necessarily the most similar cases in terms of surface features.

Explanation by a Different Case in the Non-target Class Given a query
g, for each ¢ and j (¢ # j), we can pair ¢ with C; cases to form ¢ — C; pairs,
and then use a C; — C; SN on the pairs. The highest activation of a C; — C; SN
achieved by a ¢ — C; pair suggests ¢ is of class C;. In this scenario, the second
case of the ¢ — C; pair is not a similar case, because it is of class C; instead of
class C;. Each g — C; pair provides an explanation with a contrastive argument.

In this experiment, the top row of Figure 5 shows the query ¢, a digit 5. The
bottom row of Figure 5 shows the paired cases in digit 3s, 6s, and 8s achieving
the highest activation.

The second cases of the high-activation ¢ — C; pairs are often not the most
standard C} cases, but rather the C; cases that magnify the difference between
C; and C; when they are compared to the query q. For example: (1) In Figure 5a,
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the digit 3 has a large upper curve in the top right portion; (2) In Figure 5b,
the digit 6 has no horizontal bar in the top portion and no sharp turn in the
top left portion; (3) In Figure 5¢, the digit 8 is large in the upper portion but
small in the lower portion. These features are observable in C;(j = 3,6,8) but
not usual in C5. These features are also not present in the specific digit 5 in the
pairs. Therefore the Cs — C; pairs exemplify the Cs — C; patterns.

4.4 Finding Prototypical Cases

A prototypical case is a case that best represents a class. Traditional machine
learning methods find a prototypical case by clustering algorithms that find the
center, or the average of cases of a class.

A C; — C; SN can find a prototypical case a; in C; by finding the case with
the highest average score in all C; — C; pairs. A prototypical case of class C;
thus represents the center of the intra-class pattern of class C;. In addition, a
C; — C; SN can find a prototypical case b; in C; by finding the case with the
highest average score in all C; — C; pairs. The prototypical case b; represents
the inter-class pattern of C; — Cj, instead of the intra-class pattern of class Cj.

A C; — C; SN can also be used to find the least prototypical case, the case
achieving the lowest average score in all C; — C; pairs.

Figure 6 illustrates the prototypical cases found in multiple C2C-SNs. Fig-
ure 6a shows the most and the least prototypical 5s and 6s in the C5 — Cg pattern.
Figure 6b and 6¢c show the most and least prototypical 5s and 6s respectively in
the C5 — C5 pattern and the Cy — Cg pattern. We observe:

— A prototypical case in a intra-class pattern is not necessarily close to the
average case, as shown in Figure 6b and 6c¢.

— The least prototypical cases are outliers that do not conform to a C2C pat-
tern. In the C5 — Cg pattern, intuitively, a distinctive feature is the upper
left of the digit being a sharp bend (for digit 5s) or a curve (for digit 6s).



Figure 6a shows that the least prototypical 5 and 6 lack the corresponding
features.

— The prototypical cases for the same class found from different C2C-SNs are
not necessarily alike, because they are representing prototypes in different
patterns. The same applies to the least prototypical cases.

To further illustrate the last point above, Figure 7 shows the prototypical
cases in every class found from all C2C patterns. For reasons of efficiency, 1,000
samples from every class were used to assemble the case pairs. An entry on ith
row and jth column shows the prototypical C; case in the C; — C; pattern. The
diagonals are intra-class prototypes while the rest are inter-class prototypes.
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4.5 Using Prototypical Cases in Classification of a Case

A C; — C; SN has two prototypical cases, one for C; and one for C}. Instead of
pairing the query with each case, the CBR system can classify a query case by
pairing the query with prototypical cases of C2C-SNs and finding the highest
activation pairs.

For reasons of efficiency, a prototypical case for C; in the C; — C; pattern is
found among pairs made from n C; cases and n C; cases. When n = 300, the
number of pairs for training one C2C-SN is n? = 90,000. A query q is paired
with the prototypical C; case of the C; — C; pattern, for every ¢ and j. The C; —¢
pair with the highest activation is used for classification. The C2C-SN achieved
an accuracy of 92.6%.

In Section 4.3, a digit 5 misclassified as a digit 6 is shown in Figure 4c. This
pair actually achieved the highest activation possible, 1.0, in the Cg — Cg SN.



Table 2: Pair Accuracy for the Fashion MNIST Dataset

i=|0 1 2 3 4 5 6 7 8
C; — C; SN|0.931/0.976/0.894/0.954/0.895(0.958(0.839(0.979(0.975
Ci — Ciy1 SN|0.954(0.934/0.922]0.923|0.943|0.799|0.903]0.976|0.971

Even though the correct classification pairs achieved high scores, a certain mis-
classification pair achieved the maximum score. To remediate this issue, instead
of finding the maximum activation pair, we changed the algorithm to have the
pairs vote, where each C; — ¢ pair for the C; — C; pattern with activation > 0.5
counts as one vote for the class C;. This algorithm improved the accuracy to
94.23%. In addition, 98.37% of the test cases’ true labels were within the top
two votes.

Note that the classification accuracy for cases is different from the pair ac-
curacy from Section 4.1. In comparison, the standard SN performing case clas-
sification by finding the highest activation pair achieves an accuracy of 96.9%;
A neural network using the same structure of the upper layers of the C2C-SN
and a final classification layer achieved an accuracy of 98.31%.

Last, we note that we built C2C-SN on a simple SN implementation with
only dense layers. Preprocessing techniques such as deskewing, noise removal,
blurring, and other layers like convolutional layers and pooling layers may be
easily applied and could further improve performance. However, such refinements
are not the focus of this paper.

5 Additional Results and Future Directions

To assess the performances of the models on a second dataset, experiments were
conducted on the Fashion MNIST dataset, which contains images of 10 types of
clothing [21]. On this dataset the standard SN achieves pair accuracy of 91.6%
and case accuracy of 87.4%. The C2C-SNs pair accuracies are shown in Table 2.
Using prototype voting the C2C-SNs achieve case accuracy of 84.2%, and 95.0%
within top two votes.

The C2C-SN approach achieves good accuracy in the classification of pairs,
and offers a new perspective for explanations and prototypical cases. However,
its classification accuracy for cases does not equal existing techniques. It would
be interesting to explore ensemble methods to unify all C2C-SNs for the purpose
of case classification.

One future direction concerns applying C2C-SNs for outlier detection. When
the C2C-SNs agree with each other, the prediction is of a single class. However,
when C2C-SNs disagree, the result is a set of votes for multiple classes. Such dis-
agreements may suggest outliers. Moreover, the votes may be used as attributes
to describe unseen classes for zero-shot learning.



6 Conclusion

Traditional classification methods focus on learning and reasoning from informa-
tion about the hidden patterns within a class, in the context of all classes, or rely
on similarities between individual cases. Similarity is a well studied topic, with
difference often simply defined as the complement of a similarity measure. How-
ever, differences between classes can be exploited in novel ways. This paper has
argued for the potential of learning about inter-class patterns for classification.
In service of this goal, it has shown how a standard siamese network design can
be converted into a C2C-SN, by replacing the lower layers and re-purposing the
network towards learning inter-class patterns. Experiments illustrated how the
C2C-SN approach provides a novel method for classification, one-shot learning,
explanation by contrastive cases, and finding prototypes.
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