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Abstract. Building predictive models is central to many big data appli-
cations. However, model building is computationally costly at scale. An
appealing alternative is bypassing model building by applying case-based
prediction to reason directly from data. However, to our knowledge case-
based prediction still has not been applied at true industrial scale. In pre-
vious work we introduced a knowledge-light/data intensive approach to
case-based prediction, using ensembles of automatically-generated adap-
tations. We developed foundational scaleup methods, using Locality Sen-
sitive Hashing (LSH) for fast approximate nearest neighbor retrieval of
both cases and adaptation rules, and tested them for millions of cases.
This paper presents research on extending these methods to address the
practical challenges raised by case bases of hundreds of millions of cases
for a real world industrial e-commerce application. Handling this applica-
tion required addressing how to keep LSH practical for skewed data; the
resulting efficiency gains in turn enabled applying an adaptation genera-
tion strategy that previously was computationally infeasible. Experimen-
tal results show that our CBR approach achieves accuracy comparable
to or better than state of the art machine learning methods commonly
applied, while avoiding their model-building cost. This supports the op-
portunity to harness CBR for industrial scale prediction.

Key words: Big Data, Case Based Reasoning, Ensemble of Adapta-
tions, Locality Sensitive Hashing, Skewed Data

1 Introduction

Predicting future customer actions is integral to e-commerce competitiveness.
For example, the success of retailers is closely tied to predicting customer be-
haviors to maximize effectiveness of the supply chain, inventory management,
and marketing. The standard method for such prediction is to abstract data into
mathematical models to apply to the prediction task (e.g., a firm might train a
logistic regression model to predict whether a customer will make an electron-
ics purchase within the next month). The staggering growth of digital data has
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made a plethora of training instances available, increasing prediction opportu-
nities but making model building computationally challenging. This challenge is
commonly addressed at two stages: First, by applying sampling methods to se-
lect a manageable-size subset of the data to use as a training set (e.g., [26]), and
second, by applying optimization techniques such as stochastic learning (e.g.,
[4]) or parallelization (e.g., [31]) to expedite the model-building process.

In contrast to model-based approaches, case-based reasoning’s lazy learning
approach skips the model building step entirely, to retrieve cases on demand
and predict directly from them. This avoids the cost of model building but
shifts cost to retrieval. Often retrieval costs are not a practical impediment [9].
However, successful industrial-scale CBR will depend on controlling them. A
rich current of CBR research develops methods for controlling retrieval costs by
compressing the case base (see Leake, Smyth, Wilson and Yang [18] for some
examples). However, applying even carefully-crafted competence-driven methods
(e.g., [30]) has two major drawbacks. First, deletion of cases may unavoidably
lose information. Second, compression can impose a considerable pre-processing
cost penalty [9]. Standard compression methods generally have O(n2) complexity
[30], making them prohibitively expensive to apply to case bases at scale.

In previous work [11] we argued that using retrieval methods from big data
frameworks can enable scaling up CBR without compression. That work in-
troduced large scale case/rule retrieval and adaptation generation methods for
regression and classification tasks, using Locality Sensitive Hashing (LSH) [10]
for efficient approximate nearest neighbor retrieval, based on examining a sub-
set of candidate cases (those in the the same hash bucket as the query) rather
than the entire case base. Evaluations supported that the methods were prac-
tical for large case bases (tests included a case base of two million cases), but
also revealed that handling larger case bases would require going beyond those
methods alone. It is now common to deal with data sets with several hundreds
of millions of instances [1], and is not unheard of to handle billions of instances
[19, 23]. Consequently, new methods are needed.

This paper discusses the primary challenges of extending the LSH-based case-
based prediction approach to the next level, of hundreds of millions of cases, and
how we addressed them. The testbed domain for this work is an important e-
commerce application: predicting the propensity of the users of an e-commerce
platform to engage with a marketing vehicle (e.g., to open a marketing email) or
to make a transaction within a certain set of departments over a certain period
of time in future. These tasks require predicting probabilities ranging from 0
to 1. The data in this domain is skewed and the labels are imbalanced. Skewed
data is a common problem in real-world domains and has been the subject of
considerable study in machine learning (e.g., [5, 3]), but has received only limited
consideration in CBR (e.g., [21, 20]).

This paper proposes and evaluates a set of case-based predictors able to
retrieve sufficiently efficiently to handle case bases two orders of magnitude larger
than previously tested and to deal with skewed data. It proposes three new
methods for efficient large-scale retrieval by LSH when handling skewed data,
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hierarchical LSH, prototype-based case retrieval, and capping the number of
cases within a hash bucket. It presents an CBR approach applying these methods,
Ensembles of Adaptations at ScalE (EASE), building from our previous work
using automatically generated ensembles of adaptations [11–13, 15], and tests an
implementation for a sampling of variant methods.

The rest of the paper is organized as follows. First, it reviews existing work
on large scale case-based reasoning. Next, it introduces EASE. It then presents
an evaluation of four different configurations of EASE, to identify the contri-
butions of different design choices, as well as evaluation of a new configuration
of our ensemble-based adaptation learning/application method, enabled by the
new retrieval methods, exploiting much larger sets of automatically-generated
adaptation rule ensembles than in our previous work. The paper closes with a
summary of contributions and future directions.

2 Background: Retrieval Cost and Case-Base Growth

2.1 Speedup Through Maintenance

The CBR community has long been aware that case base growth can impair sys-
tem efficiency, due to the utility problem as retrieval cost grows due to increased
case base size (e.g., [28]). This has led to much research on case-base mainte-
nance methods for controlling case base size, such as selective retention of cases
(e.g., [24, 27]) and competence-based case deletion/selection (e.g., [29, 30, 32]).
Retention strategies have also been developed to control growth of automatically-
generated case adaptation rule sets [16].

However, even state of the art competence-based techniques cannot ensure
protection against knowledge loss from deleted cases or rules. As compression
increases competence loss can become severe (e.g., [30]). In addition, sophisti-
cated competence-preserving deletion methods are computationally expensive—
overwhelmingly so for data at scale—and must be incurred each time the case
base is compressed [9]—which may occur routinely in the life cycle of a CBR
system. These issues with compression methods motivate replacing compression
by retrieval efficient enough to handle complete case bases at scale.

2.2 Speedup by Big Data Methods

Recent work on applying big data methods to CBR provides a first step towards
large-scale retrieval without knowledge loss, but has limitations. Some existing
methods enable rapid retrieval of exact matches, enabling efficiency and accuracy
to be achieved simultaneously when similarity-based matching can be sacrificed.
For example, Dumoulin [2] applied a MapReduce based retrieval method to
perform efficient exact match retrieval on a case base of several million cases.

However, CBR normally requires searching for nearest neighbors of a case,
for partially-matching neighbors. In these scenarios, locality-sensitive hashing
(LSH) is a natural candidate for practical approximate nearest neighbor search.
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Locality Sensitive Hashing: Locality Sensitive Hashing (LSH) [10] is an efficient
method for mapping data points into “buckets.” With appropriate parameter
settings LSH is likely to place similar points in the same bucket. LSH is often
used to speed up nearest neighbor search by narrowing down the search space
for a given query to a subset of cases—those in the bucket associated with that
query—rather than the whole case base. LSH is an approximation method; it
does not guarantee that all nearest neighbors of a case will be grouped into
the same bucket nor does it guarantee that all cases in the same bucket will be
similar to each other. However, LSH has been shown sufficiently accurate to be
an effective practical approach for finding nearest neighbors of a case [6], and
the trade-off between accuracy and efficiency can be tuned as needed (e.g. [17]).
Various schemes have been developed to improve its core method [6, 7, 17].

Integrating LSH with CBR: We began to explore LSH for similarity-based re-
trieval in our work on BEAR [11], which applied LSH using p-stable hashing
[6] for retrieval for case-based numerical prediction (regression) tasks. BEAR
was tested on case bases with up to two million cases. We recently introduced
EACH [12], a locality sensitive hashing scheme for domains with both categorical
and numeric input features/target values, and used it as the basis of fast large-
scale retrieval in EACX, a scalable case-based classifier. This work showed that
applying ensembles of adaptations to adjust the approximate nearest neighbor
solutions can help compensate for the lower retrieval quality of LSH retrieval
compared to full nearest neighbor retrieval [11, 12].

3 Ensembles of Adaptations at Scale (EASE)

3.1 Foundations of EASE

The EASE method builds on succession of knowledge-light approaches for im-
proving CBR performance by automatically generating adaptation rules from
the case base and applying ensembles of those solutions for problem-solving
and classification [11–13, 15]. Experimental results support that these methods
significantly increase accuracy over baselines. Here we summarize the two most
relevant variants for the prediction tasks of this paper: EAR (Ensembles of Adap-
tation for Regression) [15], which developed the basic, approach, and BEAR
(Big Data Ensembles of Adaptations for Regression) [11], which scaled up the
approach. However, the scaleup methods from this paper could be applied to the
classification variants as well.

EAR uses the Case Difference Heuristic (CDH) [8] approach to generate
adaptations from pairs of cases in the case base. Each resulting rule has two
parts, a description of differences in the input features of the two cases and a
description of the differences between their solutions (here, values or labels).
EAR generates adaptations by comparing pairs of cases, selected by one of three
strategies:

1. Local cases - Local neighbors: Generate adaptations by comparing every pair
of cases in the local neighborhood of the input query. Because this approach
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considers few cases, it is practical for lazy generation of adaptation rules on
demand.

2. Global cases - Local neighbors: Generate adaptations by comparing every
case in the case base with its few top nearest neighbors.

3. Global cases - Global cases: Generate adaptations by comparing every pos-
sible pair of cases in the case base.

EAR solves input problems by retrieving a relevant prior case or cases, accord-
ing to a selection strategy, and applying ensembles of automatically-generated
adaptations to generate sets of solutions to combine.

BEAR scales up EAR by using LSH for fast approximate nearest neighbor
retrieval. For any retrieval task, the appropriate LSH method is dictated by the
input features’ data types in the underlying domain; BEAR used p-stable hash-
ing. BEAR developed foundations for case-based predictors at scale, handling
millions of cases. However, it did not address the scale and skewed data issues
of our e-commerce domain.

3.2 EASE

EASE extends BEAR to handle arbitrarily large case bases, where the limitation
is only the storage capacity of the underlying big data platform—the expected
look up time remains constant as the size scales up, even for skewed data. To
reduce computation costs, EASE dedupes cases with identical input features and
uses collision handling methods to handle cases with non-identical but similar
features.

Case/Adaptation Deduping: In our e-commerce domain, cases often have
identical input features. For example, when predicting customer propensity to
engage with marketing emails, based on cases for past customer actions, it is
likely that many customers never opened or clicked a marketing email, yielding
identical features (here, zero opened or clicked marketing emails over any of a
range of time periods). EASE handles such cases through a deduping process,
separate from the skewed data process that applies to distinct cases/adaptations
whose similar input features result in their being hashed to the same hash bucket.
Deduping cases with identical input features serves two purposes. First, dedup-
ing improves efficiency. Cases with identical input features in the training data
have the same performance effect on LSH as skewed data, because excessive
numbers of cases in the same hash bucket make nearest neighbor retrieval ineffi-
cient within the hash bucket. Second, duplicate cases can degrade the accuracy
of prediction if there is high variation in their labels. For example, if there are
millions of such cases with numeric target values with very high variance, ran-
domly selecting a few of these cases as the nearest neighbors of the input query
will result in high variance for predictions. In addition, if all nearest neighbors of
an input query have identical input features, then EASE’s automatic adaptation
generation would generate the same difference vector for comparing the input
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query with its nearest neighbors, which in turn would reduce diversity in the
adaptation rules to be applied and decrease the benefit of ensemble adaptation.

Deduping in EASE is done at both training and solution building stages and
is applied to both cases and adaptation rules. At training, cases/adaptations
with identical features are grouped and form a prototype case whose solution
is a function of all participating cases’ solutions (e.g. the mean or median).
Techniques such as outlier removal could be used to generate a better estimate
of the prototype case’s solution in presence of noise.

Deduping during solution-building is done differently depending on whether
EASE is run in batch mode or to process streaming problems. In batch mode
all input queries are known to the system in advance. In the streaming mode,
input queries are introduced to the system successively and not known to the
system in advance. At the solution building stage, in the batch mode, only one
version of cases with identical features is retained. The calculated solution is
then replicated for all cases with identical input features. In the streaming mode,
the solutions for previously solved problems are stored and each new incoming
problem is looked up in the pool of previously solved problems.

Collision Handling: The main novelty of EASE’s approach is its collision
handling module. The collision handling module controls the number of cases per
hashing bucket with the aim of keeping the number of cases per bucket within
a desired range to ensure efficient case/rule retrieval. We have identified two
families of methods for collision handling for EASE, one lossy and one lossless.
To the best of our knowledge, neither has been proposed previously.

Lossy Collision Handler: The lossy handler deletes cases in a bucket to keep
the number of cases below a threshold. This approach may seem incompatible
with EASE’s claim of avoiding the information loss associated with case-based
compression. However, case deletion in EASE is mainly targeting skewedness in
the data, with the premise that given many cases with similar input features,
keeping all those cases does not improve prediction accuracy. We propose two
types of lossy collision handlers, competence-based and sampling-based:

– Competence-based Collision Handler: Uses competence-based deletion meth-
ods to control the number of cases per bucket. For example, a footprint dele-
tion policy [29], or—more relevant to the ensemble and adaptation-based
nature of EASE—adaptation-guided maintenance [16] could be applied.

– Sampling-based Collision Handler: Uses sampling methods to control the
number of cases per bucket. The most naive such method is random sam-
pling. However, more advanced sampling techniques such as clustering or
density-sensitive sampling [25] could also be used. Random sampling has
the advantage of low time complexity compared to advanced sampling tech-
niques or competence-based alternatives. We note that an overly expensive
collision handling step could easily become a new bottleneck, nullifying speed
gains from EASE.
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Lossless Collision Handler: Another approach to deal with a high collision rate
is to keep all cases, but to further split the cases into new buckets to guarantee
the limit on the maximum bucket size. LSH controls the number of cases in each
bucket thorough the sensitivity of the chosen hashing functions. Increasing the
sensitivity increases the total number of buckets while decreasing the average
number of cases per bucket; decreasing the sensitivity reduces the number of
buckets and increases the average number of cases per bucket. For large case
bases with skewed data distributions, two conflicting factors pose a problem
for LSH. Increasing sensitivity results in a large number of buckets with few
cases per bucket, potentially making it unlikely there will be enough candidate
cases/rules for ensemble-based solution building by EASE. On the other hand,
decreasing sensitivity results in a manageable number of buckets, but a few of
these buckets will still contain a large number of cases. For cases hashed to those
buckets the retrieval process may have excessive computational cost. We address
this with a method we call Hierarchical LSH.

Hierarchical LSH: The main idea of Hierarchical LSH is to use a moderate
sensitivity to hash cases initially, and then to apply additional rounds of hashing
with higher sensitivity to buckets with high collision level (i.e. buckets with
large number of cases). This results in a density sensitive LSH that tunes the
sensitivity for different subspaces according to their case distribution densities.
We note that adding more levels of hashing can potentially increase the look up
time, but practically speaking the time complexity should be comparable with
one level LSH. If there are i cases in a skewed hash bucket and if r, is the number
of cases per bucket considered manageable, then the number of required hash
levels will be O(logr i).

These collision handling methods apply to both batch and streaming sce-
narios. In streaming scenarios, reservoir sampling can be used for random sam-
pling. Both footprint and adaptation-guided collision handling apply directly to
streaming settings. Because hierarchical LSH keeps all cases in the case base, it
requires no special treatment for streaming scenarios. However, because of cost
of competence-based maintenance, random sampling and hierarchical LSH are
the most promising collision-handling methods for very large case bases. The
following experiments test EASE with random sampling.

3.3 Adaptation Generation and Building the Solution

EASE uses two adaptation generation alternatives: Local cases - Local neighbors
(henceforth local-local), and Global cases - Local neighbors (henceforth global-
local). Because the extreme large size of the case base, Global cases - Global cases
would impose overwhelming computational costs. In terms of space complexity,
Local cases - Local neighbors requires constant storage, and Global cases - Local
neighbors requires storage of the order of the case base size.

Algorithm 1 summarizes EASE’s solution building process. First, the input
query is hashed, using the chosen hashing method, and assigned to a case bucket.
EASE then does nearest neighbor search among the cases in the same bucket as
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Algorithm 1 EASE’s basic algorithm

Input:
Q: query
n: number of source cases to adapt to solve query
r: number of adaptation rules to apply per source case
CB: case base
sample: whether or not to sample the training data
mode: rule generation mode (local-local or global-local)

Output: Estimated solution value for Q

//Begin Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if sample then

CB ← StratifiedSampler(CB)
end if
HashedCaseBase ← LSH(CB)
if mode == global-local then

rules ← RuleGenerator(HashedCaseBase)
HashedRules ← LSH(rules)

end if
//End Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
if mode == local-local then

rules ← RuleGenerator(HashedCaseBase, Q)
HashedRules ← LSH(rules)

end if
CasesToAdapt ← ApproximateNeighborhoodSelector(Q,n,HashedCaseBase)
for c in CasesToAdapt do

RulesToApply ← ApproximateNeighborhoodSelector(HashedRules,c,Q)
SolutionEstimate(c) ← MajorityRuleVote(RulesToApply, c, r)

end for
return MajorityVote(∪c∈CasesToAdaptSolutionEstimate(c))

the input query. By comparing the features of the input query and its nearest
neighbors (here the source cases), EASE generates a set of difference descriptors.
These difference descriptors are hashed and assigned to the corresponding adap-
tation buckets. Nearest neighbor search is done within each adaptation bucket
and the top K nearest adaptation rules (for a pre-set K) are retrieved for each
difference descriptor. For each source case, the new values proposed by the adap-
tations are aggregated and used to adjust the source case values. The adjusted
values for each source case are combined to form the final solution.

3.4 EASE Architecture

Figure 1 presents the EASE architecture, for the configuration in which adap-
tations are generated by comparing each case with its top nearest neighbors
(global-local). The architecture for other variations of EASE is very similar,
with slightly simpler flow.
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As a preprocessing step, cases in the case base are hashed into different
buckets. The input query is hashed using the same mechanism to identify the
relevant bucket for the query. The “approximate nearest neighbor retriever”
selects its approximate nearest neighbors, whose solutions are adjusted and used
to build the final solution. The collision handler module ensures that the number
of cases within each hash bucket does not exceed a pre-set threshold, to guarantee
acceptable run time. Adaptations are generated by comparing cases in the same
hash bucket and form the rule base.

As described in detail in Jalali and Leake [15, 13], the EAR/EAC approach
automatically generates adaptation rules from cases, indexed analogously to
cases; this enables applying the same retrieval process to cases and rules. The rule
base is partitioned into different buckets using LSH, and as for the hashed case
base, the collision handler ensures that the number of adaptations per bucket
does not exceed a certain limit. To generate adaptation rules, the input query
and source cases retrieved by the “approximate nearest neighbor retriever” query
are compared and their feature differences are generated and hashed. To gener-
ate a solution for an input query, the solution of each source case is adjusted by
applying an ensemble of adaptations addressing problems with differences simi-
lar to those between the input query and that source case. The final solution is
built by combining the adjusted values of the retrieved source cases.

4 Evaluation

Our evaluations test the accuracy and efficiency of different variants of EASE
and compare them to two classic machine learning approaches for industrial
big data, Logistic Regression and Random Forest. Specifically, the evaluations
address the following questions:

1. Comparative accuracy: How does the accuracy of different variants of EASE
compare to each other and baselines?

2. Effect of preprocessing sampling on performance: How sensitive is the accu-
racy of EASE to using the whole training data without any preprocessing
compared to preprocessing the data with stratified sampling?

3. Comparative execution time: How does the execution time of EASE compare
to baseline methods?

4.1 Experimental Design

We tested EASE for two data sets from real-world problems. The first is the
Kaggle Real Time Bidding data set3, which is publicly available and contains one
million cases. Kaggle data sets are posted as practical challenges for predictive
modeling and analytics competitions. The second is data for building propensity
models for Walmart.com, an e-commerce platform with hundreds of millions of
users. Because this data contains several hundred million cases, it far exceeds

3 https://www.kaggle.com/zurfer/rtb/data
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Fig. 1. EASE architecture

the scope of previous CBR applications. We respect corporate practice by not
providing precise proprietary details such as the exact size or features. However,
because we report the relative performance of the tested methods compared to
baselines applied to the same data, comparative performance can be assessed,
and these relative results can be compared to the fully replicable results on the
Real Time Bidding data set.

Evaluation Tasks: The first task is to predict whether a user will open a
marketing email within seven days from receiving it. We will refer to this task
as engagement propensity. The input features to predict engagement propensity
are mainly related to users’ previous interactions with marketing email, such as
how many emails they have historically received, opened or clicked. Each user
case includes tens of such features. The second task is to predict whether a user
will make a purchase within the health and beauty departments in the next 30
days. We refer to this task as purchase propensity. The input features to predict
purchase propensity are mainly related to user past purchases and browsing
behavior. Each user case includes hundreds of such features. The two tasks are
specifically selected to study EASE’s performance under different ratios of label
values where the class imbalance issue is more severe for propensity prediction.
The third task is to predict whether a user will click on an ad (e.g. banner on a
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webpage). We refer to this task as click prediction. There are 88 input features
in the click prediction domain. The data is anonymized by Kaggle; PCA was
applied to the original features and 0.99 of the linear explanatory power was
retained. The original features included browser, operating system or time of
the day the user is online, etc. There are 1908 cases with label 1 and the rest of
the cases in this domain have 0 as their labels.

Evaluation Methodology: For engagement and purchase propensity mod-
els we pick training labels from one week and one month of user activities respec-
tively and evaluate the models on the activities of the users over the following
week and month. For click prediction we randomly split the data to 70% training
and 30% test. Because the tests deal with class imbalance, we use the area under
the Precision-Recall (PR) curve to evaluate different methods rather than accu-
racy, AUC or other metrics. The PR curve is especially informative if propensity
predictions are used to pick customers to receive a marketing campaign where
the objective is to maximize the number of customers that convert (open an
email or make a purchase in a specific set of departments). In this case the PR
curve can give us the expected number of customers that convert at different
recall levels which can be translated to segment sizes (i.e. number of recipients
of the marketing campaign).

Implementation: We implemented all EASE variations in Apache Spark
and used BucketedRandomProjectionLSH class from Apache Spark MLlib [22]
for LSH. We used 0.25 as the sensitivity of the LSH across all variations of
EASE. This was selected experimentally based on the bucket size distributions
it yields for the e-commerce data. We set the number of hash tables in Buck-
etedRandomProjectionLSH to six; i.e., every case/rule is hashed using six hash
functions. These two parameters (i.e. sensitivity and number of hash tables)
could be treated as hyper parameters, but in order to narrow down the search
space (for hyper parameter tuning) we picked their values experimentally. Spark
MLlib provides built-in functionality for grid search, which we used for hyper
parameter tuning. It also contains classic predictors such as Logistic Regression
(LR) and Random Forest (RF) which we have used in our evaluations. The hyper
parameters we tuned for LR are the maximum number of iterations and the regu-
larization parameter; for RF they are the number of the tress and their maximum
depth. In our evaluations we used entropy as the underlying impurity measure
in RF. The area under the PR curve is calculated using the BinaryClassifica-
tionMetrics class from Spark MLlib. We used random sampling within buckets
as the underlying collision handling method in our implementation of EASE. We
implemented and tested four variants of EASE:

1. EASE-Strat-Local: Uses LSH for approximate nearest neighbor search for
case and rule retrieval. It uses the stratified version of the case base as the
training set and generates adaptations from the local neighborhood of the
input query only. The hyper parameters of EASE-Strat-Local are: number
of approximate nearest neighbors to use, number of adaptations to apply,
and maximum number of cases per bucket.
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Table 1. Gain in area under PR curve of EASE-Strat-Local, EASE-Full-Local, EASE-
Strat-Global, EASE-Full-Global, LR and RF over the baseline for engagement and
purchase propensity prediction tasks

Task
name

EASE
Strat-Local

EASE
Full-Local

EASE
Strat-Global

EASE
Full-Global LR RF

Engagement
Propensity

8.02% 7.42% 5.92% 5.17% 10.30% 12.02%

Purchase
Propensity

19.13% 29.01% 49.94% 65.41% 20.58% 11.54%

Click
Prediction

20.68% 39.72% 118.39% 145.86% 83.32% 72.30%

2. EASE-Full-Local: Differs from EASE-Strat-Local in using the whole training
set rather than the stratified version of the training data.

3. EASE-Strat-Global: Differs from EASE-Strat-Local in generating adapta-
tions by comparing each case with its approximate nearest neighbors, rather
than from the local neighborhood of the input query. In addition to the
hyper parameters listed for EASE-Strat-Local, EASE-Strat-Global requires
tuning the number of approximate nearest neighbors of cases to be used in
adaptation learning.

4. EASE-Full-Global: Differs from EASE-Strat-Global in using the whole train-
ing set rather than the stratified version of the training data.

In addition to these variants, we used an extreme approximate predictor as the
baseline. This baseline uses LSH to hash cases in the training set and creates
prototype cases by averaging the input features of all cases in the same hash
bucket and averaging of their labels. The only hyper parameter for this baseline
is the number of nearest prototypes to use building the solution.

4.2 Experimental Results

Questions 1 and 2: Comparative Accuracy and Effect of Preprocessing:
We conducted experiments to evaluate the accuracy (in terms of area under PR
curve) of different variations of EASE, LR, and RF compared to the baseline
method. Table 1 shows the gain in area of these methods over the baseline.

The experiments show the superior performance of EASE compared to other
methods under class imbalance settings. For purchase propensity, EASE-Full-
Global shows 65% improvement over the baseline method while LR and RF only
show 21% and 11% improvement over baseline respectively. For click prediction
EASE-Full-Global shows 146% improvement over the baseline while LR and
RF show 83.32% and 72.30% improvement respectively. The absolute values
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of area under PR curve for EASE-Strat-Local, EASE-Full-Local, EASE-Strat-
Global, EASE-Full-Global, LR and RF is 0.0027, 0.0031, 0.0049, 0.0055, 0.0041,
and 0.0039 respectively. We hypothesize that the superior performance of EASE
using global-local adaptation generation (i.e. EASE-Strat-Global and EASE-
Full-Global) over EASE with local-local adaptation generation (i.e. EASE-Strat-
Local and EASE-Full-Local) arises because, when there are very few instances
with a certain label values in the case base (i.e. class imbalance), it becomes
less likely to have enough of these instances in the local neighborhood of the
input query and therefore, the generated adaptations will be more homogenous.
However, with global-local adaptation generation there will be more diversity in
the generated adaptations, providing more benefit from ensemble adaptation. We
hypothesize that the superior performance of EASE over model-based machine
learning methods such as LR and RF for class imbalance follows from its lazy
nature, which enables considering the whole case base rather than abstracting a
portion into the mathematical models.

When class labels are more evenly distributed (i.e. engagement propensity
setting), the gap between EASE performance compared to classic machine learn-
ing models such as LR and RF is smaller and in fact LR and RF slightly outper-
form EASE but the difference is not drastic (compared to EASE-Strat-Local, 2%
for LR and 4% for RF). Among EASE variants, using the local-local method for
generating adaptations yields relatively better performance, as shown in Table
1. We hypothesize that sufficient learning opportunities in vicinity of the input
query and lack of consideration of context in the global-local method (cf. [14])
are the main reasons for local-local method’s superior performance in this case.

The experiments also show that for engagement propensity prediction, there
is only a modest difference between using the stratified version versus using
the full the training data, with the stratified version showing relatively better
performance. In the purchase propensity task, the strong class imbalance set-
ting, the non-stratified versions of EASE show better performance and this gap
is especially marked when the global-local method is used for generating the
adaptations. Overall, we conclude that pre-processing the case base with strati-
fied sampling is not necessary for EASE. This can save time and computational
resources, and is made feasible in practice by the scalability of EASE.

Question 3: Execution Time: The execution time of different methods de-
pends on the underlying technology used to implement them. We implemented
EASE in spark to be able to code everything ranging from LSH, to grid search,
to evaluation metrics in the same environment. Benchmarking the performance
of EASE implemented in Spark versus in other technologies such as NoSQL
databases is out of the scope of this work; we only report results based on Spark
execution times. We ran Spark on an Apache Mesos cluster with hundreds of
workers, several thousands of CPU units and Terabytes of memory. Preprocess-
ing the case base of several hundreds of millions of cases and conducting stratified
sampling takes tens of minutes processing time and building a single model (char-
acterizing a single set of departments, e.g., health and beauty) usually takes a
few minutes. Scaling these up to a scenario in which more models are required for
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different super department sets or engagement with different marketing vehicles,
the execution time for the model-based approach can go beyond several hours.
Using EASE makes it possible to avoid the preprocessing and model building
steps and to save this time and computational resources.

Building the solution for an input query usually takes several to several hun-
dreds of milliseconds for model based approaches such as LR or RF depending
on the number of features and the complexity of the model. This value increases
to a few seconds for EASE’s implementation in Spark. However, we believe by
using NoSQL databases the run time of EASE can be reduced to a few lookups
and a few mathematical operations such as calculating the distance between
cases, picking the top nearest neighbors and taking the average of a few values.
Considering that a lookup only costs a few milliseconds in NoSQL databases,
we believe that the whole solution building process can be kept below a second
using the appropriate storage solution. We expect the result to be that EASE
will provide much shorter preprocessing time and comparable solution building
time to model-building methods.

5 Conclusion and Future Work

This paper introduced Ensemble of Adaptations at ScaleE (EASE), a case-base
predictor for industrial big data settings that can handle skewed data. A central
goal of this project is to scale up CBR to handle case base sizes far beyond those
of previous studies and make CBR methods competetive for large-scale big data
prediction tasks.

EASE uses locality sensitive hashing to perform approximate nearest neigh-
bor search. LSH nearest neighbor sacrifices some accuracy for the sake of effi-
ciency. However, the ensemble-based nature of EASE is able to compensate for
its accuracy loss. EASE uses deduping and collision handling to maintain effi-
ciency for retrieval from arbitrarily large case bases. We evaluated EASE both
for a public real-time bidding domain with one million cases used for a Kaggle
challenge, and for building propensity models for an e-commerce platform with
hundreds of millions of customers. Experimental results showed superior per-
formance for EASE compared to sample classic machine learning models under
class imbalance settings and showed comparable performances under more even
label value distribution scenarios. However, compared to other model-based pre-
dictors EASE saves time and computational resources by skipping the model
building and training data preprocessing step.

The future directions for this work include more extensive performance bench-
marking under different levels of class imbalance and for implementations using
different platforms such as Apache Spark, NoSQL or an index-based solution
such as Elasticsearch. Another direction is adding contextual considerations to
adaptation retrieval when adaptations are generated from the entire case base
[14]. Yet another is to study the efficiency and performance effects of our alter-
native proposed collision handling mechanisms such as hierarchical LSH.
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27. Salamó, M., López-Sánchez, M.: Adaptive case-based reasoning using retention and
forgetting strategies. Know.-Based Syst. 24(2), 230–247 (Mar 2011)

28. Smyth, B., Cunningham, P.: The utility problem analysed: A case-based reason-
ing perspective. In: Proceedings of the Third European Workshop on Case-Based
Reasoning. pp. 392–399. Springer, Berlin (1996)

29. Smyth, B., Keane, M.: Remembering to forget: A competence-preserving case dele-
tion policy for case-based reasoning systems. In: Proceedings of the Thirteenth In-
ternational Joint Conference on Artificial Intelligence. pp. 377–382. Morgan Kauf-
mann, San Mateo (1995)

30. Smyth, B., McKenna, E.: Footprint-based retrieval. In: Case-Based Reasoning Re-
search and Development, ICCBR 1999. pp. 343–357. Springer, Berlin (1999)

31. Upadhyaya, S.R.: Parallel approaches to machine learninga comprehensive survey.
Journal of Parallel and Distributed Computing 73(3), 284 – 292 (2013), models
and Algorithms for High-Performance Distributed Data Mining

32. Zhu, J., Yang, Q.: Remembering to add: Competence-preserving case-addition poli-
cies for case base maintenance. In: Proceedings of the Fifteenth International Joint
Conference on Artificial Intelligence. pp. 234–241. Morgan Kaufmann (1999)


