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1 Introduction

Arti�cial intelligence (AI) is a branch of computer science that studies the computational
requirements for tasks such as perception, reasoning, and learning, and develops systems to
perform those tasks. AI is a diverse �eld whose researchers address a wide range of prob-
lems, use a variety of methods, and pursue a spectrum of scienti�c goals. For example, some
researchers study the requirements for expert performance at specialized tasks, while oth-
ers model commonsense processes; some researchers explain behaviors in terms of low-level
processes, using models inspired by the computation of the brain, while others explain them
in terms of higher-level psychological constructs such as plans and goals. Some researchers
aim to advance understanding of human cognition, some to understand the requirements
for intelligence in general (whether in humans or machines), and some to develop artifacts
such as intelligent devices, autonomous agents, and systems that cooperate with people to
amplify human abilities.

AI is a young �eld|even its name, \arti�cial intelligence," was only coined in 1956. One
of the challenges for AI has been to determine which tasks to study|what constitutes an
\AI question"|and how to evaluate progress. Much early AI research focused on tasks
commonly thought to require high intelligence in people, such as playing high-quality chess.
Skeptics viewed this as an impossible assignment, but AI made rapid progress. By the
1960's, programs were capable of tournament play. In 1997, in a landmark match, the
chess system Deep Blue defeated Gary Kasparov, the world's human chess champion for the
previous twelve years. At the same time, however, AI research was illuminating the enormous
di�culty of commonsense tasks that people take for granted, such as understanding stories
or conversations. Developing programs that can deal at a human level with rich everyday
reasoning remains a fundamental research challenge.

The �rst half-century of AI has yielded a wide range of results. AI research has illumi-
nated the nature of reasoning problems, and the fundamental requirements for intelligent
systems. AI research in the area of cognitive science has developed models that have helped

1



to understand human cognition. Applied AI research has provided high-impact applications
systems that are in daily use throughout the world. This chapter provides a brief introduc-
tion to the history of AI, sketches some major research areas, and closes by illustrating the
practical impact of AI technology.

2 The History of AI

The name \arti�cial intelligence" dates only to the 1950's, but its roots stretch back thou-
sands of years, into the earliest studies of the nature of knowledge and reasoning. Intelligent
artifacts appear in Greek mythology; the idea of developing ways to perform reasoning au-
tomatically, and e�orts to build automata to perform tasks such as game-playing, date back
hundreds of years. Psychologists have long studied human cognition, helping to build up
knowledge about the nature of human intelligence. Philosophers have analyzed the nature
of knowledge, have studied the mind-body problem of how mental states relate to physical
processes, and have explored formal frameworks for deriving conclusions.

The advent of electronic computers, however, provided a revolutionary advance in the
ability to study intelligence by actually building intelligent artifacts|systems to perform
complex reasoning tasks|and observing and experimenting with their behavior to identify
fundamental principles. In 1950, a landmark paper by Alan Turing argued for the possibility
of building intelligent computing systems [Turing, 1950]. That paper proposed an operational
test for comparing the intellectual ability of humans and AI systems, now generally called the
\Turing Test." In the Turing Test, a judge uses a teletype to communicate with two players
in other rooms: a person and a computer. The judge knows the players only by anonymous
labels, such as \player A" and \player B," on the text that they send to him. By typing
questions to the players and examining their answers, the judge attempts to decide which
is which. Both the human and machine try to convince the questioner that they are the
human; the goal for the machine is to answer so that the judge cannot reliably distinguish
which is which.

The game is intended to provide a rich test of intellectual abilities, separated from physical
capabilities. The questions are unrestricted; Turing's samples range from \Please write me
a sonnet on the subject of the Forth Bridge," to \Add 34957 to 70764." Turing's examples
of possible responses make clear that the aim is to imitate human intelligence, rather than
to demonstrate superhuman capabilities: His sample responses are \Count me out on this
one. I never could write poetry," and, after a 30-second pause, 105,621|which is wrong.

The signi�cance of the Turing Test has been controversial. Some, both inside and outside
AI, have believed that building a system to pass the Turing Test should be the goal of AI.
Others, however, reject the goal of developing systems to imitate human behavior. Ford and
Hayes (1998) illustrate this point with an analogy between developing arti�cial intelligence
and developing mechanical ight. Early e�orts at mechanical ight were based on trying to
imitate the ight of birds, which at that time were the only available examples of ight. How
birds ew was not understood, but their observed features (aspects such as beaks, feathers,
and apping wings) could be imitated, and become models for aircraft (even to the extent
of airplanes with beaks being featured in a 1900s textbook on aircraft design!) Success at
mechanical ight, however, depended on replacing attempts at imitation with study of the

2



functional requirements for ight, and the development of aircraft that used all available
methods to achieve them. In addition, passing the Turing Test is not a precondition for
developing useful practical systems. For example, an intelligent system to aid doctors or to
tutor students can have enormous practical impact with only the ability to function in a
speci�c, limited domain.

2.1 The First Decades

Turing's paper surveys many common arguments against the possibility of AI and provides
responses to each one. One of these arguments is that machines \can only do what they
are programmed to do," from which some conclude that programs could never \take us by
surprise." Shortly after the appearance of Turing's paper, a program provided concrete proof
that programs can go beyond their creators: Arthur Samuel wrote the �rst checkers-playing
program, which used learning techniques to develop tournament-level skills, surpassing its
creator's own abilities [Samuel, 1963].

Early AI research rapidly developed systems to perform a wide range of tasks often
associated with intelligence in people, including theorem-proving in geometry, symbolic in-
tegration, solving equations, and even solving analogical reasoning problems of the types
sometimes found on human intelligence tests. However, research also revealed that methods
which worked well on small sample domains might not \scale up" to larger and richer tasks,
and led to an awareness of the enormous di�culty of the problems that the �eld aimed to
address. A classic example concerns early work in machine translation, which was recognized
in the 1960's to be a far more di�cult problem than expected|causing the termination of
funding for machine translation research.

Two impediments to wider application of early AI systems were their general methods and
lack of knowledge. For small tasks, exhaustively considering possibilities may be practical,
but for rich tasks, specialized knowledge is needed to focus reasoning. This observation led to
research on knowledge-based systems, which demonstrated that there is an important class of
problems requiring deep but narrow knowledge, and that systems capturing this knowledge
in the form of rules can achieve expert-level performance for these tasks. An early example,
DENDRAL [Feigenbaum and Buchanan, 1993], used rules about mass spectrometry and
other data to hypothesize structures for chemical compounds. Using only simple inference
methods, it achieved expert-level performance and was the source of results published in the
chemical literature. Such systems provided the basis for numerous applied AI systems (See
EXPERT SYSTEMS). Continuing research revealed the need to develop additional methods
for tasks such as acquiring the knowledge for systems to use, dealing with incomplete or
uncertain information, and automatically adapting to new tasks and environments.

The accompanying timeline (http://www.aaai.org/AITopics/bbhist.html), prepared by
Bruce Buchanan, provides a list of major milestones in the development of AI, and Russell
and Norvig provide historical summary of the �eld in Chapter 1 of their AI textbook [Russell
and Norvig, 1995]. An article by Hearst and Hirsh [Hearst and Hirsh, 2000] presents a range
of viewpoints on the greatest trends and controversies in AI, collected from leading �gures
in the development of arti�cial intelligence.
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3 AI Perspectives

Just as AI researchers must select the goals they will pursue, they must select the frame-
works within which to pursue them. These frameworks provide a perspective on AI problems,
shaping researchers' choices of which questions to address, how to address them, and what
constitutes an answer. One perspective, which can be described as biomorphic, takes in-
spiration from biological systems. Neural network models, for example, are inspired by
neurons in the brain (See NEURAL NETWORKS). Another example is genetic algorithms,
which take their inspiration from evolution, \evolving" promising solutions by a simulated
process of natural selection (See GENETIC ALGORITHMS AND EVOLUTIONARY COM-
PUTATION). Such models may be used not only for the pragmatic goals of solving di�cult
problems, but also to study the biological processes that they model, in order to increase
understanding of the factors a�ecting living organisms (See ARTIFICIAL LIFE).

Another perspective takes its inspiration from human cognition, focusing on functional
constraints rather than on biologically-inspired mechanisms. An illustration is research on
case-based reasoning (CBR), which was inspired by the role of memory in human problem-
solving. For example, doctors use case-based reasoning when they treat an illness by remem-
bering a similar previous case|the treatment of a previous patient with similar symptoms|
and adapting the prior treatment to �t changed circumstances (e.g., adjusting the dosage for
a child) (See CASE-BASED REASONING.) This view of problem-solving suggests studying
issues such as how a memory of cases must be organized to model the retrievals of human
reasoners, which can provide hypotheses about human reasoning as well as useful mecha-
nisms for AI systems. [Leake, 1998] describes how case-based reasoning provides a stance
towards cognitive science, and [Leake, 1996] provides an overview of major trends in CBR
research and applications.

Yet another perspective is more technological: it studies the requirements and mecha-
nisms for intelligence, without restricting the mechanisms considered. Practitioners seeking
to develop useful systems, and researchers interested in understanding the general nature of
intelligence, need not be constrained by biology or psychology|the processes that evolved
in human reasoners are not necessarily the best ones for achieving high-quality performance
in intelligent machines. For example, studies of the psychology of chess suggest that chess
masters consider perhaps two moves per second, with their ability to recognize known board
patterns playing a key role in their choice of moves. Deep Blue, however, defeated Gary Kas-
parov by exploiting a special architecture that enabled it to consider 200 million positions
per second (See ARTIFICIAL INTELLIGENCE AND GAMES).

4 A Sampling of AI Research Areas

4.1 Search

In 1976, Newell and Simon [Newell and Simon, 1976] proposed that intelligent behavior
arises from the manipulation of symbols|entities that represent other entities, and that the
process by which intelligence arises is heuristic search. Search is a process of formulating
and examining alternatives. It starts with an initial state, a set of candidate actions, and

4



1

2

34

5

6

7

8

1 2 3

4 5 6

7 8

Figure 1: Sample initial and goal states for the 8 puzzle.

criteria for identifying the goal state. It is often guided by heuristics, or \rules of thumb,"
which are generally useful, but not guaranteed to make the best choices. Starting from the
initial state, the search process selects actions to transform that state into new states, which
themselves are transformed into more new states, until a goal state is generated. For example,
consider a search program to solve the \8-puzzle" for children, which is shown in Figure 1.
A child solves the puzzle by sliding the numbered tiles (without lifting them) to reach a
con�guration in which the tiles are all in numerical order, as shown in the second board in
the �gure. When the 8 puzzle is seen as a search problem, the initial state is a starting board
position, each action is a possible move of one tile up, down, left, or right (when the position
it will move to is blank), and the goal state is the second state in Figure 1. Here a heuristic
function might suggest candidate moves by comparing their results to the goal, in order to
favor those moves that appear to be making progress towards the solution. For this search
problem, what is of interest is the solution path|how the solution was generated. However,
for some problems, only the �nal state is important|a designer may only be interested in
generating a successful design, rather than how it was generated.

A central problem in search is the combinatorial explosion of alternatives to consider.
For example, if there are 10 possible actions from each state, after 5 moves there are a
million possibilities to consider for the next move. Numerous techniques have been developed
to improve search performance, and the combination of intelligent strategies and special-
purpose computing hardware has enabled AI systems to rapidly search enormous spaces of
alternatives. For examples of the role of search in two speci�c AI areas, see AUTOMATED
REASONING and ARTIFICIAL INTELLIGENCE AND GAMES.

4.2 Knowledge capture, representation and reasoning

In order to guide search|or even to describe problems, actions, and solutions|the relevant
domain knowledge must be encoded in a form that can be e�ectively manipulated by a
program. More generally, the usefulness of any reasoning process depends not only on the
reasoning process itself, but also on having the right knowledge and representing it in a form
the program can use.

In the logicist approach to knowledge representation and reasoning, information is en-
coded as assertions in a logic, and the system draws conclusions by deduction from those
assertions (See AUTOMATED REASONING). Other research studies non-deductive forms
of reasoning, such as reasoning by analogy and abductive inference|the process of inferring
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the best explanation for a set of facts. Abductive inference does not guarantee sound con-
clusions, but is enormously useful for tasks such as medical diagnosis, in which a reasoner
must hypothesize causes for a set of symptoms.

Capturing the knowledge needed by AI systems has proven to be a challenging task.
The knowledge in rule-based expert systems, for example, is represented in the form of
rules listing conditions to check for, and conclusions to be drawn if those conditions are
satis�ed. For example, a rule might state that IF certain conditions hold (e.g., the patient has
certain symptoms), THEN certain conclusions should be drawn (e.g., that the patient has a
particular condition or disease). A natural way to generate these rules is to interview experts.
Unfortunately, the experts may not be able to adequately explain their decisions in a rule-
based way, resulting in a \knowledge-acquisition bottleneck" impeding system development.

One approach to alleviating the knowledge acquisition problem is to develop sharable
knowledge sources that represent knowledge in a form that can be re-used across multiple
tasks. The CYC project, for example, is a massive ongoing e�ort to encode the \consensus
knowledge" that underlies much commonsense reasoning [Lenat, 1995]. Much current knowl-
edge representation research develops sharable ontologies that represent particular domains.
Ontologies provide a formal speci�cation of the concepts in the domain and their relation-
ships, to use as a foundation for developing knowledge bases and facilitating knowledge
sharing [Chandrasekaran et al., 1999].

4.3 Reasoning under uncertainty

AI systems|like people|must often act despite partial and uncertain information. First,
the information received may be unreliable (e.g., a patient may mis-remember when a disease
started, or may not have noticed a symptom that is important to a diagnosis). In addition,
rules connecting real-world events can never include all the factors that might determine
whether their conclusions really apply (e.g., the correctness of basing a diagnosis on a lab
test depends whether there were conditions that might have caused a false positive, on the
test being done correctly, on the results being associated with the right patient, etc.) Thus in
order to draw useful conclusions, AI systems must be able to reason about the probability of
events, given their current knowledge (See PROBABILITY). Research on Bayesian reasoning
provides methods for calculating these probabilities. Bayesian networks, graphical models
of the relationships between variables of interest, have been applied to a wide range of
tasks, including natural language understanding, user modeling, and medical diagnosis. For
example, Intellipath, a commercial system for pathology diagnosis, was approved by the
AMA and has been �elded in hundreds of hospitals worldwide. Diagnostic reasoning may
also be combined with reasoning about the value of alternative actions, in order to select
the course of action with the greatest expected utility. For example, a medical decision-
making system might make decisions by considering the probability of a patient having a
particular condition, the probability of bad side-e�ects of a treatment and their severity, and
the probability and severity of bad e�ects if the treatment is not performed.

In addition to dealing with uncertain information, everyday reasoners must be able to
deal with vague descriptions, such as those provided in natural language. For example, a
doctor who is told that a patient has a \high fever," must be able to reason about the fuzzy
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concept of \high fevers." Whether a particular fever is \high" is not simply a true or false
decision decided by a cuto� point, but rather, a matter of degree. Fuzzy reasoning provides
methods for reasoning about vague knowledge (see FUZZY REASONING).

4.4 Planning, Vision, and Robotics

The conclusions of the reasoning process can determine goals to be achieved. Planning
addresses the question of how to determine a sequence of actions to achieve those goals. The
resulting action sequences may be designed to be applied in many ways, such as by robots
in the world, by intelligent agents on the Internet, or even by humans. Planning systems
may use a number of techniques to make the planning process practical, such as hierarchical
planning, reasoning �rst at higher levels of abstraction and then elaborating details within
the high-level framework (e.g., as a person might do when �rst outlining general plans for
a trip, and then considering �ne-grained details such as how to get to the airport), and
partial-order planning, enabling actions to be inserted in the plan in any order, rather than
chronologically, and subplans to be merged. Dean and Kambhampati (1997) provide an
extensive survey of this area.

In real-world situations, it is seldom possible to generate a complete plan in advance and
then execute it without changes. The state of the world may be imperfectly-known, the
e�ects of actions may be uncertain, the world may change while the plan is being generated
or executed, and the plan may require the coordination of multiple cooperating agents, or
counterplanning to neutralize the interference of agents with opposing goals. Determining
the state of the world and guiding action requires the ability to gather information about the
world, though sensors such as sonar or cameras, and to interpret that information to draw
conclusions (See MACHINE VISION). In addition, carrying out actions in a messy and
changing world may require rapid responses to important events (e.g., for a robot-guided
vehicle to correct a skid), or an ongoing process of rapidly selecting actions based on the
current context (for example, when a basketball player must avoid an opponent). Such
problems have led to research on reactive planning, as well as on how to integrate reactive
methods with the deliberative methods providing long-term guidance (See ROBOTICS). The
RoboCup Federation sponsors an annual series of competitions between robot soccer teams
as a testbed for demonstrating new methods and extending the state of the art in robotics
(www.robocup.org).

4.5 Natural language processing

Achieving natural interactions between humans and machines requires machines to under-
stand and generate language. Likewise, understanding human communication requires the
understanding of how language is processed by people. The nature of human language raises
many challenging issues for language processing systems: natural language is elliptic, leav-
ing much unstated, and its meaning is context-dependent (\Mary took aspirin" will have a
di�erent meaning when explaining how she recovered from her headache, or her arrest for
shoplifting). Some natural language processing approaches investigate algorithms for syn-
tactic parsing, to determine the grammatical structure of textual passages; others take a
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cognitively-inspired view, studying the knowledge structures underlying human understand-
ing and modeling the process by which they are applied, or even attempting to directly apply
expectations from memory to the parsing process. Other systems apply statistical methods
to tasks such as information extraction from newspaper articles. Machine translation sys-
tems, though still far from replacing human translators for literature, can now generate
useful translations (See NATURAL LANGUAGE PROCESSING).

4.6 Machine Learning

In a complex world, it is di�cult to encode all the knowledge that a system may need, and
may also be di�cult to keep system knowledge up-to-date. Machine learning research focuses
on how AI systems can augment or re�ne their own knowledge to improve their performance.
Just as people use di�erent learning techniques, machine learning systems use a wide range
of approaches. Some of these are supervised, in that they presume that the learner will
have access to the correct answers; others are unsupervised, requiring the learner to proceed
without bene�t of feedback.

Inductive learning systems learn by analyzing examples to identify correlations between
inputs and outputs. For example, neural network models process inputs according to net-
works of idealized neurons, and learn by algorithms that adjust the weights of neural con-
nections based on correlations between inputs and outputs in training examples. A neural
network system to recognize faces might be trained on a digitized set of photographs of faces
(inputs) and the associated identities (outputs), to learn which facial features are correlated
with di�erent individuals (See NEURAL NETWORKS). Theory-driven learning approaches
use background knowledge to guide generalizations, in order to focus on important types of
features. Instance-based learning systems and case-based reasoners perform \lazy learning:"
rather than attempting to generalize experiences as they are encountered, case-based rea-
soning systems store learned cases as-is, adapting or generalizing their lessons only if needed
to solve new problems (See MACHINE LEARNING).

5 Practical Impact of AI

AI technology has had broad impact. AI components are embedded in numerous devices,
such as copy machines that combine case-based reasoning and fuzzy reasoning to automat-
ically adjust the copier to maintain copy quality. AI systems are also in everyday use for
tasks such as identifying credit card fraud, con�guring products, aiding complex planning
tasks, and advising physicians. AI is also playing an increasing role in corporate knowledge
management, facilitating the capture and reuse of expert knowledge. Intelligent tutoring sys-
tems make it possible to provide students with more personalized attention, and even for the
computer to listen to what children say and respond to it (http://www.cs.cmu.edu/~listen/).
Cognitive models developed by AI can also suggest principles for e�ective support for human
learning, guiding the design of educational systems [Leake and Kolodner, 2001].

AI technology is being used in autonomous agents that independently monitor their
surroundings, make decisions and act to achieve their goals without human intervention.
For example, in space exploration, the lag times for communications between earth and
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probes make it essential for robotic space probes to be able to perform their own decision-
making|Depending on the relative locations of the earth and Mars, one-way communication
can take over 20 minutes. In a 1999 experiment, an AI system was given primary control of a
spacecraft, NASA's Deep Space 1, 60,000,000 miles from earth, as a step towards autonomous
robotic exploration of space (see rax.arc.nasa.gov). Methods from autonomous systems also
promise to provide important technologies to aid humans. For example, in a 1996 experiment
called \No Hands Across America," the RALPH system [Pomerleau and Jochem, 1996], a
vision-based adaptive system to learn road features, was used to drive a vehicle for 98
percent of a trip from Washington, D.C., to San Diego, maintaining an average speed of 63
mph in daytime, dusk and night driving conditions. Such systems could be used not only
for autonomous vehicles, but also for safety systems to warn drivers if their vehicles deviate
from a safe path.

In electronic commerce, AI is providing methods for determining which products buyers
want and con�guring them to suit buyers' needs. The explosive growth of the internet
has also led to growing interest in internet agents to monitor users' tasks, seek needed
information, and learn which information is most useful [Hendler, 1999]. For example, the
Watson system monitors users as they perform tasks using standard software tools such as
word processors, and uses the task context to focus search for useful information to provide
to them as they work [Budzik and Hammond, 2000].

Continuing investigation of fundamental aspects of intelligence promises broad impact
as well. For example, researchers are studying the nature of creativity and how to achieve
creative computer systems, providing strong arguments that creativity can be realized by
arti�cial systems [Hofstadter, 1985]. Numerous programs have been developed for tasks
that would be considered creative in humans, such as discovering interesting mathematical
concepts, in the program AM [Lenat, 1979], making paintings, in Aaron [Cohen, 1995], and
performing creative explanation, in SWALE [Schank and Leake, 1989]. The task of AM, for
example, was not to prove mathematical theorems, but to discover interesting concepts. The
program was provided only with basic background knowledge from number theory (e.g., the
de�nition of sets), and with heuristics for revising existing concepts and selecting promising
concepts to explore. Starting from this knowledge, it discovered fundamental concepts such
as addition, multiplication, and prime numbers. It even rediscovered a famous mathematical
conjecture that was not known to its programmer: Goldbach's conjecture, the conjecture that
every even integer greater than 2 can be written as the sum of two primes. Buchanan (2001)
surveys some signi�cant projects in machine creativity and argues for its potential impact
on the future of arti�cial intelligence.

In addition, throughout the history of AI, AI research has provided a wellspring of contri-
butions to computer science in general. For example, the computer language Lisp, developed
by John McCarthy in 1958, provided a tool for developing early AI systems using symbolic
computation, but has remained in use to the present day, both within and outside AI, and
has had signi�cant inuence on the area of programming languages. Later AI research also
gave rise to the computer language, Prolog, used for logic programming. A key idea of logic
programming is that the programmer should specify only the problem to be solved and con-
straints on its solution, leaving the system itself to determine the details of how the solution
should be obtained.
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6 Conclusion and Resources

In its short existence, AI has increased understanding of the nature of intelligence and
provided an impressive array of applications in a wide range of areas. It has sharpened
understanding of human reasoning, and of the nature of intelligence in general. At the same
time, it has revealed the complexity of modeling human reasoning, providing new areas and
rich challenges for the future.

AAAI, the American Association for Arti�cial Intelligence, maintains an extensive on-line
library of articles on AI, ranging from general introductions to focused articles on speci�c
areas, at http://www.aaai.org/Path�nder/. AI Magazine, the o�cial magazine of AAAI,
publishes accessible articles on current research and applications, as well as tutorials on
important AI areas. After a delay, full-text electronic versions of articles from back issues
are freely available from the magazine home page http://www.aimagazine.org. The maga-
zinesIEEE Intelligent Systems and Intelligence are additional sources for accessible articles
on new developments in AI and its applications.
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