
Meter as Mechanism: A Neural Network that Learns Metrical
Patterns

Michael Gasser, Douglas Eck and Robert Port
Cognitive Science Program

Indiana University

Abstract

One kind of prosodic structure that apparently underlies both music and
some examples of speech production is meter. Yet detailed measurements
of the timing of both music and speech show that the nested periodicities
that de�ne metrical structure can be quite noisy in time. What kind of
system could produce or perceive such variable metrical timing patterns?
And what would it take to be able to store and reproduce particular metrical
patterns from long-term memory? We have developed a network of coupled
oscillators that both produces and perceives patterns of pulses that conform
to particular meters. In addition, beginning with an initial state with no
biases, it can learn to prefer the particular meter that it has been previously
exposed to.

Meter in Music and Speech

Meter is an abstract structure in time based on the periodic recurrence of pulses,
that is, on equal time intervals between distinct phase zeros. From this point of view, the
simplest meter is a regular metronome pulse. But often there appear meters with two or
three (or rarely even more) nested periodicities with integral frequency ratios. A hierarchy
of such metrical structures is implied in standard Western musical notation, where di�erent
levels of the metrical hierarchy are indicated by kinds of notes (quarter notes, half notes,
etc.) and by the bars separating measures with an equal number of beats. For example,
in a basic waltz-time meter, there are individual beats, all with the same spacing, grouped
into sets of three, with every third one receiving a stronger accent at its onset. In this
meter there is a hierarchy consisting of both a faster periodic cycle (at the beat level) and
a slower one (at the measure level) that is 1/3 as fast, with its onset (or zero phase angle)
coinciding with the zero phase angle of every third beat. This essentially temporal view of
meter contrasts with the traditional symbol-string theories (such as Hayes, 1981 for speech
and Lerdahl and Jackendo�, 1983 for music).

Metrical systems, however they are de�ned, seem to underlie most of what we call
music. Indeed, an expanded version of European musical notation is found to be practical
for transcribing most music from around the world. That is, most forms of music employ
nested periodic temporal patterns (Titon, Fujie, & Locke, 1996). Musical notation has
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often been used to describe human speech as well (Jones, 1932; Martin, 1972) even though
clear empirical evidence for the appropriateness of the notation is not often provided and
has proven very di�cult to obtain (Dauer, 1983; Lehiste, 1977). Nevertheless, recently new
experimental techniques have been developed that encourage the production of speech that
is clearly structured by meter (Cummins & Port, 1998; Large & Jones, 1999; McAuley &
Kidd, 1998; Tajima & Port, 1999).

An awkward di�culty is that the traditional de�nition of meter employs the notion of
an integer. Data on both music and speech show that the perfect temporal ratios predicted
by such a de�nition are never observed in performance. In musical performance, various
kinds of temporal deviations in the timing speci�ed by musical notation are well-known.
And this is not merely Gaussian noise in time, but frequently systematic deviations from
integer-ratio time intervals. These \stylistic features" may also be observed for individual
performers (Todd, 1985). As for speech, claims of simple isochronous intervals between, say,
stressed syllables in English or mora onsets in Japanese, have been debunked many times
(Dauer, 1983; Port, Dalby, & O'Dell, 1987). In fact, the deviations are so large (Dauer,
1983) that some have questioned whether meter in speech may not be entirely a perceptual
illusion (Lehiste, 1977; van Santen, 1996) with no basis whatever in the raw phenomena of
speech production. We will suggest that this point of view is correct, at least insofar as it
serves to emphasize the role of the perceptual mechanism. Whether the pattern is \really"
in the sound or not is a philosophical issue.

The important theoretical issue is whether there can be a notion of meter that does
not depend on perfect integer ratios of time. If the intervals are variable and \noisy" or if
they are systematically perturbed, then is the notion of meter appropriate at all, even when
listeners report that they hear the meter and can tap their foot to it? Our answer is to
say that there is meter in these cases. But to understand this kind of meter we must look
beyond the simplistic assumptions about perfect isochrony and explore the measurement
mechanism in detail. It seems that, in the end, the closest one can get to a formal theory of
meter will be a running system that actually recognizes or \locks in" to a range of patterns
that is close to what human listeners recognize.

The best solution to the theoretical problem, then, is to propose that meter be de�ned
by reference to a speci�c mechanism { a system that recognizes or deals responsively with
metrically structured stimulation. If we can design a mechanism which prefers the integer
ratios of the standard de�nition but is tolerant of variation, then we may have an initial
account of the kind of meter that humans actually produce and perceive when doing speech
and music.

There has been recent progress in this direction with the development of adaptive
oscillator models that adjust their frequency and phase to a sequence of input pulses (Large
& Jones, 1999; Large & Kolen, 1994; McAuley, 1995; McAuley & Kidd, 1998). These models
can recognize simple metrical patterns of pulses despite the presence of noise on interpulse
intervals. This is a major step forward, but still they are not able either (1) to learn to
prefer one kind of meter over another based on experience or (2) to learn a pattern of speci�c
event types associated with particular temporal positions in a meter. Our goal here is to
model the �rst of these skills, demonstrating a system that is initially equipotential for a
range of patterns but, based on experience, eventually displays speci�c preferences.

If languages and musical styles can share some form of metricality, then we still need
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to study how metrical preferences could arise in a model of linguistic meter. A complete
model should include an account of the acquisition of speci�c metrical patterns, showing
how familiarity with (and stability of) particular metrical patterns can arise from selective
exposure.

The goal of this paper is to report on our progress toward such a mechanism, one
which learns to produce and perceive real-world meter-based structures. We focus neither
on speech nor on music but on the abstract periodic patterns which seem to underlie both.1

In the next section, we describe the model and in the following, we demonstrate its capacity
to learn particular sorts of metrical patterns.

Towards a Model of Cognitive Meter

In this section we describe a neural-network model, the Self-Organizing Network of
Oscillators for Rhythm (SONOR), which recognizes and produces simple patterns charac-
terized by hierarchical periodicity and learns to prefer patterns similar to those it has been
exposed to. The model combines mechanisms from oscillator models of the perception of
periodic patterns and neural network models of learning.

Initial Assumptions

The model is based on several assumptions concerning the nature of cognitive meter
(see Cummins & Port, 1998; Port, 1998; Port, Cummins, & Gasser, 1996; Tajima & Port,
1999 for more discussion). We will focus on the model itself in this paper and how well it
implements these assumptions and demonstrates the learning capacities that we sought.

1. Underlying the temporal patterns that make up music and speech are sequences of
discrete pulses or beats.2 Thus not all points in time are equally important; it is usually only
the phase zeros whose locations matter. (See Cummins & Port, 1998 and Tajima, 1998 for
further discussion.) Furthermore, the phase zeros are normally aligned with energy onsets,
for speech, especially vowel onsets.

2. We assume the spacing of the pulses in time is constrained by the existence of
attractors at particular phase angles of an adaptive oscillator (Large & Jones, 1999;
Large & Kolen, 1994; McAuley, 1995). When an adaptive oscillator is stimulated in a
roughly periodic way, it could be said to \represent" an estimate of input rate and should
be able to \predict" the next few phase zeros into the future.

3. Implicit in this picture is that musicians and speakers often tend to organize their
production timing so as to locate prominent events near phase zeros of such oscillators.3

Thus syllable onsets appear to be attracted to phase zeros of these oscillators, and listeners
tend to recognize roughly periodic input pulses (Delgutte, 1982; Scott, 1993; Tajima, 1998).

1See Handel (1989) for similarities in the perception of speech and music.
2Because we assume that the process which extracts beats operates more or less directly on the physical

signal, it does not interact with the higher-level processes responsible for meter, which are our concern in
this paper.

3As noted above, expert musicians also make use of \expressive timing," systematic deviations from
perfect periodicity. While a complete model of meter would need to account for how this is achieved and
how listeners respond to it, it is beyond the scope of the present model, which is intended as a �rst stab at
the basic capacities that even young children are expected to master.
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4. Real world events can occur at all possible time scales, of course. Our interest here
is in patterns where the pulses are in the \cognitive time scale" (van Gelder & Port, 1995)
range from about 0.1 second up to 5-10 seconds. This is the range of time scales for basic
human movements, from eyeblinks and �nger drumming up to a gesture to shoot a basket
or pick a shoe up o� the oor.

5. Nesting of one period within another is frequently observed. This implies a cogni-
tive predisposition to hear and produce hierarchical patterns with, say, two or three beats
grouped into a series of identical \measures". These are found in music and in speech genres
like poetry, chant, and experimental speech cycling. In perception, periodicity at multiple
time scales may permit di�erent models of dynamic attending (Large & Jones, 1999; Jones
& Boltz, 1989).
We assume that nesting in complex meters is supported by two (or more) oscillators, one
at each of two (or more) frequencies, and that these oscillators are strongly coupled to each
other.

6. The perception and the production of any real temporal patterns are governed by
a single underlying system (Kelso, 1995). This system consists of many coupled oscillators
that may involve multiple internal oscillators plus various cyclic external visual or auditory
events. Metrical timing in music and language is probably universal, and we suspect that
this universality results from the interaction of some innate neural predilection, the physics
of the human body, and periodicity in the environment. On the production end, of course,
periodic performance may be supported in part by resonances of the physical body as well
as by systems of nervous tissue. But in the most general terms, a limit cycle is one of the
small set of stable ways in which physical systems (including nervous tissue) can behave
dynamically (Abraham & Shaw, 1983; Strogatz, 1994). A meter o�ers a simple way of
guiding both action and attention in time (Large & Jones, 1999; Jones & Boltz, 1989).

Given these orientational assumptions, our project sought to develop a model that
addresses several speci�c issues. First, in order to simplify the problem of meter, we did
not attempt here to incorporate frequency adaptation (although methods for doing this are
now well-known). Our goal here was to model meter with a set of oscillators that couple in
various ways depending on training experience:

1. To expect periodicity only within certain frequency ranges. For example, following
presentation of patterns which repeat at a rate of 2 beats per second, the system should
prefer these to patterns of 3 beats per second.

2. To respond better to nested meters with which the system has had experience than
to unfamiliar ones. For example, if the system has been presented with two-beat patterns,
then it should couple better to those than to three-beat patterns.

3. To respond di�erentially to several frequently occurring meters and jump from one
meter to the other when required by the input.

In sum, a system which deals with musical or linguistic patterns must be capable
of perceiving periodicity at several hierarchic levels in the sequence of pulses. It should
naturally produce similar sequences when input drops away. And it should learn to prefer
particular sorts of periodicities over others. SONOR accommodates these requirements by
combining features of oscillator and neural network models. Next we consider briey some
previous work on oscillator models of temporal processing.
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Previous Work

There have been several successful attempts recently to model the basic elements of
musical and linguistic rhythm using intrinsic sinusoidal oscillators, each characterized by
its instanteous phase and its preferred frequency (Large & Kolen, 1994; McAuley, 1995;
Miller, Scarborough, & Jones, 1992). Most closely related to SONOR are the adaptive

oscillator models of Large & Kolen (1994) and McAuley (1995). The oscillators in these
studies respond to external pulses which are relatively close to their zero phases by resetting
or adjusting their zero phases in the direction of the observed input pulse period. The
oscillators may also adjust their frequencies in response to external input. These models
have been shown to exhibit several properties desirable in a model of rhythm perception
and production:

1. They are relatively robust to temporal noise in the input.
2. Single oscillators model the performance of subjects in tempo discrimination tasks

(McAuley, 1995; McAuley & Kidd, 1998).
3. Banks of adaptive oscillators with di�erent preferred frequencies can discover met-

rical structure in music (Large & Kolen, 1994).
What the adaptive oscillator models lack is a mechanism for learning speci�c rhythmic

patterns from the world. In SONORwe build on the adaptive oscillator models by combining
oscillators in a network in which the connections between the oscillators are trainable. In our
simulations thus far we do not, however, incorporate the property of frequency adaptation.

There is also a signi�cant body of work on the properties of networks of coupled
oscillators, which have been used to model both rhythmic behavior and feature binding
(see Baldi & Meir, 1990). Two types of systems have been studied. One type consists
of oscillators similar to (but generally simpler than) the adaptive oscillators studied by
Large & Kolen (1994) and McAuley (1995). The oscillators in the network interact through
\phase pulling": the rate of change of an oscillator's phase depends not only on its preferred
frequency but also on a coupling function of the di�erence between its phase and the phases
of other coupled oscillators. The coupling function is normally an odd periodic function
such as sine. Each pair of coupled oscillators also has an associated connection strength
which scales the coupling.

Another type of system consists of relaxation oscillators which are meant to model
more accurately the properties of neuronal synapses (FitzHugh, 1961; Nagumo, Arimoto,
& Yoshizawa, 1962; Somers & Kopell, 1993). Their behavior is characterized by di�erential
equations in two variables and may be implemented in the form of pairs of excitatory and
inhibitory connectionist units (Campbell & Wang, 1996; Somers & Kopell, 1993). Unlike
the units in phase-pulling models, these are not intrinsic oscillators. Rather they exhibit
oscillatory behavior only in the presence of input, either external input or input from other
oscillators.

In none of these coupled network models are the coupling weights learned as the net-
works are exposed to inputs. SONOR adds Hebbian learning to networks of the adaptive
oscillators. While relaxation oscillators are closer in their behavior to actual neurons, adap-
tive oscillators seem to be the more appropriate level for investigating the learning of meter
in neural networks because of the direct control over coupling which they a�ord.
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Overall SONOR Architecture and Behavior

SONOR deals with the perception and production of metrical pulse sequences, as
in other oscillator models of rhythm (Large & Kolen, 1994; McAuley, 1995; Miller et al.,
1992), by building the periodicity in as a primitive feature of the basic processing units of
the system. The units in SONOR, with the exception of a single input/output unit, are
sinusoidal oscillators, each with its own characteristic preferred frequency. Each oscillator
responds preferentially to input pulse sequences which are close to its preferred frequency.
Metrical patterns characterized by periodicity at multiple levels activate oscillators with
preferred frequencies related by integer ratios. The predisposition for metricality takes the
form of connections between such oscillators which cause one to tend to excite and couple
with the other, all else being equal. The exibility required to handle temporal noise is
achieved through phase coupling: the oscillators adjust their phase angles in response to
the beats in the input (Large & Kolen, 1994; McAuley, 1995).

A SONOR network is a structured collection of such units, each of which repeatedly
updates itself until the network stabilizes. Thus it belongs to the family of attractor

neural networks �rst studied by Hop�eld (1982). While such networks grossly oversimplify
real neural networks, for example, in their requirement that all weights be symmetric, they
appear to be good candidates for investigating some of the abstract global properties of
brains (Amit, 1989). A SONOR network is designed to respond to input sequences of
pulses when it is in perception mode and to produce output sequences of pulses when it
is in production mode. The network has a single input-output (IO) unit representing
its simple interface to the world. In perception mode (Figure 1), the IO unit has its output
repeatedly clamped to the values of an input sequence of pulses. The other units in the
network respond to this pattern. Unlike the IO unit, these other units are oscillators
which are naturally activated by periodic inputs. The response of the network to the input
sequence depends on (1) the built-in periods of the oscillators and (2) the weights on the
connections joining the oscillators to each other and to the IO unit, some or all of which
may be learned. In production mode (Figure 2), the oscillators in the network begin with
some initial state, normally the state they reached in response to an input sequence during
perception mode, and the unclamped IO unit responds to the changing outputs of the
oscillators.

Long-term knowledge in SONOR, as in other neural network models, takes the form of
weights on the connections joining the processing units. These weights are strengthened or
weakened as the network responds to particular input patterns, and the network's response
to input patterns depends on the weights as well as on the nature of the input. Because
all of the connections joining the oscillators are symmetric and because the network's input
and output pass through the same unit, perception and production can rely on the same
long-term knowledge built into the connection weights. When the IO unit is activated by
an input pattern, the system is in perception mode. When the IO unit is free to respond
to activation elsewhere within the network, the system is in production mode. Because
the weights are adjusted in response to the properties of the input, the network can learn
to prefer particular frequency ranges and particular meters and to distinguish particular
metrical patterns from one another.
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a

b

Input-output unit

Oscillators

Figure 1. SONOR perception mode. The square represents the IO unit, the circles oscillators,
the arrows weighted connections. The diameter of each circle represents the preferred period of
the oscillator. The IO unit is activated with a periodic pattern, indicated by the curve within the
square (a). The IO unit is joined by weighted connections to oscillators. Periodic output from the
IO unit causes those oscillators which are consistent with the input pattern to be activated and to
give o� their own periodic output, indicated by the curves within the circles (b). Since the IO unit
is clamped (indicated by the double boundary) it is una�ected by the outputs of the oscillators.

SONOR Processing Units

Each processing unit in a SONOR network is a standard neural network unit in most
ways. It is joined by weighted connections to other units. Unless it is clamped to a particular
activation, it repeatedly sums its input and computes an activation, which is a function of
the input.
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b

Oscillatorsa

Input-output unit

Figure 2. SONOR production mode. Certain of the oscillators are activated initially (a), possibly
by an input pattern presented to the IO unit. In combination, these activate the (unclamped) IO
unit, leading to a periodic output (b).

Oscillators

All but one of the units in a SONOR network, the IO unit, are oscillators. We
�rst consider the behavior of a single oscillator responding to other units in the network
(either the IO unit or other oscillators). In most ways the oscillators in SONOR resemble
the oscillatory units in two other recent models of rhythm processing, those of McAuley
(McAuley, 1995) and Large and Kolen (Large & Kolen, 1994). There are two important
di�erences. (1) The oscillators in SONOR are connected (coupled) with one another in a
neural network, and the weights on the connections in this network are learned. (2) The
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input patterns that the network responds to consist of pulses of varying intensity rather than
uniform pulses in particular temporal positions. In what follows, we will treat McAuley's
and Large & Kolen's models as reference points for the discussion of SONOR.

An oscillator is de�ned by its periodic output.4 The output of each oscillator is a
sinusoidal function of the time that has elapsed since some initial time t0. For an oscillator i,
it is convenient to express each point in time t as a phase angle �i(t), a measure (in radians)
of where the oscillator is within its current cycle at t. For a given time t, an oscillator's
phase angle depends on its frequency. Each oscillator has a real instantaneous frequency,
which may di�er from its preferred frequency.5 When the oscillator is una�ected by
other oscillators, its preferred frequency is equal to its real instantaneous frequency. For
an oscillator connected to other activated oscillators, the instantaneous frequency is also
a�ected by phase coupling, which adjusts the phase of an oscillator in response to other
oscillators which are at their zero phases, that is, at the peaks of their output functions.
Thus an oscillator whose phase angle is �=8 when a driving oscillator reaches its phase zero
moves its phase angle back to 0 and thereby has its instantaneous frequency decreased, and
an oscillator whose phase angle is ��=8 when a driving oscillator reaches its phase zero
moves its phase angle ahead to 0 and thereby has its instantaneous frequency increased.

Thus the change in phase angle of an oscillator i between two points in time t1 and t2
is the sum of the change due to the oscillator's preferred frequency fi and the change due
to phase coupling with other oscillators which reach their zero phases during this interval,
�C�i(t1;2):

�i(t2)� �i(t1) = 2�(t2 � t1)fi +�C�i(t1;2): (1)

To de�ne the precise behavior of an oscillator then, we need to spell out how phase
coupling works (the second term on the righthand side of Equation 1) and how output
depends on phase angle. As in McAuley's model and in neural networks generally, each
oscillator also has a time-varying, but non-periodic activation, a measure of how well the
oscillator has synchronized with the other units in the network. A unit's output in SONOR
depends on its activation, as we shall see. As in other neural networks, a unit's activation
depends in turn on the input to the unit. Thus four equations de�ne the behavior of a
SONOR oscillator, an input function, an activation function, an output function, and a
coupling function.

The output of an oscillator peaks at its zero phase and becomes more and more
pulse-like as the oscillator becomes active. This reects the unit's increasing con�dence in
the placement of its \beat" at its zero phase. The output is also scaled by the oscillator's
activation, achieving its maximum value of 1.0 at its zero phase when the oscillator is
maximally activated:

Oi(t) = Ai(t)[:5 cos(�i(t)) + :5]i(t); (2)

4We will use the terms that are familiar in neural network parlance. These di�er to some extent from
those used for other oscillator models. Our \output" corresponds to McAuley's \activation;" our \activation"
(see below) corresponds to McAuley's \output" and to nothing in Large & Kolen's model. Large & Kolen's
\activation" does not map onto anything in SONOR.

5In models with frequency coupling, as well as phase coupling, we must distinguish an oscillator's
�xed preferred frequency from its time-varying driving frequency. Frequency coupling adjusts the driving
frequency of oscillators in response to the outputs of other oscillators. While we have implemented frequency
coupling in SONOR, it will not concern us in this paper, so we will assume that an oscillator's driving
frequency is constant and equal to its preferred frequency.
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where the exponent i(t), the gain of unit i at time t, determines the sharpness of the
output. Gain is a function of activation (as in McAuley's model). For a given activation,
we would like the absolute, rather than the relative sharpness, to be constant. Otherwise
low-frequency units, with relatively wide beats, would tend to dominate high-frequency
units, with relatively narrow beats. Since the units have to work together in real time, their
output \pulses" need to be comparable. Therefore, gain in SONOR also depends on the
unit's frequency:

i(t) = C(fi)Ai(t); (3)

where C is a correction factor which is a function of the frequency of the oscillator. Figure 3
shows the output for a particular low-frequency oscillator at di�erent activation values.

-Pi Pi
Phase Angle

0.1

0.2

0.3

0.4

0.5

0.6

Output

activation=.1
activation=.3
activation=.6
activation=.8

Figure 3. Output of an oscillator (preferred period = 2 \time units") at di�erent activations.

The periodic pulses of the output of an activated oscillator also de�ne the \windows"
in which the oscillator responds to the output of other units in the network. Therefore we
we will sometimes refer to the oscillator's output function as its response window. An
oscillator responds in two ways to other units. First, as in McAuley's and Large & Kolen's
models, it adjusts its phase angle in the direction of a pulse it receives from another unit.
Second, as in other neural networks but unlike the two oscillator models,6 it adjusts its
activation depending on the activation of the units sending it input and on the weights on
the connections joining them to it. For activation, the input to the oscillator is:

Ii(t) = Oi(t)
NX

j

[Oj(t)Wi;j ]; (4)

where Wi;j is the weight on the connection joining units i and j. Thus the input to a unit is
the weighted sum of the outputs of connected units scaled by the unit's response window.
The inclusion of the response window in the input function implements the increased at-
tention that is dedicated to points near the unit's phase zero and the increased con�dence
that comes with the activation of the unit.

6Activation in McAuley's model (which he calls \output"), is calculated in terms of a memory of previous
phase angle adjustments.
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As in other neural networks, an oscillator's activation is a measure of the extent
to which it \matches" the current input. In SONOR, matching the current input means
synchronizing with the pulses which are output by the other units in the network. The
activation function for oscillators is a slightly modi�ed version of the familiar activation
update rule of the Interactive Activation and Competition model (McClelland & Rumelhart,
1981). In this rule, activation is adjusted at each update as a function of the input to the
unit and of decay back to the unit's preferred frequency. The SONOR version incorporates
periodicity in both the input and the decay terms.

if Ii(t) � 0,

�Ai(t) = Ii(t)(A
max �Ai(t))�D(Ai(t)�Arest)(Oi(t))

2: (5)

if Ii(t) < 0,

�Ai(t) = Ii(t)(Ai(t)�Amin)�D(Ai(t)�Arest)(Oi(t))
2:

Here Amax, Amin, and Arest are the maximum, minimum, and resting activations for the
oscillators, and D is a decay factor. For the simulations reported here, Amax is 1.0, Amin

is 0.0, and Arest is 0.0, and D is 0.1. The inclusion of the response window function in the
decay term causes the oscillators to tend to return to their resting activation to the extent
that they are activated and near their zero phase.

As in the other two oscillator models, an oscillator adjusts its phase angle in response
to another unit when that unit's peak pulse (its zero phase) occurs within the oscillator's
response window. When an oscillator j reaches its zero phase, the resultant change in the
phase angle of oscillator i is given by the oscillator's coupling function:

��i(t) = Oi(t) � �i(t) � (Oj(t))
2 �

j Wi;j jPN
k j Wi;k j

; (6)

where �i(t) is expressed as a quantity between �� and � radians. Thus when an oscillator
receives a pulse within its response window and preceding its zero phase, its phase angle
is shifted ahead to 0. When it receives a pulse following its zero phase, its phase angle is
shifted back to 0. The magnitude of the shift depends on the height of the response window
(Oi(t)) and is scaled by all of the weights into this oscillator so that weights greater than
1.0 do not cause an oscillator to overshoot its zero phase. Note that, for coupling, it is only
the magnitudes of the weights that are signi�cant.

In SONOR, coupling is also constrained by a \refractory period," which prevents
phase angle adjustment in an oscillator which has recently reset its phase to zero on the
basis of input from another unit.

McAuley and Large & Kolen have analyzed the oscillators within their models in
terms of the Poincar�e map, which characterizes the dynamics of a system of two oscillators,
a driving and a driven oscillator. In both cases, and for the similar oscillators within
SONOR, the long-term behavior of the system is characterized by attractor states in which
the oscillators phase lock at integral frequency ratios (1:2, 1:3, 2:3, etc.). The particular
behavior of a given system depends on the coupling strength (in SONOR the weight on the
connection joining the oscillators), the ratio of the two oscillators' preferred frequencies,
and the coupling function itself (Equation 6 for SONOR). The main point is that for a high
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enough coupling strength, oscillators whose preferred frequency ratio deviates considerably
from an integral ratio can stabilize at an integral frequency ratio as the driven oscillator is
entrained to the driving oscillator, that is, as the phase angle of the driven oscillator is
repeatedly aligned in accordance with the pulses of the driving oscillator.

With respect to phase coupling, there are two main di�erences between SONOR and
the other two oscillator models. First, for two coupled oscillators, both are simultaneously
driving and driven; that is, each adjusts its phase angle in response to the other. Second,
input pulses may come either from the world via the IO unit, or from other oscillators. In
the other two models, the inputs are actual pulses from the world; in SONOR they are the
pulse-like power-of-cosine outputs of units in the network. However, it is only at their peak
response that these units a�ect the phase angle of other oscillators; that is, the oscillators
treat the outputs of other oscillators and the IO unit as pulses.

Input/Output Unit

The network's single IO unit represents the interface between SONOR's oscillators
and the world. Input patterns are presented to the oscillators via this unit in perception
mode, and the output of oscillators is �ltered through this unit in production mode. The
IO unit is distinguished from the other units in the network in several ways. Since it is
always clamped during perception mode, its behavior only emerges during production mode.
During production we would like it to simply sum and squash the outputs of the network
of oscillators. Thus, unlike the other units, the IO unit is not an intrinsic oscillator with
a built-in instantaneous frequency of its own. When it outputs a periodic pattern, this is
because there are one or more activated oscillators in the network. In this case, its pulse-like
oscillatory activation pattern is a consequence of the oscillatory inputs it receives from the
oscillators and its high activation decay rate.

In perception mode, the IO unit's activation is clamped to a periodic power-of-cosine
function representing an external input pattern. This function, which is identical to the
output function of the oscillators, implements a periodic sequence of pulses whose widths
depend on the exponent of the cosine (Equation 2). Temporal noise may also be added to
the input sequence function. Because it is always clamped, the IO unit remains una�ected
by the rest of the network in perception mode. In production mode (and in the \negative"
phase of learning in perception mode, for which see below), the IO unit is unclamped and
activated by the oscillators in the network.

Input to the IO unit when it is unclamped is the same as it is for oscillators, except
that there is no response window:

I0(t) =
NX

i

[Oi(t)W0;i]; (7)

where W0;i is the weight on the connection joining the IO unit and oscillator i. The ac-
tivation update rule for the IO unit is simply the interactive activation rule on which the
activation rule for the oscillators was based:

if I0(t) � 0,

�A0(t) = I0(t)(A
max
0 �A0(t))�D0(A0(t)�Arest

0 ): (8)



METER AS MECHANISM 13

if I0(t) < 0,

�A0(t) = I0(t)(A0(t)�Amin
0 )�D0(A0(t)�Arest

0 ):

For the simulations reported here, Amax
0 is 1.0, Amin

0 is -.2, and Arest
0 is -.1, and D0 is 1.0.

The high decay term causes the IO unit's activation to drop quickly to its resting value
during production mode when it is not receiving input from oscillators. In this way its
behavior during production mode closely resembles its behavior during perception mode,
when it is clamped to a pulse-like input pattern. This match between the behaviors of the
unit during the two modes is required if Contrastive Hebbian Learning is to succeed (see
below). The minimum and resting activations are negative so that oscillators which are not
aligned with the pulse of the IO unit are inhibited by it.

SONOR Connectivity

With respect to the overall architecture, a SONOR network belongs to the family of
settling networks, including Hop�eld networks (Hop�eld, 1982) and Boltzmann machines
(Hinton & Sejnowski, 1986), in which all processing units are joined by symmetrically
weighted connections. Oscillators may be connected to other units in one of two ways. A
\simple" connection implements a relationship much like that in conventional settling net-
works. The two units respond continually to each other's activation, which is not periodic.
A \coupling" connection implements a periodic relationship between the units; the units
respond to each other's periodic outputs.

The pattern of simple and coupling connections which is built into a SONOR network
is intended to create the potential for hierarchical metrical structure to emerge in the
network in response to inputs. In the small networks used in the simulations described
below, oscillators with frequencies which are related by ratios of 2 or 3 are joined by coupling
connections. With a positive weight on these connections, these pairs of oscillators will
tend to become phase-aligned. When such oscillators are activated and phase-aligned with
each other, we might say the network is in a \metrical state." Oscillators with other
sorts of frequency relationships are joined by simple connections. These permit inhibitory
relationships to develop with learning so that particular metrical patterns are more easily
distinguished from one another.

Processing in SONOR

Processing in the network is similar to that in familiar symmetric networks such as
Hop�eld networks. The units in the network repeatedly update themselves until the network
has settled into a stable state. For conventional symmetric networks, this is a simple matter
of halting when the amount of change in the activations of the units due to presentation of
a pattern over some period of time falls below some threshold. For a temporal symmetric
network such as a SONOR network, the matter is much more complicated; in any case,
the behavior of the IO unit should not be expected to stabilize because when one or more
oscillators in the network are activated, the activation of the IO unit will be sinusoidal
rather than constant. Note that the point is not to assess the stability of the network as
an outside observer; if this were the issue, we could make use of familiar stability criteria
for limit cycles. The problem is for the network itself to estimate its own stability as it is
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running. We currently have no principled way for it to do this. Intuitively, we would like to
treat the network as stable when its response to one period of the input pattern is roughly
the same as it was to the previous period. But with no apriori constraint on how long an
input period is, there is no obvious way to achieve this. For the time being, we simply
run the network for a �xed, relatively long number of update cycles and assume that this
su�ces for settling. In practice, this seems to have worked satisfactorily.

As already noted, the network can be run in two di�erent input/output modes, though
the processing algorithm itself is identical in both cases. In perception mode, the IO unit
is activated by an input pattern only, and the oscillators in the network respond to it.
Oscillators which reach relatively high activations represent expectations that input beats
will occur at these units' zero phase angles. Highly activated oscillators whose zero phase
angles are aligned with one another represent expectations about relatively strong input
beats. In production mode, the network starts with a pattern of activation across the
oscillators in the network. Then all of the units, including the IO unit, are allowed to
update their activations. As the network settles, the IO unit beats along with the activated
oscillators, representing the network's output. Note that the same pattern of activation
across a group of network oscillators can represent the system's response to a periodic
input pattern or the system's internal state when it is producing a periodic output pattern.
Figures 4, 5, and 6 show the outputs of the units in a simple network consisting of two
oscillators and the IO unit during production mode. The frequency of one oscillator is
twice that of the other, the zero phase of the slower oscillator is aligned with that of the
faster oscillator, and all three units are highly activated. In this, and subsequent examples,
oscillator periods are described in terms of an arbitrary \time unit."

In the simulations of the network, each update cycle represents a small time slice, a
discrete approximation to continuous updating. At each update cycle, a unit's phase angle
is moved forward an amount which depends on its frequency. In addition, each unit also
has the possibility of updating its activation and its phase angle in response to input from
other units in the network. On each update cycle all of the units in the network are updated
in random order. A \time unit" represents 50 of these update cycles. The two aspects of
updating, activation and phase-angle coupling, are described below in turn.

Activation

Oscillators are repeatedly activated in response to input from the units they are
connected to, including the IO unit and other oscillators.

Activation works as follows.
1. Input to an oscillator is calculated by summing the activations or outputs of all

units connected to the oscillator, each scaled by the weight on the connection. Depending
on the kind of connection, the oscillator either receives a periodic output or a non-periodic
activation from the other units. If this is a coupling connection, the oscillator also �lters the
inputs through its periodic response window. Thus along coupling connections, an oscillator
only receives input when it is within a region around its zero phase angle (Equation 4). Input
to the IO unit is calculated similarly, except that it has no response window (Equation 7).

2. The input to the unit is squashed to a range between the minimum and maximum
activation values for the oscillator (Equations 5, 8). The activation decays towards a resting
activation. For oscillators decay also depends on the unit's response window.
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Figure 4. Output of activated oscillator. An oscillator with period of 1 time unit has been
activated by an input pattern with alternating strong and weak beats at a period of 1 time unit.
This shows the activation of the oscillator once the input pattern has been turned o�. This is the
same network as that for Figure 5.
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Figure 5. Output of activated oscillator. An oscillator with period of 2 time units has been
activated by an input pattern with strong beats every 2 time units. This shows the activation of the
oscillator once the input pattern has been turned o�. This is the same network as that for Figure
4.
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Figure 6. Output of IO unit. A network consisting of oscillators with periods 1 and 2 has been
activated by an input pattern of alternating strong and weak beats at a period of 1 time unit. What
is shown is the output of the IO unit after the input pattern has been turned o�. That is, the IO
unit is responding to the sum of the outputs of the two oscillators (shown in Figures 4 and 5).

Phase Coupling

Oscillators in the network may adjust their phase angles in response to input from the
IO unit or from other oscillators to which they are joined by coupling connections. When
an oscillator receives input from a unit which has reached a peak and it is not currently at
its zero phase angle, its phase angle is shifted in the direction of phase zero by an amount
which is proportional to the source unit's output, the current value of the destination unit's
own periodic response window, and the magnitude of the weight connecting the two units
(Equation 6).

Figure 7 illustrates the behavior of a single oscillator in response to an input pattern
which has the same underlying frequency as the oscillator's preferred frequency but which
starts out �=2 radians out of phase from the oscillator and is subject to 10% temporal noise,
that is, to deviations from perfect periodicity of as much as 10%. Note that the oscillator's
output declines when the pulse from the IO unit is relatively far from its zero phase. This
is because the activation of the oscillator depends on the degree of synchronization, and
output depends on activation.

Learning in SONOR

SONOR is distinguished most signi�cantly from other models of rhythm cognition
in that it learns. As in other neural networks, learning in SONOR consists in altering the
modi�able weights in the network in response to input patterns. This represents changes
in the network's long-term memory. In SONOR, learning is unsupervised since there is
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Figure 7. Phase coupling with noisy input. An input pattern (solid curve) with a period of 1
time unit and subject to 10% temporal noise activates an oscillator (dotted curve) with a period of
1 time unit.

no externally provided target for an input pattern. Rather the network's task is \auto-
association in time"; it attempts to reproduce the input pattern that it is receiving.7 The
network reproduces the pattern on the same unit where it is presented, the single IO unit.
To test the network's capacity to do this, the IO unit is driven by the pattern long enough
for the network to settle. Then the IO unit is disconnected from the input pattern, and
the network is allowed to settle again. The network has successfully auto-associated the
pattern if the sequence of activations in the network, including the IO unit itself, does not
change signi�cantly when the IO unit is unclamped.

Learning in SONOR is based on the Contrastive Hebbian Learning (CHL) algorithm
(Movellan, 1990), a learning algorithm for symmetric settling networks with continuous
activation functions. CHL is designed for supervised learning: for each input pattern, the
system is also provided with an associated target pattern. As we will see, however, it
is straightforward to implement auto-association with CHL. Learning in CHL takes place
in two phases, a \positive" phase in which input units are clamped to the input pattern
and output units are clamped to the target pattern and a \negative" phase in which only
the input units are clamped. In both phases the unclamped units are allowed to settle to

7Note that other approaches to reproduction of patterns based on spectral decomposition fail because
they do not extract phase information. These approaches would miss the invariance in a periodic pattern
subject to temporal noise or gradual rate change.
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relatively stable activations before the weights are adjusted. During the positive phase, the
weight adjustment is Hebbian; that is, each weight is moved an amount which is proportional
to the product of the activations of the units on either end of the connection. These
changes can be seen as encouraging the associations between correlating input and output
units, mediated by the hidden units. During the negative phase, the weight adjustment
is anti-Hebbian; each weight is moved an amount which is proportional to the negative of
the product of the two activations. These changes can be seen as correcting for spurious
associations in the network. For a given input pattern, when the network's weights allow it
to accurately reproduce the output pattern, the positive and negative phase weight changes
will exactly cancel either other. When this is the case for all of the patterns, the weights
will have stabilized.

For unsupervised auto-association, as we have implemented it, there are no separate
input and output units. This necessitates a minor modi�cation to the algorithm. In our
positive phase, the IO unit is clamped to a pattern, and in our negative phase, which
must follow the positive phase directly, this unit is unclamped (so that no units at all are
clamped). If the system has learned the pattern in question, its state will not change when
the IO unit is unclamped, and the unit activations will remain as they were during the
positive phase.

A more signi�cant change to the algorithm is necessary because we are dealing with
the network's response to patterns in time rather than to the static patterns that are
appropriate for the basic CHL algorithm. Thus we are not really clamping the IO unit to
a �xed value; we are repeatedly clamping it to di�erent values. On the one hand, as noted
above, this means that we cannot expect anything like stabilization of the network prior to
the weight updates. At the very least, the IO unit will continue to change its activation as
the pattern is presented during the positive phase or produced by the network during the
negative phase. However, as we have seen, it may be possible to simply run the network
long enough so that we assume it is as stable as it will get. More seriously, we are faced
with the problem of how to adjust the weights. For temporal patterns, weight adjustments
need to be based not on the activation co-occurrences at a single point in time but on the
pattern of co-occurrences throughout the whole input sequence.

For this reason, we accumulate the weight changes for a given pattern over a stretch
of time rather than at a single point in time. Again we have the problem of how long the
update period should be; it should be long enough to include at least one period of the
input pattern, but of course we have no idea how long the period is. We have used the
same makeshift approach here as we have for the settling criterion; we simply accumulate
weight updates for a stretch of time which is signi�cantly longer than the periods of any of
the patterns we are likely to deal with.

As in the standard CHL algorithm, the weights are not actually updated until the
values are accumulated for both the positive and negative phases. The changes are propor-
tional to the sum of these two values for each weight. As in standard Contrastive Hebbian
Learning (Movellan, 1990), the weight changes are

�Wi;j = L(�W+
i;j ��W�

i;j); (9)

where L is a learning rate constant and �W+
i;j and �W�

i;j are the weight change values
accumulated during the positive and negative phases. As with the activation rule, there
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are separate update rules for normal and coupling connections. For normal connections the
usual CHL rule applies:

�W�

i;j(t) = �Ai(t)Aj(t): (10)

For coupling connections, we modify the standard algorithm to reect the fact that units
only interact with each other when they are near their zero phase angle (or, for the IO unit,
near an activation pulse). Thus the value accumulated during each phase depends on the
periodic outputs of the units rather than simply on their activations. Between the IO unit
and oscillator i, the changes are:

�W�

0;i(t) = �A0(t)Oi(t): (11)

For the weights on the coupling connections between oscillators, the changes are:

�W�

i;j(t) = �(Ai(t)Oj(t) +Aj(t)Oi(t)) (12)

Learning Simulations

In the Assumptions section above, we listed three sorts of learning that should be
accomplished by a model of the acquisition of linguistic meter. We now treat each of these
in turn and illustrate how a simple SONOR network embodies them. The simulations which
we discuss are quite limited and are meant to serve only as demonstrations of the potential
of the framework for the learning of meter. In particular, we treat only cases in which the
frequency of the metrical levels in the input pattern matches the preferred frequency of
oscillators in the network. In a more elaborate model including frequency coupling, as well
as phase coupling, we would expect some generalization across di�erent pattern frequencies.

Sensitivity to Particular Period Ranges

If there is a degree of periodicity in language, it probably occurs at di�erent mean
frequencies in di�erent languages. For example, in Japanese, the mora and the bimora (with
periods of roughly 230 and 460 ms) are the best candidates (Tajima, 1998) while in English,
the foot or phrase (with periods of at least 500 ms) is a more likely level for periodicity. It
also seems possible that nested metrical patterns, that is, those with more than one level,
may be more or less dominated by the higher (slower) level. If the slower beats are more
regular, a learner should end up more oblivious to deviations at the faster level.

Thus if there is periodicity to be found and bene�ted from, it is to the learner's
advantage to preferentially weight those parts of the rhythm processing system responsible
for the frequency range where it occurs. There are two cases to consider: (1) one frequency
may occur more often than others; (2) one frequency may occur with less uctuation than
others. Simulation 1 addresses the �rst, Simulation 2 the second.

Patterns with No Nesting: Simulation 1

In Simulation 1, we show how a SONOR network can learn to prefer a frequency which
recurs in the input. We treat the simple case in which the input is always an (approximately)
isochronous sequence with the same frequency, that is, a metrical pattern with no nesting.

For Simulation 1, the network consists of oscillators with periods of 1, 2, and 3 time
units, and the network is presented a simple input pattern with a period of 3 time units
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and subject to 5% temporal noise. That is, each event in the noisy pulse train can occur
with equal probability anywhere in a window centered around the positon of the ideal,
error-free event; the width of this window is 5% of the period of the pulse train. Both the
period-1 and period-3 oscillators should respond well to this input pattern, but the period-3
oscillator should be favored because there is an input pulse for each of its zero phase angles.
Thus we expect the strongest input-output weight to the period-3 oscillator and the weakest
input-output weight to the period-2 oscillator. In addition, the oscillators should learn to
inhibit one another, preventing the period-2 oscillator, and to a lesser extent the period-1
oscillator, from responding. In this, and all other simulations, the network was initialized
with weights of 1.0 on connections joining the IO unit and oscillators and weights of 0.0 on
connections joining oscillators to each other.

Figure 8 shows the connectivity of the network and the weights after 20 learning
update cycles. The built-in coupling connections between the period-1 and period-2 and
between the period-1 and period-3 oscillators reect the fact that these pairs could partic-
ipate in metrical patterns. After training, a strong weight has developed to the period-3
unit from the IO unit. This, together with the inhibitory connections among the oscillators,
causes the period-3 unit to be highly activated and the other two oscillators to be inhib-
ited in response to the input pattern. The negative weight on the connection between the
period-3 and period-1 oscillators requires some explanation since both are consistent with
the input pattern and could participate in a nested metrical relationship. However, recall
that the network's task is to reproduce the input pattern, and an activated period-1 oscil-
lator would cause output beats at every time step, beats which do not appear in the input
pattern. The negative connection between the period-1 and period-3 oscillators causes the
period-3 oscillator to overcome the input which the period-1 oscillator receives from the
input beats so that this oscillator fails to become activated. Note that if the input pattern
had included weaker beats on every time step, the weight between the period-1 and period-3
oscillators would have been greater.

Figure 9 shows how the trained network responds after presentation of the pattern
when its IO unit is unclamped. Only the activation of the IO unit is shown. The appro-
priate pattern is produced because only the period-3 oscillator remains active. (The minor
uctuations between the pulses are due to the slight activation of the other two oscillators.)

Patterns with Nesting: Simulation 2

In Simulation 1, the network learned to prefer a particular period because it was
frequent. But a period could also come to be preferred because it is subject to less temporal
noise than other periods.

For Simulation 2, the network consists of the IO unit and oscillators of periods 1
and 2. The single input pattern is a nested metrical pattern with strong beats every 2
time units alternating with weak beats (roughly) every 2 time units. The two oscillators
that are provided are those which should respond maximally to the periodicities in such
an input. The question is which of the two oscillators will learn to respond more strongly
to the IO unit and what sort of weight will develop between them. There are two input
conditions. In Condition A, both the strong and weak input beats are perfectly periodic. In
Condition B, the weak input beats are subject to 5% noise. The patterns are diagrammed
in Figure 10 For Condition B, we expect the network to learn to pay more attention at
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Figure 8. Simulation 1: Learning to respond to a particular frequency. The �nal weights in
the network are shown. The network consists of the IO unit and three oscillators, represented by
circles. Relative circle diameter indicates oscillator period. Arrows with �lled heads denote coupling
connections; those with un�lled heads denote simple connections. Along each connection is shown
its �nal weight after the network has been trained on inputs with a period of 3 time units.

the period-2 level than the period-1 level because every other beat is perfectly predictable.
For Condition A there should be no advantage for the period-2 level because the beats are
perfectly predictable at both periods.

Figure 11 shows weights for the two conditions after 30 learning update cycles. For
Condition A, the weights to the period-1 oscillator are slightly higher, while for Condition
B, as predicted, the weights to the period-2 oscillator are higher. In addition, the weight
connecting the oscillators is negative for Condition B, reecting the inconsistent relation
between them. Thus a deviant weak beat can cause the period-1 oscillator to expect the
next (strong) beat too early or too late and, at least temporarily, to fail to synchronize with
the period-2 oscillator.

Under both conditions, however, the network is able to reproduce the metrical input
pattern once it has been turned o�. The output of the unclamped IO unit for the trained
network in Condition B is shown in Figure 12. It can be seen that the IO unit reproduces
both the period-1 and period-2 beats.

Sensitivity to Particular Meters: Simulation 3

In Simulation 2, we saw that the network could learn to reproduce a metrical pattern.
Various kinds of simple music employ particular metrical structures, for example, strong
stresses on every second rather than every third beat. Learners who can �gure this regularity
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Figure 9. Simulation 1: Learning to respond to a particular frequency. The network is that shown
in Figure 8. After training, the IO unit is driven by an input pattern of period 3, then allowed to
vary in response to the outputs of the oscillators. The output of the IO unit beginning at this point
is shown.

out are in a better position to direct their attention to the strong stresses.
For Simulation 3, the network is the same as that in Simulation 1. That is, there are

oscillators with periods of 1, 2, and 3 time units. The input pattern consists of alternating
strong and weak beats, each with a period of 2, identical to the patterns in Simulation
2, Condition A (Figure 10). We expect the period-1 and period-2 oscillators to respond
best to the pattern, and this should be reected in a small weight from the IO unit to the
period-3 oscillator following training. The network should develop an inhibitory connection
between the period-2 and period-3 oscillators in order to exaggerate the di�erence between
the duple and triple meters.

Figure 13 shows the weights after 30 update cycles. The period-3 unit has the pre-
dicted weak connection from the IO unit and is inhibited by both other oscillators.

Figure 14 shows the response of the trained network after it has been presented with
the input pattern and then unclamped. We see that the network reproduces the pattern
appropriately.

Analogous results are obtained when the network is trained with a triple, instead of
a duple meter.
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Figure 10. Simulation 2: Input patterns. In Condition A, there are strong pulses every 2 time
units alternating with weak pulses every 2 time units. Condition B is the same, except that the
weak beats are subject to temporal noise.

Selectivity to Particular Meters: Simulation 4

Many languages, English, for example, make use of a variety of metrical structures.
If we assume a tendency for a particular meter to persist, as is certainly the case in music
and verse, then it is to the advantage of listeners to be able to identify which meter is being
used after a relatively small number of repetitions so that they can make use of expectations
based on the meter. And it is to the advantage of learners to �gure out how to do this.

For Simulation 4, the network consists of the IO unit and oscillators with periods of 1,
1.5, and 3 time units. There were two sorts of input patterns, and the network was trained
separately on them. That is, it was not expected to shift to one pattern after entraining to
the other. Pattern A had strong beats every 3 time units and weak beats midway between
every pair of strong beats, a duple meter. Pattern B also had strong beats every 3 time
units, but there were 2 weak beats for every strong beat, subdividing the intervals separating
the strong beats into thirds rather than halves, a triple meter. Thus Pattern A favors the
period-1.5 oscillator and Pattern B favors the period-1 oscillator while both patterns are
consistent with the period-3 oscillator. The patterns are diagrammed in Figure 15. As
before, we start the network up with positive weights on connections joining the IO unit
to the oscillators and weights of 0.0 on the inter-oscillator connections. We might expect
this con�guration to permit the inputs to be distinguished, but all of the oscillators are
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Figure 11. Simulation 2: Learning to respond to a noise-free frequency. The �nal weights are
shown. The network consists of the IO unit and two oscillators. There were two di�erent training
conditions. In Condition A, a noise-free duple pattern was presented. In Condition B, a duple
pattern with 5% temporal noise on the weak beats was presented. Final weights for both conditions
are shown.

highly activated when either input pattern is presented. Figure 16 shows the response of
the unclamped IO unit after presentation of the duple pattern to the untrained network.
The output is a useless combination of the duple and triple patterns. The same behavior
results when the triple pattern is input.

Training should adjust the IO-to-oscillator connections and create an inhibitory con-
nection between the period-1 and period-1.5 oscillators. The result should be a network
with an attractor state for each of the two input patterns.

Figure 17 shows the weights after 10 update cycles. The major changes are in the
pattern of weights on the inter-oscillator connections. A weak inhibitory connection has
developed between the period-1 and period-1.5 units. The inhibitory connection joining the
period-3 and period-1 units apparently functions to adjust the relative activations of these
units when both are active. In any case, the weight changes now permit the network to
respond selectively to the two input patterns. As shown in Figures 18 and 19, each pattern
is correctly reproduced on the IO unit when it has been presented and then removed.

With this simulation, we have shown that a network without the initial ability to
distinguish metrical input patterns can develop this selectivity simply by being repeatedly
exposed to the di�erent patterns. The network's power comes from auto-association. Given
an input pattern, it adjusts its weights in such a way that it can reproduce that pattern
better.

Conclusions and Future Work

While the SONOR model is only a �rst step towards a full-blown computational
account of the learning of linguistic or musical metrical patterns, it already permits several
predictions about the processing of meter by human subjects.

1. The model performs best on patterns resembling those it was trained on. This holds
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Figure 12. Simulation 2: Learning to respond to a noise-free frequency. The network shown in
Figure 11 is trained in Condition B. Following training the network is presented with another noisy
duple input pattern; the IO unit is then allowed to vary freely in response to the activated oscillators.
The output of the IO unit beginning at this point is shown.

for the kind of meter, as well as the frequency, of the patterns. Thus the model predicts
that long-term exposure to triple meter results in an enhanced performance on various
tasks that we might devise, e.g., detecting deviations from periodicity on triple patterns,
distinguishing triple patterns from duple patterns, predicting beat locations within triple
patterns. Each of these tasks can be realized in a straightforward way within the model.
Deviations from periodicity are reected in the lowered activations of units. The extent
to which the network distinguishes two sorts of meter is reected in the di�erent output
it produces when \replaying" di�erent patterns following exposure to them. Predictions
regarding beat locations are reected in the timing of the phase zeros of activated oscillators.

2. A SONOR network consists of a bank of oscillators, each responding to a range
of frequencies around its preferred frequency. Given long-term exposure to periodicity at
a particular narrow frequency range, a single oscillator develops strong connections to the
IO unit, and the network later responds more readily to patterns near that frequency.8

Frequency coupling (not discussed in this paper, but implemented in SONOR) permits gen-
eralization to patterns at frequencies other than those in the training set, but frequency
coupling is thrown o� by frequencies which are roughly 25% greater or less than the preferred

8Note that in real biological systems, the tendency to prefer particular frequencies may also depend on
built-in preferences of one sort or another (Handel, 1989).
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Figure 13. Simulation 3: Learning to respond to a particular meter. The �nal weights are shown.
The network consists of the IO unit and two oscillators. The network was trained only on duple
input. Final weights are shown for each connection.

frequency of an excited oscillator because the input pulses tend to fall outside the input
window of the oscillator. While the precise range within which generalization can occur
depends on the values of several parameters, generalization breaks down rather catastroph-
ically at a point which is less than a 50% deviation from the mean frequency of the training
set. Thus the model predicts that subjects will be better able to detect deviations from
periodicity (frequency changes or temporal noise) within the range of the training set than
far from it. It also predicts a relatively sudden drop in performance as the frequency of test
patterns becomes further from that of the training set.

An obvious next step is to train the model on pulses generated from real speech.
Initially we will try metrically constrained speech such as verse, chants, or \over-rehearsed"
speech, such as group prayers.

Before we are ready for the rhythm of actual speech, however, several aspects of the
model need more investigation. Some of these have to do with coupling. Currently frequency
coupling is confused by minor deviations from perfect periodicity, and phase coupling has
di�culty recovering from a tendency to couple too strongly with an initial beat that happens
to be followed by a stronger one. Others have to do with learning. We need to establish that
the model is capable of acquiring more complex rhythms, for example, meters with three
levels, patterns with alternating meters, or periodic patterns containing rests (Gasser &
Eck, 1996). We also need a principled way of <determining when the network has \settled"
in its response to a periodic pattern.
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Figure 14. Simulation 3: Learning to respond to a particular meter. The network is the one
shown in Figure 13. After training, the IO unit is driven by an input pattern with duple meter, then
allowed to vary. The output of the IO unit at this point is shown.

Furthermore, a complete account of linguistic or musical rhythm will have to take into
account the tendencies for speakers, performers, and listeners to group events as well as to
organize them in nested metrical structures (Handel, 1989; Lerdahl & Jackendo�, 1983).
This may involve a completely separate sort of mechanism from the one proposed here, but
it clearly interacts with meter in the production and perception of linguistic and musical
patterns in time.

Is speech metrical? We believe that the answer to this question can only come when
we have re-de�ned what is meant by linguistic meter. If meter exists in the minds of speak-
ers and listeners, it is not likely to take the form of a static description expressed in terms
of perfect integer relationships as in musical notation. Meter is a skill, manifested as a
particular mechanism, a means by which signals are processed, guided by underlying ten-
dencies toward periodicity and integral relationships between periodicities. This mechanism
self-organizes to discover and reproduce the temporal regularities in the input. SONOR is
an initial attempt at de�ning such a mechanism for the organization of time.
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Figure 18. Simulation 4: Selectivity to meter. The network is the one shown in Figure 17. After
training, the IO unit is driven by an input pattern with duple meter, then allowed to vary. The
output of the IO unit at this point is shown.
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Figure 19. Simulation 4: Selectivity to meter. The network is the one shown in Figure 17. After
training, the IO unit is driven by an input pattern with triple meter, then allowed to vary. The
output of the IO unit at this point is shown.
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