
HornMorpho: a system for morphological processing of
Amharic, Oromo, and Tigrinya

Michael Gasser
Indiana University

Bloomington, Indiana, USA
gasser@cs.indiana.edu

Abstract
Despite its linguistic complexity, the Horn
of Africa region includes several major
languages with more than 5 million speak-
ers, some crossing the borders of mul-
tiple countries. All of these languages
have official status in regions or nations
and are crucial for development; yet com-
putational resources for the languages re-
main limited or non-existent. Since these
languages are complex morphologically,
software for morphological analysis and
generation is a necessary first step toward
nearly all other applications. This pa-
per describes a resource for morphologi-
cal analysis and generation for three of the
most important languages in the Horn of
Africa, Amharic, Tigrinya, and Oromo.

1 Language in the Horn of Africa

The Horn of Africa consists politically of four
modern nations, Ethiopia, Somalia, Eritrea, and
Djibouti. As in most of sub-Saharan Africa, the
linguistic picture in the region is complex. The
great majority of people are speakers of Afro-
Asiatic languages belonging to three sub-families:
Semitic, Cushitic, and Omotic. Approximately
75% of the population of almost 100 million peo-
ple are native speakers of four languages: the
Cushitic languages Oromo and Somali and the
Semitic languages Amharic and Tigrinya. Many
others speak one or the other of these languages
as second languages. All of these languages have
official status at the national or regional level.

All of the languages of the region, especially
the Semitic languages, are characterized by rela-
tively complex morphology. For such languages,
nearly all forms of language technology depend
on the existence of software for analyzing and
generating word forms. As with most other sub-
Saharan languages, this software has previously

not been available. This paper describes a set of
Python programs called HornMorpho that address
this lack for three of the most important languages,
Amharic, Tigrinya, and Oromo.

2 Morphological processingn

2.1 Finite state morphology

Morphological analysis is the segmentation of
words into their component morphemes and the
assignment of grammatical morphemes to gram-
matical categories and lexical morphemes to lex-
emes. Morphological generation is the reverse
process. Both processes relate a surface level to a
lexical level. The relationship between the levels
has traditionally been viewed within linguistics in
terms of an ordered series of phonological rules.

Within computational morphology, a very sig-
nificant advance came with the demonstration that
phonological rules could be implemented as finite
state transducers (Kaplan and Kay, 1994) (FSTs)
and that the rule ordering could be dispensed with
using FSTs that relate the surface and lexical lev-
els directly (Koskenniemi, 1983), so-called “two-
level” morphology. A second important advance
was the recognition by Karttunen et al. (1992) that
a cascade of composed FSTs could implement the
two-level model. This made possible quite com-
plex finite state systems, including ordered alter-
nation rules representing context-sensitive varia-
tion in the phonological or orthographic shape of
morphemes, the morphotactics characterizing the
possible sequences of morphemes (in canonical
form) for a given word class, and a lexicon. The
key feature of such systems is that, even though
the FSTs making up the cascade must be com-
posed in a particular order, the result of compo-
sition is a single FST relating surface and lexical
levels directly, as in two-level morphology. Be-
cause of the invertibility of FSTs, it is a simple
matter to convert an analysis FST (surface input



Figure 1: Basic architecture of lexical FSTs for
morphological analysis and generation. Each rect-
angle represents an FST; the outermost rectangle
is the full FST that is actually used for process-
ing. “.o.” represents composition of FSTs, “+”
concatenation of FSTs.

to lexical output) to one that performs generation
(lexical input to surface output).

This basic architecture, illustrated in Figure 1,
consisting of a cascade of composed FSTs repre-
senting (1) alternation rules and (2) morphotactics,
including a lexicon of stems or roots, is the basis
for the system described in this paper.

We may also want to handle words whose roots
or stems are not found in the lexicon, especially
when the available set of known roots or stems
is limited. In such cases the lexical component is
replaced by a phonotactic component characteriz-
ing the possible shapes of roots or stems. Such a
“guesser” analyzer (Beesley and Karttunen, 2003)
analyzes words with unfamiliar roots or stems by
positing possible roots or stems.

2.2 Semitic morphology

These ideas have revolutionized computational
morphology, making languages with complex
word structure, such as Finnish and Turkish, far
more amenable to analysis by traditional compu-
tational techniques. However, finite state mor-
phology is inherently biased to view morphemes
as sequences of characters or phones and words
as concatenations of morphemes. This presents
problems in the case of non-concatenative mor-
phology, for example, discontinuous morphemes
and the template morphology that characterizes
Semitic languages such as Amharic and Tigrinya.
The stem of a Semitic verb consists of a root, es-
sentially a sequence of consonants, and a template
that inserts other segments between the root con-
sonants and possibly copies certain of the conso-
nants. For example, the Amharic verb root sbr

‘break’ can combine with roughly 50 different
templates to form stems in words such as y˜b•l
y1-sEbr-al ‘he breaks’, °˜¤� tEsEbbEr-E ‘it was
broken’, ‰˜b�w l-assEbb1r-Ew , ‘let me cause
him to break something’, ˜§§” sEbabar-i ‘broken
into many pieces’.

A number of different additions to the basic
FST framework have been proposed to deal with
non-concatenative morphology, all remaining fi-
nite state in their complexity. A discussion of the
advantages and drawbacks of these different pro-
posals is beyond the scope of this paper. The ap-
proach used in our system is one first proposed by
Amtrup (2003), based in turn on the well studied
formalism of weighted FSTs. In brief, in Amtrup’s
approach, each of the arcs in a transducer may be
“weighted” with a feature structure, that is, a set
of grammatical feature-value pairs. As the arcs in
an FST are traversed, a set of feature-value pairs is
accumulated by unifying the current set with what-
ever appears on the arcs along the path through
the transducer. These feature-value pairs represent
a kind of memory for the path that has been tra-
versed but without the power of a stack. Any arc
whose feature structure fails to unify with the cur-
rent set of feature-value pairs cannot be traversed.

The result of traversing such an FST during
morphological analysis is not only an output char-
acter sequence, representing the root of the word,
but a set of feature-value pairs that represents the
grammatical structure of the input word. In the
generation direction, processing begins with a root
and a set of feature-value pairs, representing the
desired grammatical structure of the output word,
and the output is the surface wordform corre-
sponding to the input root and grammatical struc-
ture. In Gasser (2009) we showed how Amtrup’s
technique can be applied to the analysis and gen-
eration of Tigrinya verbs. For an alternate ap-
proach to handling the morphotactics of a subset
of Amharic verbs, within the context of the Xerox
finite state tools (Beesley and Karttunen, 2003),
see Amsalu and Demeke (2006).

Although Oromo, a Cushitic language, does not
exhibit the root+template morphology that is typ-
ical of Semitic languages, it is also convenient to
handle its morphology using the same technique
because there are some long-distance dependen-
cies and because it is useful to have the grammati-
cal output that this approach yields for analysis.



3 HornMorpho

HornMorpho is a set of Python programs for ana-
lyzing and generating words in Amharic, Tigrinya,
and Oromo. A user interacts with the programs
through the Python interpreter. HornMorpho
is available for download, under the GPL3 li-
cense, at http://www.cs.indiana.edu/

˜gasser/Research/software.html.
Complete documentation is included with the
downloaded archive.

For each language, HornMorpho has a lex-
icon of verb roots and (except for Tigrinya)
noun stems.1 For Amharic, the lexicon is
derived from the Amharic-English dictio-
nary of Aklilu (1987), which is available
under the Creative Commons Attribution-
Noncommercial 3.0 United States License at
http://nlp.amharic.org/resources/
lexical/word-lists/dictionaries/;
there are currently 1,851 verb roots and 6,471
noun stems. For Oromo the lexicon of verb
and noun roots is extracted from the dictio-
naries of Gragg (1982) and Bitima (2000);
there are currently 4,112 verb roots and
10,659 noun stems. For Tigrinya, the lex-
icon of verb roots is derived from Efrem
Zacarias’ (2009) online dictionary, accessible at
http://www.memhr.org/dic/; there are
currently 602 verb roots.

3.1 System architecture

The full morphology processing system (see Fig-
ure 1) consists of analysis and generation FSTs for
each language. For Amharic and Tigrinya there
are separate lexical and “guesser” FSTs for each
processing direction. Verbs (all three languages)
and nouns (Amharic and Oromo only) are handled
by separate FSTs. Amharic and Oromo have sep-
arate FSTs for verb segmentation, as opposed to
grammatical analysis, and Amharic has a separate
FST for orthography-to-phonology conversion.

Each of these FSTs in turn results from the com-
position of a cascade of simpler FSTs, each re-
sponsible for some aspect of morphology. The
most complicated cases are Amharic and Tigrinya
verbs, which we discuss in more detail in what
follows and illustrate in Figure 2. At the most
abstract (lexical) end is the heart of the system,
the morphotactic FST. Most of the complexity is

1Amharic adjectives, which behave much like nouns, are
grouped with nouns in the system.

Figure 2: Architecture of Amharic verb analysis
FST. Shown: analysis of the verb Î≈t˜Ô¤wm
‘who (she) is also not insulted’. Output analyses:
anal word (green border); seg word (red bor-
der); phon word (blue border).

within the FST responsible for the stem. The stem
FST is composed from a sequence of five simpler
FSTs representing stem-specific alternation rules
and the legal sequences of consonants and vowels
making up the stem. For the lexical, but not the
guesser, FSTs, a further FST containing the lexi-
con of known roots is part of the stem cascade.

Prefix and suffix FSTs are concatenated onto
the stem FST to create the full verb morphotactic
FST. The remaining FSTs (15 of them for Amharic
verbs, 17 for Tigrinya verbs) implement alterna-
tion rules that apply to the word as a whole, includ-
ing allomorphic rules and general phonological or
orthographic rules.

The figure shows the analysis of the Amharic
verb Î≈t˜Ô¤wm y@mmat1ss@dd@b@wm ‘who
(she) is also not insulted’. The word is input
in the Ge’ez orthography used for Amharic and
Tigrinya. This writing system fails to indicate con-
sonant gemination as well as the epenthetic vowel
1, which is introduced to break up some conso-



nant clusters in both languages. Gemination is ex-
tremely important for natural speech synthesis in
Amharic and Tigrinya, so it is crucial to be able to
restore it in text-to-speech applications. There is in
fact relatively little ambiguity with respect to gem-
ination, but gemination is so tied up with the mor-
phology that a relatively complete morphological
analyzer is necessary to perform the restoration.
HornMorpho has this capacity.

The word is first romanized to yematsede-
bewm.2 At this stage, none of the consonants
is geminated, and the epenthetic vowel is miss-
ing in the romanized form. Processing is then
handled by the single analysis FST, but to un-
derstand what goes on, it is still to convenient to
think of the process in terms of the equivalent cas-
cade of simpler FSTs operating in sequence. The
first FST in the cascade performs orthographic-
to-phonological conversion, resulting in all possi-
ble pronunciations of the input string, including
the correct one with the appropriate consonants
geminated. This form and the other surviving
strings are processed by the intervening phonolog-
ical FSTs, each responsible for an alternation rule.
Among the strings that survive as far as the mor-
photactic FST is the correct string, yemmatIssed-
debewm, which is analyzable as the pair of pre-
fixes yemm-at, the stem sseddeb, and the pair of
suffixes ew-m.

The stem is processed by the stem FST, which
extracts the root, sdb, and various grammatical
properties, including the fact that this form is pas-
sive. The lexical analyzer includes all of the verb
roots known to the system within the stem FST,
whereas the guesser analyzer includes only infor-
mation about sequences of consonants making up
possible roots in the language. For example, if
the consonant sequence s,d,b in the original word
were replaced by a fictitious root mbz, the guesser
analyzer (but not the lexical analyzer) would posit
this as the root of the word. The final output analy-
ses are shown at the top of Figure 2. The three pos-
sibilities correspond to three different HornMor-
pho functions, discussed in the next section.

3.2 Functions

Each of the functions for morphological analy-
sis has two versions, one for analyzing single
words, the other for analyzing all of the words in a

2HornMorpho uses an ASCII romanization scheme devel-
oped by Firdyiwek and Yaqob (1997).

file. The functions anal word and anal file
take input words and output a root or stem and
a grammatical analysis. In Figure 2, the output
of anal word is outlined in green. The input
word has the root sdb ‘insult’ and the citation form
°˜Ô¤; has a third person singular feminine sub-
ject; is in the imperfective tense/aspect; is rela-
tivized, negative, and definite; and has the con-
junctive suffix -m.

For Amharic and Oromo, there are two
additional analysis functions, seg word and
seg file, which segment input verbs (also
nouns for Oromo) into sequences of morphemes.
In the example in Figure 2, the output of
seg word is shown in red. The constituent mor-
phemes are separate by hyphens, and the stem is
enclosed in brackets. The root and template for the
stem are separated by a plus sign. The template
notation 11e22e3 indicates that the first and sec-
ond root consonants are geminated and the vowel
e is inserted between the first and second and sec-
ond and third root consonants.

For Amharic only, there are further functions,
phon word and phon file, which convert the
input orthographic form to a phonetic form as
would be required for text-to-speech applications.
In the figure, the output of phon word is out-
lined in blue. Three of the consonants are gemi-
nated, and the epenthetic vowel (romanized as I)
has been inserted to break up the cluster tss.

Below are more examples of the analysis func-
tions, as one would call them from the Python in-
terpreter. Note that all of the HornMorpho func-
tions take a first argument that indicates the lan-
guage. Note also that when a wordform is ambigu-
ous (Example 3), the analysis functions return all
possible analyses.

Example 1 anal word (Tigrinya)
>>> anal word(’ti’, ’bÈÝµŒ¹’)
Word: bÈÝµŒ¹
POS:verb, root:<gTm>, cit:ƒÝ°Œ
subject: 3, sing, masc
object: 1, plur
grammar: imperf, recip, trans, rel
preposition: bI

Example 2 seg word (Oromo)
>>> seg word(’om’, ’dhukkubdi’)
dhukkubdi: dhukkub-t-i

There is a single function for generation, gen,
which takes a stem or root and a set of grammat-



Example 3 phon word (Amharic)
>>> phon word(’am’, ’yŒ³‡’)
yImetallu yImmettallu

ical features. For each part of speech, there is a
default set of features, and the features provided
in the function call modify these. In order to use
gen, the user needs to be familiar with the Horn-
Morpho conventions for specifying grammatical
features; these are described in the program docu-
mentation.

With no grammatical features specified, gen re-
turns the canonical form of the root or stem, as in
the Oromo example 4 (sirbe is the third person sin-
gular masculine past form of the verb). Example
5 is another Oromo example, with additional fea-
tures specified: the subject is feminine, and the
tense/mood is present rather than past.

Example 4 gen (Oromo 1)
>>> gen(’om’, ’sirb’)
sirbe

Example 5 gen (Oromo 2)
>>> gen(’om’,’sirb’,’[sb=[+fem],tm=prs]’)
sirbiti

4 Evaluation

Evaluating HornMorpho is painstaking because
someone familiar with the languages must care-
fully check the program’s output. A useful re-
source for evaluating the Amharic and Tigrinya
analyzers is the word lists compiled by Biniam Ge-
bremichael’s web crawler, available on the Inter-
net at http://www.cs.ru.nl/˜biniam/
geez/crawl.php. The crawler extracted
227,984 unique Tigrinya wordforms and 397,352
unique Amharic wordforms.

To evaluate the Amharic and Tigrinya analyzers
in HornMorpho, words were selected randomly
from each word list, until 200 Tigrinya verbs, 200
Amharic verbs, and 200 Amharic nouns and ad-
jectives had been chosen. The anal word func-
tion was run on these words, and the results were
evaluated by a human reader familiar with the lan-
guages. An output was considered correct only if
it found all legal combinations of roots and gram-
matical structure for a given wordform and in-
cluded no incorrect roots or structures. The pro-
gram made 8 errors on the Tigrinya verbs (96%

accuracy), 2 errors on the Amharic verbs (99% ac-
curacy), and 9 errors on the Amharic nouns and
adjectives (95.5% accuracy).

To test the morphological generator, the gen
function was run on known roots belonging to all
of the major verb root classes.3 For each of these
classes, the program was asked to generate 10 to
25 verbs depending on the range of forms possi-
ble in the class, with randomly selected values for
all of the different dimensions, a total of 330 tests.
For Amharic, the program succeeded on 100% of
the tests; for Tigrinya it succeeded on 93%.

In all cases, the errors were the result of missing
roots in the lexicon or bugs in the implementation
of specific phonological rules. These deficiencies
have been fixed in the most recent version of the
program.

Although more testing is called for, this evalua-
tion suggests excellent coverage of Amharic and
Tigrinya verbs for which the roots are known.
Verbs are the source of most of the morphological
complexity in these languages. Nouns and adjec-
tives, the only other words calling for morpholog-
ical analysis, are considerably simpler. Because
the plural of Tigrinya nouns is usually not pre-
dictable, and we have access to only limited lex-
ical resources for the language, we have not yet
incorporated noun analysis and generation for that
language. For Amharic, however, the system is
apparently able to at least analyze the great major-
ity of nouns and adjectives. We treat all Amharic
words other than verbs, nouns, and adjectives as
unanalyzed lexemes.

For Oromo, the newest language handled by
HornMorpho, we have not yet conducted a com-
parable evaluation. Any evaluation of Oromo is
complicated by the great variation in the use of
double consonants and vowels by Oromo writers.
We have two alternatives for evaluation: either we
make the analyzer more lenient so that it accepts
both single and double vowels and consonants in
particular contexts or we restrict the evaluation to
texts that have been verified to conform to partic-
ular orthographic standards.

5 Conclusions and ongoing work

For languages with complex morphology, such as
Amharic, Tigrinya, and Oromo, almost all com-
putational work depends on the existence of tools
for morphological processing. HornMorpho is a

3The Amharic noun generator has not yet been evaluated.



first step in this direction. The goal is software
that serves the needs of developers, and it is ex-
pected that the system will evolve as it is used
for different purposes. Indeed, some features of
the Amharic component of the system have been
added in response to requests from users.

One weakness of the present system results
from the limited number of available roots and
stems, especially in the case of Tigrinya. When a
root is not known, the Tigrinya verb guesser ana-
lyzer produces as many as 15 different analyses,
when in many cases only one of these contains
a root that actually exists in the language. How-
ever, the guesser analyzer itself is a useful tool for
extending the lexicon; when an unfamiliar root is
found in multiple wordforms and in multiple mor-
phological environments, it can be safely added to
the root lexicon. We have explored this idea else-
where (Gasser, 2010).

A more significant weakness of the analyzers
for all three languages is the handling of ambi-
guity. Even when a root or stem is known, there
are often multiple analyses, and the program pro-
vides no information about which analyses are
more likely than others. We are currently working
on extending the weighted FST framework to ac-
commodate probabilities as well as feature struc-
tures on transitions so that analyses can be ranked
for their likelihood.

Although Amharic and Tigrinya have very sim-
ilar verb morphology, they are handled by com-
pletely separate FSTs in the current implementa-
tion. In future work we will be addressing the
question of how to share components of the sys-
tem across related languages and how to build on
existing resources to extend the system to handle
related Semitic (e.g., Tigre, Silt’e) and Cushitic
(e.g., Somali, Sidama) languages of the region.

Finally, HornMorpho is designed with de-
velopers in mind, people who are likely to be
comfortable interacting with the program through
the Python interpreter. However, morphological
analysis and generation could also be of interest to
the general public, including those who are learn-
ing the languages as second languages. We are
currently experimenting with more user-friendly
interfaces. As an initial step, we have created
a web application for analyzing and generating
Tigrinya verbs, which is available here: http:
//www.cs.indiana.edu/cgi-pub/
gasser/L3/morpho/Ti/v/anal/.

References

Aklilu, A. (1987). Amharic-English Dictionary.
Kuraz Printing Press, Addis Ababa.

Amsalu, S. and Demeke, G. A. (2006). Non-
concatenative finite-state morphotactics of
Amharic simple verbs. ELRC Working Papers,
2(3).

Amtrup, J. (2003). Morphology in machine trans-
lation systems: Efficient integration of finite
state transducers and feature structure descrip-
tions. Machine Translation, 18:213–235.

Beesley, K. R. and Karttunen, L. (2003). Finite
State Morphology. CSLI Publications, Stan-
ford, CA, USA.

Bitima, T. (2000). A dictionary of Oromo technical
terms. Rüdiger Köpper Verlag, Köln.

Firdyiwek, Y. and Yaqob, D. (1997). The sys-
tem for Ethiopic representation in ASCII. URL:
citeseer.ist.psu.edu/56365.html.

Gasser, M. (2009). Semitic morphological analy-
sis and generation using finite state transducers
with feature structures. In Proceedings of the
12th Conference of the European Chapter of the
ACL, pages 309–317, Athens, Greece.

Gasser, M. (2010). Expanding the lexicon for a
resource-poor language using a morphological
analyzer and a web crawler. In Proceedings of
the Seventh International Conference on Lan-
guage Resources and Evaluation (LREC’10),
Valletta, Malta.

Gragg, G. (1982). Oromo dictionary. Michigan
State University Press, East Lansing, MI, USA.

Kaplan, R. M. and Kay, M. (1994). Regular mod-
els of phonological rule systems. Computa-
tional Linguistics, 20:331–378.

Karttunen, L., Kaplan, R. M., and Zaenen, A.
(1992). Two-level morphology with compo-
sition. In Proceedings of the International
Conference on Computational Linguistics, vol-
ume 14, pages 141–148.

Koskenniemi, K. (1983). Two-level morphology:
a general computational model for word-form
recognition and production. Technical Report
Publication No. 11, Department of General Lin-
guistics, University of Helsinki.

Zacarias, E. (2009). Memhir.org dictionaries
(English-Tigrinya, Hebrew-Tigrinya dictionar-
ies). Available at http://www.memhr.org/dic/.


