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Abstract

Most theories of language processing and acquisition make the assumption that

perception and comprehension are related to production, but few have anything say

about how. This paper describes a performance-oriented connectionist model of

the acquisition of morphology in which production builds on representations which

develop during the learning of word recognition. Using arti�cial language stimuli

embodying simple su�xation, pre�xation, and template rules, I demonstrate that

the model generalizes to novel combinations of roots and in
ections for both word

recognition and production. I argue that the capacity of connectionist networks to

develop intermediate distributed representations which not only enable the solving

of the task at hand but also facilitate another task o�ers a plausible account of how

comprehension and production come to share phonological knowledge as words are

learned.

Introduction

Language learners must acquire both the ability to comprehend language and the ability
to produce language. While the extent of the relationship between these abilities is still
controversial (see Harris et al., 1995 and Elbers, 1995 for two recent examinations), it
almost goes without saying that there is a relationship. Perhaps since linguistics has
a strongly production-oriented 
avor to it, modeling, even connectionist modeling, has
tended to focus on production. The child, on the other hand, starts with perception and
comprehension; forms cannot normally be produced until they have been heard.

This paper considers the question of how perception and comprehension on the one
hand and production on the other are to be related in a performance-oriented theory of
language acquisition and, in particular, the question of how production could be learned
at all. The focus is on the acquisition of morphology, but this can only be addressed in
the context of the acquisition of phonology. I describe a partially implemented computa-
tional model of the acquisition process in which distributed phonological representations
provide knowledge which is shared by receptive and productive processing.

�Paper presented at the Groningen Assembly on Language Acquisition, Groningen, September 1995
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Word Comprehension and Production in Language Acquisition

Let us consider the acquisition of word comprehension and production from the perspec-
tive of what information is available to the child. Word comprehension means mapping
auditory1 form onto meanings. This task can be viewed as an example of supervised
learning: under at least some circumstances, the child has access to a \teacher" to pro-
vide the correct response. That is, because language addressed to children tends to refer
to the here-and-now (Snow, 1977), the referent of the word is available in the context
and often pointed to in one way or another. The evidence the child receives is far from
perfect | words are not always isolable in the input stream, and the precise set of se-
mantic features singled out by the word is never actually indicated (Quine, 1960) | but
in a sense the child is \taught" to understand words. For word recognition there is a
target.

The same cannot be said for word production. Children who produce an utterance
with some communicative intent have no target to guide them. Consider the �rst oppor-
tunity to produce a new word, that is, the intent to refer to a type of object or relation
for the �rst time. For this task, there is no target whatsoever, no set of articulatory
gestures, albeit incomplete, provided by the environment in response to the child's in-
tent. The child may of course produce something in response to this intent, If this is
interpreted as wrong, there might be correction: \no, that's not a potato; that's oat-
meal." However, this sort of feedback in production is less useful than what is available
in comprehension. First, the adult hearer has no way of knowing what the original intent
of the speaker was: perhaps the intended meaning concerns the similarity of oatmeal
and potatoes; perhaps the child knows full well what potatoes are and has simply not
noticed that this is something else. Second, and more importantly for our purposes, the
output of production is a sequence of articulatory gestures; correction would seem to
require reference to these for the child to make direct use of it. But correction is never
of the form \no, you should have �rst rounded your lips like this", and if it were, it
would of course be unintelligible to the child. For production, the child faces the credit
assignment problem: \something was apparently wrong with what I did, but what?"
Unlike comprehension, production cannot be viewed as a supervised task.

How, then, can production be learned at all? The only real possibility is through re-

inforcement , rather than strictly supervised, learning (Sutton, 1992). When the learner
is right and is told so, reinforcement learning is identical to supervised learning: the
learner should do the same thing under the same circumstances the next time. When
the learner is wrong and is told so, however, reinforcement learning provides no infor-
mation about what precisely was wrong. However, it is hard to imagine that the child
learns everything there is to know about word production in this trial-and-error sort
of fashion. This would amount to guessing the sequence of articulatory gestures for all
novel meanings and then attempting to revise each guess on the basis of the information
that the result was somehow wrong. The problem is greatly simpli�ed if we assume that
there is transfer from comprehension to production. That is, as the child learns associa-
tions between form and meaning, the child also learns the reverse associations between

1For convenience, I will refer to the input to perception as \auditory" or \acoustic," but this is not
meant to exclude the possibility of visual input, as one would have for a signed language.
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Figure 1: Perception and Production of Words: Two Possibilities

meaning and form. This alternative fails, however, if there is nothing linking auditory
and articulatory form; learning to map an auditory form onto a meaning says nothing
about how that meaning should be mapped onto an articulatory pattern. Auditory and
articulatory form must share something intermediate; two-way associations could then
be learned between meaning and these shared intermediate representations.

These relationships are illustrated in Figure 1. In Figure 1a, we see the situation
when there is no sharing; production has no way to bene�t from perception and compre-
hension. In Figure 1b, there is an intermediate level at which receptive and productive
performance make use of the same representations. I will refer to this level as that
of intermediate phonological representations (IPRs) both \phonological" and
\representation" have non-standard uses here. From the perspective of perception and
comprehension, IPRs are a level at which the mapping from acoustic/auditory form to
meaning is mediated. From the perspective of production, the IPR level divides the
learning task into two components. One, the mapping between meaning and IPRs, is
easy to solve if we can solve the reverse mapping for perception and comprehension.
The other, the mapping from IPRs to articulation, does not bene�t, at least not di-
rectly, from perceptual learning. However, in order for the learner to make use of the
meaning-to-IPR associations, this other mapping must be partly in place. Note that
given IPRs, correction of the form \no, it's not a potato, it's oatmeal" becomes useful to
the child. The auditory input corresponding to \oatmeal" gets translated into an IPR
for this word, which can then be associated with semantic features tied to the referent.
The IPR-to-articulation component is bypassed altogether.

Of course there is nothing novel in arguing that phonology is shared by comprehension
and production. What is new here is the argument for why this must be so and, in what
follows, for the nature of the phonological representations, which bear few resemblances
to those of traditional phonology.

For the sake of argument, let us assume that for a particular language IPRs cor-
respond to syllables. The IPR-to-articulation learning task, then, consists in learning
how abstract syllable representations are to be translated into sequences of articulatory
gestures. This is just the learning of articulatory phonology. A tentative solution to this
mapping could be found by the learner prior to the learning of semantics and morphol-
ogy, that is, during babbling. Of course, babbling is not a supervised task; the child



does not have the advantage of explicit targets. From the perspective of the present
account, babbling may be seen as follows. Given a particular input, possibly the re-
sult of some perceived linguistic input, the babbler attempts to produce a sequence of
articulatory gestures which reproduces it. She has access to the acoustic/auditory con-
sequences of what she does, but the only feedback she gets is whether her articulatory
sequence is right or wrong (and perhaps by how much). Thus this is an instance of
reinforcement learning. The main point here is that the acquisition of word production
becomes tractable if divided into two tasks, one, the mapping of meaning onto phonol-
ogy, an instance of supervised learning, and the other, the mapping of phonology onto
articulation through reinforcement learning.

On this account, then, the learning of phonology takes place in three overlapping
\stages." These are illustrated in Figure 2. During the �rst several months of life, the
child focuses on the initial learning of IPRs on the basis of auditory input (Figure 2a).
This is an example of unsupervised learning ; there is no teacher at all. The learner is
simply attempting to �nd regularity in the input patterns. When the child begins to
produce language-like sounds in the middle of the �rst year, the learning of the IPR-
to-articulation associations can begin (Figure 2b). For a given utterance, the input is
a legitimate IPR. Based on the learner's current state of knowledge, this results in an
articulatory sequence. Using feedback from her own perceptual system (via the dashed
arrow in the �gure), the child judges the articulation to be right or wrong to some
degree. Since this feedback cannot specify precisely how it is wrong, this is reinforcement
learning. The result of this arduous process is a system which can sound roughly as it
wants to sound.

But phonology is also constrained by the lexicon and by morphology; the contrasts
that matter in the target language only become evident when morphemes are learned.
During a subsequent phase, which may begin long before babbling ends, the �rst words
are learned (Figure 2c). This involves both IPR-to-meaning learning and also the mod-
i�cation of the associations among IPRs and also possibly the auditory-to-IPR associ-
ations. Because this results in modi�cations to the IPRs themselves, the articulatory
learning that went on during babbling must also continue during this phase. Thus the
IPR-to-articulation associations continue to be modi�ed.

Desiderata

What, then, should we expect of a model of morphology acquisition?

1. We expect phonological representations which are shared by receptive and pro-
ductive processes, representations which arise as the system is exposed �rst to
utterances and later to words paired with their meanings.

2. We expect these shared phonological representations to enable generalization from
comprehension to production. Given a new auditory input, the learning system
should yield a representation suitable for production as well as comprehension.

(a) When a novel word is presented, the phonological representation should be
interpretable by the production system as a sequence of articulatory gestures
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Figure 2: Stages in the Learning of Phonology

whose acoustic consequences approximate the original acoustic input.

(b) When a morphological \rule" is learned during comprehension, this should
apply to production as well. That is, once comprehension training has taken
place, the presentation of a novel combination of morpheme meanings, when
input to production, will yield an appropriate articulatory output.2

In the next section, I describe a partially implemented computational model which
embodies these features.

A Model: MCNAM

The Modular Connectionist Network for the Acquisition of Morphology (MCNAM) is a
relatively simple architecture which has been shown in previous work (Gasser, 1994a) to
be capable of learning morphological rules of the following types: su�xation, pre�xation,

2There is a further possibility for the learning of morphology, namely, that analysis into constituent
morphemes takes place as the child listens to her own production of a memorized word (Elbers, 1995).
While this complicates the picture presented here somewhat, it is still in agreement with the basic
account of how receptive and productive learning are related.
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in�xation, mutation, template, and deletion.3

The network consists of separate, though connected, modules for receptive (percep-
tion and comprehension) and productive performance. Further the receptive component
consists of separate modules responsible for recognition of the root and for the gram-
matical morphemes in a word (Gasser, 1994b). Each module in the network is a form of
simple recurrent network (Elman, 1990), a feedforward network augmented with some
recurrent (feedback) connections.

The overall architecture of the model is shown in Figure 3. Boxes represent clusters of
connectionist units, and arrows represent complete connectivity between clusters. There
are recurrent connections on the hidden-layer (IPR) units. That is, in receptive mode,
each hidden-layer unit receives input not only from all of the AUDITION units but also
from the hidden layer units in the same cluster, including the unit itself. The values
that are passed from one hidden layer unit to another are those from the previous time
step; there is a delay on the recurrent connections.

The production module is actually somewhat more complicated than what is shown
in the �gure. It consists of two networks which are run and trained separately, one
connecting the MORPHEME (ROOT and INFLECTION) clusters to the IPR units,
the other connecting the IPR cluster to the ARTICULATION units. Each of these
subnetworks is actually somewhat more complicated that what is shown in the �gure;
it has recurrent connections and an additional hidden layer.

The network is trained as follows. An initial phase corresponds to the pre-lexical
learning of phonology. It only very approximately models the two stages described above.
The unsupervised learning of initial IPRs based on auditory information is avoided al-
together. Instead the connections joining the AUDITION and IPR clusters are assigned
initial random weights, and a set of input syllables is presented to the untrained network.
Following each syllable, the pattern on the IPR cluster is saved as a representation of
that syllable.

Next the IPR-to-ARTICULATION subnetwork is trained on a subset of the syllables

3Reduplication and metathesis rules are not learnable by the model in the form described in this
paper. They appear to require a hierarchical architecture in which prosodic levels (syllable, foot, etc.)
are represented explicitly in the network.



used to generated the IPR patterns in the AUDITION-to-IPR network. The remaining
one-third of the forms are tested to determine whether the IPR-to-ARTICULATION
mapping that has been learned generalizes to novel input syllable sequences. While
learning at this stage should in fact be on the basis of reinforcement, for the simulations
I make use of the more powerful supervised learning. The point is simply to show that
the IPRs contain the sort of information that supports articulation.

Next the AUDITION-to-MORPHEME subnetwork is trained. The inputs consist
of sequences of \auditory" segments representing in
ected words, and the outputs are
ROOT and INFLECTION patterns, that is, a ROOT vector with a single unit on, the
remaining units o�, and an INFLECTION vector with a single unit on, the remaining
units o�. This network is trained on two-thirds of the words and tested for generalization
on the other one-third. Training is supervised.

Finally, both the MORPHEME-to-IPR and IPR-to-ARTICULATION subnetworks
are trained, with combinations of roots and in
ections as MORPHEME inputs and
IPR (syllable) sequences as outputs for the �rst task and as inputs for the second, and
ARTICULATION sequences as outputs for the second task. Again two-thirds of the
possible words are used for training with the rest set aside for testing the network. If
the IPR representations learned for comprehension are suitable for production, the pro-
duction network should produce appropriate IPR sequences for morpheme combinations
which it has not been trained on, and these IPR sequences should be interpretable as
appropriate ARTICULATION sequences. The main point of the simulations described
below is to demonstrate this generalization capacity.

Simulations

In each of the three sets of experiments described here, the network is trained on two-
thirds of the possible patterns and tested on the remaining third. Of interest in each
case is whether the network generalizes, that is, whether it responds appropriately to
novel test patterns. Generalization indicates that the network has actually learned the
rule behind the forms.

Stimuli The network was trained on arti�cial language stimuli. Words in the language
were composed of sequences of two or more CV syllables. The consonant inventory was
[p, b, f , m, t , d , s, n, k , g , x , 8], the vowel inventory [a, i , u]. There were three separate
morphological \rules": su�xation, pre�xation, and template; each network was trained
on only one of these. For the a�xation rules, 12 roots each of one and two syllables were
generated randomly. The a�xes themselves consisted of � , ni , and ku, pre�xed in one
case, su�xed in the other. Thus for the pre�xation case, the three forms for the root
bapu were �bapu, nibapu, and kubapu. For the template rules, 24 two-consonant roots
were generated randomly. The in
ected forms then consisted of two successive syllables
with the same vowel. Thus the three forms for the root bx were baxa, bixi , and buxu.

\Auditory" inputs consisted of sequences of segments, each containing values for
seven gross acoustic features. \Articulatory" output also consisted of sequences of seg-
ments, but these were based loosely on the gestures of Articulatory Phonology (Browman



& Goldstein, 1986). Thus, while these inputs and outputs were far from authentic, they
were quite unlike each other in character.

With 24 roots and three in
ections, there were always 72 possible words. In each
case the network was trained on 48 of these, two of the three forms for each root, and
tested on the remaining 24.

Generalization performance was evaluated by determining which of the possible re-
sponses was closest to the network's output pattern in Euclidean distance.

Production from IPRs The �rst experiment was concerned with initial learning on
the IPR-to-ARTICULATION connections.

First, an AUDITION-to-IPR network was set up with random weights. Next this
network was presented all 36 possible syllables in the language. At the end of each syl-
lable the pattern on the IPR cluster was saved. Note that this network was not trained;
the IPR patterns were those resulting from the initial weights on the AUDITION-to-IPR
connections and the recurrent IPR-to-IPR connections.

Next the IPR-to-ARTICULATION network was trained on two-thirds of the sylla-
bles. The inputs in each case were the IPR patterns themselves. Training was supervised
(rather than via reinforcement, as would be the case with the child). Thus for the syl-
lable gu, the input was the pattern that had appeared on the IPR cluster following
presentation of the sequence of \auditory" patterns corresponding to that syllable to
the AUDITION cluster. However, each syllable pattern was presented for four time
steps as the articulatory output and target changed. This was necessary because each
syllable corresponded to a sequence of four \gesture" patterns on the ARTICULATORY
cluster.

Following training, the IPR-to-ARTICULATION subnetwork was tested on the re-
maining one-third of the syllables. After considerable training, the network correctly
generated 58% of the \articulatory" segments in the test syllables; that is, for 58% of
the segments the network's output was closer to the correct segment than to any other.
Since there were 44 possible segments in all, this performance is far above chance. While
only three of the 12 test syllables were produced perfectly, most of the errors on other
syllables were reasonable ones (qu ! 8u, du ! gu, ni ! mi , sa ! ga, ta ! ka).

These results show that the distributed syllable representations from the AUDITION-
to-IPR network, even when it has not been trained at all, contain the sort of information
which permits generalization on the production task, the task of transforming these
syllable representations to articulatory sequences.

Learning to Recognize Words The next two phases of training involved the learning
of polymorphemic words. First the recognition subnetwork was trained in a supervised
fashion to recognize the words. Separate networks were trained on the three rules,
pre�xation, su�xation, and templates. Inputs consisted of \auditory" sequences; targets
consisted of the appropriate ROOT and INFLECTION.

Generalization results were as shown in Table 1. Note that chance performance would
be 4% for roots and 33% for in
ections.

Performance on root recognition for the template rule is quite low (though still far



TYPE ROOT INFLECTION
su�xation 75% 92%
pre�xation 71% 100%
template 25% 100%

Table 1: Performance on Test Words for Recognition

TYPE MORPHEME-to-IPR IPR-to-ARTICULATION
su�xation 92% 74%
pre�xation 87% 70%
template 65% 47%

Table 2: Performance on Test Words for Production

above chance), but it rises to 67% when we include output roots which di�er by only
one phonetic feature, for example, kp for kb.

The results indicate clearly that the network is capable of learning to recognize the
root and in
ection resulting from simple a�xation and template rules.

Learning to Produce Words Next the hidden layer following each syllable of the
input words was saved for training the production subnetwork. As described above, the
two portions of the production network were trained separately. As with recognition,
separate networks were trained for the three morphological rules, and training is super-
vised. The MORPHEME-to-IPR network took constant patterns representing ROOT
and INFLECTION as inputs and sequences of IPR patterns, one for each syllable, as tar-
gets. The IPR-to-ARTICULATION network took sequences of IPR patterns as inputs
and sequences of \articulatory" segments as targets.

Generalization performance for both portions of the production network is shown in
Table 2. Chance performance was 2.8% for the MORPHEME-to-IPR task and 2.3% for
the IPR-to-ARTICULATION task.

Again performance is always far better than chance. The results indicate that the
phonological representations learned during word recognition embody the structure that
supports the learning of production.

Interestingly, training the production component with the IPRs from the word recog-
nition appears to yield better performance than results when a network is trained on the
MORPHEME-to-ARTICULATION task directly. A recurrent network with the same
number of hidden units as contained in the IPRs (50), when trained on this task with the
su�xation rule, achieved a performance level of only 58%. By comparison, if we combine
the performance on the two production components using the intermediate IPRs during
training, generalization is approximately 70%.



Conclusions

In this paper, I have (1) argued why and how receptive and productive performance
might relate to each other in the acquisition of the lexicon and morphology and (2) shown
how connectionism provides a way in which this relationship might be implemented.

Production must build on perception and comprehension. What is required are
shared representations, derived from perception and comprehension but usable also by
production. These representations should support the learning of production by provid-
ing a way for the process to be broken down into two more manageable tasks, learning
to translate semantic input into phonological representations and learning to translate
phonological representations into articulatory gestures.

One of the appeals of connectionist models is their ability to solve speci�c tasks by
developing internal representations which at the same time embody the internal structure
that is necessary to solve other tasks. I have demonstrated that a particular type of
modular simple recurrent connectionist network, in learning to map pseudo-auditory
input sequences onto the morphemes, recodes the inputs as sequences of distributed
patterns, which in turn support the learning of word production.

A further bene�t of this model, one not explored at all in this paper, is that it makes
very speci�c predictions about the sorts of comprehension and production errors that
appear in the learning of words and of morphology.

Despite numerous gaps in the model itself, in particular, the absence of reinforcement
and unsupervised learning, the present account shows promise. Stated simply, produc-
tion is learnable because comprehension is learnable and because there is phonology to
tie the two together.
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