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Abstract

Recent studies have shown that infants have access to what
would seem to be highly useful language acquisition skills. On
the one hand, they can segment a stream of unmarked syllables
into words, based only on the statistical regularities present
in it. On the other, they are able to abstract beyond these
input-specific regularities and generalize to rules. It has been
argued that these are two separate learning mechanisms, that
the former is simply associationist whereas the latter requires
variables. In this paper we present a neural network model,
demonstrating that when a network is made out of the right
stuff, specifically, when it has the ability to represent sameness
and the ability to represent relations, a simple associationist
learning mechanism suffices to perform both of these tasks.

Background
Two recent papers inSciencehave demonstrated the remark-
able language learning abilities that are possessed by infants.
In both cases the infants were presented with sequences of
syllables embodying some sort of regularity and later tested
with sequences that agree or disagree in certain ways with
the training set. In the experiments of Saffran, Aslin, and
Newport (1996), eight-month-olds heard strings of syllables
consisting of randomly concatenated three-syllable “words,”
sequences which never varied internally. Thus the transition
probabilities within words were higher than between words.
Later the infants were able to differentiate between these
words and non-word three-syllable sequences which they had
either heard with less frequency than the words or not heard
at all. This is taken as evidence that they had picked up
the statistics in the training set. Marcus, Vijayan, Rao, and
Vishton (1999) presented seven-month-olds with sentences of
three one-syllable words separated by gaps. Each sentence
sequence consisted of two different words arranged in a fixed
pattern, AAB, ABB, or ABA. For example, in the ABB con-
dition, the presented sentences included sequences such as
ga ti ti and li na na. Later the infants responded differently
to novel sequences of three words which matched the pattern
they had been trained on than to novel sequences which did
not. This is taken as evidence that they had in some sense
picked up the “rule” implicit in the training sentences.

Marcus et al. (1999) and Pinker (1999) argue that the two
studies, taken together, point to at least two distinct learn-
ing mechanisms which are behind language learning. One
of these, revealed in the experiments of Saffran et al. (1996),
can learn relationships such as the tendency forti to imme-
diately follow ga. It is sensitive to the content of the items,
caring about the similarity among different items. For Pinker

(1999), this is just theassociationismproposed in the eigh-
teenth century by Hume and still proposed as the fundamental
mechanism of the mind by modern connectionists and others.
The other mechanism, revealed in the experiments of Mar-
cus et al. (1999), can learn relationships such as the fact that
the first word of a sentence is the same as the second but dif-
ferent from the third. This mechanism ignores specific con-
tent, caring only about sameness or difference. In this sense
the second mechanism seems to requirevariables, placehold-
ers which are ignorant of their specific content. For Pinker
(1999), this mechanism is an instantiation of what was pro-
posed by the early rationalists and what we think of today
as “symbolic.” Thus Marcus et al. (1999) and Pinker (1999)
now believe that the mind, specifically the portion of it used
in language learning, is both associationist and symbolic.

The question, as Marcus et al. (1999) make clear, is not
whether neural networks can learn to solve both kinds of
tasks, but what sorts of mechanisms are required and whether
these differ for the two tasks. In this paper, we will show how
a neural network of a particular type (the Playpen architec-
ture) can learn the tasks in Marcus et al.’s experiment, and
we will argue that such a network needs at least two mecha-
nisms in addition to those usually found in neural networks,
neither of which amounts to explicit variables. Since such
a network is also capable of learning the tasks in Saffran et
al.’s experiments, we believe that one mechanism suffices to
learn the two kinds of knowledge and that that mechanism is
associationist.

The Task

Sequences

Before discussing the main issue at hand, the issue of how
rule-like behavior could be learned in a neural network, we
need to dispense with the more straightforward issue of how
patterns in time can be dealt with. The syllable “words” in
Marcus et al.’s experiment are presented sequentially, but it is
convenient (though perhaps not necessary) to treat the “rule”
that is learned as a static pattern. As discussed below, there is
a straightforward way to implement this in a neural network
using connections with varying time delays. Given a network
that runs in discrete time steps (one for each input event), we
can translate a pattern that is input sequentially into a pattern
of activation across a layer of what we will call “sequence”
units, each representing a particular number of time steps be-
fore the present.



Binding

Given a static representation of the input sequence, what is
required to learn the patterns embodied in the training se-
quences in Marcus et al.’s experiment? When a listener is
presented with a short sequence of syllables, as in the exper-
iment, one of the aspects of the sequence that is salient is the
pattern of similarity or differences between the syllables. A
device which learns the “rules” implicit in the patterns must
be capable of recording this pattern. Thus the task in the
experiment involves grouping by similarity, treating two of
the syllable words in each three-word sentence asthe same
and the other asdifferent. A neural network that simply acti-
vated syllable units in sequence, translating this into a static
sequence representation, would have no way of performing
this grouping.

This grouping of units is one version of a general challenge
for connectionist networks known as thebinding problem.
This is the problem of grouping together features during pro-
cessing and of keeping this information in short-term mem-
ory in a form that is accessible and unambiguous. Normally
the problem is thought of as one ofsegmentation, binding to-
gether features in the input mainly on the basis of proximity
in space or time. For vision, segmentation involves divid-
ing a scene into its constituent objects. In the simplest case,
each object is represented by a single value on each of a set
of sensory/perceptual dimensions (color, texture, etc.), and it
coheres in space. For speech, segmentation involves dividing
an input stream into its constituent phones, syllables, words,
or phrases. Again in the simplest cases, each object can be
characterized by a value on a set of dimensions (for syllables,
initial consonant, nucleus vowel, etc.), and it coheres in time.
It is this sort of grouping that the infants in Saffran et al.’s
experiment seem to be doing.

But features in a visual scene or auditory stream may also
be grouped on the basis of similarity along some salient di-
mension. In a scene consisting of an array of blue and red
squares, a viewer may treat all of the red squares as one group
and all of the blue squares as another, whether or not the
squares of the same color appear next to each other and are
similar along other dimensions, such as texture. In an au-
ditory stream consisting of sequences of syllables, a listener
may group the syllables that resemble each other, whether or
not they appear together. It is this kind of grouping that is
going on in Marcus et al.’s experiment.

Both of these kinds of grouping or binding involve “be-
longing together,” and we believe that they rely on the same
fundamental mechanisms. While most connectionist net-
works have no way of dealing with the binding problem,
some recent models solve the problem through the use of
some form of synchronization or alignment (Hummel & Bie-
derman, 1992; Shastri & Ajjanagadde, 1993; Sporns, Gally,
Reeke, & Edelman, 1989). Units in the network are outfitted
with a dimension of variability in addition to activation, and
coincidence along this dimension represents “same object.”
We will refer to this as the “binding dimension.” For Marcus
et al.’s task, those sequence units representing positions filled
by words treated as the same would be in phase with one an-
other on the binding dimension. It is the sequence units’ run-
time behavior on the binding dimension that distinguishes the
different grammatical patterns from one another.

Relations
But by itself, this other dimension does not suffice. In order
to represent the patterns of similarity and difference across
sequences of syllables (what Marcus et al. (1999) and Pinker
(1999) call “rules”), we need to represent therelationsbe-
tween the syllables. In a network with a binding dimension,
the relation of sameness can be represented with an excita-
tory connection, but the relation of difference requires a spe-
cial mechanism. One way to achieve this is through the addi-
tion of explicitmicro-relation units (MRUs) in the network
(Gasser & Colunga, 1998). Each MRU represents an asso-
ciation between two features or groups of features which are
treated as belonging to different objects or sets of objects.
Each MRU has twomicro-roles, each with its own value
along the binding dimension, and when it is highly activated,
these values match the values of the feature units that the unit
is associated with. To represent a pattern containing three
“slots,” such as the grammatical patterns in Marcus et al.’s
experiment, the network could associate two binary MRUs
with one another, mapping the micro-roles in the proper way.
Thus for the ABA pattern (ga ti ga, li na li , na gu na, etc.), the
network could encode the rule in the form of the connected
pair of MRUs shown in Figure 1. While the sort of relational
knowledge encoded by MRUs is rudimentary at best, it seems
to be all that is needed for the behavior of the infants in Mar-
cus et al.’s experiments.

word1 word2 word3

Figure 1:A “rule” (ABA) in the form of a mapping between MRUs,
which appear as diamonds. Micro-roles are the ends of the dia-
monds. The arrows represent positive connections. Each MRU as-
sociates one micro-role with each word position. The first MRU rep-
resents AB*, the second *AB. The connections between the MRUs
map the micro-roles onto each other.

In summary, we believe that a neural network that could
simulate the performance of the babies in Marcus et al.’s ex-
periment requires both a means of grouping units together
(the binding dimension) and a means of explicitly represent-
ing relations (micro-relation units). In the following section,
we describe a connectionist network that implements these
notions.

The Model
Units
Playpen (Colunga & Gasser, 1998; Gasser & Colunga, 1998)
is a neural network architecture of the generalized Hopfield
type (Hopfield, 1984; Movellan, 1990) which is designed
to represent and learn relational knowledge and to deal with
simple sequential patterns. To deal with the binding problem,



units vary with respect to theirrelative phase angle, a quan-
tity ranging from 0 to2�. Eachmicro-object unit (MOU ),
representing an object feature, has a relative phase angle, and
when a group of MOUs settles to a state in which they are ac-
tivated and have similar relative phase angles, the network has
implicitly assigned the features represented by those units to a
single object in the world. Unlike other networks, Playpen is
also outfitted with micro-relation units (MRUs), units which
represent primitive binary relations between the features rep-
resented by the simpler MOUs. Each MRU has a relative
phase angle for each of its two micro-roles. Each micro-role
is connected to one or more MOUs, and an MRU is activated
to the extent that the groups of MOUs which are positively
associated with its two micro-roles are activated and out-of-
phase with one another.

Connections

The weights connecting units to each other implement both
the simple associations common to all neural networks and
the relationships necessary to solve the binding problem. In
order to deal with patterns in time, however, each connection
has a delay associated with it. The network runs in discrete
time, with one time step for each input event (syllable in the
case of the simulations reported here). Connections with de-
lay 0 respond in the usual fashion. A connection with delay
d > 0 causes the unit at the receiving end to respond to the
activation that the unit at the sending end hadd time steps
before. As shown by Kleinfeld (1986) and others, a Hopfield
network augmented with delay connections can learn to re-
produce the sequences that it is trained on.

As in other neural networks, the sign and magnitude of a
weight on a connection has an effect on the activation of the
receiving unit. Unlike most other neural networks, the sign
and magnitude of the weight also have an effect on the rel-
ative phase angle of the receiving unit. Alongside its activa-
tion function, each unit has a coupling function which defines
this effect. All else being equal, the sending unitattractsthe
phase angle of the receiving unit via a positive connection
andrepelsthe phase angle of the receiving unit via a negative
connection. For connections between MOUs and MRUs, the
effect is between the MOU and the micro-role of the MRU.
MRUs may also be connected with one another. Because
there are two ways in which the micro-roles of two MRUs
may pair up, there are two possible patterns of connectivity
between each pair of associated MRUs. Again a positive con-
nection implements both excitation and attraction and a neg-
ative connection implements both inhibition and repulsion.

Learning

Learning in Playpen, as in most other neural networks, is
Hebbian. Because a network may have hidden units, how-
ever, simple Hebbian learning often does not suffice; instead
contrastive Hebbian learning (Movellan, 1990) is used.
Learning takes place in two phases, a positive phase in which
input units are clamped and learning is Hebbian, and a nega-
tive phase in which no units are clamped and learning is anti-
Hebbian.1 When the training patterns have been learned, the

1We consider only the unsupervised version of the learning algo-
rithm here.

two changes cancel each other out because the network’s be-
havior in the two phases is identical.

Network for the Simulation
The network we used for simulating Marcus et al.’s exper-
iments is shown in Figure 2A. There is a Words layer of
MOUs, with a single unit for each syllable (word); a Se-
quence layer of MOUs, with a single unit for each position
(lag in time steps behind the current word); and a Grammar
layer of MRUs, with a single unit associated with each pair
of Sequence units. All of these connections are hard-wired,
and there are trainable connections joining the MRUs to one
another.

A sequence of words is presented to the network by clamp-
ing the activation (but not the phase angle) of the words in
succession, one network time step for each word. The hard-
wired connections within the Words layer cause words within
a sentence consisting of the same syllable to take on the same
phase angle and words consisting of different syllables to take
on different phase angles. These connections implement the
similarity relationships between the different syllables.2 With
no delay, there are negative connections between the different
syllable units. With delays of one and two time units, there
are positive connections from each unit to itself and negative
connections between the different units. With the activations
of the Word units clamped, these connections can only affect
the units’ phase angles, and their effect is to cause similar
syllables to have the same phase angle, dissimilar syllables to
have opposing phase angles.

The hard-wired connections between the Words and Se-
quence layers cause the temporal word sequence to be trans-
formed to a spatial representation of the sequence, with one
position each for the current and the two preceding words.
For the purposes of modeling Marcus et al.’s experiment, we
implemented the simplest possible variant of the Sequence
layer, one in which there is a single unit for each sequen-
tial position. Each of these units is connected to all of the
Word units, so it is completely insensitive to the actual word
content. The three Sequence units differ only in the delays
on their input connections. At the end of an input sentence,
all three Sequence units should be activated, and because all
are connected by positive connections to the Word units, the
Word units will pass on their phase angles to the Sequence
units. What remains, then, of the activated sequence of words
presented at the Word layer is a non-sequential record of the
similarities and differences among the three words. For ex-
ample, at the end of the sequenceli li na (right after the net-
work has settled in response to the presentation ofna), the
Sequence units representing the previous word and the sec-
ond to last word (li li ) should have the same phase angle, and
the Sequence unit representing the current word (na) should
have the opposite phase angle.

In the Grammar layer, each MRU represents a hypothesis
about a relation between two of the Words in a sequence. For
a given three-word sequence with two different word types
(AAB, ABB, or ABA), we expect two of the MRUs to be acti-
vated. Each trainable connection between a pair of Grammar

2We believe it is also possible for the network to learn these con-
nections if presented with many sequences in which syllables are
often reduplicated.
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Figure 2:Playpen networks for learning word sequences. (A) Simplified network used in the simulation of Marcus et al.’s experiments. Only
two of the four Word units are shown, and the micro-role-to-micro-role mappings are not shown for the MRU connections. The sequenceli
li na has just been presented to the network. MOU and MRU phase angles are represented as arrows. (B) Full-blown version of the network,
including word-specific, as well as content-free Sequence units. Not all connections are shown.

MRUs represents a potential correlation between the pairwise
word relations. Before training, the Grammar layer has a dif-
ferent attractor state for each of the grammatical patterns. In
each of these states, two Grammar units turn on strongly, and
the other fails to turn on. Because the hard-wired connec-
tions between the Sequence and Grammar layers are rela-
tively weak, however, these attractors are not very reliable,
and the Grammar layer may fail to be activated strongly at
all or may blend two of the attractors. Following training on
a single grammatical pattern, through changes in the weights
connecting the Grammar units, we expect the attractor associ-
ated with the pattern in the training set to be strengthened and

the other two attractors to be weakened. When the network
is presented with a sequence of the type it was trained on, it
should respond with enhanced activation of the two MRUs
that agree with the sequence. On the other hand, when pre-
sented with a sequence of either of the other types, it should
respond with weakened activation in comparison to its pre-
training state. Thus we predict higher overall activation for
the Grammar layer for patterns of the type on which the net-
work was trained.



Simulations
We simulated Marcus et al.’s task by training networks on
one of the three grammatical patterns: AAB, ABA, or ABB.
In each case, the set of training patterns consisted of four dif-
ferent sentences, each formed by randomly combining one-
syllable words following the appropriate grammatical pattern.
Each network was trained on 50 repetitions of the training set.

The networks were then tested on 12 sentences, four each
of the three kinds of grammatical patterns. Each of the test
sentences was novel; that is, it was formed by combinations
of words that had never been seen before.

Since the Grammar units have learned to be activated by
sentences that follow the pattern they were trained on, we ex-
pect the activation of the Grammar layer to be higher for sen-
tences that are consistent with this pattern than for sentences
that are not. So familiarity with a test pattern is measured
in the network as increased activation of the relevant (i.e.,
trained) units, the Grammar units.

The results from 10 networks trained on each grammati-
cal pattern are shown in Figure 3. The total activation of the
Grammar layer was averaged over four trials of each of the
test words. The expected interaction between training type
and testing type is highly significant (p < :001). As shown in
Figure 3, the Grammar layer is more activated for novel sen-
tences that follow the grammatical pattern the network was
trained on than for novel sentences that follow either of the
other two patterns.
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Figure 3:Networks that have been trained on sentences following
a certain grammatical pattern respond with more activation tonovel
sentences obeying that same pattern than to novel sentences obeying
other patterns.

Conclusions
In this paper we have shown how a neural network with
a mechanism for grouping together activated units (relative
phase angles) and a mechanism for representing primitive re-
lational knowledge explicitly (micro-relation units) can learn
the task of Marcus et al.’s experiments. But as already noted,
we were concerned in the simulations only with the simplest
sort of network that could model that task. In particular, we
included only Sequence units that were completely devoid of

content, ones that, through their phase angles, kept a record
only of their similarity to the words at other sequence posi-
tions. A full-blown network of this type would have Sequence
units responding to varyingrangesof syllables/words, includ-
ing at the widest end of the spectrum very “abstract” units like
those used in the simulation. A simple version of a network
of this type is shown in Figure 2B.

We have modeled the task of Saffran et al. using a network
similar to that shown in Figure 2B, in which there is a sepa-
rate sequence unit for each combination of syllable and rela-
tive position. This network also has a Word layer consisting
of simple units with no phase angles that are fully connected
to the sequence units. Trained on sequences of three-syllable
words, the Word units come to associate themselves with se-
quential pairs or triples of particular syllables which recur fre-
quently. Tested on three-syllable sequences later on, the Word
units respond more highly to word sequences than to non-
word sequences. From the perspective of the network, the
Saffran et al. task differs from Marcus et al.’s task mainly in
not requiring relative phase angles or MRUs. Because the in-
formation that is learned concerns correlations between spe-
cific syllables, there is no need for the network to group units
through synchronization or to represent explicit relationships
between different “objects.”3

Thus a connectionist network can learn the two tasks, one
involving “statistical” knowledge, the other “algebraic rules.”
While the latter makes use of features of the network that the
former does not, the learning algorithm is the same Hebbian
algorithm, and the relationships that are learned are imple-
mented through the same sorts of connections. In both cases
learning is associationist.

So where does this leave variables? While the Sequence
units in the network used to model Marcus et al.’s experiments
do function as placeholders in the sense that they stand for
relative positions in the input sequence which can be “filled”
by different syllables, they are certainly not variables in the
usual sense. For one thing, the same three Sequence units are
used to represent all three “rules”. If the As in AAB are vari-
ables, then the Sequence units are not because they can take
on phase angles corresponding to AAB, ABB, and ABA. Per-
haps the micro-roles of the Grammar MRUs come closer to
variables since they force their two phase angles to be distinct.
But note that each MRU represents a binary relation which
can take part in more than one three-part pattern. It is as if
rule fragments are being shared by different rules. Relative
phase angles themselves seem to have some of the properties
of variables; after all, it is these that are implicitly compared
by MRUs. But unlike symbolic variables, phase anglesinter-
act with one another according to the pattern of connectivity
among the units which have the phase angles. And sameness
in the network, like similarity in neural networks in general,
is graded: two units represent “the same thing”to the extent
that they are in phase with one another.

But what matters is not whether it is possible to describe

3Note that in our simulation of Saffran et al.’s experiment, there
is no explicit segmentation of the syllable sequence into separate
words. To do this in a Playpen network would require the phase-
angle alignment of MOUs associated with each sequence of sylla-
bles that corresponds to a word and different phase angles for the
MOUs associated with different words. We are currently working
on implementing such a network.



the network as having variables. What matters is whether pre-
dictions emerge from this model that might differ from those
made by a symbolic model. We would make the following
predictions:

1. Content should matter, even for “rule”-learning tasks.

In a full-blown network trained on Marcus et al.’s task
(one such as that shown in Figure 2B), Sequence units
specific to particularcategoriesof syllables would be ac-
tivated along with the more “abstract” units like those used
in the simulation. That is, similarity is still relevant. As
a result, we would predict that sentences which overlap in
content with those used in training the infants would be
treated as more familiar than sentences consisting of com-
pletely novel combinations of words. In particular, per-
formance on new instances of the rule should differ from
performance on familiar instances of the rule.

2. Difficulty increases with the number of types of syllables
in a word.

Repulsion between three units which are clamped on can
lead to three different phase angles, representing three sep-
arate “objects,” but, depending on the magnitude of the
weights connecting the units, there is also an attractor at
which there are only two different phase angles. At the
same time, MRUs can represent only binary relations, and
strong associations between MRUs can only develop for
different micro-relations involving the same two objects.
Thus Playpen has a strong preference fortwo, and in a
four-word version of Marcus et al.’s experiment, we would
expect that sequences such as ABCC would be confused
with AABB and ABBB. In symbolic models, on the other
hand, there is no built-in preference for a particular number
of variables.

3. Pairwise relational correlations are always relevant.

MRUs learn pairwise relational correlations, so the simi-
larity between two “rules” will be determined mainly by
the shared pairwise relational correlations rather than any
higher-order correlations. In a four-word version of Mar-
cus et al.’s experiment, we would expect ABBC to be
treated as more similar to ABBA or ABAC than to ABBB
because the first two overlap in 4/5 of the binary relations
involving different elements, whereas the third overlaps in
only 3/5 of the binary relations.

We have argued that the two kinds of learning exemplified
in Saffran et al.’s and the Marcus et al.’s experiments are both
associationist. However, a simple neural network with a Heb-
bian learning rule, even one equipped with delay connections
and recurrence to handle time, probably will not suffice to ex-
hibit the variable-like behavior of Marcus et al.’s experiments.
We propose that this sort of behavior can be handled by a neu-
ral network that is augmented with a mechanism to handle
“same thing” and “different thing” and to handle primitive re-
lational knowledge. Thus the Playpen architecture, described
in this paper, is a candidate for a general-purpose neural net-
work architecture that can learn both statistical information
and rule-like knowledge.
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