
Toward a Rule-Based System for English-Amharic Translation

Michael Gasser

Indiana University
Bloomington, Indiana, USA

gasser@indiana.edu

Abstract
We describe key aspects of an ongoing project to implement a rule-based English-to-Amharic and Amharic-to-English machine transla-
tion system within our L3 framework. L3 is based on Extensible Dependency Grammar (Debusmann, 2007), a multi-layered dependency
grammar formalism that relies on constraint satisfaction for parsing and generation. In L3, we extend XDG to multiple languages and
translation. This requires a mechanism to handle cross-lingual relationships and mismatches in the number of words between source and
target languages. In this paper, we focus on these features as well as the advantages that L3 offers for handling structural divergences
between English and Amharic and its capacity to accommodate shallow and deep translation within a single system.

1. Rule-Based Machine Translation
Among other disadvantages, African languages (and the
communities of people who speak them) suffer from a lack
of available documents in the languages, one aspect of the
Linguistic Digital Divide (Paolillo, 2005). Machine trans-
lation (MT) and computer-assisted translation (CAT) could
play a role in alleviating this problem. The ultimate goal
of our project is the application of MT and CAT to the pro-
duction of publication-quality documents in the major lan-
guages of the Horn of Africa.
Despite the impressive recent achievements of statistical
machine translation (SMT), rule-based machine translation
(RBMT) continues to offer advantages in certain contexts
(Barreiro et al., 2011; Bond et al., 2011; Forcada et al.,
2011; Mayor et al., 2011; Mel’čuk and Wanner, 2006;
Ranta et al., 2010). SMT requires large parallel corpora,
which are not available for under-resourced languages. The
data sparsity problem is especially serious for morpholog-
ically complex languages such as Amharic because such
languages have very large numbers of distinct word forms.
Finally, for SMT systems, which normally rely on relatively
primitive models of constituent order, significant structural
differences between the languages can present problems.1

The relative advantages of SMT and RBMT also depend on
the purpose of the MT system. For extracting the gist from
a document, SMT systems already perform adequately for
some language pairs and some domains. When the goal is
publication-quality documents, however, an RBMT or RB-
CAT system, designed for a narrow content domain, would
perform better (Ranta et al., 2010).
For our purposes, RBMT is clearly the way to start, and we
are developing a framework for RBMT and RBCAT sys-
tems for under-resourced languages, L3. L3 relies on a
powerful and flexible grammatical theory that we hope will
be able to handle arbitrary syntactic divergences between
languages. At the moment, we are far from our long-term
goal of a set of tools that would allow developers to rapidly
design MT systems for limited domains in a new language
pair, something analogous to what Apertium (Forcada et al.,

1Hybrid RBMT-SMT systems are beginning to address some
of these deficiencies.

2011) offers. In this paper we discuss some features of L3

that have emerged out of the development of a small proto-
type English-Amharic translation system.
In the next section, we introduce Extensible Dependency
Grammar (XDG), the grammatical formalism behind L3.
Next we discuss the enhancements to XDG that are re-
quired for MT, including two aspects of the system not de-
scribed in our previous work (Gasser, 2011b), the imple-
mentation of both shallow and deep MT and the handling of
mismatches in the number of words. Next we show how L3

deals with structural divergences between languages. We
conclude with a discussion of ongoing work.

2. Extensible Dependency Grammar
Dependency grammars are a popular alternative to con-
stituency grammars because of their simplicity, the ease
of the integration of syntax and semantics, and their han-
dling of word-order variation and long-distance dependen-
cies. These advantages apply to RBMT as well (see, for
example, Bick, 2007; Mel’čuk and Wanner, 2006). XDG
(Debusmann et al., 2004; Debusmann, 2007) is a flexi-
ble, modular dependency grammar formalism that relies on
constraint satisfaction for processing. Although XDG has
not been tested with wide coverage grammars and uncon-
strained input, we believe that its flexibility and its proven
capacity to handle complex syntactic constraints outweigh
this drawback, especially since our goal is relatively small
grammars for restricted input. Debusmann (2007) has de-
veloped a partial XDG grammar of English that handles
many complex syntactic phenomena, and in earlier work
(Gasser, 2010), we have shown how the unusual features of
Amharic relative clause syntax can also be dealt with in this
framework.
Like other dependency grammar frameworks, XDG is lexi-
cal; the basic units are words and the directed, labeled arcs
connecting them. In the simplest case, an analysis of a sen-
tence is a directed graph over a set of nodes, one for each
word in the analyzed sentence, including a distinguished
root node representing the end-of-sentence punctuation.
As in some other dependency frameworks, for example,
Meaning-Text Theory (see Mel’čuk and Wanner, 2006 for
the application of MTT to MT), XDG permits analyses on



multiple dimensions, each corresponding to some level of
grammatical abstraction.
In L3, each language is represented on two dimensions, Im-
mediate Dominance (ID) and Linear Precedence (LP), and
a further dimension, Semantics (SEM), is responsible for
language-independent conceptual structure. A key feature
of XDG is the interface dimensions that relate dimensions
such ID and LP to one another. Interface dimensions have
no arcs of their own but instead constrain how arcs in the
related dimensions correspond to one another.

2.1. Analyses as multigraphs
In the general case, then, an analysis of a sentence is a
multigraph, consisting of a separate dependency graph for
each dimension over a single sequence of word nodes. Fig-
ure 1 shows a possible analysis for the English sentence the
doctor cured the patient on the ID and SEM dimensions,
each represented by a plane in the figure. (The LP dimen-
sion is omitted here and in subsequent figures for the sake
of simplicity.) Each node is represented by a pair of circles
or squares joined by dashed lines. The square node is the
end-of-sentence root node.2 Arrows go from heads to de-
pendents (daughters). For simplicity, we refer to the core
arguments of semantic predicates as arg1 and arg2, rather
than agent, patient, etc. On the SEM dimension, we main-
tain the convention that only content words participate in
the representation. That is, any strictly grammatical words
appearing in the ID dimension are effectively “deleted” in
the SEM dimension. As shown in the figure, “virtual dele-
tion” is handled in XDG through the use of special del arcs
(Debusmann, 2007). In subsequent figures, we omit the del
arcs, indicating deleted nodes with unfilled circles.
A grammatical analysis is one that conforms to a set of
constraints, each applying to a particular dimension. Con-
straints belong to several categories, the most important of
which are graph constraints, restricting the structure of the
dependency graph; valency constraints, governing the la-
bels on the arcs into and out of nodes; agreement con-
straints; order constraints; and various linking constraints
that apply to interface dimensions and govern the manner
in which arcs on one dimension are associated with arcs on
another dimension.

Sem

arg2arg1

root

En ID root

det

objsbj

det

the doctor cured the patient

del
del

Figure 1: XDG analysis of an English sentence.

2XDG does not handle sentence fragments; we are currently
extending the system to have this capacity.

2.2. The lexicon
An XDG grammar of a language consists of a set of dimen-
sions, each with its own set of constraints and arc labels,
and a lexicon. As XDG is completely lexical, all specific
grammatical constraints are stored in word-level units.
The lexicon consists of a set of entries associated with
word forms or lemmas. Each entry contains one or more
grammatical constraint attributes. Entry 1 shows a portion
of the entry for the English lemma cure. The entry in-
cludes three valency constraint attributes on the ID dimen-
sion. The word requires outgoing subject (sbj) and object
(obj) arcs and an incoming root arc.3 (The “!” represents
the requirement of exactly one arc with the given label.)

Entry 1 Portion of English entry for the lemma cure
- lemma: cure

ID:
out: {sbj: !, obj: !}
in: {root: !}

2.3. Parsing and generation
Parsing within XDG begins with a lexicalization phase
which creates a node for each word in the sentence and
searches the lexicon for matching entries. For morpholog-
ically complex languages, such as Amharic, it is imprac-
tical to store all word forms in the lexicon, and we em-
ploy in-house morphological analyzers to pre-process the
input words for such languages. Morphological analysis of
the input words results in one or more lemmas and sets of
grammatical features for each analyzed word. The word
forms or lemmas in the input are matched against lexical
entries, and a copy of each matching entry (a node entry)
is added to the nodes. Each node is identified by an index
representing its position in the input sentence.
The next phase is variable and constraint instantiation.
Each of the constraints referenced in the constraint at-
tributes in the node entries is instantiated. The constraints
apply to a set of variables, which are created during this
phase. For example, each node n has a daughters variable
whose value is the set of indices of the daughter nodes of
n. Among the constraints that apply to such a variable are
graph constraints.
Finally, constraint satisfaction is applied to the variables
and constraints that have been instantiated. If this succeeds,
it returns all possible complete variable assignments, each
corresponding to a single analysis of the input sentence,
that is, a multigraph across the sentence nodes.
Because an XDG grammar is declarative, it can be used
for generation as well as for analysis. The main difference
is that for generation the semantic input does not specify
the positions for words in the output. This problem is han-
dled in a straightforward fashion through the creation of
a position variable for each node; these variables are con-
strained by explicit order constraints. Another difference
relates to the frequent mismatch in the number of nodes be-
tween semantics and the ID and LP dimensions (Pelizzoni
and Nunes, 2005), a problem we discuss below.

3In our simple grammar, there are no dependent clauses, so all
finite verbs are the heads of sentences.



3. L3

L3 is an extension of XDG to translation. Enhancements
to the basic framework include separate lexica for each lan-
guage and cross-lingual links joining lexical entries in dif-
ferent lexica. Within L3 we treat semantics, consisting of a
single SEM dimension, as a language with its own lexicon.

3.1. Multilingual multigraphs
Adaptation of XDG to translation is straightforward once
we make the leap to thinking of a sentence and its trans-
lation into another language as a single multilingual “sen-
tence” with a single set of multilingual word nodes. This is
illustrated for the sentence of Figure 1 in Figure 2, where
we have shown the ID dimensions for English and Amharic
and the SEM dimension.4 Note that the order of the words
in the Amharic output is subject-object-verb rather than
subject-verb-object, as in the English input.

Am ID

objsbj

root

Sem

arg2arg1

root

En ID root

det

objsbj

det

the doctor cured the patient

ሐኪሙ
hakimu

በሽተኛውን
bǝštǝñawn

አዳነው
adanǝw

Figure 2: Multigraph for a bilingual “sentence”.

3.2. Cross-lingual links
In keeping with the lexical nature of XDG, all cross-lingual
knowledge in the system takes the form of links joining lex-
ical entries in different languages. By convention in L3,
these always join the ID dimension of a language to an-
other dimension, either the SEM dimension of semantics,
or the ID dimension of another language. These links spec-
ify a target lexical entry and optionally a constraint attribute
on the interface dimension joining the two arc dimensions.
Entry 2 shows the portion of the English entry for the verb
cure that links it to the entry in the semantics lexicon for the
corresponding CURE event type and the corresponding en-
try in the Amharic lexicon, €×¶ adan@. There are attributes
for the linking constraint, linking end, on both interface
dimensions, IDSEM and IDID.
The linking end constraint is illustrated in general and for
the special case of IDSEM for the subject of cure in Fig-

4Since the Amharic nouns H¾m hakim‘doctor’ and ¤]°{
b@št@ña ‘patient’ can be either masculine or feminine, the Amharic
sentence shown is only one of four possible translations for the
English sentence.

ure 3. For a node n, linking end specifies a relationship
between arc labels l1 and l2 on dimensions d1 and d2 re-
spectively. It constrains n to have as the daughter on its
l1 arc in D1 a node which is the daughter of some node
on D2, not necessarily n, on an arc with label l2. As we
will see below, linking end, and other similar linking con-
straints, are the key to representing structural differences
on different dimensions (ID and Sem or ID in one language
and ID in another) across the same set of word nodes.

Entry 2 Cross-lingual links in the entry for cure
- lemma: cure

cross:
sem:
lex: CURE
IDSem:

linkend: {arg1: [sbj]}
am:
lex: adane
IDID:

linkend: {sbj: [sbj]}

Sem arg1

cure

En ID sbj

D1 l1

D2 l2

n

Figure 3: Linking end, in general and for subject of cure.

3.3. Shallow and deep translation
The fact that cross-lingual links are possible between En-
glish and Amharic directly as well as between English or
Amharic and semantics means that the depth of translation
is flexible in L3.
Shallow (or transfer) vs. deep (or interlingua) translation is
a distinction going back to the early days of RBMT. Deep
translation (e.g., Bond et al., 2011; Mel’čuk and Wanner,
2006) makes use of a language-independent semantic level,
rules mapping source-language lexical items and structures
to semantic units, and rules mapping semantic units to
target-language lexical items and structures. The main ad-
vantage is that it is possible to translate from any of the
system’s source languages into any of its target languages
without special-purpose rules for language pairs. The draw-
back of the deep approach is the difficulty faced in devising
a semantics that is abstract enough to cover a large set of
languages. The addition of new languages may necessi-
tate changes in the semantics, which may in turn require
changes in all of the source-to-semantics and semantics-to-
target interfaces. This disadvantage is mitigated to some
extent when translation is limited to narrow domains (Ranta
et al., 2010).
Shallow approaches do not suffer from these problems;
since the rules apply only to a specific language pair, there
is no need to search for abstract general representations and
no need to update the whole system when new language



pairs are added. In addition, shallow MT is normally more
efficient than deep MT because less processing is required
at both ends.
Given the advantages of both approaches, it would make
sense to integrate them in some way. Human translators
seem to use such an eclectic approach, relying on a deep un-
derstanding when they need to, but “faking it” and making
use of shortcuts when they can or when they lack the knowl-
edge required for a deep understanding (Byrne, 2006). As
far as we know, however, all existing MT systems operate
either one way or the other.
L3 integrates both shallow and deep approaches into a sin-
gle system. It is straightforward to simply tell L3 to make
use of source-to-semantics and semantics-to-target links or
only source-to-target cross-lingual links during translation.
When they are available, the latter will always be faster,
involving fewer variables and fewer constraints to satisfy.
For example, consider the translation pair illustrated in Fig-
ure 2. For translation of the English sentence into Amharic,
3544 constraints are required for the deep approach, while
only 2879 are required for the shallow approach. For trans-
lation of the Amharic sentence into English, 5594 con-
straints are required for the deep approach, 4371 for the
shallow. There is a savings in the time required for con-
straint satisfaction of 28.1% in the former case, 30.3% in
the latter.

3.4. Node mismatch
For cases where words in the input sentence do not corre-
spond to explicit semantic units, XDG makes use of del
arcs to implicitly delete the nodes on the SEM dimension.
When there is a node mismatch in the opposite direction,
however, this solution will not work (Pelizzoni and Nunes,
2005). This happens, for example, in generation, when the
semantic input has no nodes for words that must appear in
the output, such as determiners and auxiliary verbs. It also
happens frequently in translation. For example, like many
other languages, Amharic is a zero-subject (“pro-drop”)
language which may have no explicit subject. Like most
other Semitic languages and many Bantu languages, it is
also a zero-object language which may have no explicit di-
rect or indirect object when this is coded as an affix on the
verb. Thus in the English translation of an Amharic sen-
tence such as €×¹t adanat ‘he cured her’, consisting of a
verb only, the nodes for the English pronouns he and her
must come from somewhere.
For this purpose, L3 includes the possibility of empty
nodes. Empty nodes are created during processing on the
basis of trigger nodes associated with explicit input words.
There are several types of empty nodes for different syntac-
tic contexts. Here we focus on empty nodes for verb ar-
guments that may not be explicit in the source languages.
In the lexicon for Amharic and other such languages, fi-
nite verb entries include an attribute for a subject empty
node, and finite transitive verbs include an attribute for an
object empty node. Each of these empty node categories
in turn has its own lexical entry (indicated by @SBJ and
@OBJ in what follows), specifying a set of constraint at-
tributes just as for any other entry. Thus verb nodes are the
triggers for these argument empty nodes. When an input

Amharic sentence contains a finite verb, a subject empty
node is automatically added to the node list and assigned to
the empty subject lexical entry. If the verb is transitive, an
object empty node is also created and assigned to the empty
object lexical entry.
The key property of the subject and object empty nodes is
that there is no way of knowing prior to constraint satis-
faction whether they will be needed or not. If the input
Amharic sentence has no explicit subject (or object), the
empty nodes get realized as explicit nodes in the English
output:
€×¹t ⇒ …×¹t @SBJ @OBJ

⇒ {cured, he, her}
⇒ he cured her

If, on the other hand, the input Amharic sentence has an
explicit subject (or object), the nodes remain empty in the
English output. In the following sentence, for example, the
noun €s´rn astern ‘Esther (acc.)’ plays the role of object:
€s´rn €×¹t ⇒ €s´rn …×¹t @SBJ @OBJ

⇒ {Esther, cured, he, zero}
⇒ he cured Esther

To handle these cases we have introduced a set of empty
node constraints in XDG. Informally, the constraints spec-
ify that the verb can have only one daughter along a sbj
(obj) arc. If there is an explicit subject (object), the node for
this constituent’s head plays the role of daughter along the
sbj (obj) arc from the verb, and the corresponding empty
node remains empty in the target language. If there is no
explicit subject, the empty node plays the role of sbj (obj)
daughter in Amharic. Because of Amharic agreement con-
straints, the empty node is constrained to have particular
person, number, gender, and case features. This node is re-
alized in English as an explicit pronoun. Which pronoun it
becomes is determined by English agreement constraints:
each candidate pronoun has features that must agree with
the features of the empty node, and the selection of the ap-
propriate pronoun is accomplished through constraint sat-
isfaction.

3.5. Translation

Given the modifications of the basic XDG framework dis-
cussed above, translation proceeds more or less in the same
fashion as parsing and generation in XDG. As an example,
consider the translation of the sentence the doctor cured the
patient into Amharic. If the input language is morpholog-
ically complex, it is first processed with a morphological
analyzer, resulting in one or more combinations of lemmas
and grammatical features for each node. This is not the case
for our English input sentence, however. Next lexicaliza-
tion searches for entries in the source language lexicon that
match the input words or lemmas. In addition to language-
specific attributes, such as valency, agreement, and order,
the matched lexical entries may also provide cross-lingual
links, either to semantics or to the target language. These
links are traversed during lexicalization, and the attributes
in the “language” on the other end of the link are copied
in the relevant node entry. For example, via cross-lingual
links, node 3, corresponding to cured in the input, gets fea-
tures from the lexical entry for the Amharic translation of
cure, €×¶ adan@, including the general valency, order, and



agreement constraints of Amharic transitive verbs.
Finally, constraint satisfaction applies, as before. For a
morphologically complex target language, as in this exam-
ple, the result is a set of ordered target-language lemmas
along with grammatical features. The final step is mor-
phological generation, which yields target-language surface
forms. We use our in-house Amharic morphological gener-
ator for this purpose (Gasser, 2011a).
As noted already for the monolingual case with respect to
parsing vs. generation, the fact that all of the information
in the lexica is declarative means that the same knowledge
can be used for translation in both directions. An excep-
tion is the case of empty nodes, which are deleted in one
direction and inserted in the other. Thus, given separate
general mechanisms for handling empty nodes in the two
directions, the fact that the system has the knowledge to
allow it to translate the English sentence the doctor cured
the patient into the Amharic sentence H¾Ω ¤]°{wn
€×¶w hakimu b@št@ñawn adan@w (among other possibili-
ties) means that it can translate the Amharic sentence to the
English sentence.

3.6. Structure mapping
An important concern in the design of MT systems is that
they have the capacity to represent the structural diver-
gences between languages. Dorr (1994) provides one clas-
sification of the sorts of divergences that can occur.
Here we discuss an English-Amharic example illustrating
two of Dorr’s divergence types: thematic and categorial.
Amharic has a set of impersonal experiential verbs whose
subject agreement is always third person singular mascu-
line and whose object suffixes agree with the experiencer
argument. If the experiencer also takes the form of an ex-
plicit argument of the verb, this argument is unmarked for
case, like a subject, but it agrees with the verb’s object suf-
fix rather than with the verb’s subject affixes. We refer to
this argument as a “topic”. An example is the verb Ô¼Œ
d@k@m@ ‘be tired’: Ô¼≈t d@k@mat ‘she is tired’, lit. ‘it
tired her’; €s´r Ô¼≈t aster d@k@mat ‘Esther is tired’, lit.
‘Esther, it tired her’. For these verbs Amharic and English
differ in two ways. English uses an adjective, along with
a form of be, while Amharic uses a dedicated verb. In En-
glish the subject of be is the experiencer, while in Amharic
the experiencer is cross-indexed as obligatory object agree-
ment on the verb and (if present) as the syntactic topic of
the sentence.
In L3 structural divergences are handled on interface di-
mensions. Consider first the lexical entry for the Amharic
verb Ô¼Œ d@k@m@ ‘be tired’. With respect to the Amharic
ID and LP dimensions, this is a transitive verb with the
unusual property that it may have a topic argument (the ex-
periencer) that agrees with the verb’s object morphology.
Because the topic may not be realized and because it cor-
responds to an explicit argument in the semantics and in
languages such as English, the verb acts as a trigger for a
topic empty node.
In Entry 3, we show some of the information in the En-
glish and Amharic lexica that enables translation of these
sentences. For Amharic we show a portion of the entry for
the verb lemma Ô¼Œ d@k@m@. This acts as a trigger for

an empty topic node (with lexical entry @TOP), which re-
quires an outgoing arc in the ID dimension with a top label.
Also on the ID dimension, there is an agreement constraint
attribute specifying that the topic must agree with the ob-
ject suffix on the verb on the person, number, and gender
(png) feature. The Amharic verb has a cross-lingual link
to semantics that associates this lemma with the semantic
lemma TIRED and stipulates that the arg1 arc from this
node on the SEM dimension should go to the node that has
an incoming top arc on the Amharic ID dimension.
For English two relevant entries are shown. The first is for
the verb be with predicate adjectives (as in be tired). This
entry stipulates that this node must have an outgoing arc
in the ID dimension with a padj (predicate adjective) la-
bel. This entry also has a cross-lingual link to semantics
that deletes the associated node on the SEM dimension. Fi-
nally, we show a portion of the lexical entry for the English
adjective tired. It stipulates that this word must have an in-
coming arc in the ID dimension with a padj label. There
is also a cross-lingual link to semantics that associated this
word with the semantic lemma TIRED and stipulates that
the arg1 arc from this node on the SEM dimension should
go to the node that has an incoming sbj arc on the English
ID dimension.
Figure 4 illustrates the translation of the sentence she is
tired into Amharic. L3 returns two translations in this case,
one with and one without the explicit topic pronoun …ÿ
1swa ‘she’ (indicated in the figure by the gray circle for
node 1 in Amharic ID). The same entries shown in Entry 3
would enable translation in the reverse direction.

Entry 3 TIRED in English and Amharic
AMHARIC
- lemma: dekeme

empty: [@TOP]
ID:

out: {top: !}
agree: [[top, obj, png]]

cross:
sem:
lex: TIRED
IDSem:

linkend: {arg1: [top]}
ENGLISH
- lemma: be_padj

ID:
out: {padj: !}

cross:
sem:
lex: zero

- lemma: tired
ID:

in: {padj: !}
cross:

sem:
lex: TIRED
IDSem:

linkend: {arg1: [sbj]}

4. Project status and ongoing work
Because we are making some basic modifications to XDG,
we have re-implemented the framework from the bottom
up. Our implementation is in Python; lexica are en-
coded in YAML format. All of our software, includ-



Am ID top root

Sem arg1 root

En ID root
padjsbj

she is tired

(እሷ)
(ɨswa)

ደከማት
dǝkǝmat

Figure 4: Translation of she is tired into Amharic.

ing the XDG implementation, lexica, and morphological
analyzer and generator for Amharic, is available under
a GNU GPL3 license at http://www.cs.indiana.
edu/˜gasser/Research/software.html.
It is premature to attempt an evaluation of our very rudi-
mentary English-Amharic translation system.5 Our next
step is to augment both the English and Amharic gram-
mars with more structures and to apply it to translation
within the restricted domain of arithmetic and to computer-
assisted translation within the domain of economics. In
parallel with this work, we are developing an API for the
grammar framework that will enable users to create simple
grammars for additional languages. We are also exploring
ways to integrate machine learning into the framework by
using existing Amharic-English parallel corpora to aid in
lexical disambiguation.

5. Conclusion
In this paper, we have introduced L3, an evolving frame-
work for RBMT and RBCAT that we are applying to
the development of an English-Amharic MT system. We
have discussed and illustrated some of the features of L3:
its bidirectionality, its capacity to handle structural di-
vergences between typologically diverse languages such
as English and Amharic, and its integration of shallow
and deep translation into a single system. Although our
Amharic-English MT system is still only a toy, by focusing
on features that distinguish the languages, we feel we are
on the right track.

References
Barreiro, A., Scott, B., Kasper, W., and Kiefer, B. (2011).

Openlogos machine translation: Philosophy, model,
resources, and customization. Machine Translation,
25(2):107–126.

Bick, E. (2007). Dan2eng: wide-coverage Danish-English
machine translation. In Proceedings of Machine Trans-
lation Summit XI, pages 37–43, Copenhagen.

Bond, F., Oepen, S., Nichols, E., Flickinger, D., Velldal, E.,
and Haugereid, P. (2011). Deep open-source machine
translation. Machine Translation, 25(2):87–105.

5Evaluation of our Amharic morphological analyzer and gen-
erator has been reported on elsewhere (Gasser, 2011a).

Byrne, J. (2006). Technical Translation: Usability Strate-
gies for Translating Technical Documentation. Springer,
Dordrecht, the Netherlands.

Debusmann, R. (2007). Extensible Dependency Grammar:
A Modular Grammar Formalism Based On Multigraph
Description. PhD thesis, Universität des Saarlandes.

Debusmann, R., Duchier, D., and Kruijff, G.-J. M. (2004).
Extensible dependency grammar: A new methodology.
In Proceedings of the COLING 2004 Workshop on Re-
cent Advances in Dependency Grammar, Geneva/SUI.

Dorr, B. (1994). Machine translation divergences: a for-
mal description and proposed solution. Computational
Linguistics, 20(4):597–633.

Forcada, M. L., Ginestı́-Rosell, M., Nordfalk, J., O’Regan,
J., Ortiz-Rojas, S., Pérez-Ortiz, J. A., Sánchez-Martı́nez,
F., Ramı́rez-Sánchez, G., and Tyers, F. M. (2011). Aper-
tium: a free/open-source platform for rule-based ma-
chine translation. Machine Translation, 25(2):127–144.

Gasser, M. (2010). A dependency grammar for Amharic.
In Proceedings of the Workshop on Language Resources
and Human Language Technologies for Semitic Lan-
guages, Valletta, Malta.

Gasser, M. (2011a). HornMorpho: a system for morpho-
logical processing of Amharic, Oromo, and Tigrinya.
In Proceedings of the Conference on Human Language
Technology for Development, Alexandria, Egypt.

Gasser, M. (2011b). Towards synchronous extensible de-
pendency grammar. In Proceedings of the Second In-
ternational Workshop on Free/Open-Source Rule-Based
Machine Translation, Barcelona.

Mayor, A., Alegria, I., de Ilarraza, A. D., Labaka, G.,
Lersundi, M., and Sarasola, K. (2011). Matxin, an
open-source rule-based machine translation system for
Basque. Machine Translation, 25:53–82.

Mel’čuk, I. and Wanner, L. (2006). Syntactic mismatches
in machine translation. Machine Translation, 20(2):81–
138.

Paolillo, J. (2005). Language diversity on the internet: Ex-
amining linguistic bias. In UNESCO Institute for Statis-
tics, editor, Measuring Linguistic Diversity on the Inter-
net. UIS, Montreal, Quebec, Canada.

Pelizzoni, J. M. and Nunes, M. d. G. V. (2005). N:m
mapping in XDG — the case for upgrading groups. In
Proceedings of the Workshop on Constraint Solving and
Language Processing, Roskilde, Denmark.

Ranta, A., Angelov, K., and Hallgren, T. (2010). Tools for
multilingual grammar-based translation on the web. In
Proceedings of the Association for Computational Lin-
guistics System Demonstrations, Beijing.


