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Abstract

The Linear System Analyzer (LSA) is a component-based problem-solving environ-

ment (PSE) for the manipulation and solution of large sparse linear systems of equa-

tions. Both the underlying component infrastructure and its application to the problem

area of linear systems are introduced. Initial results indicate the utility of clearly sep-

arating the PSE infrastructure from the particular problem domain(s) which use it,

leading to a resuable PSE builder. The component approach provides coarse-grain
parallelism between components, allowing larger problems to be solved by simulta-

neously using the computational resources of multiple machines. Furthermore, the

LSA system allows side-by-side comparisons of methods and rapid experimentation to

develop practical solution strategies.

1 Introduction

An important new paradigm in software engineering has been the emergence of distributed
component architectures. In this context, components are reusable building blocks for the
construction of software systems [19, 15]. Modern systems for composing components include
Microsoft's ActiveX/DCOM and Sun's JavaBeans and JavaStudio. Conceptually, a user has
a palette of components from which to choose, and can compose or wire them together to
create complete applications. Mechanisms are provided for de�ning new components which
follow standards specifying interfaces, methods by which external codes can interact with
the component. A useful model is that of a software integrated circuit; as a hardware IC has
a speci�ed set of pins that allow it to be connected with other IC's without requiring details
of internal representations or methods, software IC's rely on published interfaces.

Components di�er signi�cantly from standard software pieces such as subroutines, li-
braries, or objects in at least three ways. First, component composition involves modifying
and linking binaries, rather than source code which must then be re-compiled. Secondly,
they interact on a peer-to-peer basis; no component is designated as a "main" program which
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controls the others. More generally, component systems do not have a hierarchy of control,
although typically a user can group several components to create a new, larger component.
Finally, component systems are a natural environment for multi-language and heterogeneous
computing systems, unlike object-oriented systems built using C++ or Smalltalk.

Although component architectures have revolutionized the desktop business application
computing environment, they have made few inroads in problem-solving environments for
computational science and engineering. As part of the PSEware project [17], we have built
a scienti�c computing component system and implemented a problem-solving environment
within it. The Linear System Analyzer (LSA) is an environment for examining and devel-
oping solution strategies for large-scale sparse linear systems of equations. It includes an
extensible palette of many standard codes for manipulating and solving the linear systems,
and a graphical user control system which presents a user with a "canvas" on which to com-
pose components. Each component can be started on any networked computer. This article
presents the purpose and design ideas behind the LSA and its architecture, which is designed
to be reusable for problem domains beyond the solution of linear systems.

The LSA has revealed some important design issues for problem solving environments
in scienti�c computing. Among these are the need for high-performance communications,
the importance of providing access to both procedural and object-oriented programmers to
add components, and an information subsystem which collects summary results from the
distributed components and presents it to a user in a practical form. This information
subsystem must also provide information about the state and performance of the PSE itself.

In the rest of this article, the LSA problem domain is described, some basic usage ideas
are presented, its architecture is outlined, and examples of its use are given. Finally, future
research using the LSA and the underlying PSE-building tools are described.

2 The LSA Problem Domain

Solving large sparse linear systems Ax = b is an important computational subproblem in
science and engineering which has generated signi�cant research activity in the recent past.
Much of this research has been incorporated in sophisticated libraries and codes which are
freely available through Netlib and the National High-Performance Software Exchange [8],
as well as individual researchers' Web sites. Software such as Sparskit [18] provides tools for
manipulating sparse systems and converting them between standard data structure repre-
sentations.

2.1 Strategies for Sparse Linear System

This profusion of software has brought its own problem; an applications user needs to connect
together packages and navigate a combinatorially large parameter space to form an e�ective
solution strategy. No current mathematical theory provides a practical guide to choosing a
solution strategy, and even expert numerical linear algebraists require experimentation and
testing to develop one. Incorporating a sophisticated solver within an applications code can
require weeks of work - at the end of which the user may �nd the strategy fails on his linear
systems.
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To handle this, a common method for developing a solution strategy is to \extract" the
linear system and write it to a �le in a standard format. Then the linear algebraist draws
upon a collection of programs for applying transformations on the linear system, which read
it in, perform the manipulations, and then write it out to another �le. Other programs
apply various solution methods, reading in the linear system and writing out a summary of
the results of the computation such as error estimates, memory usage, and time required.
Control parameters for these transformation and solver programs are typically from input
�les, command line arguments, or a GUI. The linear algebraist tries several combinations of
these programs, comparing their results. If a program runs only on a certain machine, the
user can either try to port it, or transfer a �le with the linear system to the remote machine
and transfer the results back. Applications now routinely generate and solve linear systems
with O(105) unknowns and O(106 � 107) stored elements, requiring hundreds of Mbytes of
internal memory to represent. Unless the linear algebraist is lucky and immediately �nds a
good combination of software for the problem, most of the time gets spent in �le I/O and
transfer.

For the applications user who tries to manage all of this without expert help the situation
is worse; much of the time and e�ort is spent in recompiling code, trying to understand
adjustable parameters in the solution methods, and trying to form a coherent picture of
results from a variety of output from the codes. The LSA addresses these problems using a
component architecture approach. Before describing that framework, �rst we list the actual
modules currently in the LSA.

2.2 Computational Components in the LSA

The general categories in which the linear system components have been grouped are

� I/O components for getting systems into and solutions out of the LSA

� Filter components for manipulating the systems with re-orderings, scalings, or dropping
of entries based on their relative sizes

� Solver components for actually solving the systems

� Information components for providing some analysis of the systems.

One goal of the LSA project has been to provide rapid encapsulation of existing codes, in-
cluding both object-oriented and procedural languages. The components currently available
are:

� NewSystem (I/O) uses some local and some Sparskit routines to read a system in a
Harwell-Boeing [7] or Matrix Market [16] formatted �le into the LSA. Later this will
be extended to accept input from a running process.

� ExtractVector (I/O) outputs a vector to a �le or another component. It is used to
retrieve the solution vector, or some auxiliary information such as permutation or
scaling vectors.

� BasicInfo (Information) uses primarily Sparskit routines to provide analysis of the
system for symmetry, density, diagonal dominance, etc. It also creates a GIF image of
the sparsity (nonzero) structure of the coe�cient matrix.
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� Reorder (Filter) applies some standard re-orderings: reverse Cuthill-McKee, nested
dissection, and minimum degree. These are modi�cations of Sparspak [12] routines.

� Scale (Filter) applies row and/or column scaling, and equilibration.

� Squeeze (Filter) removes entries based on their relative absolute value.

� Banded (Solver) is based on Linpack [6] routines, and converts the system to banded
data structure and then solves the system.

� Dense (Solver) uses Lapack [1] routines to solve the system after �rst converting the
system to a dense 2D array data structure.

� SuperLU (Solver) is a sparse direct solver based on supernodal methods, and is a code
developed at UC Berkeley [5].

� SPLIB (Solver) is a package of preconditioned iterative solvers developed at Indiana
University [3]. SPLIB includes thirteen iterative methods and seven preconditioners.

These are not an exhaustive compendium of numerical software available for large sparse lin-
ear systems, but they span enough of the common operations to demonstrate the application
of the LSA.

A key point is that many of the solvers have a large number of parameters to experiment
with and choose from. SuperLU allows setting the Markovitz pivoting parameter, choosing
the panel size for supernodes, and other parameters which can have large impact on solution
accuracy, memory usage, and performance. SPLIB has a combinatorially large parameter
space, varying settings for the preconditioners, stopping tests, and choosing maximumKrylov
subspace sizes. In addition to the PSE component infrastructure software goals of the LSA
project, we also have targeted providing a practical tool for users to quickly and easily explore
the large parameter space associated with sparse linear systems.

3 LSA Usage

Using the LSA involves starting the LSA Manager and a user control system which currently
is a graphical user interface (GUI). The GUI is used in a fashion similar to the Iris Explorer
[13] or Paradise [2] systems. It presents a list of machines and selecting one causes a database
query which returns the palette of components available on that machine. A user clicks on a
button in the palette to choose that component, and the LSA system starts it on the selected
machine. Typically the �rst component selected would be "NewSystem", which reads in a
sparse matrix from a �le. The user can then select further machines and components in the
same way, starting up the corresponding processes.

Each component has a similar icon on the canvas, as shown in Figure 4. At the top
is a status bar, and below that the name of the component (its type and an identi�er
number.) Below that are two side-by-side buttons. Selecting the left one brings up a sub-
GUI, which allows input of any \control parameters". For example, with SPLIB the sub-GUI
�elds include choice of iterative method, preconditioner, stopping tests, etc. The right-hand
\View Results" button retrieves summary results of the component's execution by accessing
an information subsystem described later. At the bottom of the icon is the name of the
component's host machine.
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When a component is �rst started, it has an additional \input" button that speci�es
where its input (if any) should come from. Pressing that button brings up a list of other
active components whose output ports are compatible with the component's input port.
Once the components are wired together, the \input" button disappears, and an arrowed
line appears on the canvas indicating the connection. One component can send its output
system to several other components, but each component gets its input from only one. This
forest data structure for the component network is necessary in the LSA for retrieving the
�nal solution vector since any reorderings and scalings must be undone in the reverse order
in which they were applied. However, the underlying infrastructure allows constructing more
general graph networks.

Figure 1: Snapshot of a Sample LSA Session

Figure 1 shows a sample LSA session. A NewSystem component feeds a system to
a BasicInfo, Scale, and Reorder component - all three of which are running on di�erent
machines. The scaled system is sent to SuperLU, and the reordered one is sent to SPLIB.
In this snapshot, the data ows in a tree-like fashion to each connected component starting
from the NewSystem component. Components which are processing their input are marked
as \busy", and those awaiting input are marked as \waiting". Two component subGUIs
are shown overlaying the canvas, indicating each component's current control parameter
settings.

With this framework, a user can test several solution strategies on a single system, com-
paring computational methods in a longitudinal study. By creating more NewSystem com-
ponents, the same solution strategy can be tested on several systems for a latitudinal study.
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4 LSA Architecture

Four modular parts comprise the LSA architecture: the user control, the manager, the
communication subsystem, and the information subsystem. Figure 2 illustrates how these
subsystems comprise the top-level LSA architecture.
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Figure 2: Top-level LSA Architecture

4.1 User Control

The current user interface and control is a Java GUI. Component icons all have the same set
of buttons, which are intended to provide the basic functionality associated with computa-
tional modules in scienti�c computing: setting internal control parameters, viewing summary
results, and setting input sources. Arrowed lines indicate the ow of data between connected
component icons. Clicking on an icon's \control parameters" button brings up a subGUI
tailored to the components parameter space. During session activity, each component icon
may change its appearance based on its internal process state. The "Save" button saves
the connectivity structure of the components, allowing a user to later retrieve a complicated
network using the "Open" button. Note that the save operation does not save the internal
state of the components, because doing so may involve storing Gbytes of data on remote
machines. This design separates the base functions of the problem solving environment from
the particular features of the application domain, thereby enhancing reusability of the PSE
infrastructure.

4.2 LSA Manager

The presence of a manager program is contrary to the peer-to-peer character of component
systems. However, the LSA manager is minimal and serves only two roles: collaboration
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control and resource management. In its �rst role, the LSA manager has been designed
to allow collaborative construction of a component network, so that multiple user control
systems can interact with a single LSA session. The second role is to assign unique identi�ers,
as well as maintain and access the database of available machines and components. Having
a minimal modular manager will facilitate its future replacement by the more sophisticated
resource management system in Globus [9].

4.3 Communication Subsystem

The basic communication runtime system in the LSA is Nexus [10] from Argonne National
Laboratory. This cross-platform system is designed for parallel applications and wide-area
distributed computing. Nexus uses multi-threading, can take advantage of multiple commu-
nications protocols, and provides a bridge between Java and C++. This bridge is needed
because the LSA is a mixed language system. The user control system is in Java, but each
computational component is provided with a light-weight wrapper in HPC++ [11], which
interacts with a generic control module.

The wrapper is implemented as a C++ class that inherits its interface from two abstract
base classes. These base classes de�ne the interaction between the generic module and
the computational code. The amount of programming required for the wrapper can vary
depending on the complexity of the computational component. For LAPACK [1] functions,
the wrapper is simple and primarily converts error code values to text messages. However,
a library like SPLIB [3] requires an extensive wrapper that must interact with the local �le
system. In general, the complexity of the wrapper code depends on whether the original
library code is reentrant. Tasks usually performed in the wrapper include interaction with
the computational code, parameter settings, memory allocation/management, and receiving
and interpreting computational error ags.

The generic control module is identical for all components, and provides interactions with
the PSE system: �ring logic, communications control, errors signaling, etc. This module
consists of a main loop and several functions that the manager can invoke remotely. The
primary purpose of the module is to maintain process state information and to provide a
standard set of functions that can be invoked remotely. The computational code is required to
implement two interfaces. The �rst interface is a generic computational component interface.
The second is an LSA-speci�c interface. The LSA interface customizes the PSE to the
LSA problem domain, while the �rst interface is required of all computational components
regardless of problem domain. Figure 3 illustrates the relationships between the wrapper
interface and the generic component control.

HPC++ is used because it allows a natural interface to procedural and object-oriented
languages for high-performance applications. Furthermore, HPC++ has global pointers (a
generalization of the C pointer type), which can be used to perform remote method invocation
(RMI). For example, when component A needs to send its sparse system to component B,
A remotely invokes a RecvSystem() function on B, which then gets the system from A.
Some details of how this is handled are in [4].
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Figure 3: Diagram of an LSA Component Figure 4: Sample Component
Icon

4.4 Information Subsystem

Providing information about the solution process to the user is critical for any problem-
solving environment. However, the component architecture idea works against the integrated
approaches typically used when building PSEs. We have handled this by limiting the ow
of unsolicited information from the components to the user. For every request sent to a
component, a summary of the results is returned along with performance metrics for that
event. The summary results may contain one or more elements. Each element consists of
a one line text description of a speci�c result, a ag indicating the category of the result
(success, warning, failure, etc), and the location of more detailed information if available.
The user interface displays the text results in the status window and alerts the user if failure
results are received. A web browser is used to view and navigate through the complete set
of results generated by the LSA.

Each component creates a directory on its local machine to store results and data �les.
Since the component is built around legacy code that may create new �les when it executes,
a separate directory is created for each execution. All the information in this directory
structure is tied together by an HTML document created by the component as it runs.
This process log HTML document contains all the summary results information, links to the
detailed information, and links to the index documents of other components connected to
the current component. The links between index documents go in both directions so that
the browser can traverse up and down the component tree structure. An example of this is
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shown in Figure 5, which shows the process log page for the Reorder component in Figure 1.

Figure 5: Sample Component HTML Page Figure 6: Sample Results HTML Page for a
BasicInfo Component

The page shows the results of two linear systems fed consecutively through the compo-
nent. The blocked tables show external information garnered from the component's interfaces
and performance: the operation performed (which comes from its subGUI), vectors gener-
ated, and timings. The table is followed by links to components to which the resulting linear
system is sent (SPLIB in this case), and preceded by a link to the component from which it
received its input (NewSystem in this example).

Each component is free to write other summary results out to �les, which are stored on
the component host machine. These �les can also be linked in with the Process Log pages,
as illustrated in Figure 6 for some output from a BasicInfo component. On the left is a
small GIF image of the nonzero structure of the coe�cient matrix, followed by several tables
giving detailed analysis of the system (only the top of the HTML page is shown).

An important part of this system is that all the data �les are connected together by
HTML links. When the user clicks on the \View Results" button on the component's icon,
the browser reads the corresponding HTML index document for that component. The user
can then follow links in the HTML document to retrieve results without regard to �le system
or network layout. Furthermore, this information system is independent of the application
domain and is reusable for any kind of component added to the framework.

Later runs create new directories, so a postmortem analysis can be performed on results
from earlier runs of the PSE. An environment variable set by the user speci�es the root
directory for the results �les to use on each machine, so these can be archived - or assigned
to a temporary workspace to be automatically cleaned up by the operating system.
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The future of the information subsystem is to incorporate Java applet based data analysis
tools into the web pages, and to add search capabilities into the index document pages. The
goal is to have the components produce raw data and allow the user to view this data
according their personal preferences. For example, instead of a component producing a 2D
graph, it would produce an n x 2 table of data. A Java applet would read this data and
produce a graph and allow interactive operations like zoom in/out, scale adjustment, etc.

5 Results and Future Work

Although the LSA is still under development, the component architecture approach to build-
ing a PSE has proven its utility. First, the separation of generic PSE functions such as send-
ing data between components and notifying the user interface of events from problem domain

speci�c functions has allowed a consistent and comprehensive view of a component network
independent of the actual computations done within each component. This does not inhibit
a user from using components that create problem-speci�c information, and the structure
used for generic PSE functions has provided hooks on which to place the domain-speci�c
information. This provides a a natural conceptual model of the overall solution process for
the application.

Although the component architecture itself is written in an object-oriented fashion with
Java and HPC++, it has allowed us to integrate both procedural and object-oriented com-
putations in a single framework. This allows users to develop and work with components in
whatever programming style is most natural and productive for them.

The system provides immediate large-grain parallelism between components running on
di�erent machines. This parallelism has also allowed us to work on signi�cantly larger prob-
lems, by having simultaneous components on di�erent machines. In addition multi-threading
has provided parallelism within the component infrastructure itself, allowing overlapping of
communications and computations for better utilization of overall system resources, both
network and computational.

Within the problem domain of large sparse linear systems, the LSA has allowed dynamic
side-by-side comparisons of methods. For example, to explore the e�ects of SuperLU's panel
size on a given linear system, we can start a dozen SuperLU modules on di�erent machines,
each receiving input from a single Reorder component and each with a di�erent panel size
parameter setting. After comparing this the reordering method can be changed, with the
results automatically sent to the same dozen SuperLU components. This greatly improves
the speed of such parameter studies.

In addition to a latitudinal study of methods, the LSA allows a longitudinal study by
feeding a stream of linear systems to a �xed component network, and examining for which
ones the solution strategy succeeds or fails. Both kinds of study are greatly enhanced by the
information subsystem, which also provides primitive archiving capabilities.

Several research directions are extending the LSA. Among these are the development of
methods for components implementing parallel algorithms - for this a critical problem is
parallel communications between components [14]. The LSA system currently has methods
for gathering statistics and event logging for analysis and evaluation of the component system
itself.
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The availability of event logging allows the addition of reasoning tools, which can learn
from earlier runs of the LSA to help guide a user for future problems. Because we wish
to keep a separation between the generic utilities of the component architecture and any
problem-speci�c ones, case-based reasoning methods seem the most likely ones to use for
the generic infrastructure, with provisions for users to add expert systems for particular
components.

Other future work targets collaborative versions of the LSA, allowing an application
scientist to work with a numerical linear algebraist on a single LSA session. Also, other user
control mechanisms, particularly scripting language interfaces such as Perl or Tcl, will be
added.
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