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Matrix-vector product

• Suppose A is an n x n matrix, x is an n x 1 vector
• Want y = A*x  (so what are the dimensions of y?)
• Two ways of computing this (actually, there are at 

least three ways, but you’ve probably only seen two)
• I’ll assume indexing starts at 1, since all linear algebra 

books do the same (except in signal processing)
• Version 1: compute the dotproduct of row i of A with 

the vector x to get y(i)
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y(1) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
   1   = -2*1             + 1*3              + 2*-3             + 3*2
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y(2) = A(2,1)*x(1) + A(2,2)*x(2) + A(2,3)*x(3) + A(2,4)*x(4)
  14  =  1*1             + 0*3              + -1*-3            + 5*2
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y(3) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
   -6  = -3*1            + 2*3              + -3*-3            + 0*2
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y(4) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
  10  = -6*1             + 5*3              + 1*-3             + 2*2
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Matrix-vector product

• Leads to a simple algorithm, version dotprod :
    y(1:n) = 0    // Set y to all zeros
    for i = 1:n   
           for j = 1:n
                 y(i) = y(i) + A(i, j)*x(j)
           end for
     end for
• The above is pseudo-code:

– y(1:n) = 0 means set y(1) = 0, y(2) = 0, …, y(n) = 0
– “for i = 1:n” is a loop setting i = 1, 2, …, n in turn

• We can swap the order of loops above ...



Matrix-vector product

• Swapping loops gives version daxpy :
    y(1:n) = 0  // set y to be all zeros
    for j = 1:n
           for i = 1:n
                 y(i) = y(i) + A(i, j)*x(j)
           end for
     end for
• This represents y as a linear combination of the 

columns of A, with coefficients given by x
• If columns of A are vectors v
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• In picture form ....
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* + 3* + -3* + 2*

    y  =  Col 1 of A*x(1) + Col 2 of A*x(2) + Col 3 of A*x(3) + Col 4 of A*x(4)
         = A(1:4,1)*x(1)     + A(1:4,2)*x(2)    + A(1:4,3)*x(3)    + A(1:4,4)*x(4)



Matrix-vector product

• So big, fat, hairy deal. Who cares? (ans: we do)
• Load/store analysis says the first implementation 

(dotprod) is going to be 1.5 times faster than the 
second (daxpy)

• Now for the magic part of load/store: the same analysis 
says some implementation exists that will be 2 times as 
fast as the dotprod implementation

• Load/store does not say what that magic 
implementation would consist of, just that it exists

• Call that implementation dgemv for arcane reasons that 
will be explained later

• Big claims made above, and you should not trust 
Bramley (or anyone) unless that theoretical claim is 
backed up with actual computational results



Matrix-vector product

• The mysterious third method (dgemv) is actually easy 
to do, based on some simple ideas covered later

• Implemented all three ways of computing matrix-
vector product in Fortran 2018

• Language does not matter, results hold in C, C++, 
assembly language, Cobol, ....

• Ran on a desktop system with Intel i7 core processor
• Then plotted computational rate in Gflops/sec, against 

the matrix order (A is n x n, so the matrix order is n)
• n ranges from 10k to 20k



Results for matrix-vector product



Results for matrix-vector product



Matrix-vector product

• Load/store ratios of performance are not always exact, 
but do tell which implementation will be faster 

• So if it says 1.5 times faster, actual performance may 
be 1.2 to 2.1 times faster, but will not be less than 1.0

• Results on previous slide shows the predicted ratios are 
good for this operation 



Matrix-vector product

• Caveats:
– Load/store is for large n; for n = 1 matrix-vector multiply is 

just a scalar multiply so all three versions are identical
– Generally, “large n” means the data does not fit in cache, but 

in most cases n ≥ 50 suffices
– It’s always possible to implement even a simple operation in 

such a stupid way that it will run abysmally slow
– Results are for a general matrix A. 

• If A is the zero matrix,  just set y = 0 (well, duh)
• If A is a Fourier transform, ultrafast methods exist better than any of 

the three shown
• If A = uvT is a rank-1 matrix where u and v are n x 1 vectors, again far 

faster methods exist that take just 4n flops, not 2n2 flops
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