P573 Computer Science

Randall Bramley
1104 Luddy Hall
8:00 — 9:15 AM, Monday & Wednesday

Matrix-vector product

Suppose A4 1s an n x n matrix, x 1s an n x 1 vector
Want y = A*x (so what are the dimensions of y?)

Two ways of computing this (actually, there are at
least three ways, but you’ve probably only seen two)

I’ll assume indexing starts at 1, since all linear algebra
books do the same (except in signal processing)

Version 1: compute the dotproduct of row i of 4 with
the vector x to get y(i)

1 201237 |1
1lof1]5] |3
— x
3023]0] |3
65|12 |2
 /

y(1)=A(L,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
1 =-2%] + 1*3 + 2%*-3 + 3%2

1 2011023 1
»
14 110]-1]5 3
= *
312(131]0 -3
65|12 2
 J

y(2)=AR,1)*x(1) + A2,2)*x(2) + A(2,3)*x(3) + A(2,4)*x(4)
14 = 1*1 + 0*3 +-1*-3 + 5%2

1 2011023 1
14 1 10]-1]5 3
= > *
-6 3121310 -3
65|12 2
 J

y(3) = A(1,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
6 =-3*1 +2%3 +-3%.3 +0%2

14 1

1
@)\
1
W

) o | O
W

) - () (V)
1
W

10 -6

y(4)=A(L,1)*x(1) + A(1,2)*x(2) + A(1,3)*x(3) + A(1,4)*x(4)
10 =-6*1 + 5%3 + 1*-3 +2%*2

Matrix-vector product

* Leads to a simple algorithm, version dotprod :
y(l:n) =0 //Sety toall zeros

fori=1:n
forj=1:n
y(i) = y(i) + A(i, j)*x(j)
end for
end for

* The above 1s pseudo-code:
—y(l:n) =0means set y(1) =0, y(2) =0, ..., y(n) =0
—“fori = I1:n"1s aloop settingi= 1, 2, ..., n in turn

* We can swap the order of loops above ...

Matrix-vector product

Swapping loops gives version daxpy :
y(l:n) =0 //sety to be all zeros

forj=1:n
fori=1:n
y(i) = y(i) + A(i,) *x(j)
end for
end for

This represents y as a linear combination of the
columns of 4, with coefficients given by x

It columns of 4 are vectors v , v , v, v _, the linear
comb is y = x(1)*v, + x(2)*v,+ x(3)*v + x(4)*v,

In picture form

14

10

y = Col I of A*x(1) + Col 2 of A*x(2) + Col 3 of A*x(3) + Col 4 of A*x(4)
=A(l:4,1)*x(1) +A(1:4,2)*x(2) +A(1:4,3)*x(3) + A(1:4,4)*x(4)

1 -2 1 2 3
14 1 0 -1 5
= ¥ 1|+ ¥ 3 |+ * -3 | + *
-6 3 2 3 0
10 -6 5 1 2

Matrix-vector product

So big, fat, hairy deal. Who cares? (ans: we do)

Load/store analysis says the first implementation
(dotprod) 1s going to be 1.5 times faster than the
second (daxpy)

Now for the magic part of load/store: the same analysis
says some implementation exists that will be 2 times as
fast as the dotprod implementation

Load/store does not say what that magic
implementation would consist of, just that it exists

Call that implementation dgemv for arcane reasons that
will be explained later

Big claims made above, and you should not trust
Bramley (or anyone) unless that theoretical claim 1s
backed up with actual computational results

Matrix-vector product

The mysterious third method (dgemv) 1s actually easy
to do, based on some simple ideas covered later

Implemented all three ways of computing matrix-
vector product in Fortran 2018

Language does not matter, results hold in C, C++,
assembly language, Cobol,

Ran on a desktop system with Intel 17 core processor

Then plotted computational rate in Gflops/sec, against
the matrix order (A4 1s n x n, so the matrix order 1s n)

n ranges from 10k to 20k

Gflop/sec

3.5

2.5

1.5

Results for matrix-vector product

Matrix*Vector Performance

| | | | |

1 R e —
..x__x.é— —T&/,/ |

—<— dotprod
daxpy N

—#— dgemv
D]

| | | | | | | | |

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
Matrix Order «10%

Ratios

1.5

0.5

Results for matrix-vector product

Ratios of d

dot:daxpy and dgemv:ddot
| | T

! i -
mmm*ﬁ____ﬁ_**____________*/ﬂ _
,*-_F
____*_/..
F
S ——yn 1 |
- 1
—+f—— ddot:daxpy
—+f—dgemv:ddot
| | | | l l l l
1.1 1.2 1.3 1.4 - . | | 2
Matrix Order x10*

Matrix-vector product

* Load/store ratios of performance are not always exact,
but do tell which implementation will be faster

* So 1if it says 1.5 times faster, actual performance may
be 1.2 to 2.1 times faster, but will not be less than 1.0

* Results on previous slide shows the predicted ratios are
good for this operation

Matrix-vector product

* Caveats:

— Load/store 1s for large n; for n = I matrix-vector multiply is
just a scalar multiply so all three versions are 1dentical

— Generally, “large n” means the data does not fit in cache, but
in most cases n > 50 suffices

— It’s always possible to implement even a simple operation in
such a stupid way that it will run abysmally slow
— Results are for a general matrix 4.
* If A4 is the zero matrix, just set y = 0 (well, duh)

* If 4 is a Fourier transform, ultrafast methods exist better than any of
the three shown

If A = uv" is a rank-1 matrix where u and v are n x I vectors, again far
faster methods exist that take just 4n flops, not 2n° flops

	mechanics
	Slide 2
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 14
	Slide 15
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

