
P573 Computer Science

Randall Bramley

1104 Luddy

8:00 – 9:15 AM, Monday & Wednesday

P573 Overview

• Today:
– course goals and mechanics
– assumed knowledge, abilities: prerequisites
– conventions in coding, math, and notation
– the fundamental principle underlying p573
– … and the analytic tool that it provides

Layer Cake of Scientific Computing

• Scientific computing includes
– domain science: physics/chem/geo describes phenomena
– math models: PDEs, network graphs, …
– numerical methods: solver methods, error analysis
– computer implementation of algorithms: languages, hardware
– performance analysis: is an implementation unnecessarily

slow?
– data analysis: visualization, plotting, user presentation
– validation and verification

Layer Cake of Scientific Computing

• Scientific computing includes
– domain science: physics/chem/geo describes phenomena
– math models: PDEs, network graphs, …
– numerical methods: solver methods, error analysis
– computer implementation of algorithms: languages, hardware
– performance analysis: is an implementation unnecessarily

slow?
– data analysis: visualization, plotting, user presentation
– validation and verification

• What P573 concentrates on

P573 Goals

• Course goals oriented towards CS capabilities
– performance modeling and analysis
– mapping implementations to computer architectures
– practical software tools and methods in scientific computing

• Building a software toolkit for exploring computer
architecture and algorithms

• Analytic methodology for determining (non)existence
of fast implementations for given problem

• Will not prove theorems, derive algorithms, prove
convergence, or analyze “rounding errors”

• Will use such results … and experimentally evaluate
their validity

Course Mechanics

P573 Mechanics

• Check the Web pages for the course:
https://www.cs.indiana.edu/classes/p573

• Check the Canvas page often, and always before
starting an assignment

• Grading:
– assignments 50%
–midterm 20%
– final 30%

• Both midterm and final may consist entirely or in part
of projects

P573 Mechanics

• Course material:
–you are responsible for everything that is presented

or covered in class lectures
– some derivation and material will be on the

whiteboard (so will need notes from class)
–questions and answers in class are important
– slides are not definitive
–web pages may give more detail than in class
–web pages will have timestamp history for

corrections, updates, additions

P573 Mechanics

• Cheating: difficult to do but some insist on doing it
anyway. Easy to avoid:

• Report in detail all help received
– Found on web, asked another student, telepathy, coercion, ...
– Need not report info exchanged via course Canvas pages
– Need not report help received from instructor(s)
– Both giver and receiver must report sharing/transfer of ideas

and material
– All documents handed in must have your name and the names

of any collaborators
– Citation avoids academic death penalty of plagiarism

P573 Mechanics: Assignments, Handins

• You will write, run, analyze programs for assignments
• Report the full environment necessary to reproduce

your results:
– compiler used, compiler version, flags (like -O3 -msse)
– OS and its version number (uname -a gives this in Unix)
– hostname of machine used, date/time when program run
– machine hardware configuration: type of processor, speed of

processor, amount of memory (summarize results from /proc/
cpuinfo andc /proc/meminfo)

– just build the boilerplate once for a given machine, put into a
text file called TestEnvironment, then reuse/modify it for
other assignments

– example ...

Vector Ops Test Environment

Host: behemoth.cs.indiana.edu

OS : Linux 4.4.0-24 , 64-bit

 CPU: 6-core, hyperthreaded

 Model: Intel(R) Core(TM) i7-3960X CPU @ 3.30GHz

 CPU max MHz: 5700.0000

 CPU min MHz: 1200.0000

 L1 data cache: 32K

 L2 cache: 256K

 L3 cache: 15360K

 Memory: 32 Gbytes

 Relevant CPU capabilities: mtrr, mmx, sse4_2, cpufreq

Compiler: Intel Fortran ifort, version 13.1.1 20130313

Compiler options: -O3 -opt-prefetch -align all -ccdefault none -ftz -funroll-
loops -pad -falign-functions=16 -fp-model fast=2 -fp-speculation=fast -
opt-prefetch -xHost

Job Start: Wed 22 Jul 2016, 5:31:42

Job End: Wed 22 Jul 2016, 9:08:12

Conventions for Assignments

• Reporting test environment
– don't just dump the contents of /proc filesystem into a file and

submit that. Summarize only the essentials
– a 2000 line file about the test environment is good for

checking and comparing results years later, but not to hand in
for an assignment

– rough rule: if you don't know what a item is, don't include it
in the test environment file (just what does the mtrr CPU flag
on the preceeding slide mean?)

Conventions for Assignments: Handins

• Create a single tar or zip file with source code(s) and a
plain text file with any reportage or notes
– do not include executable, object (.o) files, libraries (.a, .so),

backup files, or hidden directories
– submit it via Canvas
– do not send email with multiple attachments – put it all in a

single tar or zip file
– for any files I provide, don't include them in the hand-in

unless you changed them
– use plain text files for reports. No PDF, Word, ODF,

cuneiform, quipu, or other unnecessarily complex formats

• If you hand in multiple versions, only the latest one is
“official”. Be sure it's complete and is not just an
update for one or two files

Required Knowledge

https://www.cs.indiana.edu/classes/p573/prereq-check/requirements.html

P573 Required Knowledge: Coding

• Programs required to be coded in C or C++ or Fortran
– You need know one of those, not all three

• How to open, read, and write to/from files
• Know how to code to a specified interface
• Using 1 and 2-D arrays
• Algorithms usually stated in pseudo-code; ask in class

if they are not clear
• Will use makefiles, with multiple source files, link in

external libraries, run codes on Unix-like systems
• The codes are tools; getting them running correctly is

only the start
– Don’t underestimate the time required
– Generally, will take you 8-11x longer to code than me

P573 Required Knowledge: Numeracy

• Exponential notation: 1.8E12 = 1.8x1012
• … and 1.8026175E12 furlongs/fortnight is …?
• von Neumann: max length of a lecture is 1

microcentury What's that in hours/minutes/weeks?
• How many significant digits does 0.00623 display?
• What's largest value of n that allows 3 n x n arrays of

8-byte doubles to be held in G gigabytes of memory?
• Is 7.3 x 1085 billion operations per second a reasonable

computational speed? What about 7.3 x 10-85 billion
operations per second?

• What values of x blowup log(x), 1/x, acos(x)?
– assuming x and the functions are real-valued, and “blowup”

means “barfs, overflows, or returns unexpected values”

• I use American “billion” = 109, not British 1012

P573 Required Knowledge: Math

P573 Required Knowledge: Math

• Math knowledge: mostly from linear algebra
– definition of a derivative
– basic operations in linear algebra, e.g.

• matrix product A*B (and conformality of sizes required)
• can write down a triple-nested loop to compute C = A*B
• matrix times a vector
• dotproduct (AKA inner product) of two vectors

• Definitions of (e.g.)
– transpose AT of a matrix A
– orthogonal matrix Q
– upper/lower triangular matrix (must that matrix be square?)
– 2-norm of a vector
– eigenvalue λ: A*x = λ*x, with one more stipulation … what?

Example linear algebra problem

• Solve a linear system of equations A*x = b
• A, b are given

– A is an n x n matrix with real-valued entries
– b is an n x 1 vector with real-valued entries
– Want to solve for x, so x must be n x 1

• The sizes of A, x, b work out to be correct:
 (n x n) * (n x 1) → (n x 1)
 A * x → b
Linear algebra gives a clear and useful area in which to
apply load/store analysis, the real crux in P573

P573 Conventions

Linear algebra conventions

• Mostly will follow the “Householder convention”
– scalars: lower case Greek letters like α, γ, σ
– vectors: lower case Roman letters: x, y, u, v
– matrices: upper case Roman letters: A, G, C

• Not Householder convention:
– symmetric matrices: horizontally symmetric letters: A, H, V
– dimensions: lower case Roman: m, n: “A is an m Χ n matrix”
– indices: lower case letters i-n, like “A(i,j) = 0 for i < j”
– block indices: upper case Roman letters: I, J, K

• Don't need to memorize this, just a helpful guide

Linear algebra conventions

• All vectors are column vectors by default. Use
transpose notation to specify row vectors

• More generally: if A is m x n, then AT is n x m and
AT(i,j) = A(j,i)

• The dotproduct of two vectors x and y is defined as

 α = Σ x(i)*y(i),

which can also be stated as α = xTy
• Matlab uses a single quote mark to denote transpose:

 alpha = x'*y
 and sometimes I'll use that notation

Linear algebra conventions

• A matrix is a mathematical entity; a 2D array is a
computer data structure often used to hold a matrix

• Matrices can also be stored in a linked list, a graph
node-adjacency list, a pair of 1d arrays, a 3d array, ...

• Matrices are indexed starting from 1; arrays can be
indexed starting from 1, 0, -27, or any integer
– C/C++ require array start index is 0
– Matlab requires array start index is 1
– Fortran allows any start index, from -2147483648 to

2147483647 (or from -9223372036854775808 to
9223372036854775807)

• Entries in a matrix are indicated via A(i,j). Entries in
an array might be denoted as A[i][j], A[i*n+j], A(i,j)

Linear algebra conventions

• Why picky matrix vs. array distinction?
– storing an n x n diagonal matrix in an n x n array is dumb

• Gaussian elimination starts out with an n x n matrix A
in a 2d array A, ends up with two triangular matrices L
and U stored in the same array A

• At intermediate stages, the array A contains parts of L,
U, and intermediate computational byproducts

• At intermediate stages, need to carry out operations on
vectors and matrices that are stored in subarrays of A

• An example of this ...

 A(3:7, 3) = A(3:7, 3) – A(3:7, 1:2) * A(1:2, 3)

● Cannot copy parts over to temporary arrays; leads to O(n3)
memory copying/allocation/deallocation

● For n = 56k, difference between 14 minutes versus 1.5 years
 for the Gaussian elimination algorithm

Other P573 Conventions

• All floating point numbers will be double precision or
8-byte floats

• All doubles must be printed out to 17 significant digits
• A flop is a floating point operation. All of +, *, /, -,

sqrt, log, exp, sin, max, abs,.... count as one flop
– Yes, log(x) is probably slower than x + 1.0, but both still

count as one floating point operation

• Integer operations are not flops (well, duh)
• Can use Mflop = 106 flops and Gflop = 109 flops, or

Mflop = 220 and Gflop = 230

• You can use either, just state the choice clearly
• Computational rates will be in units of Gflops/second

(sometimes confusingly denoted in books as Gflops)

Fundamental Idea

Other Fundamental Ideas

• Computation is not the bottleneck in scientific
computing: instead, it is data movement
– memory hierarchy and pipelining in architectures
– data and metadata management in scientific computing

• Interplay between continuum and discrete space
– use one regime to approximate the other
– discretizations (time, space) to get finite size problems
– reducing infinite dimensional problem to finite dimensions

certainly reduces the amount of data involved

• Finite precision arithmetic effects
– IEEE 754 standard and implications for accuracy,

computability, reliability, reproducibility, debugging
– Finite precision reduces amount of data involved compared to

unlimited precision computation

Fundamental Principle

• Analytic tool is load/store analysis, and real easy to
use: it is the ratio of data required to computation

• Example: Let x and y be n-vectors, α = scalar
– daxpy = vector update; y = y + α*x
– dotpxy = dotproduct with 2 vectors; α = xTy
– dotpxx = dotproduct with 1 vector; α = xTx

• Load/store predicts dotpxx > dotpxy > daxpy in speed
for large n (it also predicts their relative performance)

• Can implement Gaussian elimination to have either
dotpxy or daxpy as the innermost kernel operation;
which is better to choose?

• We can (and will) do even better than that, guided by
load/store analysis

Load/store example

Fundamental Principle

Fundamental Principle

• Load/store analysis based on ratio of just 2 numbers
• r = m/f, where

– f = number of floating point operations required
– m = minimum possible number of memory references

• f comes from looking at code fragment
• m comes from looking at mathematical operation, not

from any code or machine implementation
• Load/store analysis is the pass/fail knowledge for P573
• As the course proceeds, will define it more fully, look

at it in more detail, and apply it in more examples

Next Steps (Interleaved)

• Basics of computer architecture
• How to reliably time things on a system
• Load/store analysis of linear algebra kernels
• Implementing linear solvers, least squares solvers,

principal component analysis, etc. using high-perf
techniques

• Floating point oddities and usage
• Matlab basics
• Your immediate tasks include

– make sure you have the required knowledge
– check the course web page

https://www.cs.indiana.edu/classes/p573
• A PDF of these slides will be there

	mechanics
	Overview
	Slide 3
	Slide 4
	Goals
	Slide 6
	Slide 7
	Slide 8
	assignments
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 21
	Slide 22
	Slide 23
	Ax=b
	Slide 25
	Slide 26
	LA conventions 1
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 52
	Slide 53

