P573 Computer Science

Randall Bramley
1104 Luddy
8:00 — 9:15 AM, Monday & Wednesday

P573 Overview

* Today:
— course goals and mechanics
— assumed knowledge, abilities: prerequisites
— conventions in coding, math, and notation
— the fundamental principle underlying p573
— ... and the analytic tool that 1t provides

Layer Cake of Scientific Computing

* Scientific computing includes
— domain science: physics/chem/geo describes phenomena
— math models: PDEs, network graphs, ...
— numerical methods: solver methods, error analysis
— computer implementation of algorithms: languages, hardware

— performance analysis: 1s an implementation unnecessarily
slow?

— data analysis: visualization, plotting, user presentation
— validation and verification

Layer Cake of Scientific Computing

* Scientific computing includes
— domain science: physics/chem/geo describes phenomena
— math models: PDEs, network graphs, ...
— numerical methods: solver methods, error analysis
— computer implementation of algorithms: languages, hardware

— performance analysis: 1s an implementation unnecessarily
slow?

— data analysis: visualization, plotting, user presentation
— validation and verification

* What P573 concentrates on

P573 Goals

Course goals oriented towards CS capabilities
— performance modeling and analysis
— mapping implementations to computer architectures
— practical software tools and methods 1n scientific computing

Building a software toolkit for exploring computer
architecture and algorithms

Analytic methodology for determining (non)existence
of fast implementations for given problem

Will not prove theorems, derive algorithms, prove
convergence, or analyze “rounding errors”

Will use such results ... and experimentally evaluate
their validity

Course Mechanics

P573 Mechanics

Check the Web pages for the course:
https://www.cs.indiana.edu/classes/p573

Check the Canvas page often, and always before
starting an assignment

Grading:
—assignments 50%
—midterm 20%
—final 30%

Both midterm and final may consist entirely or in part
of projects

P573 Mechanics

Course material:

—you are responsible for everything that 1s presented
or covered 1n class lectures

—some derivation and material will be on the
whiteboard (so will need notes from class)

—questions and answers 1n class are important
—slides are not definitive
—web pages may give more detail than in class

—web pages will have timestamp history for
corrections, updates, additions

P573 Mechanics

* Cheating: difficult to do but some 1nsist on doing it
anyway. Easy to avoid:

* Report in detail all help received
— Found on web, asked another student, telepathy, coercion, ...
— Need not report info exchanged via course Canvas pages
— Need not report help received from instructor(s)

— Both giver and receiver must report sharing/transfer of ideas
and material

— All documents handed 1n must have your name and the names
of any collaborators

— Citation avoids academic death penalty of plagiarism

P573 Mechanics: Assignments, Handins

* You will write, run, analyze programs for assignments

* Report the full environment necessary to reproduce
your results:
— compiler used, compiler version, flags (like -O3 -msse)
— OS and its version number (uname -a gives this in Unix)
— hostname of machine used, date/time when program run

— machine hardware configuration: type of processor, speed of
processor, amount of memory (summarize results from /proc/
cpuinfo andc /proc/meminfo)

— just build the boilerplate once for a given machine, put into a
text file called TestEnvironment, then reuse/modify it for
other assignments

— example ...

Vector Ops Test Environment

Host: behemoth.cs.indiana.edu
OS :Linux 4.4.0-24 , 64-bit
CPU: 6-core, hyperthreaded
Model: Intel(R) Core(TM) i7-3960X CPU @ 3.30GHz
CPU max MHz: 5700.0000
CPU min MHz: 1200.0000
L1 data cache: 32K
L2 cache: 256K
L3 cache: 15360K
Memory: 32 Gbytes
Relevant CPU capabilities: mtrr, mmx, sse4 2, cpufreq
Compiler: Intel Fortran ifort, version 13.1.1 20130313

Compiler options: -O3 -opt-prefetch -align all -ccdefault none -ftz -funroll-
loops -pad -falign-functions=16 -fp-model fast=2 -fp-speculation=fast -
opt-prefetch -xHost

Job Start: Wed 22 Jul 2016, 5:31:42
Job End: Wed 22 Jul 2016, 9:08:12

Conventions for Assignments

* Reporting test environment

— don't just dump the contents of /proc filesystem into a file and
submit that. Summarize only the essentials

— a 2000 line file about the test environment 1s good for
checking and comparing results years later, but not to hand in
for an assignment

— rough rule: 1f you don't know what a item is, don't include it
in the test environment file (just what does the mtrr CPU flag
on the preceeding slide mean?)

Conventions for Assignments: Handins

* Create a single tar or zip file with source code(s) and a
plain text file with any reportage or notes

— do not include executable, object (.0) files, libraries (.a, .s0),
backup files, or hidden directories

— submit it via Canvas

— do not send email with multiple attachments — put it all in a
single tar or zip file

— for any files I provide, don't include them in the hand-in
unless you changed them

— use plain text files for reports. No PDF, Word, ODF,
cuneiform, quipu, or other unnecessarily complex formats

* If you hand in multiple versions, only the latest one is
“official”. Be sure 1t's complete and 1s not just an
update for one or two files

Required Knowledge

https://www.cs.indiana.edu/classes/p573/prereq-check/requirements.html

P573 Required Knowledge: Coding

Programs required to be coded in C or C++ or Fortran
— You need know one of those, not all three

How to open, read, and write to/from files
Know how to code to a specified interface
Using 1 and 2-D arrays

Algorithms usually stated in pseudo-code; ask 1n class
if they are not clear

Will use makefiles, with multiple source files, link 1n
external libraries, run codes on Unix-like systems

The codes are tools; getting them running correctly 1s
only the start

— Don’t underestimate the time required

— Generally, will take you 8-11x longer to code than me

P573 Required Knowledge: Numeracy

Exponential notation: 1.8E12 = 1.8x10"

... and 1.8026175E12 furlongs/fortnight is ...?

von Neumann: max length of a lecture 1s 1
microcentury What's that in hours/minutes/weeks?

How many significant digits does 0.00623 display?

What's largest value of n that allows 3 n x n arrays of
8-byte doubles to be held in G gigabytes of memory?

Is 7.3 x 10® billion operations per second a reasonable
computational speed? What about 7.3 x 10" billion
operations per second?

What values of x blowup log(x), 1/x, acos(x)?

— assuming x and the functions are real-valued, and “blowup”
means “barfs, overflows, or returns unexpected values”

[use American “billion” = 10°, not British 10"

P573 Required Knowledge: Math

P573 Required Knowledge: Math

* Math knowledge: mostly from linear algebra
— definition of a derivative

— basic operations in linear algebra, e.g.
* matrix product 4*B (and conformality of sizes required)
* can write down a triple-nested loop to compute C = 4*B
* matrix times a vector
* dotproduct (AKA inner product) of two vectors

* Definitions of (e.g.)
— transpose A" of a matrix A4
— orthogonal matrix Q
— upper/lower triangular matrix (must that matrix be square?)
— 2-norm of a vector
— eigenvalue A: 4*x = A*x, with one more stipulation ... what?

Example linear algebra problem

* Solve a linear system of equations A*x = b
°* A, b are given
— A 1s an n x n matrix with real-valued entries

— b 1s an n x [vector with real-valued entries
— Want to solve for x, so x must be n x /

* The sizes of 4, x, b work out to be correct:
(mxn) *mx1) — (nx1)
A * x — b

Linear algebra gives a clear and useful area in which to
apply load/store analysis, the real crux in P573

P573 Conventions

Linear algebra conventions

* Mostly will follow the “Householder convention”
— scalars: lower case Greek letters like Q, Yy, O
— vectors: lower case Roman letters: x, y, u, v
— matrices: upper case Roman letters: A, G, C

* Not Householder convention:
— symmetric matrices: horizontally symmetric letters: 4, H, V
— dimensions: lower case Roman: m, n.: “4 1s an m xn matrix”’
— indices: lower case letters i-n, like “A(i,j) = 0 fori <;j”
— block indices: upper case Roman letters: /, J, K

* Don't need to memorize this, just a helpful guide

Linear algebra conventions

All vectors are column vectors by default. Use
transpose notation to specify row vectors

More generally: if 4 is m x n, then 4" is n x m and
A'(ij) = AG.i)

The dotproduct of two vectors x and y is defined as

o = 2 x(I)*y(i),
which can also be stated as a = X'y
Matlab uses a single quote mark to denote transpose:
alpha = x'*y
and sometimes I'll use that notation

Linear algebra conventions

A matrix 1s a mathematical entity; a 2D array 1s a
computer data structure often used to hold a matrix

Matrices can also be stored in a linked list, a graph
node-adjacency list, a pair of 1d arrays, a 3d array, ...

Matrices are indexed starting from 1; arrays can be
indexed starting from 1, 0, -27, or any integer

— C/C++ require array start index 1s 0

— Matlab requires array start index 1s 1

— Fortran allows any start index, from -2147483648 to
2147483647 (or from -9223372036854775808 to
9223372036854775807)

Entries 1in a matrix are indicated via 4(i,j). Entries in
an array might be denoted as A[i/[j], A[i*n+j], A(i,j)

Linear algebra conventions

Why picky matrix vs. array distinction?
— storing an n x n diagonal matrix in an »n x n array is dumb

Gaussian elimination starts out with an » x » matrix 4
in a 2d array A, ends up with two triangular matrices L
and U stored in the same array A

At intermediate stages, the array A contains parts of L,
U, and intermediate computational byproducts

At intermediate stages, need to carry out operations on
vectors and matrices that are stored in subarrays of A

An example of this ...

A(3:7,3)=A(3:7,3)— A(3:7, 1:2) * A(1:2, 3)

 Cannot copy parts over to temporary arrays; leads to O(n’)
memory copying/allocation/deallocation

* For n = 56k, difference between 14 minutes versus 1.5 years
for the Gaussian elimination algorithm

Other P573 Conventions

All floating point numbers will be double precision or
8-byte floats

All doubles must be printed out to 17 significant digits

A flop 1s a floating point operation. All of +, *, /, -,
sqrt, log, exp, sin, max, abs,.... count as one flop

— Yes, log(x) 1s probably slower than x + 1.0, but both still
count as one floating point operation

Integer operations are not flops (well, duh)

Can use Mflop = 10° flops and Gflop = 10’ flops, or
Mflop = 2* and Gflop = 2

You can use either, just state the choice clearly

Computational rates will be 1n units of Gflops/second
(sometimes confusingly denoted 1n books as Gflops)

Fundamental Idea

Other Fundamental Ideas

Computation 1s not the bottleneck 1n scientific
computing: instead, it 1s data movement

— memory hierarchy and pipelining in architectures
— data and metadata management in scientific computing

Interplay between continuum and discrete space
— use one regime to approximate the other
— discretizations (time, space) to get finite size problems
— reducing infinite dimensional problem to finite dimensions
certainly reduces the amount of data involved
Finite precision arithmetic effects

— IEEE 754 standard and implications for accuracy,
computability, reliability, reproducibility, debugging

— Finite precision reduces amount of data involved compared to
unlimited precision computation

Fundamental Principle

Analytic tool is load/store analysis, and real easy to
use: 1t 1s the ratio of data required to computation

Example: Let x and y be n-vectors, 0 = scalar
— daxpy = vector update; y=y+o*
— dotpxy = dotproduct with 2 vectors; o = x'y
— dotpxx = dotproduct with 1 vector; o = x'x

Load/store predicts dotpxx > dotpxy > daxpy in speed
for large n (it also predicts their relative performance)

Can implement Gaussian elimination to have either
dotpxy or daxpy as the innermost kernel operation;
which 1s better to choose?

We can (and will) do even better than that, guided by
load/store analysis

Gflop/sec

3.5

2.5

1.5

Load/store example

Gflop/sec Rates for Vector Operations on behemoth

—+—— saxpy
—#—— dotpxy
dotpxx

i e o i i o e o o o o e e o o e e

Vector Length

Gf lopsfzec

160

140

120

100

a0

B0

40

20

Fundamental Principle

N -] - T _J - ‘£ _J‘_ <~ _* _ ‘T _ < _ T ' _--*fX- ‘T _**~ T T __*T T __T_
+ zaxpy
H * dotpxy J
e} dotpxx
— = —theoretical peak

Gflop/zec Rates for Wector Operations on behemath

Vector Length in Powers of Two

Fundamental Principle

Load/store analysis based on ratio of just 2 numbers

r = m/f, where
— f=number of floating point operations required
— m = minimum possible number of memory references

f comes from looking at code fragment

m comes from looking at mathematical operation, not
from any code or machine implementation

Load/store analysis 1s the pass/fail knowledge for P573

As the course proceeds, will define it more fully, look
at 1t in more detail, and apply 1t in more examples

Next Steps (Interleaved)

Basics of computer architecture
How to reliably time things on a system
Load/store analysis of linear algebra kernels

Implementing linear solvers, least squares solvers,
principal component analys1s etc. using high- perf
techniques

Floating point oddities and usage
Matlab basics

Your immediate tasks include
— make sure you have the required knowledge

— check the course web page
https://www.cs.indiana.edu/classes/p573

A PDF of these slides will be there

	mechanics
	Overview
	Slide 3
	Slide 4
	Goals
	Slide 6
	Slide 7
	Slide 8
	assignments
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 21
	Slide 22
	Slide 23
	Ax=b
	Slide 25
	Slide 26
	LA conventions 1
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 39
	Slide 40
	Slide 42
	Slide 43
	Slide 52
	Slide 53

