
Stereo Vision-Based Navigation for the ERTS

Golf Cart

S. Sinha and B. Zaitlen

December 9, 2011

Abstract

The ERTS electric golf cart serves as a platform for experimental re-
search in autonomous robotics. The system has both GPS capability as
well as a laser scanning system to aid the cart in navigation. In this article
we detail our efforts in adding a stereo vision system to the cart to pro-
vide visual object detection to guide navigation. We make extensive use
of the Open Source Computer Vision (OpenCV) library of programming
functions for real time computer based vision.

The article is divided into three sections. The first section defines the
scope of our efforts and provides an overview of the subcomponents in
our software architecture. The second section describes in detail a) the
software we developed using the OpenCV software, and b) the method we
chose to interface it with the CartFS system. The third section describes
our simulated stereo vision based target distance estimation results. In
addition, we document our successes and failures in field trials with the
cart. The included appendices provide greater details on our algorithms
used for: inserting additional waypoints, obstacle avoidance, vision based
object detection, and camera calibration.

We feel the modularity of our design lends itself to easy expansion. We
hope this facilitates future endeavors to expand the Cart’s functionality
with stereo vision based navigation.

1

Contents

1 Introduction 2
1.1 Objectives . 2
1.2 OpenCV Components for Stereo Vision 2

2 Implementation 3
2.1 Stereo Camera Prototyping Hardware 3
2.2 Camera Calibration . 4
2.3 Stereo Calibration and Rectification 5
2.4 Color Based Object Detection . 7
2.5 Disparity and Distance Estimation of Pre-Identified Objects . . . 8
2.6 Integration with CartFS . 10
2.7 Conclusions . 11

A Vision Code Documentation 12
A.1 Object Detection Documentation 12
A.2 Disparity Map Documentation 12

B Algebraic Calculations for Adding Additional Course Waypoints
and Obstacle Avoidance 12

C Visualization of Telemetry Data using matplotlib and Matlab 12

List of Figures

1 Photograph of a single USB camera in our stereo vision testbed
system. 3

2 Photograph of the machined stereo camera rig. 4
3 Screenshot of corner detection using a calibration pattern. 5
4 Example of a Calibrated and Rectified Stereo Image Pair with a

Disparity Map. 6
5 Screenshot of object detection based on pixel HSV. 8
6 Creating a bounding box from stereo frames and cropping it out. 9
7 The technique for gauging depth information given two offset

images is called triangulation. 10
8 Schematic of the method used to add additional waypoints. . . . 13

1

1 Introduction

1.1 Objectives

Our objective in this project was to implement a stereo vision-based naviga-
tion system for the ERTS cart. The cart itself has GPS and laser-range finding
capabilities for localizing itself in space and detecting foreign objects in its envi-
ronment. Complimenting these systems with vision based object detection and
localization capabilities seemed both interesting and educational to us. With
these motivations, and the potential future benefit to the course, we made steps
toward a stereo vision-based pre-defined object detection and distance mapping
program.

Vision based guidance is a substantial undertaking that lead us to a num-
ber of specific design constraints. Constraints were imposed along two broad
fronts and were necessary at a minimum to contend with the limited project
development time frame. First, we wanted the vision system to operate inde-
pendently from the other cart processes. This allowed us greater flexibility in
developing the intended software. Interface with the cart was accomplished by
calling the vision program within the current architecture, and then having the
vision program write appropriate dictionary entries for CartFS.

Second, object detection and distance estimation are both complex computer
vision problems. As a result we radically reduced the problem by a) predefining
an object to identify in each video frame, and then only estimating that object’s
distance in video streams.

1.2 OpenCV Components for Stereo Vision

To tackle the vision processing goals and attempt to meet the hard time limits
imposed by autonomous navigation, we leveraged the well developed OpenCV
library of functions. OpenCV is an open source computer vision library written
for computational efficiency. We used this library of functions for every part of
our stereo-vision based distance estimation program. OpenCV is structured in
to five main components. We made extensive use of functions from the HighGUI
component and the CV component. The former provides I/O routines and
functions for storing and loading videos and images. The latter provides image
processing and higher level computer vision algorithms. Structural analysis and
shape descriptors, and camera calibration and 3D reconstruction routines were
of key importance.

The details of our design are outlined in the following section on Implemen-
tation. In essence we divided our overall vision task into the following subtasks.
The first required us to acquire cameras and machine a stable camera mounting
rig. The subsequent subtasks made use of specific components from OpenCV.

1. Stereo Camera Calibration

2. Hue-based Object Detection

2

3. Disparity and Distance Estimation of Pre-Defined Objects

4. Navigation Based on Object Distance

2 Implementation

2.1 Stereo Camera Prototyping Hardware

In our prototype we made use of two identical USB cameras. An ideal stereo
camera system would use synchronous frame grabbing cameras. We however
made use of two cameras running independently. The cameras had 24 bit RGB
capability and collected 15 frames per second. The maximum resolution possible
was 640 x 480 pixels and they automatically performed contrast balancing. The
lens of each camera was manually adjustable, and we generally set the focal
length for prototyping to approximately 2m. For actual use on the cart we
expected to focus on objects at least 4-5 meters away.

To mount the cameras we machined an aluminum platform. It consisted
of two 14 x 2 x 1/8 thick aluminum plates with grooves cut out to accept the
camera bases. The grooves were machined so that the center of the camera
lenses were 12 inches apart. The cameras were held rigidly in place by modestly
separating the two plates with threaded rods (see Figure 1 and 2). The two
metal plates were secured to a 1/2 inch thick aluminum base plate. This base
plate could be mounted to a tripod using standard 1/4 x 20 threaded hole (see
Figure 2).

Figure 1: Photograph of one of the USB cameras in our stereo vision testbed
system. The camera has a variable focal length (3cm - ∞), 24-bit RGB reso-
lution, and a maximum spatial resolution of 640 x 480 pixels. We focused the
lenses to 10m. The infrared LEDs on either side of the lens were not used.

3

Figure 2: Our two USB cameras mounted on our custom built platform. Our
camera platform can be screwed into a tripod stand using a threaded 1/4-20
hole. The camera lens centers are spaced 12” apart and secured rigidly in place.

2.2 Camera Calibration

Camera calibration is important for relating camera measurements with mea-
surements in the real world. The details for calibration are rather involved and
we do not describe them in exhaustive detail. Instead we only briefly describe
the overall steps in calibration, and routines from OpenCV that we use for this
project. For details on the mathematics and more on practical limitations refer
to Learning OpenCV by O’Reilly.

OpenCV takes as a starting point for calibration a simple pin hole camera
model. A lens is always used in cameras for practical reasons. In theory, it is
possible to define a lens that will introduce no distortions, however, in practice
no lens is perfect. This is mainly for reasons of manufacturing; it is much easier
to make a spherical lens than to make a more ideal parabolic lens. It is also
difficult to mechanically align the lens and a camera’s imaging plane exactly.
As a result two main distortions generally arise. Radial distortions arise as a
result of the shape of lens, whereas tangential distortions arise from the assembly
process of the camera as a whole. Radial distortions are generally modeled using
three coefficients and tangential distortions with two coefficients.

The relation that maps the point Pi in the physical world with coordinates
(Xi, Yi, Zi) to the points on the imaging plane with coordinates (xi, yi) is called
a projective transform. This transform in the case of a camera is described with
the intrinsic matrix which has components that characterize the focal length of
a lens along its x-, and y- axes (fx and fy) and correction factors that account
for the imaging chip being offset from the optical axis of the lens (cx and cy).

OpenCV has routines that allow these intrinsic and distortion properties of
a camera to be computed. It provides several routines to help us compute these
intrinsic parameters. The actual calibration is done via cvCalibrateCamera2.
In this routine, the method of calibration is to target the camera on a known

4

structure that has many individual and identifiable points. By viewing this
structure from a variety of angles, it is possible to then compute the (relative)
location and orientation of the camera at the time of each image as well as the
intrinsic parameters of the camera.

In principle, any appropriately characterized object could be used as a cal-
ibration object, yet the practical choice, and utilized in OpenCV, is a regular
pattern such as a chessboard (Figure 3). While a three-dimensional object
can be used, flat chessboard patterns are much easier to deal with. OpenCV
thus requires using multiple views of a planar object (a chessboard) rather
than one view of a specially constructed 3D object. To find the corners of
a chessboard pattern and plot on an image the identified corners we used
cvFindChessboardCorners and cvDrawChessboardCorners.

Figure 3: Single camera calibration using a two dimensional chess board pattern.
The corners of the pattern were identified and the a set of colored points and
lines were added to confirm for the user the points the routine has identified.

2.3 Stereo Calibration and Rectification

Now we describe steps involved in preparing stereo frames for subsequent pro-
cessing. Computer vision systems accomplish stereo imaging by finding corre-
spondences between points that are seen by one imager and the same points
as seen by a second imager. With such correspondences and a known baseline
separation between cameras, we can compute the 3D location of the points. Al-

5

though finding corresponding points can be computationally expensive, we can
use our knowledge of the geometry of the system to narrow down the search
space as much as possible. We followed a four step calibration procedure for
our stereo imaging.

1. Perform calibration of two cameras estimate intrinsic parameters, dis-
tortion effects, and the relative position between the 2 cameras using
cvStereoCalibrate.

2. We removed radial and tangential lens distortion, a process called undis-
tortion using cvUndistortPoints. The outputs of this step are undistorted
images. These procedures have been described above.

3. Adjust for the angles and distances between camera images, a process
referred to as rectification where we used cvStereoRectifyUncalibrated. The
outputs of this step are images that are row-aligned and rectified.

4. Compute a map of the joint undistortion+rectification transformation to
use on all subsequently acquired image frames using cvInitUndistortRectifyMap.

Figure 4: The top two panels show the left and right calibrated and rectified
stereo images. The chessboard calibration pattern can be seen in the right halves
of the top windows. Clearly adjustments need to be made as the images are
rotated, whereas the actual calibration pattern was parallel to the floor. The
bottom window shows the corresponding disparity map. More work is needed
in order to have other objects in the original scene represented in the disparity
map.

6

2.4 Color Based Object Detection

We decided from the start to search solely for pre-defined objects. Early on we
chose to use traffic cones as they have a characteristic shape and characteris-
tically non-natural color, making their identification in a natural environment
possible. Based on this type of object we developed routines to parse video
frames by a) identifying pixels with an appropriate hue-saturation-value (HSV),
b) then thresholding all pixel values to find pixels with a strong signal, c) then
connecting regions with strong HSV signatures, and finally d) cropping out
these regions. We realized that HSV values can vary substantially with natural
lighting conditions and we made tentative efforts to characterize the variation
of the pre-defined HSV under a range of conditions. The routine performed the
following sequence of steps:

1. Threshold image using cvInRangeS specifying the image and HSV Mini-
mum and Maximum values

2. Use cvBlobsLibs to run a connected-components algorithm on the image
and exclude blobs with less than N components

3. Region of Interest (ROI) Determination based on bound bounding box of
blob

4. Crop ROI

Figure 5 shows a screenshot that demonstrates part of this routines per-
formance. The reddish three ring binder on the desk is successfully identified
with this routine. The top frames are from left and right cameras. The yel-
lowish dots are from consecutive previous frames and identify the centroid of a
region with HSV values meeting the preselected hue criterion 1. The bottom
windows show the corresponding frames but thresholded to more clearly show
the selected pixels. It should be noted that the routine’s ability to select pixels
corresponding to the binder color was compromised if the lighting conditions in
the room changed significantly.

Figure 6 goes further and finds an object in a cluttered field and crops
it out. The bottom left figure has a pink dot on a green object. In addition
the scene is complicated with other objects, variations in lighting, and colors.
In the bottom right screen the object is selected and a black bounding box is
placed around the pixels with the relevant HSV. The thresholded version of this
image is shown in the top right window. Finally the region of interest is cropped
and shown in the top left window. This method of specifying a HSV range is
sensitive to lighting conditions.

1 CvScalarhsvmin = cvScalar(0, 50, 170, 0);
CvScalarhsvmax = cvScalar(10, 180, 255, 0);
CvScalarhsvmin2 = cvScalar(170, 50, 170, 0);
CvScalarhsvmax2 = cvScalar(255, 180, 255, 0);
cvInRangeS(imgHSV, hsvmin, hsvmax, imgThreshed);
cvInRangeS(imgHSV, hsvmin2, hsvmax2, imgThreshed2);
cvOr(imgThreshed, imgThreshed2, imgThreshed);

7

Figure 5: Object detection using a color based scheme for uncalibrated frames.
Top: A single frame from each camera. Yellow dots represent regions where the
program detects pre-selected HSV values. Bottom: HSV-based thresholding of
camera frame images. The white dots correspond to points cumulatively ac-
quired that have the appropriately HSV specification. Even in cluttered scenes
objects can be identified if their characteristic statistics deviate from the sur-
roundings.

2.5 Disparity and Distance Estimation of Pre-Identified
Objects

Once an object has been identified in each camera frame our plan was to use a
straightforward method from OpenCV that simply attempts to match windows
around each pixel from one frame to the next known as block matching. The
term ”block matching” is a catchall for a whole class of similar algorithms in
which the image is divided into small regions called blocks. Blocks are typically
square and contain some number of pixels (e.g. 10 x 10). The selection of blocks
can overlap and, in practice, algorithms generally do this. Block-matching algo-
rithms attempt to divide both the previous and current images into such blocks
and then compute the shift of these blocks. This shift in blocks from one frame
to the next, or in our case, across two essentially simultaneously sampled frames
is referred to as disparity. This method generally holds because frames can be
captured more quickly than the real world images themselves change. While this
will aid in generating a disparity map this class of algorithms play an important
role in optical flow for computer vision.

To better explain this we include Figure 7. For any point P of some object

8

Figure 6: A bounding box can be put around a predefined target and it can be
cropped out of an a video frame. Top Left: A pink object has been bounded
and cropped out of a larger visually complex field. Top Right: Objects with a
predefined hue are detected and the image is thresholded. The pink button and
the edges of a calibration pattern are marked by the program. Bottom: Left
and right image frames from a pair of cameras. The pink button in the center
of a green toy is detected based on its hue.

in the real world, P1 and P2 are pixel point representations of P in the images
IP1 and IP2 as taken by cameras c1 and c2. f is the focal length of both camera,
and is the distance between lens and imager. b is the offset distance between
cameras c1 and c2. v1 and v2 are the horizontal placement of the pixel points
with respect to the center of the camera. The disparity of the points P1 and
P2 from image to image can be calculated by taking the difference of v1 and
v2. This is the equivalent of the horizontal shift of point P1 to P2 in the image
planes. Using this disparity one can calculate the actual distance of the point
in the real world from the images Eq. 1.

D =
(b× f)

d
(1)

where D is the distance between the real object and the imaging planes, b is
the distance between the centers of imaging plane, f is the common focal length,
and d is the calculated disparity.

With regards to OpenCV we have attempted the following two step proce-
dure.

1. Find the same features in the left and right camera views, a process known

9

Figure 7: Triangulation makes use of a number of variables; the center point
of the cameras (c1, c2), the cameras focal lengths (f), the angles (θ1, θ2), the
image planes (IP1, IP2), and the image points (P1, P2).

as correspondence. The output of this step is a disparity map. We used
OpenCV’s cvFindStereoCorrespondenceBM.

2. Given the geometric arrangement of the cameras, we can turn the disparity
map into distances by triangulation. This step is called reprojection, and
the output is a depth map for which we can use 1.

2.6 Integration with CartFS

We developed a small class which uses the JsonCPP library to handle inter-
actions with the JSON dictionaries on CartFS. While, the class needs to be
fleshed out with proper read and write functions, we did develop a sketch for
the dictionary which will hold three key/value pairs.

1. Enable : {true, false}

2. ObjectWarning : {low, medium, high}

3. Location : {left, right, both}

10

The stereo vision depth finder program would pass out information about the
approximate distance of objects (ObjectWarning key) and approximate location
information (Location key).

2.7 Conclusions

Our objective for this project was to develop a prototype stereo vision depth
finder. If successful our intention was to then plan in greater detail a system
for integration with the ERTS cart.

Currently we have built a simple stereo camera platform, and successfully
implemented single camera calibration and object detection based on HSV using
OpenCV routines. We have a partially working stereo calibration program which
needs reworking to correct obvious errors in rotation and distortion of camera
images. To date we have been unsuccessful in creating accurate disparity maps.
Our maps currently have very little spatial resolution, and the represented gray
scale range varies little across any given. As a result we did not proceed with
a reprojection step, and are currently debugging our disparity map routines in
the hope we can be more successful in the short term.

In the future we would recommend the development of more accurate dispar-
ity maps and corresponding depth maps. In addition development of routines
for object detection based on shape and based on color statistics would be of
interest, and which hope to pursue for our own research.

11

A Vision Code Documentation

A.1 Object Detection Documentation

A.2 Disparity Map Documentation

B Algebraic Calculations for Adding Additional
Course Waypoints and Obstacle Avoidance

C Visualization of Telemetry Data using mat-
plotlib and Matlab

12

d

X

Y

Departed
Waypoint

Target
Waypoint

After Target
Waypoint

h
R

Figure 8: Object detection using a color based scheme. Top: Frame from
each camera. Yellow dots represent regions where program detects appropriate
color. Bottom: Thresholded camera frame images. The white dots correspond
to points cumulatively acquired that have the appropriately color based on the
detection algorithms color specification.

13

	Introduction
	Objectives
	OpenCV Components for Stereo Vision

	Implementation
	Stereo Camera Prototyping Hardware
	Camera Calibration
	Stereo Calibration and Rectification
	Color Based Object Detection
	Disparity and Distance Estimation of Pre-Identified Objects
	Integration with CartFS
	Conclusions

	Vision Code Documentation
	Object Detection Documentation
	Disparity Map Documentation

	Algebraic Calculations for Adding Additional Course Waypoints and Obstacle Avoidance
	Visualization of Telemetry Data using matplotlib and Matlab

