
Voice for ERTS
Shenshen Han

P545 School of Informatics and Computing
Fall 2011

1) Abstract
In this project, we will implement a simple but reliable voice navigation control scheme for
ERTS.

2) Introduction
Our ultimate goal is to provide “voice control and navigation” facility for disabled people
even the people with eye sight problems, so that they could be able to “drive” car to their
desired destinations by themselves. Therefore, the reliability, interactivity, and user friendly
are the main factors we want to design and improve.

3) Literatures
As it is quit difficult to find a native and powerful speech recognition engine, shortcomings
of a chosen speech recognition such as Word Error Rate (WER) need to be considered
and bypassed.

There are basically two general types of speech recognition engine. One is the native
engine, such as the speech recognition functions provided by the Mac OS and Windows
OS systems. Another type of speech recognition is actually carried out through the “cloud”,
such as the “google voice search” and speech recognition on Android. Due to the field
testing limitation, we are concentrating on native speech recognition engine.

As the ERTS itself is a quite autonomous model, so based on this, voice control is only
good for administrative level of control, which means the vehicle should be able to drive by
itself, and we just tell it where to go.

4) Objectives
4.1) Research and utilize a chosen voice recognition engine
We are dopting Sphinx-4 [1], an open source speech recognition engine mainly maintained
by CMU.

4.2) Design and implement voice control primitives
Besides the well-acceptably recognized “words”, there are some common words that
cannot be well distinguished by the speech recognizer due to the similar vowels and
consonants. Such as “Left” and “Right.”

4.3) Design and implement voice navigation primitives
Some critical voice control primitives can also be used conjunctively with the voice path
planning. Such as “Abort”, “Stop”, “Faster”.

4.4) Design and implement interactive voice control feedback
Any control command needs to have an appropriate feedback in order to provide reliable
interactivity to the users.

1

4.5) Design and implement a simple traffic network navigator with GPS
We will use the basic control module we developed for ERTS in the group project.

5) System Requirements
5.1) Voice Control and Navigation
User says: “Take me to X”
Start a new journey.

User says: “Slower”
Reduce the throttle.

User says: “Faster”
Increase the speed.

User says: “Vehicle Stop”
Stop the vehicle (Pause the journey).

User says: “Go Ahead”
Start the vehicle (Resume the journey).

5.2) Voice Command, Query and Feedback
Computer says: “Command acknowledged, X”
Affirmatively acknowledge a command initiated by the user.

Computer says: “Sorry, X”
Negatively acknowledge a command initiated by the user.

Computer says: “We have arrived X, have a nice day!”
Report to the user for arrival of current destination.

Computer says: “We are through intersection”
Report to the user for vehicle going through the intersections.

5.3) Traffic Network Navigator
We will assume a simple traffic network graph (That is what normal commercial map data
is like, such as the Tele Atlas [2] map data).

2

The green squares represent the turning and junction points, the white squares represent
the address block positions (such as 822 Queen Drive, Bloomington, IN). User can voice
command the vehicle to go to any of the list addresses by saying their names. We will
calculate a shortest route the vehicle to follow with considering the current position of the
vehicle.

At this stage, we are assuming that the vehicle is meant to not go beyond this network.
The black straight lines represent valid traffic routes. If we need to describe the real road
conditions and shapes, we will need more “green squares” to “calibrate” the road shape.

Our navigation scheme can be re-used to work with any other “geocoding” [3] and “route
service” [4] systems under the condition that we have Internet access.

6) Design and Implementation
6.1) Protocols
The system is mainly consisted of two components, the voice control module and the
vehicle control module. The voice control module mainly deal with the voice recognition,
voice synthesis, navigation control, and voice user interface. It is implemented under Java
environment. The vehicle control module mainly deal with the ERTS vehicle model control.
It is implemented under Python environment.

The communication channel between the voice control module and the vehicle control
module is carried out using UDP [5] transport. Therefore, we designed simple “sequence
number” scheme in order to cover the shortage of UDP, which is that UDP does not
guarantee the certain delivery order as it is not a reliable transport protocol. However,
UDP is faster in transmission than TCP [6] and we also require unreliable transport for
real-time control. Because there is no needs to re-transmit an out-of-date packet.

In out defined protocol, voice control can initiate a “command” at any time, vehicle control
can only acknowledge the command or report some updates. Once a command is
initiated, voice control must wait for its acknowledgement before make another command.
However, we will have a time-out checking in case that the “command” is lost during
transmission.

figure 1: a traffic network graph

3

The protocol is defined as following:
At time 1:
voice control -> vehicle control, [seq]:[command]:[command-parameters]
At time 2:
vehicle control -> voice control, [acked-seq]:[acked-command]:[acknowledgment]
At time 3:
voice control receives an valid ack, then voice control increases [seq]
otherwise
continues waiting for the valid ack
At any time:
vehicle control -> voice control, [update]:[update-parameters]
At command time-out:
voice control increases [seq], resets the command initiator so that it can allow user to
make the next command

6.2) Traffic Network Map
We use a simple graph [7] to represent the assumed Traffic Network. Each vertex
represents the intersection, each edge represents the road, the weight of the road is
represented by meters.

6.3) Route Search
We dynamically use a simple Depth-First Tree Search on the traffic network graph in order
to find out the shortest route that with a given start point and a destination point. The start
point is actually the current position of the vehicle reported by the vehicle control.

figure 2: built path network in ERTS

figure 3: a code fragment of depth-first search by using recursion

4

6.4) Voice Conversation
As we promote using voice for controlling the vehicle, it is very sensible that the computer
can give feedback to user in voice as well. Therefore, voice synthesis is required, and it is
more preferred than using “pre-recorded speeches”. Due to resource and time limitations,
we adopt FreeTTS[8] as our voice synthesis framework.

Then we implemented a simple synchronized conversation framework in order to make the
voice control more user-friendly. The voice recognition module only listen to userʼs speech
once user clicks a “listen” button, until an utterance is recognized, the “listen” button
function is disabled, which means we do not allow user to make any other speeches when
process a current speech. When vehicle control responses, the voice synthesizer
generates and speaks out a response speech. However, “listening to user” and “speaking
out” are mutual exclusive, which means that we do not allow them to happen at the same
time. The concurrency control is implemented using ReentrantLock of Java.

6.5) Enhancement of Voice Recognition
We have encountered a problem that sometimes the voice recognition cannot recognize
well due to our pronunciation or noise in environment. We are not able to alleviate this
problem by studying and tuning the voice recognition itself, however, we found another
way to solve this problem. That is to increase the command complexity by increasing
different words and number of words for commands. For example, firstly we set two
speech commands as “go” and “stop”, but sometimes they cannot be recognized well.
Then we use “go ahead” and “vehicle stop” instead, it turns out that the recognition
correctness is better than previous approach.

6.6) Vehicle Control
We mainly build our vehicle control module based on the ERTS control module
implemented in the Lab Project [9]. Basically, we just added a few more functionalities.

6.6.1) Arriving Control
In the graph of our assumed traffic network, we could say that the edge between two
vertices is the “street block”, and each address position belongs to one block. Once user
commands vehicle to drive to an address, vehicle control will detect that when the vehicle
enters the block that the destination address belongs to. Then the arriving control
sequence is initiated: slow down the vehicle according to the current distance from the
vehicle position to the destination position, if the distance to destination is larger than the
distance calculated in the previous control-loop or the distance is 0 meters, then we say
the vehicle is arrived.

6.6.2) Through Intersection
Once vehicle enters an assument intersection, the vehicle control will report to the voice
control.

6.6.3) Throttle Control at Turning

figure 4: implemented voice recognition grammar

5

Although we allow user to directly control the throttle of the vehicle, this is not allowed
during the vehicle is making a turning at the intersection. The throttle is then controlled by
the autonomous model.

7) Test
I have no changes to make another fields testing and capture a video. However, I look
forward to have one after the report deadline if it is desired.

A testing in simulator:
http://www.youtube.com/watch?v=HFhelt0O9Ms

I have tested my individual project on the field, the communication connections and basic
voice control functions worked fine. However, the traffic map I set is a little bit out of range
for the real field, so we had to manually avoid the parked cars, light poles, and cones. I will
adjust the traffic map for next testing, and next testing will be video recored.

8) Further Work
8.1)
More Voice Interactions and Information Feedback. Such as, user can ask "how long until
we arrive destination?", "where are we right now?", and user can get real-time information
feedback.

8.2)
More Voice Error Correction and Vocabulary.

8.3)

figure 5: a visualizer output of a field testing

6

http://www.youtube.com/watch?v=HFhelt0O9Ms
http://www.youtube.com/watch?v=HFhelt0O9Ms

More ERTS Modeling for Real Navigation. A good starting point might be researching on
"calibrate the real road shape", so that the vehicle can follow a course that has a more
complicated shape (the real traffic road). And for the ability of the vehicle itself, how we
make it to do a specific U-turn, how the vehicle do a parking action by itself, such functions
might be desirable.

8.4)
More Safety and Reliability Enhancement based on ERTS Voice Control. Assume we can
finally bring the vehicle to the real traffic road and use voice for navigation, there will be
more concerns about how reliable and safe the voice control is. If I said something wrong,
how can I quickly reverse it? Can ERTS itself validate my voice command if the command
seems not sensible according to the real-time road condition?

9) Conclusion
In short, the technology platform for voice control is quite mature right now, and it is
desirable for implementing more voice control functions for home-use vehicles.

10) References
[1] http://cmusphinx.sourceforge.net/
[2] http://www.geocode.com/, now owned by TomTom, http://corporate.tomtom.com/
releasedetail.cfm?ReleaseID=319503
[3] http://code.google.com/apis/maps/documentation/geocoding/
[4] http://code.google.com/apis/maps/documentation/directions/
[5] http://tools.ietf.org/html/rfc768
[6] http://tools.ietf.org/html/rfc793
[7] http://en.wikipedia.org/wiki/Graph_(mathematics)
[8] http://freetts.sourceforge.net/docs/index.php
[9] https://www.cs.indiana.edu/svn/bhimebau/embedded_systems/class/fall11/shenhan/lab/
5/

7

http://cmusphinx.sourceforge.net
http://cmusphinx.sourceforge.net
http://www.geocode.com
http://www.geocode.com
http://corporate.tomtom.com/releasedetail.cfm?ReleaseID=319503
http://corporate.tomtom.com/releasedetail.cfm?ReleaseID=319503
http://corporate.tomtom.com/releasedetail.cfm?ReleaseID=319503
http://corporate.tomtom.com/releasedetail.cfm?ReleaseID=319503
http://code.google.com/apis/maps/documentation/geocoding/
http://code.google.com/apis/maps/documentation/geocoding/
http://code.google.com/apis/maps/documentation/directions/
http://code.google.com/apis/maps/documentation/directions/
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc768
http://tools.ietf.org/html/rfc793
http://tools.ietf.org/html/rfc793
http://en.wikipedia.org/wiki/Graph_(mathematics
http://en.wikipedia.org/wiki/Graph_(mathematics
http://freetts.sourceforge.net/docs/index.php
http://freetts.sourceforge.net/docs/index.php
https://www.cs.indiana.edu/svn/bhimebau/embedded_systems/class/fall11/shenhan/lab/5/
https://www.cs.indiana.edu/svn/bhimebau/embedded_systems/class/fall11/shenhan/lab/5/
https://www.cs.indiana.edu/svn/bhimebau/embedded_systems/class/fall11/shenhan/lab/5/
https://www.cs.indiana.edu/svn/bhimebau/embedded_systems/class/fall11/shenhan/lab/5/

