
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 1

Caleb Hess, Steven D. Johnson, Rob-
ert W. Wehrmeister, Ingo Cyliax,

Logic Engine User Manual

Revised 2001

Logic Engine User Manual 2

 . .
. . . . 8
 . . . 9
. .
 . .

. . .

 . . . 14

. . . 19
 . . . 20
 . . . 21
 .
 .

 . . . 25

 . . . 28
 .

 . . .

.

. . . 35

 . . . 3
. . . 40
1 Introduction . 4
2 Installation . 6

2.1 Introduction. 6
2.2 Before Installation. 6
2.3 Basic Installation. 7
2.4 Advanced Installation .. . 7
2.5 Starting Up the Logic Engine Software .
2.6 Installing Only the LE PI Library .
2.7 Installing the LE Board. 9

3 Using the Logic Engine Board .12
3.1 Introduction. 12
3.2 Tie Points . 12
3.3 Clock . 12
3.4 Switches and Buttons . 12
3.5 LEDs . 14
3.7 Serial Port . 14
3.8 Placing Sockets in the Prototype Area .

4 LE Panel . 19
4.1 Introduction. 19
4.2 How the LE Panel Tool Works.
4.3 The LE Panel Tool upon Startup .
4.4 Status Field and Modes of Operation .
4.5 Label and I/O Fields .. . 22
4.6 Using Input Fields. 24
4.7 Switch Fields. 24
4.8 File I/O . 25
4.9 Symbol Files . 25
4.10 Key Bindings and Menu Selections .

5 TERM . 28
5.1 Introduction. 28
5.2 Menus and Key Bindings .

6 Common User Interface . 30
6.1 Introduction. 30
6.2 DESQview Interface . 30
6.3 Menus . 31
6.4 Dialog Boxes. 32
6.5 File I/O . 32
6.6 Tools Menu . 34
6.7 Help System 35
6.8 Communication with the LE Board .

4 ED PLD. 37
4.1 Introduction. 37
4.2 Cypress PLD C 20G10 .7
4.3 EDPLD Fuse Map Editor .
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 3

. . . 45
. .

. . .
 . .
 . . . 57
 . . . 61
. 79

. . .
. . . 80
. . . 83
 . .
.
.
4.4 File I/O . 41
4.5 EDPLD PLD Programmer .
4.6 Testing a 20G10 . . . 45
4.7 Key Bindings 47

5 LE Assembler . 50
5.1 Introduction. 50
5.2 Editor. 50
5.3 LEASM Debugger . 53
5.4 A Design Example .. 54
5.5 Developing the Control Program .
5.6 The Micro Assembly Language .

I Logic Engine Programmer's Interface.
A Introduction. 79
B How the LEPI Works . 79
C Low Level Interface Routines.
D High Level Interface Routines .
E Declaration File Syntax .. 84
F Nomenclature. . . . 87
G Linking the Library . 89
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 4

g an
of the

for
d this
tools
rpose

C
in
s,
e.
e
es

di-
-

e
d

al I/
1. Introduction
The Logic Engine consists of the Logic Engine Board and a set of software tools providin
interface to the board. This manual describes the use of the software tools. A description
Logic Engine Board can be found in the Logic Engine Board Technical Reference Manual.

The Logic Engine Tool Set consists of four software tools, a library of routines which allow
the development of custom tools and an environment in which to run them. We have foun
set of tools to be extremely useful in our senior level digital design course. Some of these
were designed with the course explicitly in mind, while others were designed as general pu
tools. Below is a brief description of each tool:

All the tools, with the exception of the LE PI, were written to run in the DESQview1 environment.

LE Panel: The LE Panel tool is used to display information from the LE board on the P
screen and to send information from the PC keyboard to the LE board. It is
effect a virtual display which serves the same purpose as the lights, switche
and push buttons on the LE board, but which offers a more powerful interfac
Signals wired to the lights, switches and push buttons of the LE board can b
grouped and displayed in a number of formats. Signals wired from the switch
and push buttons can be controlled from the PC.

LE Asmb: The LE Asmb Tool is a microcode development system. It consists of a text e
tor, microcode assembler, downloader, and debugger, all in a unified environ
ment. Features include:

- a source level debugger with single stepping and breakpoints.

- an emacs-like editor.

- viewing of object code.

- a rich micro-assembly language.

ED PLD: The ED PLD Tool is a PLD fuse map editor for use with the PLD burner on th
Logic Engine Board. ED PLD also has the capability to read, burn, verify, an
test PLDs. ED PLD supports only the PLD20G10 at this time.

LE Term: LE Term is a simple terminal emulator for use with designs that require seri
O.

LE PI: The LE PI is a library of routines for use with the Microsoft Ca complier. With
this library, users can develop specialized tools for use with their designs.

a.Microsoft C® is a trademark of Microsoft Corporation.

1. DESQview is a trademark of Quarterdeck Office Systems.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 5

ffers
lica-
They will not run unless DESQview is installed and running. The DESQview environment o
three major features utilized by the Logic Engine tool set: the ability to switch between app
tions, a standard way of dealing with windows and fields, and the ability to multitask.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 6

od, in
ced
have
nded
Logic
ESQ-
talla-
tall
only

ing
2. Installation

2.1. Introduction

There are two ways in which the Logic Engine software can be installed. The basic meth
which only the Logic Engine Tool set is available from within DESQview or the advan
method, in which the Logic Engine Tool set is available along with other applications that
been set up for use with DESQview. If you are not currently using DESQview, it is recomme
that the basic method be used. Later, when the full power of DESQview is desired, the
Engine software can be reinstalled using the advanced method. If you are currently using D
view or wish to use all the power of DESQview immediately, use the advanced method of ins
tion. If you wish to use only the LE PI tool to develop your own tools, you will not need to ins
DESQview or the Logic Engine software at all. See section 2.6 for the procedure to install
the LE PI tool.

2.2. Before Installation.

In order for the LE software tool set to run properly, your system should meet the follow
requirements:

IBM Personal Computer or 100% compatibles

 (386 class machine recommended)

640K Memory minimum

 (1M to 4M recommended)

1 Floppy drive, 1 Hard drive with 1M available

Monochrome or Color monitor

 (VGA Color monitor recommended)

Mouse

 (Optional but highly recommended)

PC-DOS 2.0-3.3 or MS-DOS 2.0-3.3

DESQview version 2.01 or greater

All DESQview requirements

 (see the DESQview manual)
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 7

ion of

-

ter an
.

hen
gine

pen

the
.

view
DESQview must be installed before any of the software tools can be used (with the except
the LE PI tool.) To install DESQview, see the DESQview manual.

2.3. Basic Installation

Place the diskette labeledINSTALL in floppy driveA (other floppy drives can be used, simply
use the appropriate drive letter instead ofA)
TypeA: and press↵
TypeTYPE README and press↵for any last minute instructions or modifications to the man
ual
TypeINSTALL <dv> <le> and press↵,where:

- <dv> is the location where DESQview has been installed
- <le> is the location where the LE software tools are to be installed
- e.g.INSTALL C:\DV C:\LE ↵

If an error occurs during the installation, an appropriate error message will be displayed. Af
error, installation can be continued by correcting the problem and restarting the installation

During installation, messages will be displayed indicating the progress of the installation. W
installation is complete, a message will be displayed indicating so. At this point the Logic En
software is ready to run as described in section 2.5.

2.4. Advanced Installation

The advanced installation procedure will install the following programs into the DESQview O
Window menu with the key stokes listed below:

If any of these key strokes interfere with a program that is already installed in DESQview,
advanced installation script (ADVANCE.BAT) can be edited to make the appropriate changes

Performing the advanced installation procedure will create several new files in the DESQ
directory and modify the fileDESQVIEW.DVO . The old version of the fileDESQVIEW.DVO
will be stored in the fileDESQVIEW.OLD .

Program Name
Key Stroke used to Open

Program

LE Panel PA

LE ASMB LE

ED PLD ED

TERM TR
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 8

instal-
gram
talled

plete,
view

the

iew
s, one
t it in

the
se but-
The advanced installation procedure is as follows:
•Place the diskette labeledINSTALL in floppy driveA (other floppy drives can be used, simply
use the appropriate drive letter instead ofA)
•Follow the procedure for the basic installation (if this has not already been done)
•TypeADVANCE <dv> <le> and press↵,where:

<dv> is the location where DESQview has been installed
<le> is the location where the LE software tools have been installed
e.g.ADVANCE C:\DV C:\LE ↵

During the advanced installation, messages will be displayed indicating the progress of the
lation. If there is a conflict between one of the programs being installed and another pro
already installed, an error message will be displayed indicating that the program was not ins
and installation will proceed with the next program. Once the advanced installation is com
the programs will be available from the DESQview Open Window menu the next time DESQ
is started.

2.5. Starting Up the Logic Engine Software

After installing the Logic Engine Software, you should do the following:
Add <le>/bin to thePATH environmental variable in autoexec.bat
Add set LE=<le> to autoexec.bat,where:<le> is the location of the installed Logic Engine Soft-
ware
Reboot

If the Logic Engine software was installed using only the basic method, you will be using
Logic Engine Menu to start up the Logic Engine tools. To start the Logic Engine Menu:
TypeLE ↵This will start up DESQview and bring up a menu as illustrated in Fig. 1. DESQv
should not be running before the Logic Engine Menu is started. The menu has five selection
for each of the Logic Engine tools and one for DOS. To start up one of these programs, selec
one of three ways.

Type the two letters on the right side of the selection.
eg. TypePA to select theLE Panel Tool.

Use the cursor keys to highlight the selection then press the Space Bar or Enter Key.
Use the mouse to highlight the selection then press the left mouse button.

If the Logic Engine menu is ever obscured by other windows, it can be raised by moving
mouse to a spot on the screen which is not occupied by a window and pressing the left mou

MENU˜˜˜˜˜˜˜¿
‡ ‡
‡LE Panel PA‡
‡LE Asmb LE‡
‡EDPld ED‡
‡Term TR‡
‡DOS DO‡
˜˜˜˜˜˜˜˜˜˜˜
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 9

ngine
al for

the
two

about

ust be
he LE
elow.)

itches
oving
ton.

If the Logic Engine software was installed using the advanced method, any of the Logic E
Tools can be started from the DESQview Open Window menu. See the DESQview manu
details about starting programs from the Open Window menu.

2.6. Installing Only the LE PI Library

If you desire to use only the LE PI library, it is possible to avoid installing DESQview and
Logic Engine software. To be able to link your own programs to the LE PI library you need
files off of theINSTALL diskette

\bin\lelib.lib

\include\lelib.h

These can be copied to a convenient location on your hard disk. See Chapter 8 for details
using these files.

2.7. Installing the LE Board

In order to operate the LE Board in a stand-alone fashion (no host PC), the power supply m
connected to the LE Board (see below) and plugged in and turned on. In order to operate t
Board with the host PC, the parallel connector must also be connected to the host (see b
Fig. 2 illustrates these connections.

There are three connectors located on the right side of the LE Board (board oriented with sw
face up and forward.) These connectors are, starting closest to the right most button and m
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 10
away:

Parallel Connector:

This is a male DB25 (25 pin) connector. It is connected to the host PC's
parallel port (usually a female DB25 connector) via a male DB25/female
DB25 parallel cable. This port is used for communication between the
host PC and the LE Board. If any of the LE software is used to
communicate with the LE Board, this connection must be made.

Power Connector:

This is a 5 conductor, unisex, color coded connector. It is connected to
the power supply with an identical connector supplied with the power
supply. This connection provides +5V, ground, -12V, +12V and 'power
good' signals to the LE Board. The connection is made so that like col-
ors of each connector match up. This connection must be made in order
to use the LE Board.

Serial Connector:

This is a female DB9 connector. It is connected to the host PC's serial
port (usually a male DB25 connector, sometimes a male DB9 connector)
via a female DB9/male DB25(DB9) serial cable. This undedicated port
is used to provide a serial port between the LE Board and the host PC. It
is strictly for the designers use and is not used by any of the LE software.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 11
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 12

s and
switch
bits,

Figs.
sed by
and

ration.
corner
man-
e, yel-
mode
r tie
e fre-

ise, to
y the
high,

erated

gine
the

on the
3. Using the Logic Engine Board

3.1. Introduction

The Logic Engine Board has several features which aid in the testing and prototyping of chip
systems. The main features are: a general purpose prototyping area, a system clock, 32
and button inputs, 128 LED's for display of outputs, a micro-sequencer with 40 command
and a serial port. The following sections describe how to use these features.

3.2. Tie Points

Fig. 1 illustrates the Logic Engine board with all the user tie points highlighted and labeled.
2-4 are more detailed drawings of the board. The tie points are wire-wrap pins that can be u
simply wiring from the user design in the prototype area to the tie point. Table 1 below, lists
describes all the tie points on the board.

3.3. Clock

The clock supplied on the board is a variable rate clock with three selectable modes of ope
Each mode can be selected using the three position toggle switch located in the lower left
of the board. The three positions are down: fast clock rate, up: slow clock rate, and middle:
ual clock. The modes are also indicated by the lights above the switch: green: fast clock rat
low: slow clock rate and red: manual clock. The exact range of rates of the fast and slow
can be selected by wiring from tie points C1 (fast) and C2 (slow) to one of the clock diviso
points. This should already be set to some default configuration. In these two modes, th
quency can be adjusted with the clock pot. To increase the frequency, turn the pot clockw
decrease, turn it counter clockwise. When the clock is in manual mode, it is controlled b
push button in the lower left corner of the board. When the button is depressed, the clock is
when released, the clock is low.

There are six tie points (U0 - U5) on the board for access to the user clock. They are all gen
from the same signal run through separate buffers.

3.4. Switches and Buttons

There are 16 switch tie points (S0 - S15) and 16 button tie points (B0 - B15) on the Logic En
board. All of the switches and 12 of the buttons can be controlled in manual mode from
switches and buttons across the front of the board. The 16 switches on the board starting
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 13

ht, are
oned
osi-
on is
tion,

com-
nts and
ftware
right, are connected to tie points S0 - S15. The 12 buttons on the board starting on the rig
connected to tie points B0 - B5 and B8 - B13. In manual mode, when a switch is positi
toward the front of the board, the value on the correspoding tie point is low (0V). When p
tioned away from the front of the board, the value is high (5V). In manual mode, when a butt
in the up position, the value on the correspoding tie point is low (0V). When in the down posi
the value is high (5V).

When in host mode, all 32 of the switch and button tie points can be controlled from the host
puter. In this case the switches and buttons on the board are disconnected from the tie poi
have no effect on these signals. Refer to the proper chapter for information on how each so
tool can control the switches and buttons.

Table 1: Tie Points

Function Tie Points Input
Output

Illustrated
in Figure:

Description

Clock D0-D23 Output Fig. 2 Clock Divisor:

C1-C2 Input Fig. 2 Clock Selector:

U0-U5 Output Fig. 2 User Clock:

Switches S0-S15 Output Fig. 2 Switch Outputs:

Buttons B0-B15 Output Fig. 3 Button Outputs:

LED's L0-L127 Input Fig. 4 LED Inputs:

Micro-
sequencer

P0-P39 Output Fig. 4 Pipeline Outputs:

PE.L Input Fig. 4 Pipeline Enable:

MAP0-
MAP11

Input Fig. 4 Jump Map Inputs:

JMAP.L Output Fig. 4 Jump Map Enable:

CC.L Input Fig. 4 Condition Code:

Serial Port DTR Input Fig. 4

TD Input Fig. 4

RTS Input Fig. 4

RD Output Fig. 4

CD Output Fig. 4

DSR Output Fig. 4

CTS Output Fig. 4
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 14

he sig-
ence
to the
ons.

ottom
solder
in to
d bot-
3.5. LEDs

There are 128 LED's that can be used to display signals. They are used by wire wrapping t
nal to be displayed to one of the LED tie points (L0 - L128). The values of the LED's and h
the value of any signal wired to an LED can be read by software when in host mode. Refer
proper chapter for information on how each software tool can control the switches and butt

F. Microsequencer

3.7. Serial Port

3.8. Placing Sockets in the Prototype Area

The prototype area has a power grid on each side. The top side has a grid of 5V. And the b
side has a grid of 0V. To place a socket in the prototype area, insert the socket, and make a
bridge from the Vcc pin to the grid on the top side and make a solder bridge from the GND p
the grid on the bottom side. Alternatively, you can use stake pins. Solder these to the top an
tom grids and wire wrap from these to the socket.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 15
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 16
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 17
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 18
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 19
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 20
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 21
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 19

send
rves
ffers a
oard
push

e LE
urrent
display

react
his is

the

con-
isplay.
e dis-
e speed
request
ormant.
f the

ode
nel.
the

ld of
lay the
ld, in
rd, or
4. LE Panel

4.1. Introduction.

The LE Panel tool is used to display information from the LE board on the PC screen and to
information from the PC keyboard to the LE board. It is in effect a virtual display which se
the same purpose as the lights, switches, and push buttons on the LE board, but which o
more powerful interface. Signals wired to the lights, switches and push buttons of the LE b
can be grouped and displayed in a number of formats. Signals wired from the switches and
buttons can be controlled from the PC. This capability allows the user to interact with th
board entirely from the PC host. Displays can be constructed that are best suited to the c
needs of the design. And since the display is easily reconfigured, the user can change the
as the need arises. Each configuration can be saved to disk to be retrieved at a later time.

4.2. How the LE Panel Tool Works

The LE Panel tool has two major tasks. The first is to take user input from the keyboard and
to it. The second is to read information from the LE board and display it on the screen. T
accomplished by having one process for each task. Theuser input processtakes all input from
the user, manages all the menus and windows and sends information to the LE board. Thepanel
update processreads information from the LE board and displays it in the proper format in
panel window.

Thepanel update processcan operate in two modes: continuous update or user update. In
tinuous update mode the panel update process is continuously running and updating the d
This gives the panel the feel of the light panel on the LE board since the signal values ar
played almost instantaneously. The rate at which the display can be updated depends on th
and load of the host processor. In user update mode the user requests all updates. Each
causes the panel update process to perform one update of the display and then become d
Although this mode may not be very useful while debugging, it is handy to be able to turn of
panel update process while doing other tasks on the computer.

The LE Panel tool can also control the operation of the clock on the LE board. When in run m
the clock is controlled from the LE board. Alternatively, the clock can be pulsed from the pa
This will turn the clock off if it was in run mode and issue a single pulse of the clock. When
clock is in run mode and running at a high rate, thepanel update processmay not be able to keep
up with the changing signals and the values displayed may be invalid.

The main part of the LE panel display consists of 24 label field, I/O field pairs. The label fie
each pair is used to associate a name with a group of signals and the I/O field is used to disp
group of signals in one of several formats. The I/O field can be configured to be an input fie
which case it is used to display the value of a group of switches or buttons from the LE boa
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 20

ard.
ysical
of the

th be
he PC
mally,
n take
reg-

gisters

ped to
ne of

e LE
All of
that is

ects it
e LE
to run
an output field, in which case it is used to display the value of a group of lights from the LE bo
Input fields can also be configured to accept input from the user, thus overriding the ph
switches and buttons on the LE board. The user input is then sent to the LE board in place
switches and buttons.

From the perspective of the host, the switches and buttons behave identically and will bo
referred to as switches. Associated with each switch is a register which can be written by t
host. The output of each switch is connected to the output of its corresponding register. Nor
the output of the register is disabled and the output of the switch is enabled. The PC host ca
control of the switches by disabling the output of the switches and enabling the output of the
isters. In addition to the 28 registers associated with the switches, there are 4 hidden re
which are accessible from the PC host which do not have an associated switch or button.

In addition to the 24 label, I/O fields, the panel has 12 toggle input fields. Each can be map
one switch or button signal, creating a field that behaves like a toggle switch. Whenever o
these fields is selected it toggles the value of the signal to which it is mapped.

All communication between the LE board and the PC host is done over the parallel port. Th
board contains numerous registers to store data or to control the behavior of the board.
these registers can be written or read. The LE Panel tool assumes that it is the only process
writing to these registers, so when it puts the LE board in a certain mode of operation, it exp
to remain in that mode until otherwise instructed. If another process is also writing to th
board, the LE Panel tool can get confused about the state of the LE board. It is always best
only one application that accesses the LE board at a time.

4.3. The LE Panel Tool upon Startu
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 21

t cor-
tle of
ever
of the
, LE

y the
rrent
on-
t a
uni-
e LE
fault.
ctions

elds.
When the LE Panel tool is opened, a window similar to Fig. 1 should appear. In the upper lef
ner is the number assigned by DESQview to this window. To the right of the number is the ti
the window. The LE Panel tool uses the window title to display the current file name. When
the current file name changes, for instance when a new configuration is loaded, the title
window will change. The configuration shown in Fig. 1 is simply an example. Upon startup
Panel loads its initial configuration from the file "init.cfg".

Upon startup, the LE Panel tool first changes the current directory to the path indicated b
HOME environmental variable. If the variable is not set or the path does not exist, the cu
directory will be the directory from which the LE Panel tool was started (initially set to "\le\c
fig"). It then tries to load the file "init.cfg" from the current directory. If this file does not exis
bell will sound. If after reading the mode of operation from "init.cfg" it is necessary to comm
cate with the LE board, it is first determined if the board is responding to requests. If so, th
Panel is configured to that mode of operation. If not, the mode of operation is set to the de
For more information about configuration files and the various modes of operation, see se
4.4 and 4.8.

The LE Panel window consists of five kinds of fields: Menu, Status, Label, I/O, and Switch fi

t.cfg˝˝
l File(F1) Display(F2) Clock(F3) Tools(F4) HELP(F12) 11
 Board Update

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜´˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜´˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 000 MA ‡ 0 LOAD-MA ‡ EXEC2 [000A] STA

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 0000 MEM ‡ 0 WRITE ‡ 100110 ALU

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 0000 MB ‡ 1 LOAD-MB ‡ 101 MUX

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 0000 PC ‡ 0 LOAD-PC ‡ 0 IE

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 0000 IR ‡ 1 LOAD-IR ‡ 0 HAL

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 0051 AC ‡ 00 ACS[0-1]‡ 0 CLO

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 0000 SW ‡ 0 LINK ‡

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¯˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 00 test ‡ ‡

˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜`˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜`˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
ET CLEAR M-CLK CONT EXAM DEP MA-L MEM-L MB-L PC-L IR-L AC-
˝˝˝
 ‡

˜˜´˜˜˜˜˜˜
 I/O Fields
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 22

sts of
f
risk (*)
tion.
LE

the

on

efore
ot, a
t from

t the

d can
f up

cimal,
The purpose of each will be described in the following sections.

4.4. Status Field and Modes of Operation

The status field is located in the upper right of the LE Panel window. The status field consi
four flags as illustrated in Fig. 2. TheFile Modified flag indicates whether the configuration o
the panel has been modified since the last save or load. If the file has been modified an aste
will be displayed for this flag. The remaining three flags indicate the current mode of opera
The Input Source flag indicates whether input to the LE board comes from the board or the
Panel. If input comes from the LE Board,Board is displayed, otherwisePanel is displayed for
this flag. TheUpdate Statusflag indicates the status of the panel update process. When
panel update process is running,Update is displayed for this flag. TheClock Status flag indi-
cates the status of the clock on the LE board. If the clock is running,Clock is displayed for this
flag.

There are five commands that change the mode of operation:Update Once, Update Continuous,
Pulse Clock, Run Clock, andInput from Panel/Board . In addition, when a new configuration
file is loaded with theLoad File command, the mode of operation may change. For details
these commands see section 4.10.

To change the mode of operation, the LE Panel tool must communicate with the LE board. B
doing this it first determines if the board is responding. If so, the command is executed. If n
message to that effect is displayed and the mode of operation is changed to the default (inpu
board,panel update processstopped, clock stopped). To remove the displayed message, hi
ESC key.

4.5. Label and I/O Fields

The label and I/O fields are used to give a name and a view to a group of signals. An I/O fiel
be configured to be an input or output field. An input field can be configured to display any o
to 16 of the buttons or switches of the LE board. These can be displayed in either hexade

˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝»
LP(F12) 11/29/90”
 *Board Update Clock ”
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜”
 ‡ ‡ ‡ ‡
 ‡ ‡ ‡ Clock Status
 ‡ ‡ Update Status
 ‡ Input Source
 File Modified
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 23

ghts
mbol-
are

. The
field
f five
ince
key
field.

gnals.
not

lected
ntly

sed to
octal,
red

in the
lds);
mmas
ted by
ding
order.
uiva-

ed sig-
ontain
on the

gura-
ition

most
decimal, octal, or binary. An output field can be configured to display any of up to 16 of the li
of the LE board. These can be displayed in either hexadecimal, decimal, octal, binary, or sy
ically. An I/O field that has been configured as an input field is highlighted while output fields
not.

When a label field is selected, a field definition dialog box as shown in Fig. 3 will be opened
dialog box indicates the current configuration of this label, I/O field pair. From here the label
and its associated I/O field can be reconfigured. The field definition dialog box consists o
sections: the label, I/O, display, and signal definition sections along with the Done field. S
this menu has a text input field, the TAB key is used to move between fields. Also, the ALT
can be used along with the capitalized letter of the select fields as a quick way to select a
For instance, ALT-H will select the Hex field even when the cursor is not over it.

The label definition field is used to assign a name of up to 8 characters to this group of si
This name will be displayed in the label field. The only limitation is that a comma (`,') can
appear in the label.

The I/O definition section consists of 3 fields: off, input, and output. One of these can be se
to configure the I/O field as either inactive, an input, or an output field. The field that is curre
selected is highlighted.

The display definition section consists of 5 fields: hex, dec, oct, bin, and sym. These are u
configure the contents of the I/O field to be displayed as either hexadecimal, decimal,
binary, or symbolically. The field that is currently selected is highlighted. If the field is configu
as an input field, the sym field configures the I/O field to be displayed as binary.

The signal definition section is used to define which signals are to be grouped and displayed
I/O field. Signals are specified by their number (0-31 for input fields and 0-127 for output fie
a group of signals is specified by a list of signal numbers or signal ranges separated by co
and terminated with a semi-colon. A signal range is specified by two signal numbers separa
a dash (`-'); it defines a list of signals beginning with the first signal number in the pair and en
with the second signal number of the pair. These can be in either increasing or decreasing
For instance, the signal groups: "12-5;", "12,11,10-7,6,5;", and "12,11,10,9,8,7,6,5;" are eq
lent. Signal groups can consist of non-sequential signal numbers and can contain replicat
nal numbers. For instance the signal group: "1,13,9,5-7,6,1;" is legal. Signal groups can c
up to 16 signals. Chapter 9. describes how the lights, buttons, and switches are numbered
LE board.

The Done field is used to accept the current configuration. If there are no errors in the confi
tion the field definition menu is closed. If there are errors, a bell will sound and the field defin
menu will remain open. At any time the ESC key can be used to abort the process.

A signal group is interpreted as a binary number with the most significant bit being the left

˝˝˝
 Label: PC oFf Input Output Hex Dec oCt Bin Sym doNe
 Range: 37-48;

˝˝˝
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 24

done
ormat
te is

eci-
f the
ator
, fol-
e sig-
cimal

er is
es for

hen
-
ll will

ard is
ld in

ld will
n be
in the
il an

se is
erate
eld-
d as
ition
ers to
d to
The
signal in the group and the least significant bit being the rightmost. Whenever an update is
the value of all the signal groups are read from the LE board, converted to their appropriate f
and displayed in the I/O field. The I/O field is not changed after reconfiguration until an upda
completed.

The value displayed in an I/O field is right justified in the field. In the case of hexadecimal, d
mal, and octal formats, the letters `H', `D', and `O' are displayed in the leftmost position o
field respectively, to indicate the format of the display. In the case of binary format, no indic
is displayed. In the case of a symbolic display, a symbol of up to 8 characters is displayed
lowed by a four-digit hexadecimal number enclosed in brackets, representing the value of th
nal group. If no symbol is mapped to the current value of the signal group, only the hexade
value is displayed.

Upon closing a field definition menu configured as an output with symbolic display, the us
prompted for the symbol map file name. Section 4.9 discusses how to create mapping fil
symbolic display.

4.6. Using Input Fields

An I/O field that has been configured as an input field operates in two different modes. W
input is being taken from the LE board (board appears in the status field), the input field will dis
play a value from the switches and buttons on the board. If the input field is selected a be
sound and nothing will happen. When input is being taken from the panel (panel appears in the
status field), the switches and buttons are disabled and the switch register on the LE bo
enabled. The contents of this register is displayed in the input field. Selecting the input fie
this mode allows the user to modify the contents of the switch register. When selected, a fie
appear directly below the input field with the current value being displayed. A new value ca
entered into this field and registered upon hitting the enter key. The new value is entered
format that the field is configured to display. Note that the input field is not changed unt
update is completed.

4.7. Switch Fields

There are 12 switch fields located along the bottom of the LE Panel window. Each of the
used to give a name to a single switch or button signal on the LE board. The Switch fields op
in two modes. When input is being taken from the LE board, the switch fields operate in fi
definition mode. If a switch field is selected in this mode, a field definition menu is displaye
illustrated in Fig. 4. This menu has three fields: the label definition field, the switch defin
field, and the done field. The label definition field is used to give a name of up to 5 charact
this signal. The name will be displayed in the switch field. The switch definition field is use
define the switch that this field will control. Switches are specified by their number (0-31).
done field is used to accept the current field definition.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 25

ed, the
. If a
The

y the

on is
with
it was
is not
input

d File,
nds. In
ed; if
pted

ames.
ched
dis-
t edi-
he

al) fol-

lumn
bined
When input is being taken from the panel, the switches and buttons on the board are disabl
switch register on the LE board is enabled and the switch fields operate in toggle mode
switch field is selected in this mode, the value of the switch will be toggled on the LE board.
current value of the switch does not get displayed in the switch field. If it is desired to displa
switch values, a label, I/O field can be used.

4.8. File I/O

Any configuration of the panel can be saved to a file for later retrieval. When a configurati
saved, the current configuration of all the label, I/O and switch fields is written to a file along
the state of the status field. When a file is retrieved, the configuration is restored to the state
in when saved. It may not be possible to restore the state of the status field if the LE board
responding. In this case a message will be displayed and the mode of operation will be:
source - board, panel update process - stopped, clock - stopped.

There are three commands that pertain to the saving and retrieval of configuration files: Loa
Save File, and Save File As. See section 4.10. for details about these and other comma
addition, the Exit command will prompt the user whether to save a file that has been modifi
an output field has been reconfigured to display its value symbolically, the user will be prom
for the name of the symbol file to be loaded.

4.9. Symbol Files

Symbol files are used to define a symbol map to map signal group values to symbolic n
When an output field is configured to display its value symbolically, the symbol map is sear
for the current value of the signal group. If found, the symbol corresponding to that value is
played in the output field. Symbol files are simple text files that can be created using any tex
tor. The first line of the file must contain the number (in decimal) of entries that follow. T
subsequent lines contain one entry per line. Each entry consists of a value (in hexadecim
lowed by its corresponding symbol of up to 8 characters.

4.10. Key Bindings and Menu Selections

Below is a table of all the commands and menu selections for the LE Panel tool. The first co
is the key stroke for the command. The key strokes preceded by an `A-' refer to the key com

˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝»
” Label: CONT Switch: 4 Done”
¨˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝…
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 26

TRL
ection.
e LE
with the ALT key. The key strokes preceded by a `C-' refer to the key combined with the C
key. The second column contains the title of the menu that contains this command as a sel
The third column contains a description of the command. This table can be viewed within th
Panel tool by selecting the help menu item or by hitting the F12 function key.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 27

his
en
the

tus

the

The
r-
ca-

ed

in
e to

ns.
is-

ard
sta-
t

e of
Table 2:

Key
Stroke

Menu Description

F1 - Activate File Menu.

F2 - Activate Display Menu.

F3 - Activate Clock Menu.

F4 - Activate Tools Menu.

F5 File Load File: The user is prompted for a configuration file to be loaded. T
file will become the new current file. If the current configuration has be
modified since the last save, the user is prompted to save or abort
changes before loading the new file. The modification flag in the sta
field is cleared after the new file is loaded.

F6 File Save File: The current configuration is saved into the current file and
modification flag in the status field is cleared.

A-F6 File Save File as: The current configuration is saved into a named file.
user is prompted for a file name. If the file exists, it is overwritten, othe
wise it is created. The saved file becomes the current file. The modifi
tion flag in the status field is cleared.

F7 File Clear Configuration: All fields of the current configuration are clear
and the modification flag is set, the input source flag is set toboard, the
panel update process is stopped and the clock is stopped.

F8 Display Update Once: Request a single update from thepanel update process.
This will cause the panel update process to be stopped if it is currently
continuous update mode. If the LE board is not responding, a messag
that effect will be displayed and no update will occur.

A-F8 Display Update Continuous: Put thepanel update processinto continuous
update mode. If it is already in continuous update mode, nothing happe
If the LE board is not responding, a message to that effect will be d
played and thepanel update process will be stopped.

C-F8 Display Input from Panel/Board: Toggle the source of input between the bo
and the panel. This also affects the behavior of the switch fields. The
tus field will reflect the current source of input. If the LE board is no
responding, a message to that effect will be displayed and the sourc
input will be set to board.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 28

the
a

e
nd-
ut

. If

ce
F9 Clock Pulse Clock: Issue one pulse of the LE board clock. This will stop
clock if it is currently in run mode. If the LE board is not responding,
message to that effect will be displayed and no pulse will occur.

A-F9 Clock Run Clock: Put the LE board clock in run mode. The clock will run at th
rate set by the controls on the LE board. If the LE board is not respo
ing, a message to that effect will be displayed and the clock will not be p
in run mode.

F10 Tools LE Assembler: Start up an LE Assembler process in a new window
one is already running, make it the topmost window.

F11 Tools Terminal: Start up a terminal emulator process in a new window.

F12 - Help: Display this table in the help window.

ESC File Exit: Exit the LE Panel tool. If the configuration has been modified sin
the last save, the user is prompted to save or abort these changes.

Table 2:
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 28

to the
minal

of the
cable
5. TERM

5.1. Introduction

The TERM tool was developed in order to have a simple terminal emulator that conformed
Common User Interface. It is intended to be used with Logic Engine designs that require ter
I/O. It does not however, have any direct connection with the Logic Engine.

 Any other terminal emulator would work equally well if not better.

In order to use the TERM tool, a serial cable must be connected from the 9 pin serial port
Logic Engine board to the serial port of the PC host. See Section 2.07 for details about this
and how to install it.

5.2. Menus and Key Bindings

Key

Stroke Menu Description

F1 - Activate File Menu.

F2 - Activate Baud Menu.

F3 - Activate Port Menu.

F4 - Activate Tools Menu.

F5 File Script File: Transmit named file.

F6 File Log File: Log all recieved characters to the named file.

ESC File Exit: Exit the TERM tool.

A-1 Baud 1200: Set the baud rate of the current port to 1200.

A-2 Baud 2400: Set the baud rate of the current port to 2400.

A-3 Baud 4800: Set the baud rate of the current port to 4800.

A-4 Baud 9600: Set the baud rate of the current port to 9600.

A-5 Baud 19200: Set the baud rate of the current port to 19200.

A-A Port Com 1: Set the current port to be COM1.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 29
A-B Port Com 2: Set the current port to be COM2.

F10 Tools LE Panel: Start up an LE Panel process in a new window.

A-F10 Tools LE Asmb: Start up an LE Asmb process in a new window.

F11 Tools EDPLD: Start up an EDPLD process in a new window.

A-F11 Tools TERM: Start up an EDPLD process in a new window.

C-F11 Tools DOS: Start up a DOS process in a new window.

F12 HELP Help: Display help information on the TERM tool.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 30

the

he
itch
ulti-

sible, a
, file I/

ssum-
yed in
ly hit
Fig.
6. Common User Interface

6.1. Introduction

Several of the tools (LE Panel, LE ASMB, ED PLD, and TERM) were written to run in

DESQview1 environment. They will not run unless DESQview is installed and running. T
DESQview environment offers three major features utilized by these tools: the ability to sw
between applications, a standard way of dealing with windows and fields, and the ability to m
task.

These tools also share a common philosophy towards the user interface. Wherever pos
common interface was used to accomplish similar tasks. This is most notable in the menus
O, dialog boxes, and the DESQview interface.

6.2. DESQview Interface

After the tools have been installed, they can be started from the DESQview menu. This is a
ing the advanced installation procedure was used. The DESQview menu is usually displa
the upper right hand corner of the screen but at times the menu will be hidden. If so, simp
the DESQview key (ALT-key) to redisplay the menu. The DESQview menu is illustrated in
1.

1. DESQview is a trademark of Quarterdeck Office Systems.

 DESQview

 Open Window O
 Switch Windows S
 Close Window C
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 Rearrange R
 Zoom Z
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 Mark M
 Transfer
 Scissors
˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜
 Help for DESQview ?
 Quit DESQview
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 31

e
e bar,

d hit-
try is
, a

mov-
tails

oose,
sed to
lect the

t is to
B key
is over.
t can
e keys.

LD,
tools,
pecial

fer-
theti-
the

associ-
hen a

layed
the
To open a tool, first select theOpen Window item from the DESQview menu. This can be don
by either moving the cursor over the item with the cursor keys or mouse and hitting the spac
Enter key or left mouse button, or by simply typing the letterO. This will open up theOpen Win-
dow menu. From here, a tool can be selected either by moving the cursor over the entry an
ting the space bar or the enter key or by typing the letters associated with the tool. If the en
not visible on this menu, thePage Downkey can be used to list more entries. Once selected
window will be opened for that tool.

DESQview also provides an interface for managing the windows. These functions include:
ing, resizing, scrolling, closing and switching windows. See the DESQview manual for de
about these and other functions provided by the DESQview interface.

In various situations there will be a selection of fields presented from which the user must ch
or a field in which the user must enter text. In general, the cursor keys or the mouse can be u
move between the fields and the space bar, Enter key or left mouse button can be used to se
field the cursor is over. The exception is in the case of a window that has a field in which tex
be entered. In this case the TAB key moves the cursor to the next field and the Shifted TA
moves to the previous field. The space bar can be used to select the field that the cursor
Text is entered into fields by moving the cursor over the field and entering the text. The tex
be edited using the left and right cursor keys, the end, home, insert, delete, and backspac
As a general rule the ESC key will cause the current activity to be aborted.

6.3. Menus

Each of the tools that conform to the Common User Interface (LE Panel, LE ASMB, ED P
and TERM) have a common menu interface. Across the top of the window of each of these
is a menu bar consisting of six fields. The first is the name of the application and has a s
function described later. The next five are menu fields, the first labeledFile, the fourth and the
fifth labeledTools andHELP respectively. The second and third menu fields are labeled dif
ently for each tool. Each of the menu fields is associated with a function key shown paren
cally in each field. The date of the last modification of the tool is shown on the far right of
menu bar.

The menus can be activated either by selecting them as described above or by pressing the
ated function key. For example, the Tools menu can be activated by pressing the F4 key. W
menu is activated, a small pull-down menu containing a list of possible selections is disp
below the menu title. The Display menu for the LE Panel tool is shown in Fig. 2. Displayed to

t.cfg˜˜˜
F1) Display(F2) Clock(F3) Tools(F4) HELP(F12) Board
 Update Once: F8
 O Update Continuous: A-F8 1 STATE
 Input From Panel/Board: C-F8
 O 7777 WRITE 1 ALU 1
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 32

efer to
h the
enu.
menu

can be
rently
 used.

hen
right

This is

all
from

hows a
right of each selection is an associated key stroke. The key strokes preceded by an `A-' r
the key combined with the ALT key. Those preceded by a `C-' refer to the key combined wit
CTRL key. This key stroke is used as a quick way to select an item without first selecting a m
They are not available when a menu is active. The actions that are performed when each
item is selected are described in detail in the respective chapter for that tool. The ESC key
used to exit the menu without selecting an item. To activate another menu while one is cur
active, the mouse, the left and right cursor keys, or the function keys for the menus can be

The first field of the menu bar which contains the name of the tool, is the icon field. W
selected, the window for the tool is reduced to the size of this field and positioned at the far
of the screen. When selected again, the window is expanded to full size and repositioned.
useful when you want to hide the window for a time without exiting the tool.

6.4. Dialog Boxes

At various times the user will be prompted for input with a dialog box. This is simply a sm
window that appears on top of the current window and has a selection of fields to choose
and/or a field in which to enter text. The fields can be selected as described above. Fig. 3 s
field definition dialog box from the LE Panel tool.

˝˝˝
 Label: PC oFf Input Output Hex Dec oCt Bin Sym doNe
 Range: 37-48;

˝˝˝
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 33

dialog
a list,
s: the
lect
r a file
d into
d the
ated

- the
n of
ies or
h list-
the

.

new
just
e ".."

ialog
6.5. File I/O

When a requested operation requires a file name, the user is prompted with the browser
box, as illustrated in Fig. 4. From here the user can type in a file name, select a file from
change directories, or change drives. The browser dialog box consists of five major section
file name field, the scroll control fields, the directory listing, the file listing, and the drive se
fields. The file name field is located at the top right of the browser menu and is used to ente
name or file name pattern (contains one or more of '*' or '?'). When the enter key is entere
this field, the file name is accepted. If it is not a pattern, the browser menu is closed, an
appropriate action is taken on the named file. If it is a file name pattern, the file listing is upd
with only those files which match the pattern.

The directory and file listing sections are located in the middle of the browser dialog box
directory listing on the left and the file listing on the right. These contain a listing of up to te
the subdirectories and files of the current directory. If there are more than ten subdirector
files, the scroll control fields for each listing can be used. These are located just above eac
ing. Each has two controls, one for scrolling up (on the left) and one for scrolling down (on
right). When one of these fields is selected, the corresponding listing will scroll up or down

Selecting one of the items in the directory listing section will change the current directory. A
directory and file listing will be displayed. The path of the current directory will be displayed
below the file name field. To move up one level in the directory tree, the sub-directory nam
can be selected.

Selecting one of the items in the file listing section will accept that file name. The browser d
box is closed and the appropriate action is taken on the selected file name.

 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜¿
 ‡Load file: ‡ ˜˜ File Name
 ‡C:\LE ‡ Field
 ‡ Dirs Files ‡
 ‡ ‡ ˜˜ Scroll
 ‡.. EDITFILE.C ‡ Contol
 ‡BIN EDITFILE.EXE‡ Fields
 ‡CELISI LD30CODE ‡
Directory ˜˜ ‡CONFIG LD30CODE.ERR‡ ˜˜ File
Listing ‡DOC PAT ‡ Listing
 ‡EXAMPLES ‡
 ‡LD25 ‡
 ‡SRC ‡
 ‡TERMINAL ‡
 ‡TEST ‡
 ‡˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜‡
 ‡Drives: A B C D E F ‡ ˜˜ Drive
 ˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜˜ Select
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 34

drive
rrent

nd the
f the
e I/O

move

LD,
art up
ntical
The drive select fields are located at the bottom of the browser dialog box, labeled with the
letters with the current drive highlighted. Selecting one of the drives will change the cu
drive, update the directory and file listings, and update the path of the current directory.

The ESC key can be used to abort out of the browser with a null file name being accepted a
appropriate action being performed for a null file (usually nothing). However, a change o
current directory or drive will take effect no matter how the browser is exited. Subsequent fil
will be relative to the new current directory and drive.

There are several shortcuts available for the browser that allow the user to avoid having to
the cursor around a lot with the cursor keys or the mouse. They are listed below:

6.6. Tools Menu

Each of the tools that conform to the Common User Interface (LE Panel, LE ASMB, ED P
and TERM) have an identical tools menu. This menu consists of five selections used to st
one of the tools or a DOS window. The key strokes associated with each selection are ide

Home Move the cursor to the File Name field

Page Up Scroll File Listing up

Page Down Scroll File Listing down

CTL-Page Up Scroll Directory Listing up

CTL-Page Down Scroll Directory Listing down

ALT-<n> Selects the <n>th item in the File Listing, where <n> is
one of the numeric keys (1 representing the first item and
0 representing the tenth item).

ALT-<c> Changes to the directory indicated by the letter <c>.
Where <c> is one of the keys on the top row of the key-
board starting with 'q' (representing the first item) and
ending with 'p' (representing the tenth item).

ALT-<c> Changes to the drive indicated by the letter <c>. Where
<c> is one of the keys on the bottom row of the keyboard
starting with 'z' (representing drive A) and ending with
'm' (representing drive G).
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 35

LD,
l tool.
isplay
h the

ialog
ialog
init.cfg˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝»
” LE Board is not responding ”
¨˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝…

within each tool. They are:

6.7. Help System

Each of the tools that conform to the Common User Interface (LE Panel, LE ASMB, ED P
and TERM) use a common help system. Fig. 5 shows the help dialog box for the LE Pane
The help dialog box consists of three fields across the top and a display area below. The d
area contains a portion of the help information. The first two fields are used to scroll throug
help information and the third is used to close the help dialog box.

6.8. Communication with the LE Board

Most of the tools need to communicate with the
LE Board at various times. In order to do this,
the LE Board must be installed and turned on.
Before any communication is attempted, the
tool will first determine if the LE Board is
active, if so the communication will take place, if not the communication is aborted and a d
box as shown in Fig. 6, is displayed indicating that the LE Board is not responding. This d

F10 LE Panel

ALT-F10 LE ASMB

F11 ED PLD

ALT-F11 TERM

CTL-F11 DOS

P˝˝
 CLOSE
 MENU DESCRIPTION
˜˜˜¯˜˜˜˜˜˜˜¯˜˜˜
 ‡- ‡Activate File Menu.
˜˜˜¯˜˜˜˜˜˜˜¯˜˜˜
 ‡- ‡Activate Display Menu.
˜˜˜¯˜˜˜˜˜˜˜¯˜˜˜
 ‡- ‡Activate Clock Menu.
˜˜˜¯˜˜˜˜˜˜˜¯˜˜˜
 ‡- ‡Activate Tools Menu.

˝˝˝

init.cfg˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝»
” LE Board is not responding ”
¨˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝˝…
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 36

com-
r dis-
nicate

ing.
tool to
h the
ls are

ent it
d ED
wed to
case

ed it is
box can be closed by pressing the ESC key or the left mouse button. This will prevent most
munication attempts when the board is not installed. However, if the board is turned off o
connected while the tool is running, the tool can get confused and may attempt to commu
with a non-functioning board. In this case it is possible for the tool to become hung.

Another problem that can arise while communcating with the LE Board is due to multitask
Since more than one tool can be running at the same time, it is possible for more than one
be commmunicating with the board. The system allows only one tool to communicate wit
board at any one time. The problem can occur when the communications of several too
interweaved, such as:

1) tool A reads the state of the board

2) tool B changes the state of the board

3) tool A acts based on the state it read (which is now invalid)

The system does little to prevent this situation, so it is best to avoid it. It does attempt to prev
if tool A and tool B in the example above are the same tool. In the case of the LE ASMB an
PLD tools, if subsequent instances of the tool are opened, the subseqent ones are not allo
communicate with the board. This is indicated by a bell when the window is opened. In the
of the LE Panel tool, subseqent instances are not allowed. If a second instance is open
immediately closed and the first instance is raised to be the top window.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 37

test
PLD

n be
t term
fuse
utput

ctional
f the
con-
4. ED PLD

4.1. Introduction

The ED PLD Tool is a PLD fuse map editor with the capability to read, burn, verify, and
PLDs using the PLD burner on the Logic Engine Board. ED PLD supports only the Cypress
C 20G10 at this time.

4.2. Cypress PLD C 20G10

The 20G10 is a 24 pin PLD with 12 input pins and 10 I/O pins. Each of the 10 output cells ca
configured as registered or combinational outputs, true high or true low outputs, and produc
or pin 13 output enable signals. The registered outputs are clocked by input pin 1. The
matrix consists of 44 signals (12 input, 10 output feedbacks, and their compliments). Each o
cell has 9 product terms, 1 output enable term and 8 terms feeding an OR-gate. The fun
logic diagram of the PLD C 20G10 is shown in Fig. 1 and the eight possible configurations o
output cells are shown in Table 1 and Figs. 2-3. For more information on the PLD C 20G10,
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 38
sult the data sheet.

Table 3:

Figure C2 C1 C0 Configuration

2A 0 0 0 Product Term OE Registered Active LOW

2B 0 0 1 Product Term OE Registered Active HIGH

3A 0 1 0 Product Term OE Combinational Active LOW

3B 0 1 1 Product Term OE Combinational Active HIGH

2C 1 0 0 Pin 13 OE Registered Active LOW

2D 1 0 1 Pin 13 OE Registered Active HIGH

3C 1 1 0 Pin 13 OE Combinational Active LOW
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 39
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 40

in the
files

ed and
n the

ndow
f four
ration

) and
ed in
dback

atrix
can be

input
back
s 1-3

on of

s will
n each
4.3. EDPLD Fuse Map Editor

As a fuse map editor, the EDPLD tool provides an easy and integrated way to generate a file
proper format for the PLD programmer. The files generated by the editor are simple ASCII
that conform to a specific format (see section 6.6). These files can of course be generat
edited by any text editor. The EDPLD editor will however, ensure that the file is generated i
proper format.

When the ED PLD tools is started, a window such as that shown in Fig. 4 is opened. This wi
represents a view of one output cell of a 20G10 and its fuse matrix. The window consist o
sections: a menu bar across the top, fuse matrix fields through the middle, output configu
fields on the right, and two scroll fields on the bottom right.

The fuse matrix fields are arranged in 9 rows. One for the output enable signal (labeled OE
eight for the product terms (labeled 0-7). Each row contains 22 fuse matrix fields organiz
pairs of two. Each of the fuse matrix fields represents one signal of the 12 input and 10 fee
signals. Each column is labeled with the pin number of the signal it represents. The fuse m
fields consist of two characters representing the two polarities of the signal. Each character
either a '.' indicating the absence of a fuse or a 'x' indicating the presence of a fuse. For the
signals the true high signal comes first followed by the true low signal. For the output feed
signals the order of the signals depends on the configuration of the output cell. Refer to Fig
to determine the proper orientation.

The fuse matrix fields can be in one of four configurations. When selected, the configurati
the field will advance to the next configuration in the sequence ('..' '.x' 'x.' 'xx' '..').

The output configuration fields can each be in one of two states. When selected, the field
toggle states. Besides a ',' or a 'x' being displayed in each field, a mnemonic is displayed i
field indicating the current configuration.

d˝PLD˝˝
D File(F1) Display(F2) Pld(F3) Tools(F4) HELP(F12) 11/2
 2 2 2 2 1 1 1 1 1 1 1 1 1
 1 3 2 2 3 1 4 0 5 9 6 8 7 7 8 6 9 5 0 4 1 3
E....

0.... HIGH C0
1.... COMB C1
2.... P13 C2
3....
4....
5.... Pin 23
6....
7....

˝˝˝
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 41

num-

a file

sing
e ED

e files
ap for-

s and
is an

cally
umber

The
f the

0-9).
ourth
f the

bits.
es can
extra

se bit
a fuse.
The two scroll fields are used to move the view to the next or previous output cell. The pin
ber of the current output cell is displayed above the scroll fields. ThePage UpandPage Down
keys can also be used for this function.

4.4. File I/O

The ED PLD software has several functions used to save and retrieve fuse maps.Save File-saves
the current fuse map into the current file. If there is no current file, the user is prompted for
name. Save File As- saves the current fuse map into the named file andLoad File -loads the
named file into the editor. Initially the current file is undefined. Each time a file is named, u
any of these functions, that file becomes the current file and will be displayed as the title of th
PLD window.

The files created by the ED PLD editor, called fuse map files, have a specific format. Thes
are text files and can be edited using other text editors, but they must conform to the fuse m
mat described below.

Each fuse map file consists of 10 configuration blocks which describe the product term
architecture of each output cell. Fig. 5 is an example of one configuration block and Fig. 6
example of a complete fuse map file.

Each configuration block consists of exactly 10 lines. The first line is a comment that typi
contains the pin numbers corresponding to each column of the product terms and the pin n
of the output cell. The second line contains the product term for the output enable signal.
following 8 lines contain the product terms which feed the OR-gate of the output cell. Each o
product term lines must contain in the first column, the number of the configuration block (
The product term for the output enable signal must contain the letters 'OE' in the third and f
column. The remaining 8 product terms must contain in the fourth column, the number o
product term (0-7).

Starting in column 5, each product term line contains a fuse pattern consisting of 44 fuse
These are typically arranged in 11 groups of 4 bits separated by a space, however, spac
occur throughout the line and are ignored. In addition, product terms 0, 1, and 2 contain an
fuse bit beyond the 44 fuse bits which configure the architecture of the output cell. Each fu
is either a `.' or a `x'. A `.' indicates the absence of a fuse and a `x' indicates the presence of
Any characters beyond the fuse bits are considered comments and are ignored.

 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 23

0 OE x...

0 0 x... x... .x.. .x.. .x.. .x.. .xx. .x.. .x.x . H

0 1 x... x... .x.. .x.. .x.. .x.. .x.. .xx. .x.x . C

0 2x.. x... x P

0 3x.. x...
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 42

t signal
or the
d by
config-

ure the
cribed
The product terms are arranged as a sequence of pairs of fuse bits, one pair for each inpu
and output feedback signal. One fuse bit of each pair is for the true high and the other is f
true low version of the signal. For the input signals the true high signal comes first followe
the true low signal. For the output feedback signals the order of the signals depends on the
uration of the output cell. Refer to Figs 1-3 to determine the proper orientation.

The three fuse bits beyond product terms 0, 1, and 2 (referred to as C0, C1, and C2) config
architecture of the output cell. Each fuse bit controls one aspect of the configuration as des
below:

C0 . : True High (H)

x : True Low (L)

C1 . : Combinational Output (C)

x : Registered Output (R)

C2 . : Output Enable source is pin 13 (C)

x : Output Enable source is product term (P)
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 43
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 23
0 OE x...
0 0 x... x... .x.. .x.. .x.. .x.. .xx. .x.. .x.x . H
0 1 x... x... .x.. .x.. .x.. .x.. .x.. .xx. .x.x . C
0 2x.. x... x P
0 3x.. x...
0 4x.. x...
0 5x.. x...
0 6x.. x...
0 7x.. x...
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 22
1 OE x...
1 0 x... x... .x.. .x.. .x.. .x.. .xx. .x.. .x.x . H
1 1 x... x... .x.. .x.. .x.. .x.. .x.. .xx. .x.x . C
1 2x.. x... x P
1 3x.. x...
1 4x.. x...
1 5x.. x...
1 6x.. x...
1 7x.. x...
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 21
2 OE x...
2 0 x... x... .x.. .x.. .x.. .x.. .x.. .x.. .xx. . H
2 1x.. .x.. C
2 2x.. .x.. x P
2 3x.. .x..
2 4x.. .x..
2 5x.. .x..
2 6x.. .x..
2 7x.. .x..
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 20
3 OE x...
3 0 x... x... .x.. .x..x.. ..x.x . H
3 1 x... x... .x.. .x..x..x. ...x . C
3 2 x... x... .x.. .x..x.. x... x P
3 3 x... x... .x.. .x..x.. x...
3 4 x... x... .x.. .x..x.. x...
3 5 x... x... .x.. .x.. x...
3 6 x... x... .x.. .x.. x...
3 7 x... x... .x.. .x.. x...
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 19
4 OE x...
4 0 x... .x..x..xx. ...x ...x . H
4 1 x... .x..x..x.. x... . C
4 2 x... .x..x..x.. x... x P
4 3 x... .x..x.. x...
4 4 x... .x.. x...
4 5x..
4 6x..
4 7x..
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 18
5 OE x...
5 0 x... x...x.. .x..x.. x... . H
5 1 x... x...x.. .x.. x... C
5 2 x... x...x.. .x.. x... x P
5 3 x... x... x...
5 4 x... x... x...
5 5 x... x... x...
5 6 x... x... x...
5 7 x... x... x...
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 17
6 OE
6 0 ..xx H
6 1 ..xx C
6 2 ..xx x P
6 3 ..xx
6 4 ..xx
6 5 ..xx
6 6 ..xx
6 7 ..xx
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 16
7 OE
7 0x.. .x.. .x.. .x.. .x.x .x.x .x.x x L
7 1x.. .x.. .x.. .x.. .x.x .x.x .x.x . C
7 2x.. .x.. .x.. .x.. .x.x .x.x .x.x x P
7 3x.. .x.. .x.. .x.. .x.x .x.x .x.x
7 4x.. .x.. .x.. .x.. .x.x .x.x .x.x
7 5x.. .x.. .x.. .x.. .x.x .x.x .x.x
7 6x.. .x.. .x.. .x.. .x.x .x.x .x.x
7 7x.. .x.. .x.. .x.. .x.x .x.x .x.x
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 15
8 OE ..xx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
8 0 H
8 1 C
8 2 x P
8 3
8 4
8 5
8 6
8 7
 1 23 2 22 3 21 4 20 5 19 6 18 7 17 8 16 9 15 1014 1113 PIN 14
9 OE ..xx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 44

ng the

. To
le-
file,

rify-
avail-
will
e zero

f leds.
as the
ing or
t the
rted or
10 is
alog
mes-

ocket
t
le is
to the
vice.
This

s of
l be
the

r of

All
tain-
Beyond each of these three fuse bits there is typically a single character comment indicati
configuration of the output cell. These characters are given above in parenthesis.

Although the fuse map file format is rigid, creating and editing a fuse map file is quite easy
create a new file, simply enter thepld program and select option 2 (Save buffer) and specify a fi
name. This will save the initial empty buffer into the named file. To edit an existing fuse map
use your favorite text editor in overstrike mode to alter the fuse bits.

4.5. EDPLD PLD Programmer

There are several functions available in the ED PLD editor for testing, programming, and ve
ing a 20G10 in the programmer socket on the Logic Engine Board. These functions are all
able under thePld menu and are described below in section 6.7. Each of these functions
prompt the user to insert a 20G10 into the programmer socket. The programmer socket is th
insertion force socket located near the center of the Logic Engine board below the bank o
The 20G10 should be oriented in the socket so that pin 1 is on the left (the same orientation
other chips on the board.) The lever on the socket should be in the up position when insert
removing a chip and in the down position to lock a chip into the socket. It is important tha
20G10 not be inserted until the prompt appears and at not time should a 20G10 be inse
removed when one of the leds surrounding the programmer socket is on. After the 20G
inserted, hit any key to proceed with the operation. Some of the functions will display di
boxes indicating the sucess or failure of the operation. Hit any key to remove one of these
sages. TheTest Device function is a little more involved and is described in the next section.

4.6. Testing a 20G10

The EDPLD tool has the ability to apply a set of test vectors to a 20G10 in the programmer s
and read the outputs of the 20G10. When theTest Devicefunction is selected, the user will firs
be prompted to supply the file name of a test vector file. The format of a test vector fi
described below. After supplying the file name, the user is prompted to insert the 20G10 in
programming socket. After the 20G10 is inserted, hit any key to begin the testing of the de
After the device has been tested, a window will be displayed showing the results of the test.
window can be scrolled using the cursor keys. The window can only display up to fifty line
information. If the information is longer than fifty lines, it will be truncated and a message wil
displayed at the bottom of the window so indicating. This window can be closed by hitting
ESC key. After the window is closed, a dialog box will be displayed indicating the numbe
errors that occured during testing.

The output of the testing can also be logged to a file. This can be done by use of theLog File
function under the file menu. This function will prompt the user for the name of the log file.
subsequent output from testing will be sent to this file and no window will be displayed con
ing this information. Also, the information being sent to the log file will not be truncated.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 45

r from
line
rs for

device

rror in
ill be
g with
plied,
Each test vector consists of a line of 24 characters, one for each pin of the device, in orde
pin 1 to pin 24. Any number of test vectors can occur in a file, one per line. A blank line or a
starting with a `#' or a ` ' (space) is considered a comment and ignored. The valid characte
each type of pin are given below:

IAfter a file has been created containing the desired test vectors, they can be applied to the

under test as described above. After testing each vector will be displayed. If there is an e
the format of the test vector, an error message will be displayed and the test vector w
skipped. If there is an error in the expected results, the actual results will be displayed alon
an error message indicating the location of the error. After all the test vectors have been ap

Input Pins: 1-11,13

1 : Apply 5V

0 : Apply 0V

C : Clock (0V-5V-0V)

K : Clock (5V-0V-5V)

N : This pin is not tested

Input/Output Pins: 14-23

1 : Apply 5V (assumes pin is configured as an input)

0 : Apply 0V (assumes pin is configured as an input)

C : Clock (0V-5V-0V) (assumes pin is configured as an input)

K : Clock (5V-0V-5V) (assumes pin is configured as an input)

H : Expected result is 5V (assumes pin is configured as an output)

L : Expected result is 0V (assumes pin is configured as an output)

Z : Expected result is High Z

I : Expected result is opposite of High Z (i.e when the pin is pulled high,
its value is low and when it is pulled low its value is high). It is not
exepected that this will be used in a test vector, but it does show up in the
output of the test. This usually occurs when the pin is not being tested
and it depends on other pins that are also not being tested.

N : This pin is not tested

Power Pins: 12,24

N : This pin is not tested
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 46

is an
tors:
a message will be displayed indicating the total number of errors which occurred. Below
example set of test vectors followed by an example output from running the set of test vec
Test Vectors:

10000010000N0NNNNNNNNNHN
10000001000N0NNNNNNNNNHN
10000000100N0NNNNNNNNNHN
10000000000N0NNNNpNNNNLN
01111111111N1NNNNHHNNNZN

 Output:
VECTOR: 10000010000N0NNNNNNNNNHN : Passed
VECTOR: 10000001000N0NNNNNNNNNHN : Passed
VECTOR: 10000000100N0NNNNNNNNNHN : Passed
ERROR: Illegal character in vector: p
VECTOR: 10000000000N0NNNNpNNNNLN : Skipped

VECTOR: 01111111111N1NNNNHHNNNZN : Failed
RESULTS: 01111111111N1ZZZZZLLLZZN
ERRORS: ^^
Test Completed with 3 Errors

4.7. Key Bindings
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 47

ted

no

st

e).

ser

ket
he
is

mer
the

er
dif-
sert
Table 4:

Key

Stroke Menu Description

F1 - Activate File menu.

F2 - Activate Display menu.

F3 - Activate Pld menu.

F4 - Activate Tools menu.

F12 - Activate Help menu.

F5 File Load File: Load a fuse map file into the buffer. The user is promp
for the file name. This file becomes the current file.

F6 File Save File: Save the current buffer into the current file. If there is
current file the user is prompted for the file name.

A-F6 File Save File As: Save the current buffer into the named file.

F7 File Log File: Name the file for logging output from the application of te
vectors.

ESC File Exit:

Page Down Display Next Block: Move view to the next output cell.

Page Up Display Previous Block: Move view to the previous output cell.

DEL Display Clear Block: Set all fuses for this output cell to '.' (absence of a fus

A-B Pld Blank Test: Test for a blank device in the PLD Burner socket. The u
is prompted to insert the device in the socket at the proper time.

A-P Pld Program Device: Program the device in the PLD Programmer soc
with the contents of the buffer. The user is prompted to insert t
device at the proper time. If the device is not blank, the user
prompted whether to continue.

A-R Pld Read Device: Read the contents of the device in the PLD Program
socket into the buffer. The user is prompted to insert the device in
socket at the proper time.

A-V Pld Verify Device: Read the contents of the device in the PLD Programm
socket and compare it to the contents of the buffer. The number of
ferences between the two is displayed. The user is prompted to in
the device in the socket at the proper time.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 48

ro-
the
A-T Pld Test Device: Apply a set of test vectors to the device in the PLD P
grammer socket. The user is prompted to insert the device in
socket and for the name of the file containing the test vectors.

Table 4:
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 49
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 50

bler,

ull
to be
Table 1

pro-
icroas-

, it can
from
ring

ssage
rsor
on. If

cursor
ed.
down-

re are

uccess-
object
h dis-
5. LE Assembler

5.1. Introduction

LEASM is a microcode developmenttool which consists of a text editor, microcode assem
downloader, and debugger, all in a unified environment. Features include:

• a source level debugger with single stepping and breakpoints.

• an emacs-like editor.

• viewing of object code.

• a rich micro-assembly language.

5.2. Editor

Built into the LEASM Tool is a simple text editor with emacs-like key bindings. It is not a f
featured editor and as such is not intended to be used for large editing task. It is intended
used as a quick and easy way to make changes to source code during debugging sessions.
lists the key bindings available in the editor

There are several functions built into the editor which allow for the assembly of microcode
grams. These are listed in Table 2. Section 5.6 describes the syntax and sematics of the m
sembly language.

Once a microassembly program has been loaded into the editor or created within the editor
be assembled using the Assemble/Load function. This will assemble the program starting
the top of the file, no matter where the cursor is currently located. If any errors occur du
assembly, the cursor will be moved to the beginning of the offending line and an error me
will be displayed in the status region (see below). The Next-Error function will move the cu
to the beginning of the line of the next error and display an error message in the status regi
no more errors exist, the cursor will be moved to the top of the file.

If there are no errors, the assembled code is downloaded to the Logic Engine Board and the
will be moved to the starting line of the microcode (location 0). This line will also be highlight
If the board is not present, a message will be displayed indicating that the code was not
loaded and the cursor will be moved to the top of the file.

The status region is used to display various information about the status of the file. The
three contexts in which different information is displayed. As mentioned above,

cursor is on has an assembly error, an error message is displayed. If the code has been s
fully assembled and the cursor is on a line which contains a program statement, then the
code for that line is displayed. In all other cases, the status region contains three fields whic
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 51

g indi-
itor. If
this
ce the
dis-

r of

tatus
n. If

it
tatus

with
are
ubse-
ed. To

wser
play the status of the Saved flag, Assembled flag, and the number of errors. The Saved fla
cates whether the file has been saved to disk since the last change made to the file in the ed
it has been saved, an asterisk (*) will be displayed, otherwise nothing will be displayed in
field. The Assembled flag indicates whether the file has been successfully assembled sin
last change made to the file in the editor. If it has been assembled, an asterisk (*) will be
played, otherwise nothing will be displayed in this field. The third field contains the numbe
errors that were detected during the last assembly.

The display of the status region is controlled by the Display Status function. Initially the s
region is not displayed. The Display Status function will toggle the display of the status regio
it is currently being displayed, it will turn it off. If it is currently not being displayed it will turn
on. Also, if any errors occur during assembly or if the Next Error function is used, the s
region will be displayed.

There are three functions which allow for the naming of various output files associated
assembly. These are: Listing File, Symbol Table File, and Error File. If any of the files
named, the appropriate information will be stored in the files after each assembly. Each s
quent assembly will overwrite contents of these files as long as name has not been chang
disable the storing of the information, give the file a null name by hitting ESC when the bro
menu is displayed.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 52
key meaning key meaning key meaning

^C-A beginning-of-line ^CX ^CS save-file ^A-Z scroll-down

^C-E end-of-line ^CX i insert-file ^C-N7 goto-beginning

^C-N down-line F-12 help ^C-N1 goto-end

^C-P up-line ^CX ^CC exit ^C-N2 end-of-window

^C-F forward-charac-
ter ^A-F8 display 2910 ^C-N6 forward-word

^C-B backward-char-
acter F5 next-error ^C-N4 backward-word

^C-L center-window F6 single step ^C-D delete-character

^C-V next-page ^A-F7 run with break-
point ^C-H backward-delete-

character

^A-V previous-page ^C-F7 clear 2910 ^C-O open-line

^C-Z scroll-up F11 EDPld ^A-D kill-word

^A-< goto-beginning ^C-F11 DOS ^C-X^C-V visit-file

^A-> goto-end N7 beginning-of-line ^CX ^CW write-file

^CN8 beginning-of-
window N1 end-of-line ^A-? display bindings

^A-F forward-word N2 down-line N0 overwrite-mode

^A-B backward-word N8 up-line F8 display status

^C-X g goto-line N6 forward-charac-
ter ^A-F5 assemble/load

N. delete-character N4 backward-char-
acter ^A-F6 run

Back-
space

backward-delete-
character N5 center-window ^C-F6 idle

^C-K kill-line N3 next-page F7 toggle break-
point

^A-H backward-kill-
word N9 previous-page F10 LEPanel

^A-F11 Term
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 53

pro-

be run
5.3. LEASM Debugger

There are several functions built into the editor which allow for the debugging of microcode
grams. These are listed in Table 3.

Once a microassembly program has be successfully assembled and downloaded, it can

Function Key Description

Assemble/Load A-F5 Assemble the current file and download
the resulting object code if the LE Board
is present

Next-Error F5 Advance the cursor to the next assembly
error and display an error message in
 the status region

Display Status F8 Toggle the display of the status region.

Listing FIle F9 Name the file for saving of listings of sub-
sequent assemblie

Symbol Table File A-F9 Name the file for saving of the symbol
table of subsequent assemblies

Error File C-F9 Name the file for saving of error messages
of subsequent assemblies

Function Key Description

Run ^A-F6 Put the 2910 into run mode. It will
run at the rate of the LE Board
clock.

Single Step F6 Execute one instruction of the
microcode.

Idle ^C-F6 Take the 2910 out of run mode.

Run Breakpoint ^A-F7 Put the 2910 into run mode and
wait for a breakpoint.

Toggle Break-
point

F7 Set/Clear a breakpoint for the cur-
rent instruction.

Display 2910 ^A-F8 Toggle the display of the 2910
window.

Clear 2910 ^C-F7 Reset the 2910.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 54

d, and
from

am is
e Idle
truc-
2910

cursor
d.

truc-
If the

en the
e LE
d to

e
le in
k-
upon
be
ction

ging.
ins

10 is
date

quite
are
that
will

ths, etc)
status
The
the

exible
2910
from the LEASM environment. In the most simple case, the program can be started, stoppe
restarted. To start the program running, use the Run function. This will start the program
the current location (highlighted) and run at the rate of the LE board clock. When the progr
running, there is no feedback to the software. To stop the program from running, use th
function. This will stop the execution of the 2910 and update the current location to the ins
tion where the program was stopped. The Clear 2910 function will reset the contents of the
and thus reset the microprogram to be started at location 0.

The Single Step functions causes one microinstruction to be executed. After execution, the
will be relocated to the next instruction to be executed and this instruction will be highlighte

The Toggle Breakpoint function allows the user to set or clear a breakpoint on any microins
tion. In order to set a breakpoint, the microcode must have been successfully assembled.
code has been assembled, but the LE board is not responding, a bell will be sounded wh
Toggle Breakpoint function is used, indicating that the breakpoint was not downloaded to th
Board. Breakpoints are used in conjunction with the Run/Breakpoint function which is use
put the LE Board intorun with breakpoint mode. The Run/Breakpoint function is similar to th
Run function with the exceptions that none of the other LEASM functions are available whi
run with breakpoint mode. The board will stay in this mode until an instruction with a brea
point set is to be executed or the cancel field is selected in the dialog box that is displayed
enteringrun with breakpoint mode. When the board leaves this mode, the dialog box will
closed, the cursor will be moved to the current microinstruction, and the current microinstru
will be highlighted.

The Display 2910 function allows the user to observe the contents of the 2910 while debug
This function will toggle the display of the 2910 window. When displayed, this window conta
the values of theI andD inputs to the 2910 and the contents of thePC register,R register and the
Stack of the 2910. The values in this window are updated whenever the execution of the 29
stopped as after an Idle, Single Step or Clear function. The window will not continuously up
while the 2910 is running.

5.4. A Design Example

Modern control microprograms usually have complex responsibilities, and the code is often
complicated. We developed the LEASMB Microprogram Assembler with the hardw
designer's needs in mind. We strove for simplicity and for a small set of powerful functions
support structured design. Before describing the details of the LEASMB language, we
present a design illustration to give the flavor of the language and its use.

Hardware designers separate a design problem into an architecture (the registers, data pa
and a control algorithm (for our purposes, a microprogram). The control program receives
information from the architecture, and delivers command information to the architecture.
command information is contained in the microinstruction, along with information governing
sequence of microinstructions. The microprogram assembler must give the designer a fl
and powerful language in which to express the command and sequencing information. The
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 55

will
iarize
ven

a
re
d

m
s
.
-
of
i-
ck

t
or
n

s
m
,
h
nt
i-
e
g-
e
,
-

t
rs

s

microprogram sequencer is at the core of Logic Engine control, and in this manual we
assume that you are familiar with this chip. Even so, since we present this example to famil
you with the style of the LEASMB assembler, not the 2910, you should have little difficulty e
if you are not yet familiar with the 2910.

To eliminate unwanted detail, yet provide
real design example, our model uses hardwa
extracted from a larger design -- a high-spee
stack-oriented computer. Our microprogra
illustrates the control of a small set of task
required in the debugging of this hardware
Fig. 1 shows the architecture for our illustra
tion. We focus on the top three elements
the main stack. The larger task involves var
ous movements of the data among these sta
elements, but our illustration will deal with
two operations: (a) a load operation tha
pushes new external data onto the stack f
debugging purposes, and (b) a cyclic rotatio
of the top three stack elements.

Each stack element (which may contain a
many bits as necessary) receives its input fro
a multiplexer (actually, a set of multiplexers
one for each bit, controlled identically). Eac
desired source for a given stack eleme
becomes an input to that element's mult
plexer. For testing purposes, in addition to th
stack elements, inputs include the switch re
ister on the display panel. We shall call th
select signals for the multiplexers M0, M1
and M2, and we shall refer to the entire collec
tion of multiplexer select signals as MUX-
CTL. In the full design, each stack elemen
requires two control inputs; we call these pai
of bits S0CTL, S1CTL, and S2CTL, and we
call the collection of stack element control
REGCTL.

M0

M1

M2

S3
S2
S1
S0

S0
S1
S2
S3

S2
S1
S0

SWR

S3

M

S0CTL

2

3

ELEMENT

4

2

U

STACK

2

5

ELEMENT
0

X
U
M

6

6
5
4
3

0

3
2
1
0 MUX

X

0

1

STACK

S1CTL

2

S2CTL

2

1
ELEMENT

STACK

3
ELEMENT

STACK

S0

S3

S2

S1
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 56

e
e
e.
nal
r-
its
d
e
e-
er
t-
i-
r
-

e

r.

o a
f the
that
l the
To direct the actions of the 2910, th
designer will usually need to make availabl
several status signals from the architectur
The 2910 sequencer accepts a single sig
as a test input. 2910 instructions may inte
rogate this signal and branch based on
value. The designer of a microprogramme
system faces the problem of extracting th
desired signal from the architecture and pr
senting it to the sequencer at the prop
time. Of the several mechanisms for selec
ing one signal from many, perhaps the eas
est and simplest is to construct a multiplexe
in the architecture. Since in each microin
struction we know which signal, if any, is
required for testing, we may use some of th
command bits in the microinstruction to
serve as the select code for the multiplexe
The full design from which this example is
taken requires about a dozen test inputs, s

16-input multiplexer with a four-bit select code is appropriate. Fig. 2 shows the structure o
test input selection apparatus, centered around the test multiplexer INMUX. You will notice
we have decided to allocate the first four microinstruction command bits (bits 0-3) to contro
test multiplexer. This is an arbitrary choice.

INSTRUCTION

.

..

2910

0 3

COMMANDS

LD.L
TST.L

0
1
2
3
4

4

microsequencer
2910

20

DESIGNER’s ARCHITECTURE

DESIGNER’s TEST INPUT
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 57

r

are
t-

as
n

are

f
he

-

nd
c-
e

from
code
uses a
5.5. Developing the Control Program

The diagram to the left specifies the controlle
design for our example. If the LD button is
pushed (and then released), the switches
pushed onto the stack. Otherwise, if the TST bu
ton is pushed, arotate operation (permuting the
top three stack items) is performed. The ASM h
been designed with a microcode implementatio
in mind: each state has a single test and there
no conditional outputs.

An LEASMB microprogram assembly has two
parts. In thedeclaration phase, we specify sym-
bolic names for all variables and quantities o
interest, and we describe the structure of t
microinstruction. Theprogram phase begins
with the directive PROG and contains the micro
code itself, in symbolic form. A microinstruction
has a sequencer part, which drives the 2910 a
determines the address of the next microinstru
tion, and usually a command part, in which th

programmer specifies values for command signals that control the architecture.

The diagram to the left shows Fig. 3 shows a small portion of microcode created to load data
the Logic Engine display panel switch register and test the stack rotate operation. This
includes all the necessary declarations and microinstructions to support our example, and
variety of notations to illustrate features of the LEASMB microprogram assembler.

The SIZE directive specifies the number of command bits in the
microinstruction (23 in our example). Command bit fields are
defined with the COM directive. In Fig. 3, the definition of MUX-
CTL provides the following information: MUXCTL is a field of 11
bits, which we choose to refer to in our program with indices run-
ning from 10 (for the leftmost bit) to 0. In the command bit area
of the microinstruction, MUXCTL occupies command bits 4 through
14. Thus MUXCTL(10) occupies command bit 4 of the microinstruc-
tion. We have chosen to describe the control in terms of logic
(true or false), rather than in terms of voltages. In the defini-
tion of MUXCTL, we specify that, for each bit, truth is to be
implemented as a high voltage (T=$7FF, hexadecimal 7FF). Fur-
ther, we declare that, whenever any bit or bits of MUXCTL are not
specifically referenced in a particular microinstruction, the
default values for the bits are true logic levels
(D=%TTTTTTTTTTT).

TST

0

1

0

push
switches

rotate
stack

LOAD

TEST

ROT

LD

LD

TST
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 58

icular
fine

to 0,
be
the

TL,

ulti-
ence,
c-

sign-
the

ons.
tions

for
e, we
embler

ration
ulti-
dis-

tents
rming
D and
n will
eces-
ce per
ulser"

but-
ation

nd 004,
the
tions
10
to the
ould
In many instances, we wish to deal with the set of command signals that controls a part
multiplexer in Fig 1. For our convenience, with the next three lines of the program we de
three variables M0, M1, and M2. M0 is declared to be a field of three bits, numbered 2
which is equivalent (EQU) to bits 9 to 7 of MUXCTL. M1 and M2 are declared similarly to
equivalent to bits 6 to 4 and bits 3 to 2 of MUXCTL. With these definitions, we may refer to
field MUXCTL as a whole, or to subfields M0, M1, and M2, or to any bit in any of the fields.

In similar fashion, we declare the attributes of the collection of stack control signals REGC
and a supporting symbol LOAD3.

In examining Fig. 1, you will see that, in order to select stack element S0 as the output of m
plexer 1, we must supply the code 3 (binary %011) into the M1 select inputs. For conveni
we define a symbol M1S0 that will invoke (INV) the value 3 on the field M1. If in a microinstru
tion we wish to pass element S0 through multiplexer 1, we may simply write M1S0, thus as
ing the value 3 (%011) to the field M1 in the microinstruction. In the microcode in Fig. 3,
instruction at location 002 illustrates this usage.

The definition of the symbol ROTATE shows how we may easily develop complex invocati
The use of ROTATE in the instruction at location 005 invokes the previously-defined invoca
M0S2, M1S0, and M2S1, and invokes the value LOAD3 in the command bits defined
REGCTL. The advantage of such symbolic notations is that, when producing the microcod
do not need to be concerned about the detailed location and values of the signals; the ass
will fill in the proper bits for us.

The declaration of the structures for the test input multiplexer appears at the end of the decla
phase in Fig. 3. INMUX, a field of 4 bits, defines the position in the command bits of the m
plexer controls. LD.L and TST.L describe values to be invoked upon the INMUX field, as
cussed below.

The illustrative microprogram in Fig. 3 performs two debugging operations: loading the con
of the display panel switch register into stack element S0 (and pushing the stack), and perfo
a rotation of the top three elements of the stack. Two pushbuttons on the display panel, L
TST, control the actions. When LD is pressed and released, the load and push operatio
occur; pressing and releasing TST will enable the rotate operation. For each button, it is n
sary to assure that the microcode performing the loads and rotates will be executed only on
button push. To accomplish this, the code at locations 000 and 001 performs a "single p
function for the LD button [Winkel and Prosser,The Art of Digital Design, Prentice-Hall, Inc.,
1980, Chapter 6]. The code at locations 003 and 004 performs a similar function for the TST
ton. The "*" in the microinstruction operand fields means "value of the assembler's loc
counter".

In the declaration phase, we have specified that a use of TST.L, such as at locations 003 a
should invoke the value 1 for command field INMUX; LEASMB will take care of generating
proper values for the test multiplexer select lines. Using information supplied in the declara
and in a given microinstruction, LEASMB will determine the logic level entering the 29
sequencer's test signal input that should cause a jump, and will translate this logic level in
proper voltage. For instance, the microinstruction at location 003 implies that a jump sh
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 59

ST.L
r to

. We
press
occur if TST.L is false. The definition of TST.L states that the input test signal selected by T
has truth represented as a low voltage (T=%L). Thus LEASMB will conclude that, in orde
jump at location 003, the incoming test signal must be a high voltage level.
With this informal description of the language, you should be able to follow the test program
hope that you will appreciate how LEASMB can help define useful structures and sup
unwanted detail. In the next sections, the LEASMB language is presented in full.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 60
 ID LEASMB_demo

* SAMPLE DECLARATIONS AND SAMPLE MICROCODE

 SIZE 23; number of command bits
 MODE LOGIC

* COMMAND FIELD DECLARATIONS

MUXCTL(10:0) COM (4:14),T=$7FF,D=%TTTTTTTTTTT
M0(2:0) EQU MUXCTL(9:7); mux 0 select signals
M1(2:0) EQU MUXCTL(6:4); mux 1 select signals
M2(1:0) EQU MUXCTL(3:2); mux 2 select signals
M0S2 INV M0=5; select reg S2 through mux 0
M0SWR INV M0=0; select switch reg through mux 0
M1S0 INV M1=3; select reg S0 through mux 1
M2S1 INV M2=1; select reg S1 through mux 2
REGCTL COM (15:22), T=%HHHHHHHH,D=%FFFFFFFF
LOAD3 EQU %11111100; load S0,S1,S2
ROTATE INV M0S2,M1S0,M2S1,REGCTL=LOAD3; rotate stack

* INPUT TEST MUX CONFIGURATION (2 input signals defined)

INMUX(3:0) COM (0:3),T=%HHHH,D=0
LD.L INV INMUX=0,T=%L
TST.L INV INMUX=1,T=%L

PROG

LOC XDDDI CCCC CC
000 ORG 0
000 BEGIN EQU *
000 10033 0FFE 00 LOAD JUMP TEST IF LD.L=%F
001 50013 0FFE 00 JUMP * IF LD.L=%T
 JUMP BEGIN;M0SWR,M1S0,M2S1,
002 30003 086F F8 REGCTL=LOAD3; push switches onto stack
003 10003 1FFE 00 TEST JUMP LOAD IF TST.L=%F
004 50043 1FFE 00 JUMP * IF TST.L=%T
005 30003 0D6F F8 ROT JUMP BEGIN;ROTATE; rotate top 3 stack elements

END

0 ERROR(S) DETECTED
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 61

istinct
bolic

with

mand

tage
on the
a pro-

ance
ORG

It is
t may

e sub-
with
5.6. The Micro Assembly Language

In the language description that follows,bold courier letters are used for concrete syntax.
NAMES

Symbolic names in LEASMB may contain upper case or lower case letters, digits, "_", or ". ".
The first character must be a letter. Names may be any length. Upper case letters are d
from lower case letters. The following symbols are reserved, and must not be used as sym
names:

SUBSCRIPTS

A subscript is one of the following forms:

<subscript> ::= (<index>1) | (<index>1 : < index>2)

where <index>1 and <index>2 are expressions with numeric values. Subscripts are used
command variables and as command bit range specifiers.
NAME TYPES

Depending on how it is defined, a name may represent a constant, a control poing, a com
field, or an invocatoin.l

A constant name(defined with the EQU statement) may be of type numeric constant, vol
constant, or logic constant, governed by the type of the defining expression. Depending
context, a numeric constant may be treated as a number, a voltage value, a logic value, or
gram label.

A program label, which names a location in the microcode, is usually defined by its appear
in the label field of a microinstruction statement. It may also be defined using the EQU and
statements.

A command variabledescribes a field of contiguous command bits in the microinstruction.
usually defined with the COM statement, but may also be defined with the EQU statement. I
appear as a subscripted or unsubscripted symbolic name:

<command variable>::= <name> | <name> <subscript>

The unsubscripted form implies a range of command bits, as determined by the context. Th
scripted form with a single index refers to exactly one command bit; the subscripted form
two indices refers to a range of command bits. Examples of command variable names are:

IF T F H L

X.REX(3:7)

PROD

Headload.L(2)

ALUCTL(5:0)
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 62

the
ple

logic.

a "$"

um

e)
am-

re-

MB

d by
strict

ted in
dis-
avoid
quan-

ill
An invocation variable describes a particular pattern to appear in specified command bits in
microinstruction. It is defined with the INV statement or with the EQU statement, and is a sim
unsubscripted name.
CONSTANTS

Constants may be numeric (expressed in decimal, hexadecimal, or binary), voltage, or
There is also one special program label constant.

A decimal numeric constant appears as a number between 0 and 65523. Example: 2544 .

A hexadecimal numeric constantappears as a number between 0 and FFFF, preceded by
character. Example:$4FA.

A binary numeric constant appears as a string of 1's and 0's, preceded by "%". The maxim
usable length of a binary constant is 16 bits. Example:%111010.

A voltage constantappears as a string of up to 16 "H" (for high voltage) or "L" (for low voltag
characters, preceded by "%". Within LEASMB, "H" is maintained as a 1, and "L" as a 0. Ex
ple: %HHLHLLL.

A logic constantappears as a string of up to 16 "T" (for true) or "F" (for false) characters, p
ceded by "%". Within LEASMB, "T" is maintained as a 1, and "F" as a 0. Example:%FTFFFFTTT.

An asterisk "*" in the operand field of a microinstruction means "current value of the LEAS
microinstruction location counter", and is of typeprogram label.
EXPRESSIONS

Expressions may involve the arithmetic operators "+" (add) and "- " (subtract), and the logical
operator "/ " (one's complement). Any numeric, voltage, or logic constant may be precede
"/" to generate the logical complement of the constant. Expressions are evaluated in
left-to-right order, with no operator precedence. Grouping parentheses are not permit
LEASMB. LEASMB maintains constants as 16-bit unsigned quantities. LEASMB does not
tinguish between negative quantities and large positive quantities (greater than 32767). To
unwanted results, the programmer should arrange for all expressions to evaluate to positive
tities.

LEASMB evaluates expressions involving arithmetic "+" and "-" as shown in Table 1.

From Table 1, we note the following:

(f) No operations are allowed on command variables or invocation variables.

(g) Voltage and logic types may not be mixed in an expression.

(h) A numeric type, if combined in an expression with an operand of another type, w
take that operand's type.

(i) Arithmetic is done in two's complement notation; "-" does not perform the logical
(one's) complement function, which is performed by "/".
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 63
1st operand Operator 2nd operand result

- + or - numeric numeric*

- + or - voltage voltage

- + or - logic logic

numeric + or - numeric numeric*

numeric + or - voltage voltage

numeric + or - logic logic

numeric + program label program*

numeric - program label (illegal)

voltage + or - numeric voltage

voltage + or - voltage voltage

voltage + or - logic (illegal)

voltage + or - program label (illegal)

logic + or - numeric logic

logic + or - voltage (illegal)

logic + or - logic logic

logic + or - program label (illegal)

program label + or - numeric program*

program label + or - voltage (illegal)

program label + or - logic (illegal)

program label + program label (illegal)

program label - program label numeric

*designates the most useful forms of expressions.The other
forms, although legal in LEASMB, have limited utility.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 64

con-

bolic

the

opera-
a label
olic
, which
umber
d by
our

ing
Com-
ed from
LEASMB PROGRAM STRUCTURE

Structure of the source program file

A program is contained in a DOS text file, usually prepared using a text editor. A program
sists of a sequence of statements. The statements are partitioned into two phases: In thedeclara-
tion phase, the programmer describes the structure of the microinstruction and declares sym
names to describe components of the structure. In theprogram phase, which, if present, must
follow the declaration phase, the programmer writes the microinstructions that will form
object code destined for the Logic Engine writable control store.

Structure of source program statements

Each statement must begin on a new line. Statements consist of three major fields: label,
tion, and operand. Major fields are separated by one or more blanks. If a statement has
field, it must begin in column 1; otherwise, column 1 must be blank. Within numeric or symb
elements, no blanks should appear. Elements must be separated by suitable punctuation
may be one of the characters , ; = or blank. Elements may be preceded or followed by any n
of blanks. With these provisos, the statement format is free-field. Although not require
LEASMB, you will usually wish to line up the operation fields, to improve the appearance of y
listing.

Comments

Comment lines, beginning with an asterisk "*" in column 1, may appear preceding or follow
any statement. They appear on the output listing, but are otherwise ignored by LEASMB.
ments may also be included at the end of any statement. Such comments must be separat
the statement's major fields by a semicolon.
LEASMB ASSEMBLY DIRECTIVES

Declaration segment

ID Specifies the program name

SIZE Specifies the number of command bits

MODE Specifies logic or voltage expression mode

COM Defines a command bit field

INV Defines a command assertion pattern

EQU Equates a symbol to a value

Program segment

PROG Marks start of program phase
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 65

embly

ement
ears in
e of

eger is
E
tate-

bly
res the
ODE
. In the

mand

a

DESCRIPTION OF LEASMB STATEMENTS

Each LEASMB assembly directive defines a statement of the same name, with the ass
directive's mnemonic appearing in the operation code field of the statement.

ID statement:

The operand field is a symbolic name representing the name of the program. One ID stat
may appear anywhere in the declaration phase. The program name in the ID statement app
the object file. If the program has no ID statement, then the object file will contain a nam
blanks.

SIZE statement:

The operand field is an expression that evaluates to an integer between 0 and 39. This int
the number ofcommand bits in the microinstructions to be created by LEASMB. The SIZ
statement, if present, must appear prior to any COM, INV, or EQU statement. If no SIZE s
ment appears, LEASMB assumes that the number of command bits is 0.

MODE statement:

The operand field consists of the word "LOGIC" or the word "VOLTAGE". In several assem
contexts, numeric values may represent either logic or voltage values. This statement decla
mode for numeric values whose mode is not otherwise specified by the context. One M
statement may appear anywhere in the declaration phase, and applies to the entire program
absence of a MODE statement, LEASMB uses a mode of LOGIC.

COM statement:

The COM statement allows the programmer to define the nature of a contiguous field of com
bits. The form is:

[<command variable>] ::= COM <command bit range>[,<voltage values>] [,<default val-
ues>]

A label field is optional, and if present represents a simple or subscripted<command variable>.
The operand field begins with<command bit range>, a subscript specifying a command bit or

ORG Specifies load location of object code

EQU Equates a symbol to a value

Either segment

END End of source program

TITLE Header title for listing
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 66

t index.
n, call
sub-
If the
be N,
and

index
d index
ed in

of 0
12
with

sizes

pre-
b) the

-
egard-
lues

es

s
on the
umes
alse
ny

he pro-
state-

inary
Extra
ning
range of command bits. The values of the<command bit range>indices must be from 0 to 39,
and if the subscript indicates a range, then the second index cannot be smaller than the firs
The range size of the <command bit field> must be no greater than 16. For this discussio
the size of the range N (N is 1 to 16). If the <command variable> in the label field is un
scripted, then it is assumed to have a range of size N, with index values of 0 through N-1.
<command variable> is subscripted, then the declared size of the subscript range must
agreeing with the range size of <command bit range>. The initial (leftmost) index of <comm
variable> corresponds to the initial (leftmost) index of <command bit range>. Subsequent
values of <command variable> may increase or decrease, depending on whether the secon
is greater or less than the first index. All indices must be positive. Any symbols encounter
the operand field must have been previously defined.

Consider two illustrations:

VAR1 refers to command bits 4 through 9 (a range size of 6 bits). VAR1 has implied indices
through 5, with VAR1(0) corresponding to command bit 4. VAR2 refers to command bits
through 15 (4 bits), and has an explicitly stated range of 32 through 29 (decreasing),
VAR2(32) corresponding to command bit 12, VAR2(31) to command bit 13, etc. The range
must match.

Following the command bit range may appear up to two optional fields, in either order, each
ceded by a comma. The fields specify (a) the default values for each command bit and (
voltage values for assertion (truth) for each command bit.

<voltage values>for asserting each bit are specified by "T=" followed by an expression that eval
uates to a numeric or voltage value. A numeric value is taken to be a voltage specification, r
less of the MODE declaration. An alternative notation, for specifying the negation (false) va
for each bit, uses "F=" instead of "T=". If the <voltage values> field is absent, LEASMB assum
that assertion of each bit requires a high voltage.

<default values>are specified using the notation "D=" followed by an expression that evaluate
to a numeric, voltage, or logic constant. If the expression is numeric, then the value takes
type specified by the MODE statement. If <default values> is absent, then LEASMB ass
that the default for each bit is a low voltage for VOLTAGE mode, and is the voltage for a f
logic level for LOGIC mode. In a microinstruction, LEASMB will use the default values for a
command bits that are not specifically referenced.

The programmer should take care not to overlap<command bit range>s in COM declarations,
since such overlap can cause ambiguities as to the correct default and voltage values. (T
grammer can create alternative names for command bit fields and subfields with the EQU
ment.)

LEASMB views the value of the <default values> and <voltage values> expressions as b
numbers, and assigns the least significant bit to the rightmost bit of <command bit range>.
significant bits on the left of those required to fill the field are discarded, but will cause a war

VAR1 COM (4:9)
VAR2(32:29) COM (12:15)
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 67

d use

cripted
ripted
riable.

truc-
ceed-
The

ed
message.

Here are some examples of command statements:

The effect of these definitions is summarized in the following table:

We recommend that you study the table carefully, so that you fully appreciate the power an
of the notations at your disposal.

In using command variables in other statements, you may use a subscripted or unsubs
form. An unsubscripted usage implies the entire defined range of the variable. In a subsc
usage, the specified range must be completely within the range defined for the command va

INV Statement

The INV statement is used to define an invocation variable which, when used in a microins
tion, will cause a specified value to be imposed on specified command bits. This is an ex
ingly powerful notation, and is the key to programming in a structured, disciplined manner.
INV statement has this form:

<invocation variable>INV <specification list>[, <input truth value>]

Any symbols appearing in the operand field must be previously defined. The<invocation vari-
able> is a simple, unsubscripted name. The<specification list>consists of one or more<specifi-
cation>s, separated by commas. Each<specification> is one of the following forms:

The form<command bit range>implies that, when the invocation variable is used, the specifi

VAR3(6:0) COM (0:6),D=%1011100,T=%1110000

INPUTMUX(3:0) COM (11:14),D=%TTFF

REGLOAD COM (15:16),D=2,T=%LL

HALTFF.SET COM (10)

indices Commad
bits

Mode VOLTAGE Mode LOGIC

truth default truth default

VAR3 6-0 0-6 HHHLLLL HLHHHLL HHHLLLL HLHLLHH

INPUTMUX 3-0 11-14 HHHH HHLL HHHH HHLL

REGLOAD 0-1 15-16 LL HL LL LH

HALTFF.SET 0 10 H L H L

<specification> ::= <command bit range>
<command variable>
<command bit range> = <code>
<command variable>= <code>
<invocation variable>
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 68

eci-

es
or

es
or

ill
command bits will beasserted.

<command variable>may be subscripted or unsubscripted, and the form implies that the sp
fied command bits will beasserted. An unsubscripted<command variable>implies the entire
defined range for that variable.

<command bit range>=<code> implies that the specified command bits will receive the voltag
specified by<code>. <code> is an expression that evaluates to a numeric value (with logic
voltage mode implied by the MODE declaration), a logic value, or a voltage value.

<command variable>=<code> implies that the specified command bits will receive the voltag
specified by<code>. <code> is an expression that evaluates to a numeric value (with logic
voltage mode implied by the MODE declaration), a logic value, or a voltage value.

<invocation variable>implies that the invocation specified in the definition of that variable w
be performed.

Consider the following declarations:

The effect of the invocation statements is presented in the following table:

VAR4 COM (5:9),T=%HLHHL

VAR5 COM (10:13),T=%LLHH

COM (0:3),T=%HLHL

INV1 INV (6:8)

INV2 INV VAR4=%HHHLL

INV3 INV VAR4(0:4)

INV4 INV (0:3)=%1100

INV5 INV VAR5(1:3)=%TFT

INV6 INV INV1,VAR5=%0110,INV4

Invocation
variable

Command bits
affected

VOLTAGE mode
command bits

LOGIC mode
command bits

INV1 6 to 8 LHH LHH

INV2 5 to 9 HHHLL HHHLL

INV3 5 to 9 HLHHL HLHHL

INV4 0 to 3 HHLL HLLH

INV5 11 to 13 LLH LLH

INV6 6 to 8 LHH LHH

10 to 13 LHHL HLHL
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 69

state-

ption
gner's
evel-
al to

l from
selec-
lexer,
ation

for

a

dition

the

om-
e to

at a

jump
8),
The programmer should take care not to refer to overlapping command bit ranges in an INV
ment, as LEASMB may produce unpredicted results.

<input truth value> in invocation statement:

The 2910 can accept one input signal for testing to help determine which 2910 instruction o
-- pass or fail -- is executed. The Logic Engine requires that this signal appear on the Desi
Condition Code input. Although invocations have quite general application in microcode d
opment, frequently the designer will wish to use an invocation to select the particular sign
appear on Designer's Condition Code. The invoked code selects that particular signa
among the designer's collection of possible test input signals. The mechanism by which the
tion occurs is the designer's responsibility; the selection apparatus may use a multip
three-state bus, or other method, controlled from the Logic Engine microcode with an invoc
variable. Each potential input test signal has its own code.

With <input truth value>, LEASMB allows the programmer to specify the logic convention
the particular invoked signal. <input truth value> has the form:

<input truth value> := T=<voltage expression> | F=<voltage expression>

where<voltage expression>evaluates to a numeric value (with implied VOLTAGE mode) or
voltage value. If<input truth value> is absent, LEASMB assumes aT=%H convention.

Note that the<input truth value>has no direct connection with the<code>; <input truth value>
describes the logic convention for a signal that will presumably appear on designer's con
code when the particular code is invoked in the specified command bits.

Examples of<input truth value>usage:

The first JUMP microinstruction requires a jump to location ABC if TESTSIG.a is false at

time of execution of the microinstruction. The definition of TESTSIG.a declares that the inc
ing test signal has T=%L, so false is a high voltage. LEASMB will create proper object cod
invoke TESTSIG.a (with voltages %LLHL on command bits 15 to 18), and will recognize th
high voltage on Designer's Condition Code is required for the jump to occur.

In similar manner, the second JUMP microinstruction requires truth on TESTSIG.b for the
to occur. LEASMB will invoke TESTSIG.b (with voltages %LLHH on command bits 15 to 1
and will arrange for a high voltage on Designer's Condition Code to cause a jump.

0 to 3 HHLL HLLH

TESTSIG.a INV (15:18)=%LLHL,T=%L

TESTSIG.b INV (15:18)=%LLHH,T=%H

...

JUMP ABC IF TESTSIG.a=%F

JUMP XYZ IF TESTSIG.b=%T
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 70

of bit
r-level

ariable

r

licitly
is not
er, with

lt-

pro-
These powerful LEASMB structures can free the programmer from many tedious details
positions, codes, and voltage values, allowing the designer to concentrate fully on the highe
aspects of the control program.

EQU Statement

The EQU statement allows the programmer to define values for names, and to equate v
names. For assigning values to names, the form of the statement is:

<name>EQU<expression>

Any symbols appearing in the expression must be previously defined. The<name> must be a
simple, unsubscripted name. The<expression>must evaluate to a numeric, logic, voltage, o
program label value, which will become the value and type of the specified<name>. Thus this
form of EQU can define<constant name>s and<program label>s.

For equating variable names, the form of the EQU statement is:

<variable> EQU <specifier>

Any symbols appearing in the operand field must be previously defined.<variable> may be a
simple or subscripted name. The forms allowed for<specifier> and the type of the resulting
<variable> are:

For a command variable definition, a subscript range on the defined variable may be exp
provided, in which case the range size must match the range size of the specifier. If a range
specified, then the defined command variable assumes the same range size as the specifi
indices starting at 0. Invocation variables may not be subscripted.

Within thedefinition phaseof a source file, EQU may be used to define numeric, logic, or vo
age constants, and to create command and invocation variables.

Within theprogram phaseof a source file, EQU may be used to define numeric constants or
gram labels.

The following statements contain illustrations of valid EQU statements:

<specifier> := <command bit range> produces a <command variable>

<command variable> produces a <command variable>

<invocation variable> produces an <invocation variable>

VAR10 COM(10:20)

INV10 INV VAR10=$1D

TURNON EQU %HLLHL
ACCLR EQU $10

SUB1(3:0) EQU VAR10(0:3); SUB1 is a 4-bit subfield of VAR10

SAME10 EQU INV10

...

CONT
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 71

marks
field or

s the
RG

SMB
its
the

or
vail.

ase, if
r oper-

each
blank
ement
LE
the list-
option

bject
able

The
PROG statement:

The PROG statement must be the first statement in the program phase of the source file. It
the end of the declaration phase and the beginning of the program phase. It has no label
operand field.

ORG statement:

The ORG statement sets the LEASMB microinstruction location counter, and thus define
writable control store address of the next microinstruction in the program. The form of the O
statement is:

[<program label>] ORG<expression>

The required operand field is an expression of type numeric constant or program label. LEA
truncates the value of the<expression>to 12 bits, and issues a warning message if significant b
are lost. A label field is optional; if present, the symbolic name will be given the value of
operand field expression, with type program label.

If ORG sets the location counter backwards, the programmer may (intentionally
unintentionally) overlay previous microinstructions. The last usage of an address will pre
LEASMB does not issue an error or warning message.

END statement:

The END statement is the last statement in the program. It marks the end of the program ph
any, or the end of the declaration phase if there is no program phase. It has no label field o
and field.

TITLE statement:

The TITLE statement allows the programmer to specify a title that will appear at the head of
new page after the occurrence of the TITLE statement. The title begins with the first non-
character in the operand field, and may be up to 74 characters in length. The TITLE stat
must be contained on one source line. A blank or void title will disable the titling feature. TIT
statements may appear anywhere in the source program; they do not themselves appear in
ing, and do not cause a page eject. TITLE statements have effect only if the assembly page
is operating.
THE MICROINSTRUCTION STATEMENT

Each microinstruction statement in the source program results in the production of one o
code microinstruction. LEASMB assigns microinstructions to consecutive locations in writ
control store, starting with 0, unless directed otherwise with the ORG assembly directive.

ABC EQU *+2; ABC is location of CRTN instruction + 2

CRTN
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 72

ust be
g the

ose
ists of
2910

gram

ne-

able
microinstruction statement has the form:

[<program label>] <sequencer field> [; <command list>]

If a comment appears at the end of a microinstruction statement, then a command list m
present, even if it is null. Thus, if a comment is present, two semicolons appear, one markin
start of the (possibly null) command list, and the other marking the start of the comment.

The sequencer field

<sequencer field>allows the programmer to direct the activities of the 2910, the device wh
task is to produce the address of the next microinstruction. The 2910 instruction set cons
sixteen basic operations, each with two options, "pass" and "fail", governed by the status of
inputs CCEN.L and CC.L. The LEASMB<sequencer field>provides the ability to exert com-
plete control of the 2910. As you study this section, you may wish to refer to the sample pro
that appears in section XXX.

The structure of<sequencer field> is:

<sequencer field> ::= <operation> [<D-field>] [IF <test condition>]

<operation> is one of the standard 2910 I-field mnemonics, or one of a set of alternative m
monics defined within LEASMB. Allowable forms are:

where the latter two forms will force the 2910 to execute its pass or fail option, respectively. T
2 shows the 2910 I-field mnemonics recognized by LEASMB.

Table 2. 2910 Instructions.

<operation> ::= <I-field mnemonic>
<I-field mnemonic>,PASS

<I-field mnemonic>,FAIL
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 73

bits; if

ail
The programmer may specify the contents of the 2910 D-field. The optional<D-field> is an
expression of type numeric constant or program label. The expression is truncated to 12
significant bits are dropped, LEASMB issues a warning message. If<D-field> is absent,
LEASMB inserts the value 0.

The optionalIF <test condition>field allows the programmer to control the choice of pass or f
option within the 2910. Refer to the earlier discussion of the INV Statement.

I-field

value

Mnemonic Function

Standard 2910 mnemonics

$0 JZ Jump to location 0

$1 CJS Conditional jump to subroutine at PL address

$2 JMAP Jump to map address

$3 CJP Conditional jump to PL address

$4 PUSH Push with conditional load of counter

$5 JSRP Jump to subroutine at R address or at PL address

$6 CJV Conditional jump to vector address

$7 JRP Conditional jump to R address or PL address

$8 RFCT Repeat loop if counter is non-zero

$9 RPCT Jump to PL address if counter is non-zero

$A CRTN Conditional return from subroutine

$B CJPP Conditional jump to PL address and pop

$C LDCT Load counter and continue

$D LOOP Test end of loop

$E CONT Continue

$F TWB Three-way branch

Alternate forms supported be LEASMB

$3 JUMP Equivalent to CJP
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 74

ge (H
arn-

t a

will

nto
bits 4
rther,
r truth.
ill

mp to

L) to
E to

option
is a
rs at

t in

te
ss and
<test condition>has one of these forms:

where <test input value> is an expression that evaluates to a one-bit numeric (1 or 0), volta
or L), or logic (T or F) constant. (Expression values larger than one bit are truncated, with a w
ing message.)

The purpose of<invocation variable> is to issue the proper command bit values to selec
desired test input signal from the designer's hardware.

<test input value>allows the programmer to specify the value of the test input signal that
cause the 2910 to execute its pass option. If the=<test input value>phrase is absent, then
LEASMB assumes the value T.

As an illustration, consider the following definitions and microinstruction statements:

The use of ACZERO in the CJP instruction invokes the value %1011 (= %TFTT = %HLHH) o
command bits 4 through 7. The designer should arrange that this pattern in command
through 7 will cause a signal ACZERO to appear at the Designer's Condition Code input. Fu
the declaration states that when this occurs, the incoming test signal uses a high voltage fo
In the CJP instruction, the jump is to occur if ACZERO is false (a low voltage). LEASMB w
arrange that a low voltage delivered at the Designer's Condition Code input will cause the ju
occur.

In the second example, the use of COMPARE causes the value %0010 (= %FFTF = %LLH
appear on command bits 4 through 7, which we infer is going to cause a signal COMPAR
appear at the Designer's Condition Code input. The 2910 will execute a Return (the pass
for CRTN) if this incoming signal is true. Since the definition of COMPARE states that truth
low voltage, LEASMB will arrange that the pass option will occur when a low voltage appea
the Designer's Condition Code input.

The IF <test condition>phrase will have no effect if used in a microinstruction statemen
which the programmer has used the explicitPASSor FAIL form of <operation>. The simple
form <I-field mnemonic>without theIF <test condition>phrase will cause the 2910 to execu
its pass option. The following table summarizes the programmer's control of the 2910's pa
fail options:

<test condition>::= <invocation variable>
<invocation variable>=<test input value>

ACZERO INV (4:7)=%1011,T=%H

COMPARE INV (4:7)=%0010,T=%L

...

CJP XYZ IF ACZERO = %F

CRTN IF COMPARE
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 75

ose of
igner's
d by a

le.

eci-

e
ric
age

lt-
lue
lue.

ill

com-

and
The Microinstruction Command List

In the command list, the programmer specifies signal values for command bits. The purp
the entire microprogram is to deliver an orderly sequence of command bit values to the des
architecture. <command list> consists of a list of <command specification>s, each separate
comma, where each <command specification> has one of these forms:

Note that these structures are equivalent to those permitted in defining an invocation variab

The form <command bit range> implies that the specified command bits will beasserted.

<command variable>may be subscripted or unsubscripted, and the form implies that the sp
fied command bits will beasserted.

<command bit range>=<field value> implies that the specified command bits will receive th
voltages specified by<field value>. <field value> is an expression that evaluates to a nume
value (with logic or voltage mode implied by the MODE declaration), a logic value, or a volt
value.

<command variable>=<field value>implies that the specified command bits will receive the vo
ages specified by<field value>. <field value> is an expression that evaluates to a numeric va
(with logic or voltage mode implied by the MODE declaration), a logic value, or a voltage va

<invocation variable>implies that the invocation specified in the definition of that variable w
be performed.

In the object code for a microinstruction, all command bits not specifically addressed in a
mand specification will receive their default voltage values.
STRUCTURE OF A LOGIC ENGINE OBJECT CODE MICROINSTRUCTION

An LEASMB microinstruction consists of a fixed-format sequencer field (20 bits) and a comm

Form Result

<I-field mnemonic> Pass

<I-field mnemonic>,PASS Pass

<I-field mnemonic>,FAIL Fail

<I-field mnemonic>...IF <test condition> Governed by Designer's Condition Code input

<command specification>::= <command bit range>
<command variable>
<command bit range>=<field value>
<command variable>=<field value>
<invocation variable>
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 76

g

meric

cro-

n. If
n that
bit field of size specified by the designer.

The structure of thesequencer fieldis as follows (bits are numbered from left to right, beginnin
with bit 0):

The structure of thecommand bit field is:

The D-field is specified by the programmer as an expression of type program label or nu
constant.

The I-field is generated by LEASMB from the mnemonic in the operation code field of the mi
instruction.

The B-field is generated by LEASMB when a breakpoint is requested for that microinstructio
breakpoints are enabled, the clock will be stopped before the execution of a microinstructio

Field range Description

I (4 bits): 0-3 2910 instruction code field (I-field) (high-active

X (4 bits)

CCEN.L: 4 2910 Condition Code Enable (low-active)

CIN: 5 2910 Carry In (high-active)

CCFAIL: 6 Condition Code Fail (high-active)

CCINV: 7 Condition Code Invert (high-active)

D (12 bits): 8-19 2910 address field (D-field) (high-active)

B (1 bit): 20 Breakpoint (high active)

µInstruction bit Command bit

24 0

25 1

.

.

.
.
.
.

63 39 (maximum)

��
��
��

��
��
��sequencer

OP

4 20

command
24

X

C
C

IN
V

C
IN

D B

0 3 19 635 6 7 8

C
C

E
N

.L
C

C
F

A
IL

COM
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 77

tax,
gram-
ith
r with

FAIL.
put
if its
the
ition
ns to

it to 1
ify

ify a

it to 0
ing
uc-

S or
the
nal

d by a
con-
To
lse).

true).
n the
has this bit set.

The X-field

The bits in the X-field allow the programmer to exert, through the prescribed LEASMB syn
detailed control over certain of the 2910 microprogram sequencer features. In normal pro
ming, LEASMB will set the X-field bits automatically, and the programmer will not deal w
them. The use of the X-field is explained below. The discussion assumes you are familia
the operations of the 2910.

For each of its instructions, the 2910 sequencer provides two sub-operations, PASS and
The 2910 performs the PASS sub-operation if its CCEN.L input is high (false) or if its CC.L in
is low (true). The 2910 performs the FAIL sub-operation under other conditions, namely,
CCEN.L input is low (true) and its CC.L input is high (false). A designer may wish to control
choice of sub-operation by forcing a PASS, forcing a FAIL, or allowing his Designer's Cond
Code input to determine the choice. The Logic Engine microinstruction provides the mea
select each of these alternatives easily.

The designer may force the 2910 to select the PASS sub-operation by setting the CCEN.L b
(false) in the microinstruction. (LEASMB performs this bit setting automatically if you spec
the PASS option in the sequencer field of a symbolic microinstruction, or if you fail to spec
conditional clause.)

The designer may force the 2910 to select the FAIL sub-operation by setting the CCEN.L b
(true) and the CCFAIL bit to 1 (true) in the microinstruction. (LEASMB performs this bit sett
automatically if you specify the FAIL option in the sequencer field of a symbolic microinstr
tion.)

The designer may allow his Designer's Condition Code signal to control the choice of PAS
FAIL sub-operation by setting the CCEN.L bit to 0 (true) and the CCFAIL bit to 0 (false) in
microinstruction. (LEASMB performs this bit setting automatically if you specify the conditio
"IF" clause in a symbolic microinstruction.)

Here is a summary of the bit values required to influence the choice of sub-operation:

The signal appearing on the Designer's Condition Code input may be low-active (asserte
low voltage) or high-active (asserted by a high voltage). The Logic Engine microinstruction
tains the CCINV bit to allow the programmer to specify which voltage polarity is in effect.
specify that Designer's Condition Code is low-active, the designer may set CCINV to 0 (fa
To specify that Designer's Condition Code is high-active, the designer may set CCINV to 1 (
(LEASMB sets CCINV automatically, based on the declarations for the signal referenced i

CCEN.L CCFAIL

Force a PASS 1 (high, false) ---

Force a FAIL 0 (low, true) 1 (high, true)

Act on incoming Designer's Condition Code signal 0 (low, true) 0 (low, false)
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 78

Code

ill
ing is

lac-

ese
e

,

y

e.

m

.

.

"IF" clause of a symbolic microinstruction.)

In the Logic Engine, the logic equation governing the signal entering the 2910's Condition
(CC.L) pin is

2910.CONDITION.CODE = (DESIGNER.CONDITION.CODExor CCINV) and CCFAIL

The CIN bit of the microinstruction connects directly to the 2910 CIN pin. Normally, this bit w
be a 1 (high, true), implying normal sequencing if a branch does not occur. Normal sequenc
inhibited if CIN is 0 (low, false). The programmer may override the normal value of CIN by p
ing a ‘/ ’ preceding the 2910 operation mnemonic..

2910 Signal Disposition

D (12 bits) Input. When PL.L is asserted, the Logic Engine pipeline register provides th
bits. When PL.L is negated (i.e., when MAP.L or VECT.L is asserted), th
designer's circuit must supply these bits.

I (4 bits) Input received from Logic Engine pipeline register.

CC.L Input received from Logic Engine. Derived from Designer's Condition Code
CCINV, and CCFAIL.

CCEN.L Input received from Logic Engine pipeline register.

CI Input received from Logic Engine pipeline register. Programmer may specif
the value through LEASMB.

RLD.L Input available at 2910 chip on Logic Engine board. Not used by Logic Engin

OE.L Input controlled exclusively by Logic Engine.

CP Input supplied exclusively by Logic Engine. Designer must supply the Syste
Clock from which CP is derived.

Y (12 bits) Output available on 60-pin flat-cable connector. Used by Logic Engine.

FULL.L Output available at 2910 chip on Logic Engine board. Used by Logic Engine

PL.L Output available at 2910 chip on Logic Engine board. Used by Logic Engine

MAP.L Output available on the 2910 PLD. Not used by Logic Engine.

VECT.L Output available on the 2910 PLD. Not used by Logic Engine.

Note: Directions are relative to the 2910.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 79

llow
EPI
e LE
pow-
LEPI

, the

e PC
With
ignal
oard
 host.

e ref-
e writ-
nding
bled.
abling
e are 4
itch or

nput
e sig-

clock
e LE
rd.

and 72
itches,
I. Logic Engine Programmer's Interface

A. Introduction

The Logic Engine Programmer's Interface (LEPI) is a library of Microsoft C routines that a
the user to monitor and control the LE board from the PC host. At the lowest level, the L
allows the user to read from the lights and write to the switches, buttons and pipeline of th
board. It can also control the clock on the LE board. At a higher level, the LEPI provides a
erful way to name and invoke values onto groups of signals. Some of the many uses of the
include, test vector generation, providing control signals to systems in lieu of microcode
migration of software simulations to hardware implementations and high level diagnostics.

B. How the LEPI Works

The LE board contains 128 lights, 16 toggle switches, 12 buttons and 40 bits of pipeline. Th
host has the ability to read from the lights and write to the switches, buttons and pipeline.
this ability any signal that is wired to a light can be monitored by the PC host and any input s
that is wired to a switch, a button or the pipeline can be controlled by the PC host. The LE b
also contains a clock which can be stopped, started and pulsed under the control of the PC

From the perspective of the host, the switches and buttons behave identically and will both b
ered to as switches in this document. Associated with each switch is a register which can b
ten by the PC host. The output of each switch is connected to the output of its correspo
register. Normally, the output of the register is disabled and the output of the switch is ena
The PC host can take control of the switches by disabling the output of the switches and en
the output of the registers. In addition to the 28 registers associated with the switches, ther
hidden registers which are accessible from the PC host which do not have an associated sw
button.

The pipeline is part of the microcontroller which is on the LE board and is used to control i
signals to a design. The PC host can however, write directly to the pipeline to provide thes
nals.

The PC host has the ability to stop a running clock, pulse a stopped clock, or start a stopped
by writing to the clocks control register. When the clock is stopped the clock controls on th
board are disabled. When the clock is running, its frequency is controlled from the LE boa

With these resources, the LE board has 128 parallel output signals which can be monitored
parallel input signals which can be controlled. Section 8.6 describes how to access the sw
buttons and pipeline on the LE board.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 80

and

e
ons

s, but-
al test

s not
prop-

. This

entry
hich

of

upplied
hes.

o the
least
C. Low Level Interface Routines

The low level interface includes routines to read the lights, write the switches and pipeline
stop, start or pulse the clock. #include “/le/include/lelib.h”

#include “/le/include/lelib.h”

In order to use these routines, the file/<le>/include/lelib.h has to be included into the source fil
and the file/<le>/bin/lelib.lib has to be linked to the object files. See section 8.7 for instructi
on linking this library.

int initboard(void);

Configures the LE board so that the PC host can control the operation of the clock, switche
tons and pipeline. It also determines on which port the board is attached and does a minim
to determine if the board is functioning. If the board is present and functioninginitboard returns
0 otherwise it returns a positive integer. If no board is found, it could mean that the board i
powered on, the interface cable is not connected properly or the LE board is not functioning
erly. This function should be called before any of the LEPI functions are used.

void restoreboard(void);

Restores the LE board to a state in which the clock, switches and buttons are all enabled
function should be called before exiting the user program.

void readlights(lights);

unsigned char *lights;

Reads the current value of all the lights. The values are stored in the user supplied arraylights.
Each entry in the array holds eight bits representing the value of the lights. The first
(lights[0]) contains lights 0-7, the second, lights 8-15 and so on up to the sixteenth entry w
contains lights 120-127. In each entry the lowest numbered light is the least significant bit.

int readlight(n);

int n;

Reads thenth 8-bit group of lights. Readlight(n) returns the value of the lightsn*8 through
n*8+7. The lowest numbered light is the least significant bit of the value returned. The valuen
can range from 0 to 15. Ifn is outside this range, -1 is returned indicating an error.

void readswitches(switches);

unsigned char *switches;

Reads the current value of all the switches and buttons. The values are stored in the user s
arrayswitches. Each entry in the array holds eight bits representing the value of the switc
The first entry (switches[0]) contains switches 0-7, the second, switches 8-15 and so on up t
forth entry which contains switched 24-31. In each entry the lowest numbered switch is the
significant bit.
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 81

The

lds

31. In

i-

rst
fifth
ignif-

after
int readswitch(n);

int n;

Reads thenth 8-bit group of switches.Readswitch(n) returns the value of the switchesn*8
throughn*8+7. The lowest numbered switch is the least significant bit of the value returned.
value ofn can range from 0 to 3. Ifn is outside this range, -1 is returned indicating an error.

void writeswitches(switches);

unsigned char *switches;

Writes the values in arrayswitchesto all the switches and buttons. Each entry in the array ho
eight bits representing the value of the switches. The first entry (switches[0]) contains switches
0-7, the second, switches 8-15 and so on up to the forth entry which contains switches 24-
each entry the lowest numbered switch is the least significant bit.

int writeswitch(n,val);

int n;

unsigned char val;

Writes the valueval to thenth 8-bit group of switches.Writeswitch(n,val) writes the valueval
to the switchesn*8 throughn*8+7. The least significant bit ofval is written to the lowest num-
bered switch. The value ofn can range from 0 to 3. Ifn is outside this range, -1 is returned ind
cating an error.

void writepipeline(pipe);

unsigned char *pipe;

Writes the values in arraypipe to the pipeline. Each entry in the array holds eight bits. The fi
entry (pipe[0]) contains bits 0-7 of the pipeline, the second, bits 8-15 and so on up to the
entry which contains bits 32-39. In each entry the lowest numbered pipeline bit is the least s
icant bit of the value.

int writepipe(n,val);

int n;

unsigned char val;

Writes the valueval to thenth 8-bit group of pipeline bits.Writepipe(n,val) writes the valueval
to the pipeline bitsn*8 throughn*8+7. The least significant bit ofval is written to the lowest
numbered pipeline bit. The value ofn can range from 0 to 4. Ifn is outside this range, -1 is
returned indicating an error.

void pulseclock(ticks);

int ticks;

Issuesticks number of clock pulses on the user clock. The clock is left in the stopped state
this function is called, so a value of 0 forticks will simply stop the clock.

void startclock(void);
Copyright ©2001 Indiana University Computer Science Department

pens.

tine
red to
utines:
Logic Engine User Manual 82

Puts the clock in the running state. If the clock was already in the running state, nothing hap

Fig. 1. is a small example of a C program that uses some of the low level routines. The rou
tests one NAND gate (74ls00). It assumes that the inputs (pins 1 and 2) have been wi
switches 0 and 1 and the output (pin 3) has been wired to light 0. This example uses the ro
initboard , restoreboard, writeswitch, andreadlight.

#include <stdio.h>
#include “\le\include\lelib.h”

void
main()
 { while(initboard()!=0)
 { /* initialize the board*/
 fprintf(stderr,”LE Board not present or not functioning\n”);
 fprintf(stderr,”<Hit Enter key to continue>”);
 getchar();
 }
 dotest();/* perform the test*/
 restoreboard();/*restore the board*/
 }

void
dotest()
 {
 static int expected[4] = {1,1,1,0}; /*Truth Table for 74ls00*/
 int result; /*result of running test*/
 int error; /*number of errors so far*/
 unsigned char i; /*input value and loop index*/
 error = 0;
 for(i=0;i<4;i++)
 {
 writeswitch(0,i);/*Present inputs to gate*/
 result = readlight(0);/*Read output of gate*/
 if(result != expected[i])

 { fprintf(stderr,”Error: Inputs: %d Result: %d Expected: %d\n”,
 i,result,!(i==3));
 error++;
 }
 }
 fprintf(stderr,”The test completed with %d error(s)\n”,error);

 }

Sample program using low-level LEPI routines
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 83

e val-
high

ations
dec-
ith a
s can

s the
hould

y the
ed

sem-

).

e

The
cates

. is
D. High Level Interface Routines

The high level interface includes routines to define field declarations and invocations, invok
ues onto the defined fields and read values from the defined fields. Table II. is a list of all the
level routines available, including the signature and a description of each. The field declar
and invocations are defined in a separate file. The syntax for this file is nearly identical to the
laration section of the LE Micro Assembly Language described in Chapter 5 of this manual w
few additions This file must be read by the user program before any of the high level routine
be used.

int initboard(void);

Besides initiating the board as described above in the low level routines, this routine initiate
pipeline, switches and buttons to their default values as defined in the declaration file. It s
therefore be called after callingdeclare.

int declare(filename);

char *filename;

Reads the named declaration file. This will construct an internal symbol table that is used b
initboard , command, maskandreadval routines. The syntax of the declaration file is describ
in section XX. This routine should be called before theinitboard routine. The value returned is
the number of errors that occurred while parsing the declaration file.

int command(comlist[,arg]...);

char *comlist;

Thecommandroutine is used to assert values onto the defined field.Comlist is a string with the
same syntax as the command list portion of a microinstruction statement of the LE Micro As
bly Language as described in chapter 5 of this manual. In addition, thecomlist can contain for-
mat specifications as in theprintf routine (See the Microsoft C Run-time Library Reference
The command routine asserts only the signals as defined incomlist. All other signals take on
their default value. A negative value will be returned if a error occurred while parsingcomlist
otherwise 0 will be returned.int mask(comlist[,arg]...);

char *comlist;

Themask routine is identical to thecommand routine with the exception that signals which ar
not asserted as defined incomlist, remain at their current value.

int readval(field);

char *field;

The readval routine returns the value of the named field as defined in the declaration file.
field argument is a string containing the name of the field to be read. A negative result indi
that an error has occurred in parsingfield.

Fig. 2. is a small example of a C program that uses some of the high level routines and Fig. 3
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 84

inputs
utines:

model
ure.
s are

use of
uage
s, and
For a
the accompanying declaration file. The routine tests an ALU (74ls181). It assumes that the
and outputs have been wired as defined in the declaration file. This example uses the ro
declare, initboard , restoreboard, command and readval. The testing algorithm used is to
present the device with all possible inputs, checking the outputs for each against a software
of the device. The code for the software model (LS181 in fig. 2) is not shown in the fig
Notice that in the code of Fig. 2, there is no reference to light or switch numbers. All signal
referenced by name.

E. Declaration File Syntax

The declaration file is used to give logically names to a group of signals and to describe the
these signals. The syntax is similar to the declaration portion of the Micro Assembly Lang
described in Chapter 5 of this manual with a few addtions to support the switches, button
lights. The description of the syntax given here is only a subset of the complete syntax.
complete description of the sytax, see Chapter 5.

The three basic directives used in the declaration file areCOM , LT , andSW. All of which have
the same syntax

A SW(0:3)
B SW(4:7)
S SW(8:11)
M SW(12)
C0 SW(13), T=%L
F LT(8:12), T=%LHHHH
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 85
#include <stdio.h>
#include “lelib.h”

void main()
 {
 if(declare(“ls181.dec”)!=0)
 {
 fprintf(stderr,”Error: Declaration File\n”);
 exit(-1);
 }
 while(initboard()!=0)
 {
 fprintf(stderr,”LE Board not present or not functioning\n”);
 fprintf(stderr,”<Hit Enter key to continue> “);
 getchar();
 }
 dotest();
 restoreboard();
 }

void dotest()
 {
 int a,b,s,m,c0,f,expected,errors;

 errors = 0;
 for(s=0;s<16;s++){
 fprintf(stderr,”Testing function %x for all possible inputs\n”,s);
 for(b=0;b<16;b++){
 for(a=0;a<16;a++){
 for(m=0;m<2;m++){
 for(c0=0;c0<2;c0++){
 command(“A=%d,B=%d,S=%d,M=%d,C0=%d”,a,b,s,m,c0);
 f = readval(“F”);
 expected = LS181f(a,b,s,m,c0);

 if(f != expected){
 fprintf(stderr,
 “Error: A=%x,B=%x,S=%x,M=%x,C0=%x->F=%x:Expected:%x\n”
 ,a,b,s,m,c0,f,expected);
 errors++;
 printf(“test>”);if(getchar()==’q’) exit(-1);
 }
 }
 }
 }
 }
 }
 fprintf(stderr,”The test completed with %d error(s)\n”,errors);
}

Sample program using high-level LEPI routines
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 86

se
<name> <dir> <range> [, <truth values>] [,<default values>

where]

TheCOM andSW directives both define input fields to the board. The name defined by the
directives can be used incommand or mask statements. TheLT directives define output fields
from the board. The name defined by these directives can be used inreadval statements.

<name> ::=

A string of any length containing, upper or
lower case letters, numerals, "_", or ".".
The first character must be a letter. This
defines the name of the field.

<dir> ::= COM, LT, orSW The directive defines the type of field.

<range> ::= (n,m) n and m are integers and n is less than m.
The range defines the signals in the field.

::= (n)

<truth values> ::= T=<numeric value> The truth value defines the interpretation
of the voltage of each signal in the field. If
absent, each signal is assumed to be true
high.

::= T=<voltage value>

<default values> ::= D=<numeric value> The default value defines the value each
signal gets when it is not asserted. Used
only for COMandSWdirectives. If absent,
the default for each signal will be a low
voltage forVOLTAGE mode and a false
value forLOGIC mode. See the MODE
directive below.

::= D=<voltage value>

::= D=<logic value>

<numeric value> ::= [0-9]* decimal value

::= $[0-9a-fA -F]* hexadecimal value

::= %[01]* binary value

<voltage value> ::= %[HL]* high and low voltage values

<logic values> ::= %[TF]* true and false logic values
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 87

iffer-
how

ee the

t

-0
F. Nomenclature

The naming and numbering of the switches, lights, and pipeline for the software is slightly d
ent from that of the hardware and can be a point of confusion. The following tables describe
they relate to each other. For exact location of these points on the Logic Engine board, s
Logic Engine Board User Manual.:

Table 5: Switches

Type Switc
h

Switc
h

Switc
h

Switc
h

Hid-
den

Push-
But-
ton

Push-
But-
ton

Hid-
den

Push-
But-
ton

Push-
But-
ton

num-
ber-
ing

Soft-
ware

31-
28

27-
24

23-
20

19-
16

15-
14

13-
12

11-8 7-6 5-4 3-0

Hard
ware

S15-
S12

S11-
S8

S7-
S4

S3-
S0

B15-
B14

B13-
B12

B11-
B8

B7-
B6

B5-
B4

B3-
B0

IC/
pin

XX/
20-
17

XX/
16-
13

XX/
20-
17

XX/
16-
13

XX/
20-
19

XX/
18-
17

XX/
16-
13

XX/
20-
19

XX/
18-
17

XX/
16-
13

Table 6: Lights 127-64

Type Light Light Light Light Light Light Light Light

num-
bering

 Soft-
ware

127-
120

119-
112

111-
104

103-96 95-88 87-80 79-72 71-64

Hard-
ware

L127-
L120

L119-
L112

L111-
L104

L103-
L96

L95-
L88

L87-
L80

L79-
L72

L71-
L64

IC/pin XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9

Table 7: Lights 0-63

Type Light Light Light Light Light Light Light Ligh

numbering

 Soft-
ware

63-56 55-48 47-40 39-32 31-24 23-16 15-8 7

Hard-
ware

L63-
L56

L55-
L48

L47-
L40

L39-
L32

L31-
L24

L23-
L16

L15-L8 L7-L0

IC/pin XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9 XX/2-9
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 88

e

2

Table 8: Pipeline

Type Pipeline Pipeline Pipeline Pipeline Pipelin

numbering

 Software 39-32 31-24 23-16 15-8 7-0

 Hardware P39-P32 P31-P24 P23-P16 P15-P8 P7-P0

IC/pin XX/19-12 XX/19-12 XX/19-12 XX/19-12 XX/19-1
Copyright ©2001 Indiana University Computer Science Department

Logic Engine User Manual 89

odel
com-
G. Linking the Library

In order use the LE PI library, the source files must be compiled using the large memory m
and then linked with the library as illustrated in the example below. For more details about
piling and linking see the Microsoft C Compiler User's Guide and Reference Manual.

Compile:
cl /c /AL file1.c
cl /c /AL file2.c

Link:
link file1.obj file2.obj, prog.exe, prog.map, lelib.lib ;
Copyright ©2001 Indiana University Computer Science Department

	1. Introduction
	LE Asmb:
	The LE Asmb Tool is a microcode development system. It consists of a text editor, microcode assem...
	- a source level debugger with single stepping and breakpoints.
	- an emacs-like editor.
	- viewing of object code.
	- a rich micro-assembly language.
	ED PLD:
	The ED PLD Tool is a PLD fuse map editor for use with the PLD burner on the Logic Engine Board. E...
	LE Term:
	LE Term is a simple terminal emulator for use with designs that require serial I/ O.
	LE PI:
	The LE PI is a library of routines for use with the Microsoft C complier. With this library, user...

	2. Installation
	2.1. Introduction
	2.2. Before Installation.
	(386 class machine recommended)
	640K Memory minimum
	(1M to 4M recommended)
	1 Floppy drive, 1 Hard drive with 1M available
	Monochrome or Color monitor
	(VGA Color monitor recommended)
	Mouse
	(Optional but highly recommended)
	PC-DOS 2.0-3.3 or MS-DOS 2.0-3.3
	DESQview version 2.01 or greater
	All DESQview requirements
	(see the DESQview manual)
	2.3. Basic Installation
	2.4. Advanced Installation

	LE Panel
	PA
	LE ASMB
	LE
	ED PLD
	ED
	TERM
	TR
	2.5. Starting Up the Logic Engine Software
	2.6. Installing Only the LE PI Library
	2.7. Installing the LE Board

	Power Connector:
	This is a 5 conductor, unisex, color coded connector. It is connected to the power supply with an...
	Serial Connector:
	This is a female DB9 connector. It is connected to the host PC's serial port (usually a male DB25...

	3. Using the Logic Engine Board
	3.1. Introduction
	3.2. Tie Points
	Table 1: Tie Points

	Function
	Tie Points
	Input
	Output
	Illustrated in Figure:
	Description
	Clock
	D0-D23
	Output
	Fig. 2
	Clock Divisor:
	C1-C2
	Input
	Fig. 2
	Clock Selector:
	U0-U5
	Output
	Fig. 2
	User Clock:
	Switches
	S0-S15
	Output
	Fig. 2
	Switch Outputs:
	Buttons
	B0-B15
	Output
	Fig. 3
	Button Outputs:
	LED's
	L0-L127
	Input
	Fig. 4
	LED Inputs:
	Micro- sequencer
	P0-P39
	Output
	Fig. 4
	Pipeline Outputs:
	PE.L
	Input
	Fig. 4
	Pipeline Enable:
	MAP0- MAP11
	Input
	Fig. 4
	Jump Map Inputs:
	JMAP.L
	Output
	Fig. 4
	Jump Map Enable:
	CC.L
	Input
	Fig. 4
	Condition Code:
	Serial Port
	DTR
	Input
	Fig. 4
	TD
	Input
	Fig. 4
	RTS
	Input
	Fig. 4
	RD
	Output
	Fig. 4
	CD
	Output
	Fig. 4
	DSR
	Output
	Fig. 4
	CTS
	Output
	Fig. 4
	3.3. Clock
	3.4. Switches and Buttons
	3.5. LEDs
	3.7. Serial Port
	3.8. Placing Sockets in the Prototype Area

	4. LE Panel
	4.1. Introduction.
	4.2. How the LE Panel Tool Works
	4.3. The LE Panel Tool upon Startu
	4.4. Status Field and Modes of Operation
	4.5. Label and I/O Fields
	4.6. Using Input Fields
	4.7. Switch Fields
	4.8. File I/O
	4.9. Symbol Files
	4.10. Key Bindings and Menu Selections
	Table 2:

	5. TERM
	5.1. Introduction
	5.2. Menus and Key Bindings

	6. Common User Interface
	6.1. Introduction
	6.2. DESQview Interface
	6.3. Menus
	6.4. Dialog Boxes
	6.5. File I/O
	6.6. Tools Menu
	6.7. Help System
	6.8. Communication with the LE Board

	4. ED PLD
	4.1. Introduction
	4.2. Cypress PLD C 20G10
	Table 3:

	4.3. EDPLD Fuse Map Editor
	4.4. File I/O
	4.5. EDPLD PLD Programmer
	4.6. Testing a 20G10
	4.7. Key Bindings
	Table 4:

	5. LE Assembler
	5.1. Introduction
	5.2. Editor
	Assemble/Load
	A-F5
	Assemble the current file and download the resulting object code if the LE Board is present
	Next-Error
	F5
	Advance the cursor to the next assembly error and display an error message in
	the status region
	Display Status
	F8
	Toggle the display of the status region.
	Listing FIle
	F9
	Name the file for saving of listings of subsequent assemblie
	Symbol Table File
	A-F9
	Name the file for saving of the symbol table of subsequent assemblies
	Error File
	C-F9
	Name the file for saving of error messages of subsequent assemblies
	5.3. LEASM Debugger

	Toggle Breakpoint
	F7
	Set/Clear a breakpoint for the current instruction.
	Display 2910
	^A-F8
	Toggle the display of the 2910 window.
	Clear 2910
	^C-F7
	Reset the 2910.
	5.4. A Design Example
	5.5. Developing the Control Program
	5.6. The Micro Assembly Language

	IF
	T
	F
	H
	L
	X.REX(3:7)
	PROD
	Headload.L(2)
	ALUCTL(5:0)
	Structure of the source program file
	Structure of source program statements
	Comments

	Declaration segment
	ID
	Specifies the program name
	SIZE
	Specifies the number of command bits
	MODE
	Specifies logic or voltage expression mode
	COM
	Defines a command bit field
	INV
	Defines a command assertion pattern
	EQU
	Equates a symbol to a value
	Program segment

	PROG
	Marks start of program phase
	ORG
	Specifies load location of object code
	EQU
	Equates a symbol to a value
	Either segment
	END
	End of source program
	TITLE
	Header title for listing
	ID statement:
	SIZE statement:
	MODE statement:
	COM statement:

	VAR1
	COM (4:9)
	VAR2(32:29)
	COM (12:15)
	VAR3(6:0)
	COM (0:6),D=%1011100,T=%1110000
	INPUTMUX(3:0)
	COM (11:14),D=%TTFF
	REGLOAD
	COM (15:16),D=2,T=%LL
	HALTFF.SET
	COM (10)
	INV Statement

	VAR4
	COM (5:9),T=%HLHHL
	VAR5
	COM (10:13),T=%LLHH
	COM (0:3),T=%HLHL
	INV1
	INV (6:8)
	INV2
	INV VAR4=%HHHLL
	INV3
	INV VAR4(0:4)
	INV4
	INV (0:3)=%1100
	INV5
	INV VAR5(1:3)=%TFT
	INV6
	INV INV1,VAR5=%0110,INV4
	<input truth value> in invocation statement:

	TESTSIG.a
	INV (15:18)=%LLHL,T=%L
	TESTSIG.b
	INV (15:18)=%LLHH,T=%H
	...
	JUMP ABC IF TESTSIG.a=%F
	JUMP XYZ IF TESTSIG.b=%T
	EQU Statement

	<specifier> :=
	<command bit range>
	produces a <command variable>
	<command variable>
	produces a <command variable>
	<invocation variable>
	produces an <invocation variable>
	VAR10
	COM(10:20)
	INV10
	INV
	VAR10=$1D
	TURNON
	EQU
	%HLLHL

	ACCLR
	EQU
	$10
	SUB1(3:0)
	EQU
	VAR10(0:3);
	SUB1 is a 4�bit subfield of VAR10
	SAME10
	EQU
	INV10
	...
	CONT
	ABC
	EQU
	*+2;
	ABC is location of CRTN instruction + 2
	CRTN
	PROG statement:
	ORG statement:
	END statement:
	TITLE statement:
	The sequencer field

	<operation> ::=
	<I�field mnemonic>
	<I�field mnemonic>,PASS
	<I�field mnemonic>,FAIL
	<test condition> ::=
	<invocation variable>
	<invocation variable>=<test input value>
	ACZERO
	INV
	(4:7)=%1011,T=%H
	COMPARE
	INV
	(4:7)=%0010,T=%L
	...
	CJP
	XYZ IF ACZERO = %F
	CRTN
	IF COMPARE
	The Microinstruction Command List

	<command specification> ::=
	<command bit range>
	<command variable>
	<command bit range>=<field value>
	<command variable>=<field value>
	<invocation variable>
	Field
	range
	Description
	I (4 bits):
	0-3
	2910 instruction code field (I�field) (high-active
	X (4 bits)
	CCEN.L:
	4
	2910 Condition Code Enable (low�active)
	CIN:
	5
	2910 Carry In (high�active)
	CCFAIL:
	6
	Condition Code Fail (high�active)
	CCINV:
	7
	Condition Code Invert (high�active)
	D (12 bits):
	8�19
	2910 address field (D�field) (high�active)
	B (1 bit):
	20
	Breakpoint (high active)
	25
	1
	.
	.
	.
	.
	.
	.
	63
	39 (maximum)
	D (12 bits)
	I (4 bits)
	Input received from Logic Engine pipeline register.
	CC.L
	Input received from Logic Engine. Derived from Designer's Condition Code, CCINV, and CCFAIL.
	CCEN.L
	Input received from Logic Engine pipeline register.
	CI
	Input received from Logic Engine pipeline register. Programmer may specify the value through LEASMB.
	RLD.L
	Input available at 2910 chip on Logic Engine board. Not used by Logic Engine.
	OE.L
	Input controlled exclusively by Logic Engine.
	CP
	Input supplied exclusively by Logic Engine. Designer must supply the System Clock from which CP i...
	Y (12 bits)
	Output available on 60�pin flat�cable connector. Used by Logic Engine.
	FULL.L
	Output available at 2910 chip on Logic Engine board. Used by Logic Engine.
	PL.L
	Output available at 2910 chip on Logic Engine board. Used by Logic Engine.
	MAP.L
	Output available on the 2910 PLD. Not used by Logic Engine.
	VECT.L
	Output available on the 2910 PLD. Not used by Logic Engine.

	I. Logic Engine Programmer's Interface
	A. Introduction
	B. How the LEPI Works
	C. Low Level Interface Routines
	D. High Level Interface Routines
	E. Declaration File Syntax
	<dir>
	::=
	COM, LT, or SW
	The directive defines the type of field.
	<range>
	::=
	(n,m)
	n and m are integers and n is less than m. The range defines the signals in the field.
	::=
	(n)
	<truth values>
	::=
	T=<numeric value>
	The truth value defines the interpretation of the voltage of each signal in the field. If absent,...
	::=
	T=<voltage value>
	<default values>
	::=
	D=<numeric value>
	The default value defines the value each signal gets when it is not asserted. Used only for COM a...
	::=
	D=<voltage value>
	::=
	D=<logic value>
	<numeric value>
	::=
	[0-9]*
	decimal value
	::=
	$[0-9a-fA-F]*
	hexadecimal value
	::=
	%[01]*
	binary value
	<voltage value>
	::=
	%[HL]*
	high and low voltage values
	<logic values>
	::=
	%[TF]*
	true and false logic values
	F. Nomenclature
	Table 5: Switches
	Table 6: Lights 127-64
	Table 7: Lights 0-63
	Table 8: Pipeline

	G. Linking the Library

