{wo major ways,

The first is that rather than explicitly sending a congestion notificat
message to the source, RED is most commonly implemented such

as duplicate ACKs). As the “early” part of the RED acronym suggess,
gateway drops the packet earlier than it would have to, so as to noti

source that it should decrease its congestion window sooner than it would
normally have. In other words, the router drops a few packets before it has
- exhausted its buffer space completely, so as to cause the source to slow
down, with the hope that this will mean it does not have to drop lots of
Packets later on. Note that RED could easily be adapted to work with an
xplicit feedback scheme simply by marking a packet instead of dropping
as discussed in the sidebar on Explicit Congestion Notification.

_Explicit Congestion Notification (ECN)

- While current deployments of RED almost always signal congestion by drop-
ping packets, there has recently been much attention given to whether
| or not explicit notification is a better strategy. This has led to an effort to
{ standardize ECN for the Internet.
| The basic argument is that while dropping a packet certainly acts as a

| signal of congestion, and is probably the right thing to do for long-lived bulk

|| transfers, doing so hurts applications that are sensitive to the delay or loss of
one or more packets. Interactive traffic such as telnet and web browsing are
| prime examples. Learning of congestion through explicit notification is more

- appropriate for such applications.

Technically, ECN requires two bits; the proposed standard uses bits 6 and
.| 7inthe IP type of service (TOS) field. One is set by the source to indicate
~ that it is ECN capable; that is, it is able to react to a congestion notification.
he other is set by routers along the end-to-end path when congestion is
| encountered. The latter bit is also echoed back to the source by the destina-
| tion host. TCP running on the source responds to the ECN bit set in exactly
 the same way it responds to a dropped packet.
As with any good idea, this recent focus on ECN has caused people to
 stop and think about other ways in which networks can benefit from an ECN-
| style exchange of information between hosts at the edge of the networks

- and routers in the middle of the network, piggybacked on data packets. The
1B general strategy is sometimes called active queue management, and recent
research seems to indicate that it is particularly valuable to TCP flows that

ave large delay-bandwidth products. The interested reader can pursue the
~ relevant references given at the end of the chapter.

~ The second difference between RED and DECbit is in the details of
how RED decides when to drop a packet and what packet it decides to
(op To understand the basic idea, consider a simple FIFO queue. Rather
wait for the queue to become completely full and then be forced to
drop each arriving packet (the tail drop policy of Section 6.2.1), we could

decide to drop each arriving packet with some drop probability whey
the queue length exceeds some drop level. This idea is called early rqp,
drop. The RED algorithm defines the details of how to monitor the q '
length and when to drop a packet.

In the following paragraphs, we describe the RED algorithm ag
inally proposed by Floyd and Jacobson. We note that several m
cations have since been proposed both by the inventors and by ot
researchers; some of these are discussed in Further Reading. Howey
the key ideas are the same as those presented below, and most ¢
implementations are close to the algorithm that follows.

First, RED computes an average queue length using a weighted o
ning average similar to the one used in the original TCP timeout com
tation. That is, AvgLen is computed as >

AvgLen = (1 — Weight) x AvgLen + Weight x SamplelLen

where 0 < Weight < 1 and SampleLen is the length of the queue wh
a sample measurement is made. In most software implementations,
queue length is measured every time a new packet arrives at the gate
In hardware, it might be calculated at some fixed sampling interval.

The reason for using an average queue length rather than an instar
taneous one is that it more accurately captures the notion of congestio
Because of the bursty nature of Internet traffic, queues can become
very quickly and then become empty again. If a queue is spending mo
of its time empty, then it's probably not appropriate to conclude that th
router is congested and to tell the hosts to slow down. Thus, the weigh '
running average calculation tries to detect Jong-lived congestion, as ind
cated in the right-hand portion of Figure 6.15, by filtering out short-ter
changes in the queue length. You can think of the running average
low-pass filter, where Weight determines the time constant of the fil
The question of how we pick this time constant is discussed below. :

Second, RED has two queue length thresholds that trigger c€
activity: MinThreshold and MaxThreshold. When a packet arrives at
gateway, RED compares the current Avglen with these two thresh
according to the following rules:

if AvgLen < MinThreshold
— queue the packet

if MinThreshold < AvglLen < MaxThreshold
— calculate probability P

— drop the arriving packet with probability P

if MaxThreshold < AvgLen

— drop the arriving packet

1f the average queue length is smaller than the lower threshold, no action
:taken. and if the average queue length is larger than the upper thresh-
then the packet is always dropped. If the average queue length is
between the two thresholds, then the newly arriving packet is dropped
with some probability P. This situation is depicted in Figure 6.16. The
approximate relationship between P and AvglLen is shown in Figure 6.17.
Note that the probability of drop increases slowly when Avglen is
:g_% the two thresholds, reaching MaxP at the upper threshold, at
which point it jumps to unity. The rationale behind this is that, if AvgLen
ches the upper threshold, then the gentle approach (dropping a few
packets) is not working and drastic measures are called for: dropping
arriving packets. Some research has suggested that a smoother tran-

- Although Figure 6.17 shows the probability of drop as a function only
0f AvgLen, the situation is actually a little more complicated. In fact, P is

Queue length
|

Instantaneous

MaxThreshold MinThreshold
]

Avglen
M FIGURE 6.16 RED thresholds on a FIFO queue.
P{drop)
/
1.0 R
|
MaxP - o
e Avglen

T T
MinThresh MaxThresh

B FIGURE 6.17 Drop probability function for RED.

a function of both AvgLen and how long it has been since the last p:
was dropped. Specifically, it is computed as follows:

TempP = MaxP x (AvgLen — MinThreshold)/(MaxThreshold — MinThre:
P = TempP /(1 — count x TempP)

TempP is the variable that is plotted on the y-axis in Figure 6.17 ¢
keeps track of how many newly arriving packets have been queu!
dropped), and AvgLen has been between the two thresholds. P ¢
slowly as count increases, thereby making a drop increasingly likel
time since the last drop increases. This makes closely spaced dro
tively less likely than widely spaced drops. This extra step in caiC”I_ _
was introduced by the inventors of RED when they observed that ™=

he packet drops were not well distributed in time but instead tended
~cur in clusters. Because packet arrivals from a certain connection are
to arrive in bursts, this clustering of drops is likely to cause multiple
in a single connection. This is not desirable, since only one drop
pund-trip time is enough to cause a connection to reduce its window
‘whereas multiple drops might send it back into slow start.

an example, suppose that we set MaxP to 0.02 and count is ini-
ed to zero. If the average queue length were halfway between the
thresholds, then TempP, and the initial value of P, would be half of
P, or 0.01. An arriving packet, of course, has a 99 in 100 chance of
g into the queue at this point. With each successive packet that
not dropped, P slowly increases, and by the time 50 packets have
ed without a drop, P would have doubled to 0.02. In the unlikely
nt that 99 packets arrived without loss, P reaches 1, guaranteeing that
next packet is dropped. The important thing about this part of the
lgorithm is that it ensures a roughly even distribution of drops over

The intent is that, if RED drops a small percentage of packets when
AvgLen exceeds MinThreshold, this will cause a few TCP connections to
uce their window sizes, which in turn will reduce the rate at which
kets arrive at the router. All going well, AvgLen will then decrease
| congestion is avoided. The queue length can be kept short, while
roughput remains high since few packets are dropped.

Note that, because RED is operating on a queue length averaged over
e, itis possi'ble for the instantaneous queue length to be much longer
Avglen. In this case, if a packet arrives and there is nowhere to put

then it will have to be dropped. When this happens, RED is operating
: drop mode. One of the goals of RED is to prevent tail drop behavior
0ssible.

€ random nature of RED confers an interesting property on the algo-
- Because RED drops packets randomly, the probability that RED
tdes to drop a particular flow’s packet(s) is roughly proportional to the
fe of the bandwidth that that flow is currently getting at that router.
'S1s because a flow that is sending a relatively large number of packets
br Oviding more candidates for random dropping. Thus, there is some

of fair resource allocation built into RED, although it is by no means
=Clse,

Note that a fair amount of analysis has gone into setting the various Rg
parameters—for example, MaxThreshold, MinThreshold, MaxP, and Weight
all in the name of optimizing the power function (throughput-to-delay ratio). Tha
performance of these parameters has also been confirmed through simulation
and the algorithm has baen shown not to be overly sensitive to them. Itis impor-4)
tant to keep in mind, however, that all of this analysis and simulation hinges o
a particular characterization of the network workload. The real contribution
RED is a mechanism by which the router can more accurately manage its quey
length. Defining precisely what constitutes an optimal queue length depends g
the traffic mix and is still a subject of research, with real information now beiﬁ
gathered from operational deployment of RED in the Internet.

Consider the setting of the two thresholds, MinThreshold and Max
Threshold. If the traffic is fairly bursty, then MinThreshold should be s
ciently large to allow the link utilization to be maintained at an acceptab
high level. Also, the difference between the two thresholds should
larger than the typical increase in the calculated average queue le
in one RTT. Setting MaxThreshold to twice MinThreshold seems to be
reasonable rule of thumb given the traffic mix on today’s Internet.
addition, since we expect the average queue length to hover between t
two thresholds during periods of high load, there should be enough fr
buffer space above MaxThreshold to absorb the natural bursts that occ
in Internet traffic without forcing the router to enter tail drop mode. ..

We noted above that Weight determines the time constant for the
ning average low-pass filter, and this gives us a clue as to how we mig
pick a suitable value for it. Recall that RED is trying to send signal

diately forwards some more packets from the same connection.
those packets arrive at the receiver, it starts sending duplicate AC
the sender. When the sender sees enough duplicate ACKs, it will re
its window size. So, from the time the router drops a packet until
time when the same router starts to see some relief from the affec
connection in terms of a reduced window size, at least one round
time must elapse for that connection. There is probably not much pois
in having the router respond to congestion on time scales much 1

than the round-trip time of the connections passing through it. As DO%
previously, 100 ms is not a bad estimate of average round-trip times

e Internet. Thus, Weight should be chosen such that changes in queue
* jength over time scales much less than 100 ms are filtered out.

=1

~ gince RED works by sending signals to TCP flows to tell them to slow
" qown, you might wonder what would happen if those signals are ignored.
' This is often called the unresponsive flow problem, and it has been a mat-
ﬁl er of some concern for several years. Unresponsive flows use more than
iheir fair share of network resources and could cause congestive collapse
?": there were enough of them, just as in the days before TCP congestion

_ontrol. Some of the techniques described in Section 6.5 can help with
" {his problem by isolating certain classes of traffic from others. There is

\ 4lso the possibility that a variant of RED could drop more heavily from

* flows that are unresponsive to the initial hints that it sends; this continues
Wi .
- fobe an area of active research.

