
Getting started with SMVK. L. McMillanCadence Berkeley Labs2001 Addison St.Berkeley, CA 94704USAmcmillan@cadence.comMarch 23, 1999

AbstractThis tutorial introduces the SMV veri�cation system. It includes examples of tem-poral logic model checking, and re�nement veri�cation, including techniques of circularcompositional proof, temporal case splitting, symmetry reduction, data type reductionand induction.

c1998 Cadence Berkeley Labs, Cadence Design Systems.0

1 IntroductionThis is a short tutorial introduction to SMV, a veri�cation system for hardware designs. SMVis a formal veri�cation tool, which means that when you write a speci�cation for a givensystem, it veri�es that every possible behavior of the system satis�es the speci�cation. Thisis in contrast to a simulator, which can only verify the system's behavior for the particularstimulus that you provide.A speci�cation for SMV is a collection of properties. A property can be as simple asa statement that a particular pair of signals are never asserted at the same time, or itmight state some complex relationship in the values or timing of the signals. Properties arespeci�ed in a notation called temporal logic. This allows concise speci�cations about temporalrelationships between signals. Temporal logic speci�cations about �nite state systems canbe automatically formally veri�ed by a technique called model checking.SMV is quite e�ective in automatically verifying properties of combinational logic andinteracting �nite state machines. Sometimes, when checking properties of complex controllogic, the veri�er will produce a counterexample. This is a behavioral trace that violatesthe speci�ed property. This makes SMV a very e�ective debugging tool, as well as a formalveri�cation system.Model checking by itself is limited to fairly small designs, because it must search everypossible state that a system can reach. For large designs, especially those including sub-stantial data path components, the user must break the correctness proof down into partssmall enough for SMV to verify. This is known as compositional veri�cation. SMV providesa number of tools to help the user reduce the veri�cation of large, complex systems to small�nite state problems. These techniques include re�nement veri�cation, symmetry reduction,temporal case splitting, data type reduction, and induction.This tutorial will introduce all of the above techniques by example.2 Modeling, specifying and verifyingWe will start with some very simple examples, to illustrate the process of entering a model,specifying properties, and running SMV to verifying them. You can enter the examplesyourself, using a text editor (and thus become acquainted with SMV's response to syntaxerrors). Or, if you are reading this tutorial on-line, you can follow the hyperlinks to thecorresponding �les.Consider, for example, the following description of a very simple combinational circuit,with some assertions added. This example is written in SMV's native language. Use a texteditor to enter the following program into a �le called \prio.smv".module main(req1,req2,ack1,ack2){ input req1,req2 : boolean;output ack1,ack2 : boolean;ack1 := req1;ack2 := req2 & ~req1; 1

mutex : assert ~(ack1 & ack2);serve : assert (req1 | req2) -> (ack1 | ack2);waste1 : assert ack1 -> req1;waste2 : assert ack2 -> req2;} This example shows most of the basic elements of an SMV module. The module has fourparameters, req1, req2, ack1 and ack2, of which the former two are inputs, and the lattertwo outputs. It contains:� Type declarations. In this case the signals req1, req2, ack1 and ack2 are declared tobe of type boolean.� Signal assignments. These give logic functions for outputs ack1 and ack2 in terms ofinputs req1 and req2.� Assertions. These are properties to be proved.The program models a (highly trivial) two bit priority-based arbiter, which could beimplemented with a two-gate circuit. The assert statements specify a number of propertiesthat we would like to prove about this circuit. For example, the property called mutex saysthat outputs ack1 and ack2 are not true at the same time. Note that & stands for logical\and" while ~ stands for logicol \not". The property serve says that if either input req1or req2 is true, then one of the two outputs ack1 or ack2 is true. Note that | stands forlogical \or", while -> stands for \implies". Logically, a -> b is equivalent to ~a | b, andcan be read \a implies b" or \if a then b".We would like to verify these speci�cations formally, that is, for all possible input patterns(of which in this case there are only four). To do this under Unix, enter the following shellcommand:vw prio.smvOn a PC under Windows, double-click the icon for the �le \prio.smv". This will startthe SMV viewer, called \vw", with the �le \prio.smv". This interface has a number oftabbed pages, which can be accessed by clicking an the appropriate tab. When you start theinterface, you see the browser, which is a tree representation of all the signals and assertionsin your source �le, and the source page, which shows the source �le. If you made a syntaxerror in the source �le, this error will be pointed out on the source page. Correct the error,and then choose \Reopen" from the \File" menu.If you have no syntax errors, expand top level in the browser by double-clicking it, orby clicking the + icon. The + indicates that top level has children which are not currentlyvisible. You should see under top level the names of all the signals and properties in yoursource �le. Since none of these has children, they will not be marked with a +. Select oneof these, and notice the highlight in the source page moves to the location in the programwhere that signal or property is declared. Select the signal ack2, and then in the source2

page, select \Where assigned" in the \Show" menu. The souce line where ack2 is assignedwill now be highlighted.Now select \Verify all" from the \Prop" menu. SMV veri�es the four properties in ourprogram. The results page now shows the results of this veri�cation run. In this case, allthe properties are true.Now let's modify the design so that one of the speci�cations is false. For example, changethe lineack1 := req1;to ack1 := req1 & ~req2;Save the modi�ed text �le and choose \Reopen" from the \File" menu (or, if you are on-line,just click here to save typing). Then select \Prop|Verify all" again. Notice that this timethe property serve is false. Also note, not all of the properties appear in the results pane.This is because SMV stops when it reaches the �rst property that is false. Thus, not all theproperties were checked.When a property is false, SMV produces a counterexample that shows a case when itdoesn't hold. To see the counterexample for serve, select it in the results page by clickingon it. The trace page will appear, showing a counterexample { a truth assignment to all thesignals that shows that our property is false. The counterexample shows the case when bothinputs are true and both outputs are false.The veri�er keeps track of which properties have been veri�ed since the most recentsource �le change. You can see which properties have been veri�ed thus far, by selecting theproperties page. Currently only mutex is veri�ed. To verify waste1, for example, click onit in the properties page, and then choose \Verify waste1" from the \Prop" menu. Noticethat only the property you select is veri�ed in this case. The name of the property that iscurrently selected appears at the bottom of the window.2.1 Sequential circuits and temporal propertiesTo specify sequential circuits, we need to be able to make statements about how signalsevolve over time. SMV uses a notation called temporal logic for this purpose. Temporal logicformulas are like formulas in ordinary boolean logic, except that truth value of a formulain temporal logic is a function of time. Some new operators are added to the traditionalboolean operators \and", \or", \not" and \implies", in order to specify relationships in time.For example, the F operator is used to express a condition that must hold true at sometime in the future. The formula F p is true at a given time if p is true at some later time.On the other hand, G p means that p is true at all times in the future. Usually, we read Fp as \eventually p" and G p as \henceforth p".In addition, we have the \until" operator and the \next time" operator. The formula pU q, which is read \p until q" means that q is eventually true, and until then, p must alwaysbe true. The formula X p means that p is true at the next time.Here are the exact de�nitions of the temporal logic operators, with example time linesshowing the states when they hold true: 3

� The \globally" operator: G p is true at time t if p is true at all t0 � t.
p p p p p...ppppp

Gp...� The \future" operator: F p is true at time t if p is true at some t0 � t.
p p pp

Fp... ...Fp� The \until" operator: p U q is true at time t i�{ q is true at some t0 � t, and{ p is true in the range [t; t0)
p p pp

pUq... ...pUq

p qpp� The \next time" operator: X p is true at time t if p is true at time t+ 1.As an example, suppose we are designing a bus arbiter with two \grant" signals, ack1and ack2. Among other things, we want to specify that the two grant signals are neverasserted at the same time. In temporal logic, we would write G ~(ack1 & ack2). The Goperator is used to say that our speci�cation should hold true at all times. This is neededbecause SMV interprets \assert" statements to hold at the initial state of execution of theprogram. If we wrote only ~(ack1 & ack2), SMV would interpret this only to mean thatboth grants may not be asserted at time t = 0.Return to our original example, and edit the four properties we speci�ed so that theybegin with the G operator. Make sure to undo the error we introduced in the previous section.You should have something like this:module main(req1,req2,ack1,ack2){ input req1,req2 : boolean;output ack1,ack2 : boolean;ack1 := req1;ack2 := req2 & ~req1;mutex : assert G ~(ack1 & ack2);serve : assert G ((req1 | req2) -> (ack1 | ack2));waste1 : assert G (ack1 -> req1); 4

waste2 : assert G (ack2 -> req2);} Open the �le and choose \Prop|Verify all" again to con�rm that the properties wespeci�ed in fact hold true for all time. This is because the two logic equations we wrotefor ack1 and ack2 hold implicitly for all time. Now let's write a more interesting temporalspeci�cation. Suppose we want to use our priority circuit as a bus arbiter. In addition tothe above properties, we would like to avoid \starvation" of the low priority requester. Thatis, we don't want req2 to be asserted forever while ack2 is never asserted. Put another way,we want it to always eventually be true that either req2 is negated or ack2 is asserted. Intemporal logic, we write \always eventually" by combining G and F. In this case we assert:G F (~req2 | ack2). Therefore, add the following speci�cation to the program:no_starve : assert G F (~req2 | ack2);Now open the new version and verify the property no starve. The property should befalse, and a counterexample trace with one state should appear in the trace page. Noticethat the state number is marked with \repeat" signs, thus: |: 1 :|. This is to indicatethat the �rst state repeats forever. In this state, both req1 and req2 are asserted. Sincereq1 has priority, ack2 is never asserted, hence requester 2 \starves".As an aside, you might also have observed that the signal ack1 doesn't appear in thetrace. This is because SMV noticed that the property no starve doesn't actually depend onthis signal, so it left ack1 out of its analysis. The set of signals that a property depends on isreferred to as the cone of that property. When you have selected a given property to verify,you can view the cone of that property by clicking the \Cone" tab. In this case, you'll noticethat the signals req1 and req2 are listed as \free". This is because they are unconstrainedinputs to the circuit, and thus are free to take on any values in their type. These signals eachcontribute one \combinational" variable to the veri�cation problem. SMV must verify theproperty you speci�ed for all possible combinations of these variables. Thus, it is generallybest to keep the number of variables in the cone small, when possible.Now, to prevent this starvation case, let's add a latch to the circuit that rememberswhether ack1 was asserted on the previous cycle. In this case we'll give priority to requester 2instead. To do this, add the following code to the program:bit : boolean;next(bit) := ack1;The above means that bit is a boolean variable, and that the value of bit at time t+ 1is equal to the value of ack1 at time t. This is how a state variable (or a register, if you like)is represented to SMV { as an equation involving one time unit of delay. Now, replace thede�nitions of ack1 and ack2 with the following:if (bit) {ack1 := req1 & ~req2;ack2 := req2;} 5

else {ack1 := req1;ack2 := req2 & ~req1;}That is, when bit is set, we reverse the priority order. Note that even though this may looklike a sequential program, it really represents two simultaneous equations. If you like, youcan write the same thing instead like this:ack1 := bit ? req1 & ~req2 : req1;ack2 := bit ? req2 : req2 & ~req1;Now open the new version and verify property no starve. It should be true. By the way,you might have noticed that we didn't specify an initial (i.e. reset) value for the register bit.In fact, SMV veri�ed no starve for both possible initial values. If you check the \Cone"panel, you'll notice that there are now two combinational variables (the inputs) and onestate variable (the signal bit).2.2 A three-way arbiterNow let's try to apply the same idea to a three-way bus arbiter. In this version, we will haveone latched bit for each requester. This bit holds a one when the corresponding requesterwas granted the bus on the previous cycle. We'll still use a �xed priority scheme, but if agiven request was granted on the previous cycle, we'll give it lowest priority on the currentcycle. Thus, if the bit for a given requester is set, its request is served only if no others arerequesting. Further, the requester with its bit set does not inhibit lower priority requesters.Here is one attempt at such an arbiter:module main(req1,req2,req3,ack1,ack2,ack3){ input req1,req2,req3 : boolean;output ack1,ack2,ack3 : boolean;bit1,bit2,bit3 : boolean;next(bit1) := ack1;ack1 := req1 & (bit1 ? ~(req2 | req3) : 1);next(bit2) := ack2;ack2 := req2 & (bit2 ? ~(req1 | req3) : ~(req1 & ~ bit1));next(bit3) := ack3;ack3 := req3 & (bit3 ? ~(req2 | req3) :~(req2 & ~bit2 | req1 & ~bit1));} The speci�cations for the three-way arbiter are as follows:6

mutex : assert G ~(ack1 & ack2 | ack1 & ack3 | ack2 & ack3);serve : assert G ((req1 | req2 | req3) -> (ack1 | ack2 | ack3));waste1 : assert G (ack1 -> req1);waste2 : assert G (ack2 -> req2);waste3 : assert G (ack3 -> req3);no_starve1 : assert G F (~req1 | ack1);no_starve2 : assert G F (~req2 | ack2);no_starve3 : assert G F (~req3 | ack3);They are similar to the two-way case, but note that in mutex we consider all pairs. Also,we've speci�ed non-starvation for all of the requesters, just in case. Save this program in a�le (you can put the speci�cations anywhere inside the module declaration { statement orderis irrelevant in SMV). Then open the �le and choose \Verify all". You should get a falseresult for no starve3. Click on no starve3 and observe the counterexample trace. This isan example of a \livelock". The last two states in the counterexample repeat forever. Noticethat requesters 1 and 2 are served alternately while requester 3 starves.In fact, there is another error in the design. If you select the serve property and try toverify it, you'll �nd that serve can be false in the initial state. This occurs if more thanone of the bits are true initially. We could rule this out by specifying initial values for thesebits, as follows:init(bit1) := 0;init(bit2) := 0;init(bit3) := 0;Alternatively, if we don't care if no one gets served in the initial state, we can changethe speci�cation. In temporal logic X p means that p is true at the \next" time. Thus, forexample X G p means that p holds from the second state onward. Thus, we could changethe speci�cation to:serve : assert X G ((req1 | req2 | req3) -> (ack1 | ack2 | ack3));As an exercise, you might want to try designing and verifying a three-way arbiter thatsatis�es all the speci�cations above.2.3 A tra�c light controllerNow we'll consider a slightly more complex example that uses some additional features ofSMV's language. The example is a controller that operates the tra�c lights at an intersectionwhere two-way street running north and south intersects a one-way street running east. Thegoals are to design the controller so that collisions are avoided, and no tra�c waits at a redlight forever.The controller has three tra�c sensor inputs, N Sense, S Sense and E Sense, indicatingwhen a car is present at the intersection traveling in the north, south and east directionsrespectively. There are three outputs, N Go, S Go and E Go, indicating that a green lightshould be given to tra�c in each of the three directions.7

module main(N_Sense,S_Sense,E_Sense,N_Go,S_Go,E_Go){input N_Sense,S_Sense,E_Sense : boolean;output N_Go,S_Go,E_Go : boolean;In addition, there are four internal registers. The register NS Lock is set when tra�c isenabled in the north or south directions, and prevents east-going tra�c from being enabled.The three bits N Req, S Req, E Req are used to latch the tra�c sensor inputs.NS_Lock, N_Req, S_Req, E_Req : boolean;The registers are initialized as follows:init(N_Go) := 0;init(S_Go) := 0;init(E_Go) := 0;init(NS_Lock) := 0;init(N_Req) := 0;init(S_Req) := 0;init(E_Req) := 0;In modeling the tra�c light controller's behavior, we will use two new SMV statements. Thecase statement is a conditional form. The sequence:case{cond1 : {block1}cond2 : {block2}cond3 : {block3}}is equivalent toif (cond1) {block1}else if (cond2) {block2}else if (cond3) {block3}In addition, we will use the default construct to indicate that certain assignments are tobe used as defaults when the given signals are not assigned in the code that follows. In asequence like this:default {block1}in {block2}assignments in block2 take precedence over assignments in block1. SMV enforces a \singleassignment rule", meaning that only one assignment to a given signal can be active at anytime. Thus, if we have more than one assignment to a signal, we must indicate which of thetwo takes precedence in case both apply.Now, returning to the tra�c controller, if any of the sense bits are true, we set thecorresponding request bit: 8

default{if(N_Sense) next(N_Req) := 1;if(S_Sense) next(S_Req) := 1;if(E_Sense) next(E_Req) := 1;}The code to operate the north-going light is then as follows:in default case{N_Req & ~N_Go & ~E_Req : {next(NS_Lock) := 1;next(N_Go) := 1;}N_Go & ~N_Sense : {next(N_Go) := 0;next(N_Req) := 0;if(~S_Go) next(NS_Lock) := 0;}}This says that if a north request is latched, and the north light is not green and there is noeast request, then switch on the north light and set the lock (in e�ect, we give priority tothe east tra�c). If the north light is on, and there is no more north tra�c, switch o� thelight, clear the request, and switch o� the lock. Note however, that if the south light is on,we don't switch the lock o�. This is to prevent south and east tra�c from colliding. Thesouth light code is similar:in default case{S_Req & ~S_Go & ~E_Req : {next(NS_Lock) := 1;next(S_Go) := 1;}S_Go & ~S_Sense : {next(S_Go) := 0;next(S_Req) := 0;if(~N_Go) next(NS_Lock) := 0;}}Finally, the east light is switched on whenever there is an east request, and the lock is o�.When the east sense input goes o�, we switch o� the east light and reset the request bit:in case{E_Req & ~NS_Lock & ~E_Go : next(E_Go) := 1;E_Go & ~E_Sense : {next(E_Go) := 0;next(E_Req) := 0; 9

}}There are two kinds of speci�cation we would like to make about the tra�c light controller.The �rst is a \safety" speci�cation that say that lights in cross directions are never on atthe same time:safety: assert G ~(E_Go & (N_Go | S_Go));The second is a \liveness" speci�cation, for each direction, which says that is the tra�csensor is on for a given direction, then the corresponding light is eventually on, thus notra�c waits forever at a read light:N_live: assert G (N_Sense -> F N_Go);S_live: assert G (S_Sense -> F S_Go);E_live: assert G (E_Sense -> F E_Go);Note, however, that our tra�c light controller is designed so that it depends on drivers notwaiting forever at a green light. We want to verify the above properties given that thisassumption holds. To do this, we write some \fairness constraints", as follows:N_fair: assert G F ~(N_Sense & N_Go);S_fair: assert G F ~(S_Sense & S_Go);E_fair: assert G F ~(E_Sense & E_Go);Each of these assertions states that, always eventually, it is not the case that a car is at agreen light. To tell SMV to assume these \fairness" properties when proving the \liveness"properties, we say:using N_fair, S_fair, E_fair prove N_live, S_live, E_live;assume E_fair, S_fair, N_fair;}Because of the assume statement, the fairness constraints themselves will simply be leftunproved. Now, open this �le and try to verify the property safety. The result should be\false", and in the \Trace" panel, you should see a counterexample trace in which the southlight goes o� exactly at the time when the north light goes on. The result is that the lockbit is cleared. This is because the code for the south light takes precedence over the codefor the north light, due to our use of default. With the north light on and the lock cleared,the east light can now go on, violating the safety property.To �x this problem, let's change the south light code so that it tests to see whether thatnorth light is about to go on before clearing the lock. Here is the revised code for the southlight:in default case{S_Req & ~S_Go & ~E_Req : {next(NS_Lock) := 1;next(S_Go) := 1; 10

}S_Go & ~S_Sense : {next(S_Go) := 0;next(S_Req) := 0;if(~(N_Go | N_Req & ~N_Go & ~E_Req)) next(NS_Lock) := 0;}}Open this new version and verify the property safety. It should be true. Now try to verifyN live. It should come up false, with a counterexample showing a case where both the northand south lights are going o� at exactly the same time. In this case neither the north codenor the south code clears the lock, because each thinks that the other light is still on. Asa result, the lock remains on, which prevents an east request from being served. Since theeast request takes priority over north and south requests, the controller is deadlocked, andremains in the same state inde�nitely (note the \repeat signs" on the last state).To �x this problem, we'll give the north light controller the responsibility to turn o� thelock when both lights are going o�. Here's the new north light code:in default case{N_Req & ~N_Go & ~E_Req : {next(NS_Lock) := 1;next(N_Go) := 1;}N_Go & ~N_Sense : {next(N_Go) := 0;next(N_Req) := 0;if(~S_Go | ~S_Sense) next(NS_Lock) := 0;}}Open this new version and verify the properties safety, N live, S live and E live. Theyshould all be true. Note that if you try to verify the fairness constraints N fair, S fairand E fair, they will come up false. These are unprovable assumptions that we made indesigning the controller. However, if we used the controller module in a larger circuit, wecould (and should) verify that the environment we put the controller into actually satis�esthese properties. In general, it's best to avoid unproved assumptions if possible, since if anyof these assumptions is actually false, all the properties we \proved" are invalid.3 Symbolic model checkingA model checker veri�es a property by building a graph of all of the states in the model. InSMV, the number of states in the model is 2n, where n is the number of state variables inthe cone of the property. In fact, it is only necessary for the model checker to consider thestates that are \reachable" from an initial state. However, as you might expect, the amountof computational e�ort required to verify a property still tends to grow very rapidly withthe number of state variables. This is known as the \state explosion problem".11

To address this problem, SMV uses a structure called a \Binary Decision Diagram"(BDD) to implicitly represent the state graph of the model, and sets of states satisfying givenproperties. For some models and properties, the use of BDD's (implicit enumeration) allowsSMV to handle models with many orders of magnitude more states than could be handledby considering individual states (explicit enumeration). First, we see a simple example of acircuit with a very large number of states that can still be handled e�ciently using BDD's.Later we'll consider what to do when a direct approach using BDD's doesn't work.3.1 A bu�er allocation controllerThis example is designed to control the allocation and freeing of bu�ers in, for example,a packet router. The controller keeps an array of \busy" bits, one for each available databu�er. The busy bit is true when the bu�er is in use, and false otherwise. An input allocindicates a request to allocate a new bu�er for use. If there is a bu�er available, the controlleroutputs the index of this bu�er on a signal alloc addr. If there is no bu�er available, itasserts an output nack. To make the circuit a little more interesting, we'll add a counterthat keeps track of the number of busy bits that are set. Thus nack is asserted when thecount is equal to the total number of bu�ers. To begin with, we'll de�ne the number ofbu�ers to be 32, using a C-style macro de�nition:#define SIZE 32module main(alloc,nack,alloc_addr,free,free_addr){ input alloc : boolean;output nack : boolean;output alloc_addr : 0..(SIZE - 1);input free : boolean;input free_addr : 0..(SIZE - 1);busy : array 0..(SIZE - 1) of boolean;count : 0..(SIZE);init(busy) := [0 : i = 0..(SIZE-1)];init(count) := 0;Note that we initialized busy to a vector of 32 zeros using an iterator expression. Here isthe logic for the counter and the nack signal. Notice, we add one to the counter when thereis an allocation request and nack is not asserted. We subtract one from the counter whenthere is a free request, and the bu�er being freed is actually busy. Note, if we didn't checkto see that the freed bu�er is actually busy, the counter could get out of sync with the busybits.nack := alloc & (count = SIZE);next(count) := count + (alloc & ~nack) - (free & busy[free_addr]);Next we handle the setting and clearing of the busy bits. We use a default statementto indicate that, if a given bu�er is being both freed and allocated at the same time, theallocation request takes precedence. 12

default{if(free) next(busy[free_addr]) := 0;} in {if(alloc & ~nack) next(busy[alloc_addr]) := 1;}Finally, we choose a bu�er to allocate using a priority encoder. This is most easily generatedusing the chain constructor. This repeats a given block of statements for a range of indexvalues, given precedence to later iterations. So, for examplechain (i = 0; i < 3; i = i + 1) block(i)is equivalent todefault block(0) in default block(1) in default block(2)Our priority encoder is de�ned as follows:chain(i = (SIZE - 1); i >= 0; i = i - 1){if(~busy[i]) alloc_addr := i;}Since the last statement in the chain is the case i = 0, we e�ectively give highest priorityto bu�er 0. Note, in the case when all bu�ers are busy, alloc addr in not assigned, andthus remains unde�ned.Now, we consider the problem of specifying the bu�er allocator. We will write a separatespeci�cation for each bu�er, stating that the given bu�er is never allocated twice withoutbeing freed in the interim. This is a technique known as \decomposition", that is, breakinga complex speci�cation of a system into smaller parts that can be veri�ed separately. Tomake it simpler to state the speci�cation, it helps to de�ne some additional signals: a bitallocd[i] to indicate that bu�er i is currently being allocated, and a bit freed[i] toindicate that bu�er i is currently being freed:for(i = 0; i < SIZE; i = i +1){allocd[i], freed[i] : boolean;allocd[i] := alloc & ~nack & alloc_addr = i;freed[i] := free & free_addr = i;}Note, we used a for constructor to make an instance of these de�nitions for each bu�er i.To write the speci�cation that a bu�er is not allocated twice, we can use \until" operator oftemporal logic. Recall that the formula p U q in temporal logic means that q is eventuallytrue, and until then, p must always be true.for(i = 0; i < SIZE; i = i +1){safe[i] : assert G (allocd[i] -> ~ X ((~freed[i]) U allocd[i]));}} 13

Here we state that, if bu�er i is allocated, then it is not the case that, starting at the nexttime, it remains unfreed until it is allocated a second time.Now, let's verify this speci�cation. Open the �le and verify the property safety[0]. Thisshould take something under a minute. If you watch the log output during the veri�cationprocess, you'll notice that it is reporting a sequence of \iterations". These are the stepsof a breadth-�rst search of the model's state space, starting from the initial states. Thenumbers reported are the sizes of the BDD's representing the set of states reached thus farin the search. The size of the BDD's can be much smaller than the number of states in theset. To see this, select \Prop|State count". This will rerun the veri�cation and report thenumber of states reached at each iteration. The �nal number of states reached in this caseis something over two billion.Now let's increase the number of bu�ers from 32 to 64. Change the de�nition of SIZE atthe beginning of the program to#define SIZE 64Open the new version, select the property safety[0], and then select \Prop|State count".This will verify the property, and also compute the number of states reached. You mightwant to go make a cup of co�ee at this point, since the computation will take ten or twentyminutes. The only point to be made here is that the number of states reached is on theorder of 1019, while the BDD representing this set of state has about 4000 \nodes". Thisshows that the BDD's can be a very compact representation for large sate sets. Sometimes,this makes it possible to verify a model, even though the number of states is much too largeto be searched \explicitly" (i.e. larger than the number of atoms in the universe).There is no guarantee, however, that SMV's BDD-based algorithms will be able solvea given veri�cation problem. This is because the problem is SMV is trying to solve isfundamentally hard (PSPACE complete, to be precise). On the other hand, when SMVfails to solve a veri�cation problem (or when we run out of patience waiting for it to solvethe problem), there are usually many ways to make the problem simpler for SMV to solve.This usually involves decomposition { breaking big problems into small problems, and thenlocalizing the veri�cation of each subproblem to a small part of the overall model. Thistechnique is described in the following section.4 Re�nement veri�cationRe�nement veri�cation is methodology of verifying that the functionality of an abstractsystem model is correctly implemented by a low-level implementation. It can be used, forexample, to verify that a packet router or bus protocol, modeled at the clock-cycle level,correctly implements a given abstract model of end-to-end data transfer. Similarly one canverify that a clock-accurate model of a pipelined, out-of-order processor correctly implementsa given instruct-set architecture (i.e., a programmer's model of a machine).By breaking a large veri�cation problem into small, manageable parts, the re�nementmethodology makes it possible to verify designs that are much too large to be handled directlyby model checking. This decomposition of the veri�cation problem is enabled by specifyingre�nement maps that translate the behavior of the abstract model into the behavior of given14

ABSTRACT MODEL

IMPLEMENTION
COMPONENT

REFINEMENT MAPS

Figure 1: Re�nement mapsinterfaces and structures in the low-level design. This makes it possible to verify small partsof the low-level design in the context of the abstract model. Thus, the proof obligations canbe reduced to a small enough scale to be veri�ed by model checking.SMV supports this methodology by allowing one to specify many abstract de�nitionsfor the same signal. A new construct called a \layer" is introduced for this purpose. Alayer is a collection of abstract signal de�nitions. A layer can, for example, de�ne low-levelimplementation signals as a function of abstract model signals, and thus provide a re�nementmap (i.e., a translation between abstraction levels). The low-level implementation of a signalmust be simultaneously consistent with all of its abstract de�nitions. Thus, each abstractde�nition entails a veri�cation task { to show that every implementation behavior is allowedby this de�nition. For the purpose of this veri�cation task, one may use whichever abstractde�nition is most convenient for de�ning of the other signals. Suppose, for example, thatwe have abstract de�nitions of both the inputs and outputs of a given low-level block as afunction of a high-level model, as depicted in �gure 1. We can use the abstract de�nitionsof the inputs to drive the inputs of the block from the high-level model when verifying thatthe outputs are consistent with their abstract de�nitions. Thus, the abstract model providesthe context (or environment) for verifying the block, and we do not need to consider theremainder of the low-level model.SMV also supports design by a successive re�nement. One can de�ne a sequence of layers,each of which is more detailed than the previous layer. The implementation of each signalis given by the lowest-level de�nition in the hierarchy.4.1 LayersA layer is a collection of abstract signal de�nitions. These are expressed as assignments inexactly the same way that the implementation is de�ned, except that they are bracketed by15

a layer statement, as follows:layer <layer_name> : {assignment1;assignment2;...assignmentn;}where each assignment is of the form<signal> := <expression>;or next(<signal>) := <expression>;or init(<signal>) := <expression>;High level control structures, such as if, switch and for can also be used inside a layerconstruct, since these are simply \syntactic sugar" for assignments of the above form.The layer declaration is actually a formal speci�cation, which states that every imple-mentation behavior must be consistent with all of the given assignments. If this is the case,we say the implementation re�nes the speci�cation.As an example, let's consider a very simple example of a speci�cation and implementationof a �nite state machine:module main(){x : boolean;/* the specification */layer spec: {init(x) := 0;if(x=0) next(x) := 1;else next(x) := {0,1};}/* the implementation */init(x) := 0;next(x) := ~x;}
16

Note that spec is not a keyword here { it is just an arbitrary name given to our speci�cation.This speci�cation is nondeterministic, in that at state 1, it may transition to either state 0or state 1. The implementation on the other hand has only one behavior, which alternatesbetween state 0 and state 1. Since this is one possible behavior of spec, the speci�cationspec is satis�ed.If you enter this example into a �le, and open the �le with vw, you will �nd in theProperties page a single entry named x//spec. This is a notation for \the de�nition of signalx in layer spec". It appears in the Properties page because it is an obligation to be veri�ed,rather than a part of the implementation. You can verify it by selecting \Prop|Verifyall". SMV does this by translating the assignment into an initial condition and transitioninvariant. The former states that x is 0 at time t = 0, while the latter states that the valueof x at time t+ 1 is 1 if x is 0 at time t, and else is either 0 or 1. The implementation mustsatisfy these two conditions, which are veri�ed by exhaustive search of the state space of theimplementation.If more than one signal is assigned in a layer, then the two de�nitions are veri�ed sep-arately. This is known as decomposition. The reason for using decomposition is that wemay be able to use a di�erent abstraction of the implementation to prove each componentof the speci�cation. As a very simple example, consider the following program:module main(){x,y : boolean;/* the specification */layer spec: {x := 1;y := 1;}/* the implementation */init(x) := 1;next(x) := y;init(y) := 1;next(y) := x;}Both state bits in the implementation start at 1, and at each time they swap values. Thus,the speci�cation is easily seen to be satis�ed { both x and y are always equal to 1. If you openthis example with vw, you will �nd two entries in the Properties page: x//spec and y//spec.Each of these can be veri�ed separately (�.e., we can verify separately that x is always equalto 1 and that y is always equal to 1). Suppose we want to verify x//spec (select it in theProperties page). We now have two choices: we can use either the speci�cation de�nition of yor the implementation de�nition y. Note, however, that if we use the speci�cation de�nitionof y, we eliminate one state variable from the model, since y is de�ned to be identically 1.17

Thus, by decomposing a speci�cation into parts, and using one part as the \environment"for another, we have reduced the number of state variables in the model, and thus reducedthe veri�cation cost (though it is in any event trivial in this case). In fact, if you click onthe Cone tab in vw, you will see that SMV has selected layer spec to de�ne y, and that asa result, y is not a state variable. This is because SMV assumes by default that it is betterto use an abstract de�nition of a signal than a detailed one. Select \Prop|Verify x//spec"to verify the property using this abstraction.Note that y//spec can now be veri�ed using x//spec to de�ne x. This might at �rstseem to be a circular argument. However, SMV avoids the potential circularity by onlyassuming y//spec holds up to time t� 1 when verifying x//spec at time t, and vice versa.Because of this behavior, we need not be concerned about circularities when choosing anabstract de�nition to drive a signal. SMV does the bookkeeping to insure that when allcomponents of the speci�cation are declared \veri�ed", then in fact the implementationre�nes the speci�cation.4.2 Re�nement mapsThe most e�ective way to decompose the speci�cation and veri�cation of a system intomanageable parts is to de�ne an abstract model as a speci�cation, and then to specify\re�nement maps" that relate abstract model behaviors to implementation behaviors. Gen-erally, abstract models specify \what" is being done, without specifying the \how", \where"or \when". The \where" and \when" are given by the re�nement maps, while the imple-mentation determines the \how". In the simplest case the abstract model does nothing atall. For example, in the case of a link-layer protocol that simply transfers a stream of datafrom point A to point B without modifying it, there is no \what" and the only importantinformation is the \where" and \when". The abstract model in this case might consist onlyof the stream of data itself. In the case of a microprocessor, the abstract model might de-termine the sequence of instructions that are executed according to the ISA (instruction setarchitecture). The re�nement map would determine what instruction appears at each stageof the pipeline at any given time.4.2.1 A very simple exampleWe will consider �rst a very simple example of specifying abstractions and re�nement maps.Suppose that we would like to design a circuit to transmit an array of 32 bytes from itsinput to its output, without modifying the array. The abstract model in this case is justan unchanging array of bytes, since no actual operations are performed on the array. There�nement maps specify the protocol by which the array is transferred at the input andoutput. We'll assume the the input consists of three components: a bit valid indication thethe input currently holds valid data, an index idx that tells which element of the array iscurrently being transferred, and a byte data that gives the value of this element. Assumethe output uses a similar protocol. Thus far, we have the following speci�cation:typedef BIT 0..7;typedef INDEX 0..31; 18

typedef BYTE array BIT of boolean;module main(){/* the abstract model */bytes : array INDEX of BYTE;next(bytes) := bytes;/* the input and output signals */inp, out : struct{valid : boolean;idx : INDEX;data : BYTE;}/* the refinement maps */layer spec: {if(inp.valid) inp.data := bytes[inp.idx];if(out.valid) out.data := bytes[out.idx];}Note that the abstract model simply states that nothing happens to the array of bytes.The re�nement map is partially speci�ed. For example, if inp.valid is 0, then inp.data isallowed to have any value, since there is no else clause in the conditional. You can think ofthis as a \don't care" case in the speci�cation.Now let's add a very trivial implementation:init(out.valid) := 0;next(out) := inp;}That is, the output is just the input delayed by one time unit. Note, at time t = 0 we haveto signal that the output is not valid, but we don't have to specify initial values for idx anddata since they are \don't cares" in this case.Save this program in a �le and open it with vw. Note that there are eight properties in the�le, of the form out.data[i]//spec, where i = 0..7. Select property out.data[0]//spec,for example. If you click on the Cone tab, you'll notice that only signals with bit index 0appear. This is because SMV has detected the property you selected doesn't depend on theother bit indices. Also notice that the data input signal inp.data[0] has used layer specfor its de�nition (since this is in fact the only available de�nition at this point). Thus, weare driving the input of our implementation from the abstract model (through a re�nementmap) and verifying the output with respect to the abstract model (again through a re�nementmap). Now, select \Prop|Verify out.data[0]//spec". It should take less than 2 seconds19

to verify this property. You can select \Prop|Verify All" to verify the remainder of there�nement maps. SMV will quickly recognize that the 7 remaining veri�cation problems areisomorphic to the one we just solved, and report \true" for all of them. Note that althoughwe have reduced the number of state bits by a factor of eight by using decomposition (sincewe only deal with one bit index at a time) we are still using 32 bits out of the data array foreach veri�cation. This gives us 39 state bits, which is a fairly large number and guarantees usat least 4 billion states. In this case, the large state space is easily handled by the BDD-basedmodel checker, so we do not have to do any further decomposition. In general however, wecannot rely on this e�ect. Later we'll see how to decompose the problem further, so that weonly use one bit from the data array.4.2.2 End-to-end veri�cationNow we'll consider a more complex (though still trivial) implementation with multiple stagesof delay. The goal is to verify the end-to-end delivery of data by considering each stage inturn, specifying a re�nement map for each stage. The re�nement map for each stage drivesthe input of the next. Suppose we replace the above implementation with the followingimplementation that has three time units of delay:stage1, stage2 : struct{valid : boolean;idx : INDEX;data : BYTE;}init(stage1.valid) := 0;next(stage1) := inp;init(stage2.valid) := 0;next(stage2) := stage1;init(out.valid) := 0;next(out) := stage2;We'll include a re�nement map for each intermediate delay stage, similar to the maps forthe input and output:layer spec: {if(stage1.valid) stage1.data := bytes[stage1.idx];if(stage2.valid) stage2.data := bytes[stage2.idx];}}When verifying the output of one stage, we can drive the output of the previous stage fromthe abstract model, via the re�nement map, thus decomposing the veri�cation of each stageinto a separate problem. Open this version in vw and select, for example, the propertyout.data[0]//spec. That is, we want to verify the �nal output against the re�nementmap. Select the Cone page, and notice that to de�ne the data outputs of the stage2,20

SMV has chosen the layer spec, rather that the implementation de�nition. The numberof state bits remaining (51) is still larger than in the previous case, however, because specdoesn't give any de�nition of the signals valid and idx, hence these are still driven by theimplementation.If you select \Prop|Verify out.data[0]//spec", you'll observe that we can still quicklyverify this property, even thought the number of state variables is larger. Nonetheless, wewould like to make the veri�cation of the last stage independent of the previous stages, to besure we can still verify it if the previous stages are made more complex. We can do this byexplicitly \freeing" the signals stage2.valid and stage2.idx, that is, allowing these signalsto range over any possible values of their types. This is the most abstract possible de�nitionof a signal, and is provided by a built-in layer called free. To tell SMV explicitly to use thefree layer for these signals, we add the following declaration:usingstage2.valid//free, stage2.idx//freeproveout.data//spec;Open this new version, and select property out.data[0]//spec. Note the the number ofstate bits (in the Cone page) is now 39, as in our original problem. In fact, if you select\Prop|Verify out.data[0]//spec" you will probably get a very fast answer, since SMVwill notice that the veri�cation problem you are trying to solve is isomorphic to that of theone-stage implementation we started with. This information was saved in a �le for futureuse when that property was veri�ed.To verify stage2, in the same way, we need to make similar using...prove declaration,as follows:using stage1.valid//free, stage1.idx//free prove stage2.data//spec;Note that we don't need a corresponding declaration for stage1, since the input signalsinp.valid and inp.idx have been left unde�ned, and are thus free in any event. Withthis addition, chose \Prop|Verify all", and observe that all the properties are veri�ed veryquickly, since they are all isomorphic.4.2.3 Re�nement maps as typesYou may have observed that it is getting a bit tedious to re�nement maps for each stageof the implementation, when they are actually all the same. SMV provides a way to avoidthis by specifying abstract de�nitions of a signal as part of its data type. We can also givea type a parameter, so that we can specify in the type declaration which abstract object animplementation object corresponds to. A parameterized type in SMV is otherwise known asa module. Let's declare a type with a re�nement map as follows:module byte_intf(bytes){bytes : array INDEX of BYTE; 21

valid : boolean;idx : INDEX;data : BYTE;layer spec:if(valid) data := bytes[idx];}This de�nes an interface type that transfers an array bytes of bytes according to a speci�cprotocol. This protocol is de�ned by layer spec. Now, lets rewrite our example using thistype:module main(){/* the abstract model */bytes : array INDEX of BYTE;next(bytes) := bytes;/* the input and output signals */inp, out : byte_intf(bytes);/* the implementation */stage1, stage2 : byte_intf(bytes);init(stage1.valid) := 0;next(stage1) := inp;init(stage2.valid) := 0;next(stage2) := stage1;init(out.valid) := 0;next(out) := stage2;/* abstraction choices */using stage2.valid//free, stage2.idx//free prove out.data//spec;using stage1.valid//free, stage1.idx//free prove stage2.data//spec;}Notice that there's no need to write the intermediate re�nement maps. They are part of thedata type.4.2.4 The e�ect of decompositionTo see the e�ect of using re�nement maps let's make two versions of our simple example,one with and one without intermediate re�nement maps. We can easily do this by changing22

the types of the intermediate stages. To make it interesting, we'll use 32 delay stages. Hereis the version with intermediate re�nement maps:/* the implementation */stages : array 1..31 of byte_intf(bytes);init(stages[1].valid) := 0;next(stages[1]) := inp;for(i = 2; i <= 31; i = i + 1){init(stages[i].valid) := 0;next(stages[i]) := stages[i-1];}init(out.valid) := 0;next(out) := stages[31];/* abstraction choices */for(i = 2; i <= 31; i = i + 1)using stages[i-1].valid//free, stages[i-1].idx//freeprove stages[i].data//spec;using stages[31].valid//free, stages[31].idx//free prove out.data//spec;Here is the version without intermediate re�nement maps:/* the implementation */stages : array 1..31 ofstruct{valid : boolean;idx : INDEX;data : BYTE;}init(stages[1].valid) := 0;next(stages[1]) := inp;for(i = 2; i <= 31; i = i + 1){init(stages[i].valid) := 0;next(stages[i]) := stages[i-1];} 23

init(out.valid) := 0;next(out) := stages[31];Note, we don't want to free any of the intermediate signals in this version. Now, open the�rst version, and select \Props|Verify all". It should verify all 256 properties in somethinglike 15 seconds (depending on your machine). Now, open the second version (without re�ne-ment maps). There are only 8 properties to verify in this case (one for each output bit), bitSMV cannot verify these properties, as you may observe by select \Prop|Verify all". Whenyou get bored of watching SMV do nothing, select \Prop|Kill Veri�cation" (note, this maynot work under Windows), and click the Cone tab. Observe that the cone contains 256 statevariables, which is usually to large for SMV to handle (though occasionally SMV will solvea problem of this size, if the structure of the problem is appropriate for BDD's). Note thatit is possible to construct even a fairly trivial example which cannot be veri�ed directly bymodel checking, but can be veri�ed by decomposition and model checking. Generally, whena direct model checking approach fails, it's best to look for a decomposition of the problemusing re�nement maps, rather than to try to determine why the BDD's exploded.4.3 Decomposing large data structuresIn our trivial example, we are sending an array of 32 bytes. Because we only need toconsider one bit out of each byte at a time, we were able to verify the implementationwithout explicitly decomposing this data structure. However, cases often arise when it isnecessary to consider only one element at a time of a large structure. For example, wemight increase the size of our array to 1 million bytes. As we will see later, sometimes evensmall arrays must be decomposed in this way. One one of decomposing a large array in theabstract model is to write an array of re�nement maps (we'll see a more elegant way later, insection 4.6). Each element of this array de�nes a given low-level signal only when it containsthe value of the corresponding element in the abstract array. For example, let's rewrite ourinterface data type to use a decomposed re�nement map of this kind:module byte_intf(bytes){bytes : array INDEX of BYTE;valid : boolean;idx : INDEX;data : BYTE;forall(i in INDEX)layer spec[i]:if(valid & idx = i) data := bytes[i];}Notice that layer spec is now an array, with one element for each element of the array bytes.The layer spec[i] speci�es the value of data only when idx is equal to i, and otherwise24

leaves data unde�ned. The advantage of this re�nement map is that spec[i] refers to onlyone element of the array bytes. Thus, the other elements will not appear in the cone whenverifying it, and we have reduced the number of state variables that the model checker musthandle.Let's go back to our 3-stage delay example, and use this new de�nition of byte intf.Because we have changed the layer declarations, we also have to change the correspondingusing...prove declarations. Replace these with the following:forall(i in INDEX){using stage2.valid//free, stage2.idx//free prove out.data//spec[i];using stage1.valid//free, stage1.idx//free prove stage2.data//spec[i];}Now, when you try to open this �le, you'll get an error message, something like this:The implementation layer inherits two definitions of inp.data[5]...in layer spec[31], "map7.smv", line 15...in layer spec[30], "map7.smv", line 15Perhaps there is a missing "refines" declaration?This is because we have given many abstract de�nitions for inp.data without providingan implementation. By default, if there is only one abstract de�nition, SMV takes thisas the implementation. However, if there are many abstract de�nitions, it is possible thatthese de�nitions are contradictory, and hence there is no possible implementation. There areseveral possible ways to make SMV stop complaining about this. One is to provide an actualimplementation. For example, we could simply implement inp.data by a nondeterministicchoice among all possible data values. This would mean, of course, that we could not thenprove consistency with the maps inp.data//spec[i]. On the other hand, we don't reallywant to prove these, since they are actually assumptions about the inputs to our design,and not properties to be proved. One way to tell SMV this is to declare inp explicitly as aninput to the design. SMV does not attempt to verify re�nement maps driving global inputs.It just takes them as assumptions. If our main module is later used as a submodule in alater design, we'll have to verify these maps in the context of the larger design. Meanwhile,let's change the header of our main module to look like the following:module main(bytes,inp,out){bytes : array INDEX of BYTE;input inp : byte_intf(bytes);output out : byte_intf(bytes);Notice we've also make bytes a parameter to the module. If we later use this module in alarger design, we can then specify what abstract data array we want the module instanceto transmit. Now, open this �le, and select, for example, property out.data[0]//spec[0].You'll notice that there are now only 8 state variables in the cone, since 31 of data bits havebeen eliminated. Also, notice that SMV chose the layer spec[0] to de�ne stage2.data[0],out of the 32 possible abstract de�nitions. This is a heuristic choice, which was made on thebasis of the fact that we are verifying an abstraction in layer spec[0]. If you'd like to see25

the reasoning SMV went through to arrive at this choice, select the signal stage2.data[0]and pull down \Abstraction|Explain Layer".If you now select \Prop|Verify out.data[0]//spec[0]", you can observe that the ver-i�cation is in fact faster than in the previous case. However, you'll also notice that thenumber of properties to prove is now very large. In fact, it is 32 times greater than before,since every property has now been decomposed into 32 cases! Select \Prop|Verify All",and you will �nd that the total veri�cation time for this long list of properties is about 15seconds, actually longer than before. Surely it is unnecessary to verify all of the 32 cases foreach re�nement map, since each is in e�ect symmetric to all the others. In fact, if we simplytell SMV where the symmetry is, we can convince it to prove only one case out of 32.4.4 Exploiting SymmetryChange the type declaration for INDEX fromtypedef INDEX 0..31;toscalarset INDEX 0..31;This is exactly the same as an ordinary type declaration, except it tells SMV that the givenscalar type is symmetric, in the sense that exchanging the roles of any two values of the typehas no e�ect on the semantics of the program. In order to ensure that this symmetry exists,there are a number of rules placed on the use of variables of a scalarset type. For example, wecan't use constants of a scalarset type, and the only operation allowed on scalarset quantitiesis equality comparison. In addition, we can't mix scalarset values with values of any othertype. We can, however, declare an array whose index type is a scalarset. This makes it legalfor us to make the type INDEX into a scalarset. Now, when SMV encounters an array ofproperties whose index is of scalarset type, it chooses only one case to prove, since if it canprove one case, then by symmetry it can prove all of them.Let's see the e�ect of this on our example. Open the new �le (with INDEX changed toa scalarset), and look in the Properties page. You'll see that there are now only propertiesfrom layer spec[0]. Pull down \Prop|Verify All", and you'll �nd the total veri�cationtime reduced to about a half second (a savings of a factor 32!).We can go a step further than this, and make the type BIT a scalarset as well. This isbecause all of the bits within a byte are symmetric to each other. So changetypedef BIT 0..7;toscalarset BIT 0..7;and open the new �le. Now, in the Properties pane, there are only three properties, one foreach stage! Thus, using symmetry, we have reduced the number of properties, by a factor of32� 8 = 256. 26

4.5 Decomposing large structures in the implementationThus far, we've seen how we can decompose a large structure in the abstract model (such asthe byte array in our example), and verify properties relating only to one small componentof the structure. Now, we'll consider the case where we have a large structure in the imple-mentation, and wish to consider only one component at a time. Let's keep the speci�cationfrom our previous example, but design an implementation that has a large bu�er that canstore data bytes in transit. To make the problem more interesting, we'll put ow control inthe protocol, so that our implementation can stop the ow of incoming data when its bu�eris full. To implement ow control, we'll use two signals, one to indicate the sender is ready(srdy) and one to indicate the receiver is ready (rrdy). A byte is transferred when both ofthese signals are true. Here's the de�nition of this protocol as an interface data type:module byte_intf(bytes){bytes : array INDEX of BYTE;srdy,rrdy : boolean;idx : INDEX;data : BYTE;valid : boolean;valid := srdy & rrdy;forall(i in INDEX)layer spec[i]:if(valid & idx = i) data := bytes[i];}Note that the re�nement map only speci�es the value of the data when both srdy and rrdyare true. Our system speci�cation is exactly the same as before:module main(bytes,inp,out){bytes : array INDEX of BYTE;input inp : byte_intf(bytes);output out : byte_intf(bytes);/* the abstract model */next(bytes) := bytes;For the implementation, we'll de�ne an array of 8 cells. Since all of the cells are symmetric,we'll de�ne a scalarset type to index the cells:scalarset CELL 0..7;Each cell holds an index and a data byte. Each cell also needs a bit to say when the data inthe cell are valid: 27

cells : array CELL of struct{valid : boolean;idx : INDEX;data : BYTE;}We also need pointers to tell us which cell is to receive the incoming byte and which cell isto send the outgoing byte:recv_cell, send_cell : CELL;The implementation is ready to receive a byte when the cell pointed to by recv cell isempty (i.e., not valid). On the other hand, it is ready to send a byte when the cell pointedto by send cell is full (i.e., valid):inp.rrdy := ~cells[recv_cell].valid;out.srdy := cells[send_cell].valid;Here is the code that implements the reading and writing of cells:forall(i in CELL)init(cells[i].valid) := 0;default{if(inp.valid){next(cells[recv_cell].valid) := 1;next(cells[recv_cell].idx) := inp.idx;next(cells[recv_cell].data) := inp.data;}} in {if(out.valid){next(cells[send_cell].valid) := 0;}}out.idx := cells[send_cell].idx;out.data := cells[send_cell].data;For the moment, we will leave the pointers recv <cell and send cell unde�ned, and thuscompletely nondeterministic. This will allow us to cover all possible policies for choosingcells. Later, we can re�ne these signals to use a particular policy (e.g., round-robin) withoutinvalidating our previous work.Finally, having de�ned our implementation, we will de�ne a re�nement map for thestructure cells so that we do not have to consider the entire array at once. In fact, thisre�nement map almost de�nes itself, given the way the data structure cells is encoded. Wewant to say that if a cell i is valid, then its data is equal to the element of bytes pointed toby its index idx. Here is the re�nement map:28

forall(i in INDEX)layer spec[i]:forall(j in CELL)if(cells[j].valid & cells[j].idx = i) cells[j].data := bytes[i];Note that once again, we have decomposed the map into separate indices. If cell j's indexis i, then cell j contains byte i from the abstract array.Now that we have de�ned each cell's contents in terms of the abstract model, we canverify each cell separately. We can then assume that all the cells are correct when we verifythe implementation output. Open this �le, and notice that in the properties pane, thereare just two properties: cells[0].data[0]//spec[0] and out.data[0]//spec[0]. All theother properties are equivalent to one of these by symmetry. Try \Prop|Verify All" tocheck that in fact our re�nement is correct. Now select cells[0].data[0]//spec[0] in theProperties pane, and the click on the Cone tab. There are 15 state variables in total for thisproperty. Notice that once again SMV has chosen layer spec[0] to drive inp.data[0], sincethis is the layer we are verifying. Because of the decomposition we have used, data bits fromonly one cell and one element of the bytes array appear in the cone. In fact, most of thestate bits come from the valid bits of the cells. These are included in the cone because thebit inp.rrdy depends on them. However, it is reasonable to hypothesize that the correctnessof cell 0 does not actually depend on the valid bits of the other cells. We should be ableto free them and still verify the property. To do this, add the following declaration to theprogram:forall(i in INDEX) forall(j in CELL) forall(k in BIT)using cells//free, cells[j]prove cells[j].data[k]//spec[i];This declaration probably requires some explanation. First, even though we are only inter-ested in proving one property, cells[0].data[0]//spec[0], we give a prove declarationfor cells[j].data[k]//spec[i], for all i,j,k. This is because we are not allowed to useconstants of a scalarset type in the program. Second, in order to free the signals in all thecells except cell j, we specify cells//free, indicating that all components of cells shoulduse the free layer, and then specify cells[j] to override this choice for the speci�c case ofcell j. In a using declaration, a signal name without a layer indicates the implementationde�nition of that signal.Open this version and select the property cells[0].data[0]//spec[0]. The number ofstate variables should now be 8 rather than 15, since the valid bits for the other cells arenow free variables. Select \Prop|Verify cells[0].data[0]//spec[0]" and observe thatour hypothesis is con�rmed { the correctness of cell 0 is preserved, even when we free thestate of the other cells. Also note that veri�cation time is reduced.Note, that by freeing some signals, we have decreased the number of state variables in thecone, we have also increased the number of \combinational" variables. These are variablesthat act as free or constrained inputs to the model. We can go a step further and substitutethe \unde�ned" value for these bits. This is very much like an \X" value in a logic simulator.For example: 29

0 & undefined = 01 & undefined = undefined0 | undefined = undefined1 | undefined = 1Using the unde�ned value has the advantage that no combinational variables will introduced,since these signals are given the constant value \unde�ned". The di�culty is that, as in alogic simulator, these unde�ned values can propagate widely, giving a pessimistic result { wemay �nd that a counterexample is produced to the property using unde�ned values, eventhough the property is actually true. However, we can never \prove" a false property byintroducing unde�ned values.We can set signals to the unde�ned value using a prede�ned layer called undefined. Forexample, replace cells//free in the using ... prove declaration above withcells//undefinedThis will cause the signals that were previously freed to be given the unde�ned value instead.Open the new �le and select the property cells[0].data[0]//spec[0]. Notice in theCone pane that the other valid bits are no longer combinational variables. Thus we haveeliminated 7 combinational variables from the cone. On the other hand, you can observe byselecting \Prop|Verify cells[0].data[0]//spec[0]" that the property is still provableunder this weaker assumption about the environment.Finally, let's go back to the other property we need to prove in this example, which is thatthe outputs are correct with respect to the speci�cation (out.data[0]//spec[0]). Selectthis property in the Properties pane, and observe that there are still 49 state variables in thecone. This is because, although our re�nement map drives the data value for each cell fromthe abstract model, the control bits idx and valid for each cell are still driven from theimplementation. This is not a problem for us, since BDD's come to our rescue in this case.You can con�rm this by selecting \Prop|Verify out.data[0]//spec[0]". This veri�cationshould take less than 2 seconds. Nonetheless, if this were not the case, we could reduce thenumber of state bits by freeing the cells' control bits. That is, our re�nement map providesthat the data in a cell are correct, for any values of the control bits valid and idx. So let'sadd the following declaration to the program:forall(i in INDEX) forall(j in CELL) forall(k in BIT)using cells[j].idx//free, cells[j].valid//freeprove out.data[k]//spec[i];Open the new version and select the property out.data[0]//spec[0]. Notice that thenumber of state bits is now reduced to 1, a single bit of the abstract array. The veri�cationtime is also reduced, as you can observe by selecting \Prop|Verify out.data[0]//spec[0]".4.6 Case analysisSuppose that we have a condition p, and we would like to show that p holds true at all times.For any particular variable x, we could break the problem into cases. For each possible value30

of v of x, we could show that condition p is true at those times when x = v. Since at alltimes x must have one of these values, we can infer that p must be true at all times.SMV has a special construct to support this kind of case analysis. It is especially usefulfor compositional veri�cation, since for each case we can use a di�erent abstraction of thesystem, including di�erent components in the veri�cation. This allows us to break largeveri�cation problems into smaller ones.The above described case analysis is expressed in SMV in the following way:forall (v in TYPE)subcase q[v] of p for x = v;Now suppose that p is some temporal assertion G cond, where cond is any booleancondition. The above declaration e�ectively de�nes a collection of properties q[v], as if wehad writtenforall (x in TYPE)q[v] assert G (x=v -> cond);That is, each q[v] asserts that p holds at those times when x = v. Clearly, if q[v] holdsfor all values of v, then p holds. Thus, SMV is relieved of the obligation of proving p, andinstead separately proves all the cases of q[v]. Note that if TYPE is a scalarset type, we mayin fact have to prove only one case, since all the other cases are symmetric.4.6.1 A very simple exampleNow, let's look at a trivial example of this. Let's return to our very simple example oftransmitting a sequence of bytes. Here is the speci�cation again:scalarset BIT 0..7;scalarset INDEX 0..31;typedef BYTE array BIT of boolean;module main(){/* the abstract model */bytes : array INDEX of BYTE;next(bytes) := bytes;/* the input and output signals */inp, out : struct{valid : boolean;idx : INDEX;data : BYTE;} 31

/* the refinement maps */layer spec: {if(inp.valid) inp.data := bytes[inp.idx];if(out.valid) out.data := bytes[out.idx];}And let's use our original very trivial implementation:init(out.valid) := 0;next(out) := inp;}That is, the output is just the input delayed by one time unit.Note that our speci�cation (layer spec) says that at all times the output value must beequal to the element of array bytes indicated by the index value out.idx. We would like tobreak this speci�cation into cases and consider only one index value at a time. To do this,we add the following declaration:forall (i in INDEX)subcase spec_case[i] of out.data//spec for out.idx = i;In this case, the property we are splitting into cases is out.data//spec, the assignment toout.data in layer spec. The resulting cases are out.data//spec case[i]. Note, however,that in the subcase declaration, we only give a layer name for the new cases, since the signalname is redundant. This declaration is exactly as if we had writtenforall (i in INDEX)layer spec_case[i]:if (out.idx = i)out.data := bytes[out.idx];except that SMV recognizes that if we prove out.data//spec case[i] for all i, we don'thave to prove out.data//spec. Run this example, and look in the properties pane. You'llsee that out.data//spec does not appear, but instead we have out.data//spec case[0].Note that only the case i = 0 appears, since INDEX is a scalarset type, and SMV knowsthat all the other cases are symmetric to this one. Now look in the cone pane. You'll noticethat all of the elements of the array bytes are in the cone. This is because the de�nition ofinp.data in layer spec references all of them. However, all of them except element 0 are inthe undefined layer. This is a heuristic used by SMV: if a property references some speci�cvalue or values of a given scalarset type, then only the corresponding elements of arraysover that type are used. The rest are given the unde�ned value. You might try clickingon element bytes[1] and choosing Abstraction|Explain Layer to get an explanation ofwhy this signal was left unde�ned. You can, of course, override this heuristic by explicitlyspecifying a layer for the other elements. In this case, however, the heuristic works, sinceproperty out.data//spec case[0] veri�es correctly.32

4.6.2 Using case analysis over data pathsNow we'll look at a slightly more complex example, to show how case ananlysis can be usedto reduce a veri�cation problem to a smaller one, by considering only one path that a givendata item might take from input to output. This technique is quite useful in reasoning aboutdata path circuitry.We'll use essentially the same speci�cation as before, but in this case our implemen-tation will be the array of cells that we used previously when discussing re�nement maps(section 4.5). We have an array of cells, and each incoming byte is stored in an arbitrarilychosen cell. Recall that the speci�cation in this case has to take into account the handshakesignals. That is, the data are only valid when both sdry and rrdy are true:/* the abstract model */bytes : array INDEX of BYTE;next(bytes) := bytes;/* the input and output signals */inp, out : struct{srdy,rrdy : boolean;idx : INDEX;data : BYTE;}/* the refinement maps */layer spec: {if(inp.srdy & inp.rrdy) inp.data := bytes[inp.idx];if(out.srdy & out.rrdy) out.data := bytes[out.idx];}For reference, here is the implementation again:/* the implementation */cells : array CELL of struct{valid : boolean;idx : INDEX;data : BYTE;}recv_cell, send_cell : CELL;inp.rrdy := ~cells[recv_cell].valid;out.srdy := cells[send_cell].valid;33

forall(i in CELL)init(cells[i].valid) := 0;default{if(inp.srdy & inp.rrdy){next(cells[recv_cell].valid) := 1;next(cells[recv_cell].idx) := inp.idx;next(cells[recv_cell].data) := inp.data;}} in {if(out.srdy & out.rrdy){next(cells[send_cell].valid) := 0;}}o out.idx := cells[send_cell].idx;out.data := cells[send_cell].data;Recall that in the previous example, we wrote re�nement maps for the data in theindividual cells, in order to break the veri�cation problem into two pieces: one to show thatcells get correct data, and the other to show that data in cells are correctly transfered tothe output. Now, we will use case analysis to get a simpler decomposition, with only oneproperty to prove.Our case analysis in this example will be a little �ner. That is because we have twoarrays we would like to decompose. One is the array of bytes to transfer, and the otheris the array of cells. We would like to consider separately each case where byte[i] getstransfered through cell[j]. In this way, we can consider only one byte and one cell at atime. This is done with the following declaration:forall (i in INDEX) forall (j in CELL)subcase spec_case[i][j] of out.data//specfor out.idx = i & send_cell = j;Notice that our case analysis now has two parameters. Each case is of the form out.idx =i & send cell = j where i is an INDEX and k is a CELL. We can, in fact, have as manyparameters in the case analysis as we like, provided we write the condition in the above form.SMV recognizes by the form of the expression that the cases are exhaustive.Now run this example, and observe that once again, we have a single property to prove:out.data//spec case[0][0]. The other cases are symmetric. If you look in the cone, you'llsee that, while all elements of bytes and cells are referenced, all except element 0 of thesearrays is left unde�ned, according to SMV's default heuristic. This makes the veri�cationproblem small enough that we can handle it directly, without resorting to an intermediatere�nement map. You can con�rm this by verifying out.data//spec case[0][0].This technique of breaking into cases as a function of the speci�c path taken by a dataitem through a system is the most important reduction in using SMV to verify data path34

circuitry. Notice that symmetry is crucial to this reduction, since without it we would havea potential explosion in the numer of di�erent paths.4.7 Data type reductionsNow suppose that we would like to verify the correct transmission of a very large array ofbytes, or even an array of unknown size. SMV provides a way to do this by reducing a typewith a large or unknown number of values to an abstract type, with a small �xed number ofvalues. This type has one additional abstract value to represent all the remaining values inthe original type.For example, when verifying the correct transmission of byte i, we might reduce theindex type to just two values { i and a value representing all numbers not equal to i,(which SMV denotes NaN). This is an abstraction, since NaN, when compared for equalityagainst itself, produces an undetermined value. In fact, here is a truth table of the equalityoperator for the reduced type: = i NaNi 1 0NaN 0 f0,1gThe program with the reduced index data type is an abstraction of the original program,such that any property that is true of the abstract program is true of the original (thoughthe converse is not true).4.7.1 A very simple exampleLet's return to our very simple example of transmitting a sequence of bytes (section 4.6.1).For reference, here is the speci�cation again:scalarset BIT 0..7;scalarset INDEX 0..31;typedef BYTE array BIT of boolean;module main(){/* the abstract model */bytes : array INDEX of BYTE;next(bytes) := bytes;/* the input and output signals */inp, out : struct{valid : boolean;idx : INDEX;data : BYTE; 35

}/* the refinement maps */layer spec: {if(inp.valid) inp.data := bytes[inp.idx];if(out.valid) out.data := bytes[out.idx];}And let's use our original very trivial implementation:init(out.valid) := 0;next(out) := inp;}That is, the output is just the input delayed by one time unit.As before, let's break the speci�cation up into cases, one for each index value:forall (i in INDEX)subcase spec_case[i] of out.data//spec for out.idx = i;If you run this example, and look in the cone pane, you'll see that there are �ve statevariables in the cone for both inp.idx and out.idx. This is expected, since �ve bits areneeded to encode 32 values. However, notice that for case i, if the index value at the outputis not equal to i, we don't care what the output is. Our property spec case[i] only speci�esthe output at those times when out.idx = i. We can therefore group all of the index valuesnot equal to i into a class, represented by a single abstract value (NaN), and expect that thespeci�cation might still be true. To do this, add the following declaration:forall (i in INDEX)using INDEX->{i} prove out.data//spec_case[i];This tells SMV to reduce the data type INDEX to an astract type consisting of just thevalue i and NaN (note, we don't specify NaN explicitly). Now, open the new version, andobserve the cone. You'll notice the state variables inp.idx and out.idx now require ony oneboolean variable each to encode them, since their type has been reduced to two values. Nowtry verifying the property out.data//spec case[0]. The result is true, since the values wereduced to the abstract value don't actually matter for the particular case of the speci�cationwe are verifying.Now, let's suppose that we don't know in advance what the size of the array of bytes willbe. Using data type reductions, we can prove the correctness of our implemenation for anysize array (including an in�nite array). To do this, change the declarationscalarset INDEX 0..31;to the following: 36

scalarset INDEX undefined;This tells SMV that INDEX is a symmetric type, but doesn't say exactly what the valuesin the type are. In such a case, SMV must have a data type reduction for INDEX to proveany properties, because it can only verify properties of �nite state systems. Now run thenew version. You'll notice that the result is exactly the same as in the previous case. Oneboolean variable is used to encode values of tye INDEX, and the speci�cation is found to betrue. In fact, in the previous case, SMV didn't in any way use the fact that type INDEX wasdeclared to have the speci�c range 0..31. Thus it's not surprising that when we removethis information the result is the same. By using �nite state veri�cation techniques, we haveproved a property of a system with an in�nite number of states (and an in�nite number ofsystems with �nite state spaces).One might ask what would happen if, using a scalarset of unde�ned range, we ommittedthe data type reduction. Wouldn't that give us an in�nite state veri�cation problem? Tryremoving the declarationforall (i in INDEX)using INDEX->{i} prove out.data//spec_case[i];from the problem and run the resulting �le. You'll observe that nothing has changedfrom the previous case. Since SMV can't handle unde�ned scalarsets without a data typereduction, it guesses a reduction. It simply includes in the reduced type all the speci�c valuesof the given type that appear in the property. In this case, there is only one, the index i.4.7.2 A slightly larger exampleNow, let's reconsider the example from the previous section of an implementation with anarray of cells (section 4.6.2). For reference, here are the speci�cation and implementation:/* the specification */layer spec: {if(inp.srdy & inp.rrdy) inp.data := bytes[inp.idx];if(out.srdy & out.rrdy) out.data := bytes[out.idx];}/* the implementation */cells : array CELL of struct{valid : boolean;idx : INDEX;data : BYTE;}recv_cell, send_cell : CELL; 37

inp.rrdy := ~cells[recv_cell].valid;out.srdy := cells[send_cell].valid;forall(i in CELL)init(cells[i].valid) := 0;default{if(inp.srdy & inp.rrdy){next(cells[recv_cell].valid) := 1;next(cells[recv_cell].idx) := inp.idx;next(cells[recv_cell].data) := inp.data;}} in {if(out.srdy & out.rrdy){next(cells[send_cell].valid) := 0;}}out.idx := cells[send_cell].idx;out.data := cells[send_cell].data;Let's make just one change to the source: we'll rede�ne the scalarset types INDEX andCELL to have unde�ned range:scalarset INDEX undefined;scalarset CELL undefined;Since these types have unde�ned ranges, SMV will choose a data type reduction for use(though, of course, we could specify one if we wanted to). Now, run this modi�ed version.You'll notice that in the properties pane, we have just one property to prove, as before:out.data//spec case[0][0]. In the cone pane, obverve that the variables of type INDEXand CELL have only one boolean variable encoding them (representing the value 0 and NaN).In addition, only cell[0] and byte[0] appear. This is because SMV chose to reduce thetypes INDEX and CELL to contain only those values appearing in the property being veri�ed,which in this case are just the value 0 for both types. Con�rm that in fact the speci�cationcan be veri�ed using this reduction.Note that the proof reduction that we used for the case of a �xed number of cells anda �xed number of bytes, worked with no modi�cation when we switched to an arbitrarynumber of bytes and cells!These very simple examples provide a paradigm of the veri�cation of complex hardwaresystems using SMV. One begins by writing re�nement maps. They speci�y the inputs andoutputs of the system in terms of a more abstract model, and possibly specify internal pointsas well, to break the veri�cation problem into parts. The resulting properties are then brokeninto cases, generally as a function of the di�erent paths that a data item may take from onere�nement map to another. These cases are then reduced to a tractable number by symmetryconsiderations. Finally, for each case, a data type reduction is chosen which reduces the large38

(or even in�nite) data types to a small �xed number of values. The resulting veri�cationsubproblems are then handled by symbolic model checking.4.8 Proof by inductionSuppose now that we want to verify some property of a long sequence. For example, wemay have a counter in our design that counts up to a very large number. Such counters canlead to ine�cient veri�cation in SMV because the state space is very deep, and as a result,SMV's breadth �rst search technique requires a large number of iterations to exhaustivelysearch the state space. However, the usual mathematic proof technique when dealing withlong sequences is proof by induction. For example, we might prove that a property holdsfor 0 (the base case), and further that if it holds fr some arbitrary value i, then it holds fori + 1. We then conclude by induction that the property holds for all i.Data type reductions provide a mechanism for inductive reasoning in SMV. To do this,however, we need a data symmetric data type that allows adding and subtracting constants.In SMV, such data types are called ordsets. An ordset is just like a scalarset, except therestrictions on ordsets are slightly relaxed. If we delcare a type as follows:ordset TYPE 0..1000;then, in addition to the operations allowable on scalarset types, the following are also legal:1. x + 1 and x - 1,2. x = 0 and x = 1000where x is of type TYPE. That is, we can increment and decrement values of ordset types,and also compare them with the extremal values of the type.Induction is done in the following way: suppose we want to prove property p[i], where iis the induction paremeter, ranging over type TYPE. We use a data type reduction that mapsTYPE onto a set of four values: X,i-1,i,Y. Here the symbolic value X abstracts all the valuesless that i-1, and Y abstracts all the values greater than i. Incrementing a value in thisreduced type is de�ned as follows:X + 1 = {X,i-1}(i-1) + 1 = ii + 1 = YY + 1 = YThat is, adding one to a value less than i-1 will result in either i-1 or a value less that i-1.Decrementing is similary de�ned. Any property provable in this abstract interpretation isprovable in the original. In addition, we can show that all the cases from i = 2 up to i =999 are isomorphic. Thus it is su�cient to prove oly the cases i = 0, 1, 2, 1000.As an example, suppose we hae a counter that starts from zero and increments once perclock cycle, up to 1000. We'd like to show that for any value i from 0 to 1000, the countereventually reaches i. Here's how we might set this up:39

ordset TYPE 0..1000;module main(){ x : TYPE;/* the counter */init(x) := 0;next(x) := x + 1;/* the property */forall(i in TYPE)p[i] : assert F (x = i);/* the proof */forall(i in TYPE)using p[i-1] prove p[i];}We prove each case p[i] using p[i-1]. That is, when proving the counter eventually reachesi, we assume that it eventually reaches i-1. (Note that technically, for the case i = 0, weare asking SMV to use p[-1], but since this doesn't exist, it is ignored).SMV can verify that this proof is noncircular. Further, using its induction rule, it auto-matically generates a data type reduction using the values i and i-1, and it generates thefour cases we need to prove: p[0], p[1], [2], p[1000]. To con�rm this, run the example,and look in the properties ane. You should see the four aforementioned properties. Nowchoose Verify All to verify that in fact the induction works, and that p[i] holds for all i.4.8.1 Induction over in�nite sequencesNow, suppose we have a counter that ranges from zero to in�nity. We can still prove byinduction that any value i is eventually reached. To do this, we declare TYPE to be an ordsetwithout an upper bound:ordset TYPE 0..;With this change, run the example, and notice that in the properties pane there are nowonly three cases to prove: p[0], p[1], [2]. We don't have to prove the maximum value asa special case, because there is no maximum value. Now choose Verify All to verify thatin fact the induction works, and that p[i] holds for all i. We've just proved a property ofan in�nite-state system by model checking. 40

4.8.2 A simple exampleTo see how we can use induction in practice, let's return to our example of transmitting anarray of bytes. This time, however, we will assume that the bytes are in an in�ntie sequence.They are received at the input in the order 0, 1, 2, ... and they must be transmitted tothe output in that order.To begin with, let's de�ne our types:scalarset BIT 0..7;typedef BYTE array BIT of boolean;ordset INDEX 0..;Note that we de�ned INDEX as an ordset type, so we can prove properties by inductionover indices.We begin with the original re�nement speci�cation. As in section 4.2.3, we encapsulateit in a module, so we can reuse it for both input and output:module byte_intf(bytes){bytes : array INDEX of BYTE;valid : boolean;idx : INDEX;data : BYTE;layer spec:if(valid) data := bytes[idx];} To specify ordering we simply introduce a counter cnt that counts the number of bytesreceived thus far. If there is valid data at the interface, we specify that the index of thatdata is equal to cnt. Thus, add the following declarations to module byte intf:cnt : INDEX;init(cnt) := 0;if(valid) next(cnt) := cnt + 1;ordered: assert G (valid -> idx = cnt);Note, we can include temporal properties, like the above property ordered inside modules.Thus, for each instance of the interface de�nition, we'll get one instance of this property. Asour �rst implementation, we'll just use the trivial implementation that delays the input byone clock cycle. Here's what the main module looks like:41

module main(bytes,inp,out){bytes : array INDEX of BYTE;input inp : byte_intf(bytes);output out : byte_intf(bytes);/* the abstract model */next(bytes) := bytes;/* the implementation */init(out.valid) := 0;next(out.valid) := inp.valid;next(out.data) := inp.data;next(out.idx) := inp.idx;}To prove the correctness of the data output (with respect to the re�nement speci�cation),we use the same proof as before { we split into cases based on the index of the output:forall(i in INDEX)subcase spec_case[i] of out.data//specfor out.idx = i;Note that anything that can be done with a scalarset can also be done with an ordset.So much for the data correctness { the interesting part is the correct ordering. For theproof of the ordering property, we're going to use induction over the value of the countercnt. The intuition here is that, if the output index equals the counter when the counter is i,then at the next valid output the counter and index will both be one greater, and hence theywill be equal for cnt = i + 1. This assumes, of course, that the input values are orderedcorrectly. To verify this, we must �rst break the output ordering property into cases basedon the value of �cnt:forall(i in INDEX)subcase ord_case[i] of out.ordered for out.cnt = i;Then, we prove case i using case i-1 and the input ordering property. We leaveinp.ordering as an assumption:forall(i in INDEX){using ord_case[i-1], inp.ordered prove ord_case[i];assume inp.ordered;}Now, run this example, and observe the properties pane. You'll notice that we now havethree cases of the property out.data//spec case[i] to prove: i = 0, 1, 2. In fact, all of42

these cases are isomorphic, but since INDEX is de�ned as an ordset rather than a scalarset,SMV's type checking rules don't guarantee this. Thus, SMV will e�ectively prove the sameproperty three times. Fortunately, each case takes only a fraction of a second.Now observe that we also have three cases of ord case[i] to prove. Select, for example,property ord case[2] from the properties pane and observe the cone. You'll notice thateach value of type INDEX requires two boolean variables to encode it. This is because thereare four values in the reduced type: i-1, i and two abstract values to represent the ranges0..i-1 and i+1..infinity. Notice also that there are no data values in the cone, sincethe indices do not depend on the data. Thus, we have e�ectively separated the problem ofcorrect ordering from correct delivery of data.Now, try Prop|Verify all. All the cases should be veri�ed in less than a second.A note: for ordsets, a data type reduction may be speci�ed, in lieu of SMV's default.The general form of the data type reduction for ordset types is:TYPE -> { min..min+a, i-b..i+c, max-d..max};where min is the minimum value of TYPE, i is the induction parameter, and max is themaximum value of TYPE. Thus, SMV allows us to use any �nite number of values around theinduction parameter i and the extremal values. In this case, the number of cases that needto proved will be larger, however.4.8.3 A circular bu�erNow let's consider transmission of an in�nite sequence of bytes again, but this time usingour array of cells as a circular bu�er (an implementation of a FIFO queue).To begin with, we need to add handshaking to our interface de�nition, so add the followingto module byte intf:srdy, rrdy : boolean;valid := srdy & rrdy;The signal srdy indicates that the sender is ready, while rrdy indicates the the receiveris ready. The data are valid, by de�nition, when both are ready.Now, as in section 4.5, we'll use an array of 32 cells, to hold our data items. So de�nethe type CELL as:ordset CELL 0..31;The reason for making it an ordset type will become apparent later. Now, replace theprevious \trivial" implementation with the following:cells : array CELL of struct{valid : boolean;idx : INDEX;data : BYTE;} 43

recv_cell, send_cell : CELL;inp.rrdy := ~cells[recv_cell].valid;out.srdy := cells[send_cell].valid;forall(i in CELL)init(cells[i].valid) := 0;default{if(inp.valid){next(cells[recv_cell].valid) := 1;next(cells[recv_cell].idx) := inp.idx;next(cells[recv_cell].data) := inp.data;}} in {if(out.valid){next(cells[send_cell].valid) := 0;}}out.idx := cells[send_cell].idx;out.data := cells[send_cell].data;Note, recv cell is the cell we are receiving a byte into, and send cell is the cell we aresending a byte from. We block our input (setting inp.rrdy to zero) when the cell wwe arereceiving into is full, and block our output (setting out.srdy to zero) when the cell we aresending from is empty. When we receive into a cell, we set its valid bit to true, and whenwe send from the cell, we clear its valid bit.Up to this point, we haven't said what policy is used to choose recv cell and send cell.To make our bu�er ordered, we can use a round-robin policy. This means that each time wereceive a byte, we increment recv cell by one, and each time we send a byte, we incrementsend cell by one. When either of these reaches its maximum value, it returns to zero. Toaccomplish this, add to following code to the implementation:init(recv_cell) := 0;if(inp.srdy & inp.rrdy)next(recv_cell) := (recv_cell = 31) ? 0 : recv_cell +1;init(send_cell) := 0;if(out.srdy & out.rrdy)next(send_cell) := (send_cell = 31) ? 0 : send_cell +1;Note that, since CELL is an ordset type, rather than a scalarset, it's legal to compareit against the maximum value (31) and set it back to the minumum value (0). If CELL werea scalarset, it wouldn't be legal to introduce any constants of the type.Now that we have our implementation, lets prove both the correctness of the data outputand correctness of the ordering. The case splitting statement for data correctness is the44

same as when we did this example in section 4.6.2, where we weren't concerned with dataordering:forall(i in INDEX) forall(j in CELL)subcase spec_case[i][j] of out.data//specfor out.idx = i & send_cell = j;That is, we consider separately the case of each byte index i, and the cell j that it is storedin. That way, we only need to consider one cell in the aray at a time. Notice that addingordering does not change the proof of data correctness in any way.Now for the ordering question. Again, we are going to use induction. The orderingproperty says that when the output data are valid, the output index must be equal to arecount of the number of previous values. We'll do the proof by induction over the value of thecounter. That is, we'll assume that the index was correct when the count was i-1, and thenprove that the index is correct when the count is i. This means that, as before, we haveto split cases based on cnt. However, in this case we also have to split cases on the cell inwhich the current output value stored. Thus, we use the following case splitting declaration:forall(i in INDEX) forall(j in CELL)subcase ord_case[i][j] of out.orderedfor out.cnt = i & send_cell = j;Now, the question is, what data type reduction to use for type CELL. We know we needto use cell j, since that is the one holding the data item we are interested in. However, inaddition, we need to use the previous cell. The intuition behind this is as follows. We areassuming that the output index is correct for byte i-1. If byte i is stored in cell j, thenbyte i-1 is stored in cell j-1 (which one exception). This means we need to inclde cell j-1.Then, if cell j-1 contains index i-1, and the inputs are ordered, it follows that cell j willcontain index i, which is what we are trying to prove. Thus, we might use the data typereduction:CELL -> {j-1..j}However, note that the exception to the above reasoning is the case j = 0. In this case, the\previous" cell is cell 31. Since there's no way (yet) to write a special data type reduction forthis case, we'll just include the value 31 in our data type reduction for all the cases. Thus,we write:forall(i in INDEX) forall(j in CELL)using CELL -> {j-1..j,31} prove ord_case[i][j];Now comes the actual inductive step: we use the case cnt = i-1 to prove the case cnt= i:forall(i in INDEX} forall(j in CELL)using ord_case[i-1], inp.ordered prove ord_case[i][j];assume inp.ordered; 45

Notice that we use the entire array ord case[i-1] (for all cells) in this veri�cation. Thisisn't really necessary, since only the \previous cell" (j-1 or 31) is needed in any give case,but its harmless. Note that we aren't doing induction over the cell number. In fact, we can'tdo this, since the cells are used in a circular manner. This would result in a cycle in theproof.Now, run this example, and note the properties that appear in the properties pane. You'llobserve that the property ord case[i][j] has to be proved for all the combinations of i =0,1,2 and j = 0,1,2,30,31. The reason we have extra cases to prove for the cell index j,is that we included the maximum value 31 in the data type reduction. SMV reasons thatthe case j=30 might not be isomorphic to the case �j=31, since we might compare j in someway with the value 31. However, as you can observe by selecting \Prop|Verify All", all ofthese cases can be veri�ed quickly. This is because the number of state variables is smallafter data type reductions.Thus, we've proved that a circular bu�er implementation correctly transmits an in�nitesequence of bytes using a given handshake protocol.4.8.4 Abstract variablesNotice that the case of the circular bu�er, we don't really have to send the byte indices,since they can be inferred from the ordering property of the interface. The data outputdoesn't depend on them. Thus, in the actual implementation, we would leave out the idxoutput of the bu�er, considering it only an \auxiliary" variable used in the veri�cation. Thisuse of \auxiliary state" added to the implementation gives us a convenient way to specifyinterfaces as a function of abstract models. The auxiliary information tells us which object inthe abstract model is currently appearing at the interface. This in turn allows us to specifywhat data should be appear at the interface as a function of the abstract model. In the nextsection, we'll see a slightly di�erent way to do this.We can tell SMV that a given variable is part of the proof only, and not part of the actualimplementation, by declaring it as abstract. For example, in the byte intf module, wewould declare the idx component as:abstract idx : INDEX;SMV will verify for us that no actual implementation logic depends on this variable.The abstract variables can thus be excised from the implementation while retaining all theproperties we've proved.4.9 Instruction processorsUp to now, when discussing re�nement veri�cation, we've considered only the transfer ofdata from one place to another, without actually operating on the data. Now we'll havea look at how to verify instruction set processors, that is, machines that input a sequenceof operations to be performed on some data structure, such as a register �le or a memory.In this case, our abstract model is usually an \instruction set architecture" (ISA). This isrepresented by a simple sequential machine the processes instructions on at a time, in the46

order they are received. The implementation is usually a more complex machine that workson more than one instruction at a time. This can be done, for example, by pipelining, orout-of-order execution techniques.The key to veri�cation of such designs in SMV is to break the problem up into individualinstructions. Usually, we break an instruction up into two parts, which correspond to twolemmas int the proof. The �rst lemma is that all the operands fed to the function unit(s)are correct, according to the abstract model. The second is that all results produced by thefunctional unit(s) are correct (again, with respect to the abstract model). Needless to say,we use lemma 1 to prove lemma 2, and vice versa. The reason for breaking the probelm intotwo lemmas is that the operand fetching operation and the functional unit operation aresomewhat di�erent in nature, so it's convenient to separate the two issuues, so we can applya di�erent proof approach to each (much as we separated the issues of data correctness andordering in the circular bu�er).Now, in order to specify that the operands and results are correct with respct to theabstract model, we usually have to add some auxiliary information to the implementation(see the previous section). In this case, we add to each instruction moving through the im-plementation a few extra �elds to store the correct operands and results for that instruction,as computed by the abstract model.4.9.1 A very simple exampleAs a very simple example, let's de�ne an instruction set architecture with just one instruction,performed on values in a register �le. Each instruction has two source operands and adestination operand. Thus, an opcode consists of three �elds { srca, srcb and dst. Forsimplicity, we'll make the operation addition. Here's what the ISA model might look like:scalarset REG undefined;typedef WORD array 0..31 of boolean;module main(){ r : array REG of WORD;srca, srcb, dst : REG;opra, oprb, res : WORD;opra := r[srca];oprb := r[srcb];res := opra + oprb;next(r[dst]) := res;}We've declared a type REG to represent a register index, a type WORD to represent a dataword (in this case a 32 bit word). Notice that REG is a unde�end scalarset. That is, we don'tsay, for the moment, how many registers there are.47

Notice, also, that we've given names to the operand values opra and oprb, and to theoperation result res. It wasn't necessary to do this. That is, we could have written:next(res[dst]) := r[srca] + r[srcb];This would have been more concise. However, it's convenient to give the intermediatequantities names, since we will use these later in writing re�nement relations. Now let'simplement this abstract model with a simple 3 stage pipeline, where the �srt stage fecthesthe operands, the second stage does the addition, and the third stage stores the result intothe register �le. The implementation has a reguster bypass path that forwards the resultsdirectly from later stages of pipe to the operand fetch stage./* the implementation *//* implementation register file */ir : array REG of WORD;/* pipe registers */stage1 : struct {valid : boolean;dst : REG;opra, oprb : WORD;}stage2 : struct{valid : boolean;dst : REG;res : WORD;}/* read stage : fetch operands with bypass */next(stage1.opra) :=case{stage1.valid & srca = stage1.dst : alu_output;stage2.valid & srca = stage2.dst : stage2.res;default : ir[srca];};next(stage1.oprb) :=case{stage1.valid & srcb = stage1.dst : alu_output;stage2.valid & srcb = stage2.dst : stage2.res;default : ir[srcb]; 48

};next(stage1.dst) := dst;init(stage1.valid) := 0;next(stage1.valid) := 1;/* alu stage: add operands */alu_output : WORD;alu_output := stage1.opra + stage1.oprb;next(stage2.res) := alu_output;next(stage2.dst) := stage1.dst;init(stage2.valid) := 0;next(stage2.valid) := stage1.valid;/* writeback stage: store result in r */if(stage2.valid)next(ir[stage2.dst]) := stage2.res;Note that each stage has a valid bit, which says whether there is an instruction in it.Initially, these bits are zero.Now, we would like to write two re�nement maps { one which de�nes the correct operandvalues in stage1 and the other which de�nes the correct result at the adder output. Todo this, we add some auxiliary state information to each stage tat remembers the correctoperand and result values for the given stage, as computed by the abstract model. Let's addthe following component to stage1 :stage1.aux : struct{opra, oprb, res : WORD;}Now, let's add some code to record the correct operand and result values for the �rststage:next(stage1.aux.opra) := opra;next(stage1.aux.oprb) := oprb;next(stage1.aux.res) := res;That is, we simply record the abstract model's values for opra, oprb and res. Note,this is why we gave them explicit names in the abstract model. This is all the auxiliaryinformation we'll need to state our re�nement relations. However, for e deeper pipeline,49

we could just pass the auxiliary information down the pipe along with the instructions, asfollows:next(stage2.aux) := stage1.aux;...Now, we can state the two re�nement maps in terms of the auxiliary state information.For the operands, we specify that, if stage 1 has a valid instruction, then its operands areequal to the correct operand values:layer lemma1: {if(stage1.valid) stage1.opra := stage1.aux.opra;if(stage1.valid) stage1.oprb := stage1.aux.oprb;}For the ALU results, we specify that, if stage1 has a valid instruction, then the ALUoutput is equal to the correct result value:layer lemma2:if(stage1.valid) alu_output := stage1.aux.res;We would like to show, of course, the correct operands imply correct results, and con-versely, correct results imply correct operands. However, since we have an arbitrary numberof registers to deal with, we'll need to break lemma1 into cases as a function of which registeris being read. The only problem we have in doing this is that we don't know which registerswere the source operands for the instruction in stage one, because our implementation doesnot store this information. This problem is easily solved, however, since we can store theinformation in our auxiliary state. So let's add two components to the auxiliary state:next(stage1.aux.srca) := srca;next(stage1.aux.srcb) := srcb;Of course, we have to remember to declare these components in our auxiliary structure(their type is REG). Now, we split the operand re�nement maps into cases based on whichare the actual source registers of the instruction in stage 1. For the srca operand, we have:forall(i in REG)subcase lemma1[i] of stage1.opra//lemma1 for stage1.aux.srca = i;Similarly, for srcb, we have:forall(i in REG)subcase lemma1[i] of stage1.oprb//lemma1 for stage1.aux.srcb = i;This way, we only have to consider one register at a time, so we can reduce an arbitrarynumber of registers to just one, for each case. Note, we don't need to do this for lemma2,the result re�nement maps, since it doesn't depend on the register �le. It depends only onthe operands.Now we're ready to prove the various cases of our lemmas. For lemma1, we say:50

forall(i in REG)using res//free, alu_output//lemma2 prove stage1//lemma1[i];That is, we assume that the ALU ouput is correct, and show that (future) operands weobtain are correct. Notice that there are several paths that an ALU result might take to getback to the operand registers in stage 1. It might follow the bypass path, or it might getstored in register i. Either way, it should agree with what the abstract model gets. Noticealso that the correct storage and forwarding of a result deosn't depend on what the resultactually is. For this reason, we free the abstract model's result res. This eliminates theabstract model's ALU from the cone.To prove the result lemma (lemma2), we assume that operands entering the ALU arecorrect:using opra//free, oprb//free, stage1//lemma1prove alu_output//lemma2;Note, in this case, we don't care what the correct operands actually are { we only care thatthe abstract model and the implementation agree on them (lemma1). Thus, we free opraand oprb, and eliminate the abstract model register �le from the cone. This is important,since this register �le is of unbounded size, and in this case we have no single register indexto which we can reduce the type REG.Now, run this example. You'll notice that there are 32 instances to prove for each ofstage1.opra[i]//lemma1[0]stage1.oprb[i]//lemma1[0]alu_output[i]//lemma2where i is a bit index within a word. This is because SMV proves the re�nement maps foreach of the 32 bits of the data path separately. Later we'll see how to reduce this ratherlarge number of properties. For the moment, however, select propertystage1.opra[0]//lemma1[0]and try to verify it. You should get a counterexample. In this counterexemple, the initialvalue of r[0][0] (a bit in the abstract register �le) is zero, while the initial value of ir[0]0](the corresponding bit in the implementation register �le) is one. The problem here is thatthe abstract model is underspeci�ed. Because we have speci�ed the initial state of the register�le, it is nondeterministic. As a result of this, the abstract model and implementation havediverged.When there is a nondeterministic choice in an abstract model, we sometimes have toprovide a \witness function" for this choice. That is, as a function of the implementationbehavior, we plug in a suitable value in the abstract model. In this case, since the initialvalue in the speci�cation is complete unde�ned, we are free to plug in any value we like. Solet's write the following:init(r) := ir; 51

That is, we just set the initial value of the abstract model register �le to be the same asthe initial value of the implementation register �le. You might be wondering why we have todo this. That is, why can't SMV �gure out what the correct initial value of the register �leis. The answer is that it could, for any given property. However, it might use di�erent intialvalues to prove di�erent properties. As a result, even though we would have \veri�ed" allthe properties, there would be no single choice that makes all the properties true. Thus, forreasons of soundness, SMV requires you to �x the choice once and for all, and then veri�esall the properties for the particular choice you make.In any event, let's open the new version, with the witness function, and try again to verifystage1.opra[0]//lemma1[0]. You should �nd that the property is true. Look in the Conepane, and observe that it contains only 11 boolean state variables. This is bacause we areconsidering only registers r[0] and ir[0], and only bit 0 of the data path. We obtain onlybit 0 of the data path since neither the abstract model ALU nor the implementation ALUis in the cone. The former was eliminated by freeing res, while the latter was eliminated byusing lemma2 to drive the ALU output in the implementation.Now select property alu output[0]//lemma2. The cone is rather large in this case (66state variables) because bit 0 depends in this case on all the other bits of the data paththrough the ALU. (This is because bit 0 is the most signi�cant bit,and depeds on all theothers through the carry chain). However, notice the register �les are not in the cone in thiscase, because we have freed opra and oprb, and we have driven the implementation operandregisters using lemma1.Go ahead and verify property alu output[0]//lemma2. You should �nd that it checksfairy quickly in spite of the large number of state variables. This is because the ALUoperation is addition, and SMV succeeds in �nding an ordering of the BDD variables thatmaes the addition function compact. In fact, select Prop|Verify All to verify all theremaining properties. On my machine, this takes a little under eight seconds.On the other hand, if we had had a multiplier in the ALU the story would have beendi�erent. This is because there is no BDD variable ordering that makes this function com-pact. The veri�cation of multipliers is beyond the scope of this tutorial. There is, however,a way of separating the problem of airthmentic veri�cation from the processor veri�cationproblem. In this way, we can verify the processor design independent of the ALU function.Then we can plug in any ALU function we like.4.9.2 Uninterpreted functionsSuppose that instead of specifying the exact function of the ALU in our abstract model, wesimply use a symbol f to denote this function. Suppose further that we use the same functionsymbol in our implementation, and we are able to prove a re�nement relation between thetwo. It would then follow that the re�nement holds for any concrete function we might wantto plug in place of f.To represent such an uninterpreted function symbol in SMV, we simply introduce anarray to represent its lookup table. For example, if we have a function f that takes two WORDarguments and produces a WORD result, we might write:forall (a in WORD) forall (b in WORD)52

f[a][b] : WORD;or equivalentlyf : array WORD of array WORD of WORD;The only thing we need to know about function f is that it doesn't change over time. Todeclare this in SMV, we can simply write:next(f) := f;Now, to evaluate function f over two arguments a and b, we just look up the result inthe table. For example:res := f[opra][oprb];The trick here is that, without a data type reduction for type WORD, the lookup tablefor f will be of astronomical size. However, by case splitting, we can consider only the casewhen the arguments are some �xed values, and the result of the function is some �xed value.By doing this, we then have to consider only one element of the table for f at a time. Thisis a good thing, but it requires that WORD be a symmetric type (a scalarset or an ordset),so that we can reduced the very large numer of cases (here 232 � 232 � 232) to a tractablenumber (for example, 6).So now let's rewrite our example using an uninterpreted function symbol f for the ALUfunction. First, let's rede�ne type WORD to be a scalarset:scalarset WORD undefined;We don't have to say what the range of the type is. Instead, we'll verify our design forany word size. Now, in the main module, let's de�ne an uninterpreted function f:f : array WORD of array WORD of WORD;next(f) := f;Finally, we'll replace the ALU functions in both abstract model and implementation withfunction f. In the abstract model, changeres := opra + oprab;to res := f[opra][oprb];In the implementation, changealu_output := stage1.opra + stage1.oprb;to alu_output := f[stage1.opra][stage1.oprb];53

Now that we've modeled our problem with an uninterpreted function, we need to do a littlefurther case splitting, so that we only have to think about a few values of WORD at a time.For the operand lemma, we'll split cases on the cirrect operand value. That is, we'll provethat the operands we obtain are correct when the correct value is some �xe number j:forall(i in REG) forall(j in WORD)subcase lemma1[i][j] of stage1.opra//lemma1for stage1.aux.srca = i & stage1.aux.opra = j;(and similarly for oprb). For the results lemma, we want to consider only one entry inthe lookup table for f at a time. We'll split our result re�nement map (lemma2) into casesbased on the values of the two operands, and the value of function f for those two particularvalues. Thus for example, we might verify that the alu output signal is correct only in theparticular case when opra = 0 and oprb = 1 and when f[0][1] = 2. Here is a suitablecase splitting declaration:forall (a in WORD) forall(b in WORD) forall(c in WORD)subcase lemma2[a][b][c] of alu_output//lemma2for stage1.aux.opra = a& stage1.aux.oprb = b& f[a][b] = c;Our using...prove declarations are exactly the same as before, except that they have addedparameters for the additional case splits:forall(i in REG) forall(j in WORD)using res//free, alu_output//lemma2 prove stage1//lemma1[i][j];forall (a in WORD) forall(b in WORD) forall(c in WORD)using opra//free, oprb//free, stage1//lemma1prove alu_output//lemma2[a][b][c];Now, open the new version. For alu output//lemma2[a][b][c], there are six cases toprove:alu_output//lemma2[0][0][0]alu_output//lemma2[1][0][0]alu_output//lemma2[2][0][0]alu_output//lemma2[0][1][0]alu_output//lemma2[1][1][0]alu_output//lemma2[2][1][0]That is, SMV generates enough cases so that we see all the possible equality relationshipsbetween a, b and c, of which there are 3 factorial. For lemma 1, we now have just one caseeach for opra and oprb, since there is only one parameter of type WORD.54

Select property alu output//lemma2[0][0][0] and look at the cone. You'll notice thatonly one element of the lookup table for f appears in the cone: f[0][0]. This is because 0is the only speci�c valued in the reduced type WORD. (SMV automatically chose a reductionfor us, including just those values that speci�cally appear in the property we're proving).Verify this property. It's not surprising that the veri�cation is rather fast, since there areonly 5 state variables.Now select property alu output//lemma2[2][1][0]. Notice that in this case we havenine cases of f[a][b] in the cone (all the combinations of a,b = 0,1,2). This is becauseSMV isn't smart enough to �gure out that the only element that actually matters is f[2][1].We could, if we wanted to, include a declaration to make the remaining values unde�ned:forall (a in WORD) forall(b in WORD) forall(c in WORD)using f//undefined, f[a][b] prove alu_output//lemma1[a][b][c];This would reduce the number of state variables quite a bit, but it isn't really necessary.Even with the extraneous variables, the veri�cation is quite fast, as you may observe.Finally, select Prop|Verify All to verify the remaining cases. We have now veri�ed ourtrivial pipeline design for an arbitrary number of registers, an arbitrary word size, and anarbitrary ALU function.4.9.3 What about outputs?Up to now, we've proved a certain relationship between the abstract model and the implemen-tation, but we haven't really proved that the circuit observably implements its speci�cation.This is because the pipeline has no outputs. We could easily, however, give the processorand output instruction (perhaps one that outputs the sum of two registers). In this case theoutput of our pipeline would likely appear with some delay, relative to the speci�cation. Thismeans we would need to write a re�ement map for the pipeline output that delays the ab-stract model output by some �xed amount. In this case, since the delay is �nitely bounded,writing such a map is straightforward (we'll leave it as an \exercise for the reader"). If thereisn't a known �xed bound on the output delay, we might, for example, borrow a techniquefrom a previous section. That is, we could attach in index to each instruction, so that weknow which instruction's value is appearing at any given time at the output. We could thenuse induction, as before, to show that the output values appear in the correct order.In any event, in the next section, we'll see an example of a more interesting implementa-tion, with an output.4.10 An out-of-order instruction processorThe above may have seemed like a great deal of e�ort to verify such a simple design. However,we will �nd that the proof becomes only incrementally more complex when we move to amuch more complex implementation { an instruction processor using Tomasulo's algorithm.
55

"VIRTUAL" REGISTERS

"VIRTUAL
 OPERANDS"

VAL/TAG
VAL/TAG
VAL/TAG
VAL/TAG

OP, DST

VO1 VO2

RESERVATION
STATIONS

OP, DST

VO1 VO2

OP, DST

VO1 VO2

EU

EU

EU

TAGGED RESULTS

OPSINSTRUCTIONS

Figure 2: Flow of instructions in Tomasulo's algorithm4.10.1 Tomasulo's algorithmTomasulo's algorithm allows execution of instructions in data-ow order, rather than sequen-tial order. This can increase the throughput of the unit, by avoiding pipeline stalls. Eachpending instruction is held in a \reservation station" until the values of its operands becomeavailable, then issued \out-of-order".The ow of instructions is pictured in �gure 2. Each instruction, as it arrives, fetchesits operands from a special register �le. Each register in this �le holds either an actualvalue, or a \tag" indicating the reservation station that will produce the register valuewhen it completes. The instruction and its operands (either values or tags) are stored in areservation station (RS). The RS watches the results returning from the execution pipelines,and when a result's tag matches one of its operands, it records the value in place of the tag.When the station has the values of both of its operands, it may issue its instruction to anexecution pipeline. When the tagged result returns from the pipeline, the RS is cleared, andthe result value, if needed, is stored in the destination register. However, if a subsequentinstruction has modi�ed the register tag, the result is discarded. This is because its value ina sequential execution would be overwritten.In addition to an ALU instruction, we include instructions that read register values toan external output and write values from an external input. There is also a \stall" output,indicating that an instruction cannot be received either because there is no available RStostore it, or because the value of the register to be read to an output is not yet available.4.10.2 The abstract modelAs before, our abstract model is a simple machine that executes instructions in order as theyarrive. Additionally, in this case, it has the ability to stall. The choice of whether to stall ornot is nondeterministic.As before, we make the register index values and data values unde�ned scalarsets:scalarset WORD undefined;scalarset REG undefined;module main() 56

{ ...} We de�ne an uninterpreted function f for the ALU:f : array WORD of array WORD of WORD;next(f) := f;Here is the abstract model:opin : {ALU,RD,WR,NOP}; /* opcode input */srca,srcb,dst : REG; /* source and dest indices input */din,dout : WORD; /* data input and output */r : array REG of WORD; /* the register file */opra,oprb,res : WORD; /* operands and result */stallout : boolean; /* stall output (nondeterministic) *//* the abstract model */layer arch:if(~stallout)switch(opin){ALU : {opra := r[srca];oprb := r[srcb];res := f[opra][oprb];next(r[dst]) := res;}RD : {dout := r[srca];}WR : {next(r[dst]) := din;}}Note that we've put our speci�cation inside a layer called arch, so that we can re�ne thedata output signal dout in the implementation. Also note that since we haven't speci�ed avalue for stallout it remains nondeterministic. In case of an ALU operation, our behavioris as before: apply the ALU operation f to the two source operands, and store the result inthe register �le. In case of a RD operation, we read the srca operand from the register �leand assign it to dout, the data output. In case of a WR opration, we store the value of thedata input, din, into the destination register. (Finally, in case of a NOP operation, we donothing). 57

4.10.3 ImplementationIn the implemenation, we have two main data structures: the register �le and the array ofreservation stations. We de�ne these as follows:ir : array REG ofstruct{resvd : boolean;tag : TAG;val : WORD;}st : array TAG ofstruct{valid : boolean;opra, oprb : st_opr;dst : REG;issued : boolean;}Each register has a bit resvd, which is true when it is holding a tag (we say it is \reserved")and false when it is holding a value. Each reservation station has a bit valid to indicateis is holding a valid instruction, a bit issued to indicate its instruction has been issued toan execution unit, and two operand �elds, opra and oprb. The operand type is de�ned asfollows:typedef st_opr struct{valid : boolean;tag : TAG;val : WORD;}Each operand has a bit valid. When valid is true, it holds a value, otherwise it holds atag. The type TAG is an index into the reservation station array, and is declared as follows:scalarset TAG undefined;The result bus is called pout and is declared as follows:pout : struct{valid : boolean;tag : TAG;val : WORD;}We also need arbitrary choices for the reservation station to store a new instruction into,and the reservation to issue to an execution unit at any given time:58

st_choice : TAG;issue_choice : TAG;Now, we begin with the implementation behavior. Initially, all the reservation stationsare empty, and all the registers are unreserved:forall(i in TAG)init(st[i].valid) := 0;forall(i in REG)init(ir[i].resvd) := 0;There are three basic operations that occur on the register �le and reservation stations:� incoming instructions stored in a RS,� instruction issue to execution unit and� instruction completion (writeback to register �le).These three operations appear in the following default...in structure:default{...instruction completion logic...}in default{...incoming instruction logic...}in{...instruction issue logic...}This is done to specify the relative priority of the three operations in case they write tothe same register at the same time. However, in principle they shouldn't interfere witheachother, except in one case where we need a register bypass.Now, here is the implementation of instruction completion:if(pout.valid){forall(i in REG)if(ir[i].resvd & ir[i].tag = pout.tag){next(ir[i].resvd) := 0;next(ir[i].val) := pout.val;}forall(i in TAG){if(~st[i].opra.valid & st[i].opra.tag = pout.tag){next(st[i].opra.valid) := 1;next(st[i].opra.val) := pout.val;}if(~st[i].oprb.valid & st[i].oprb.tag = pout.tag){next(st[i].oprb.valid) := 1;next(st[i].oprb.val) := pout.val;59

}if(st[i].issued && pout.tag = i)next(st[i].valid) := 0;}}The signal pout.tag tells us which instruction the returning result is for. We match it againstthe tags in the register �le { if any reserved register has this tag, we store the returning valuein it, and mark it unreserved. Similarly, we match the tag against any reservation stationsthat are valid { if one of the operands has this tag, we store the result in it, and mark itvalid. Finally, the reservation station whose index is pout.tag has now completed, so wemark it invalid.Now, here's the code for incoming instructions. Note, we have to consider a special casewhere an operand of the incoming instruction is returning on the result bus at precisely thismoment. In this case, we bypass the register �le and send the result dirctly to the reservationstation:if(~stallout)switch(opin){ALU : {/* store the instruction in an RS */next(ir[dst].resvd) := 1;next(ir[dst].tag) := st_choice;next(st[st_choice].valid) := 1;next(st[st_choice].issued) := 0;/* fetch the a operand (with bypass) */if(pout.valid & ir[srca].resvd & pout.tag = ir[srca].tag){next(st[st_choice].opra.valid) := 1;next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := pout.val;} else {next(st[st_choice].opra.valid) := ~ir[srca].resvd;next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := ir[srca].val;}/* fetch the a operand (with bypass) */if(pout.valid & ir[srcb].resvd & pout.tag = ir[srcb].tag){next(st[st_choice].oprb.valid) := 1;next(st[st_choice].oprb.tag) := ir[srcb].tag;60

next(st[st_choice].oprb.val) := pout.val;} else {next(st[st_choice].oprb.valid) := ~ir[srcb].resvd;next(st[st_choice].oprb.tag) := ir[srcb].tag;next(st[st_choice].oprb.val) := ir[srcb].val;}}RD : dout := ir[srca].val;WR : {next(ir[dst].val) := din;next(ir[dst].resvd) := 0;}}Note that when when fetching an operand from a reserved register, if the tag matches thereturning result on pout, we directly move the pout data into the operand �eld of thereservation station. Otherwise, we move the contents of the register (whether a tag or avalue).Finally, here is the code for instruction issue:if(st[issue_choice].valid& st[issue_choice].opra.valid& st[issue_choice].oprb.valid& ~st[issue_choice].issued& exe_rdy){ exe_valid := 1;next(st[issue_choice].issued) := 1;}else exe_valid := 0;exe_tag := issue_choice;exe_opra := st[issue_choice].opra.val;exe_oprb := st[issue_choice].oprb.val;}If the RS chosen for issue has a valid instruction, and if both its operands are valid, andif it is not already issued, and if an execution unit is available, we send an instruction to theexecution units, and mark the RS as issued.There are two reasons why the above operations might result in a stall: the reservationstation chosen for an incoming instruction might be full, or the register chosen for readingout might be reserved. Thus, here is the de�nition of stallout:ASSIGN stallout := 61

opin = ALU & st[st_choice].valid| opin = RD & ir[srca].resvd;Now, for the execution units, we will use a fairly abstract model. Each execution unitcomputes its result, and stores it for an arbitrary length of time, before signaling that it isready. Here is our data structure for an execution unit:eu : array EU of struct{valid, ready : boolean;res : WORD;tag : TAG;}We also need two arbitrary choices for execution units to receive the issued instruction,and to send completed results to the result bus:issue_eu, complete_eu : EU;Initially, let's use only one execution unit, to simplify the proof. Later, we'll see how tohandle multiple execution units.scalarset EU 0..0;Here is the rest of the code for the execution unit(s):exe_rdy,exe_valid : boolean;exe_tag : TAG;exe_opra, exe_oprb : WORD;forall(i in EU)init(eu[i].valid) := 0;default{if(~eu[issue_eu].valid){next(eu[issue_eu].valid) := exe_valid;next(eu[issue_eu].res) := f[exe_opra][exe_oprb];next(eu[issue_eu].tag) := exe_tag;}} in {pout.valid := eu[complete_eu].valid & eu[complete_eu].ready;pout.val := eu[complete_eu].res;pout.tag := eu[complete_eu].tag;if(pout.valid)next(eu[complete_eu].valid) := 0;} 62

Initially, all the execution units are invalid. If the unit chosen for issue is not valid, we markit valid, and store in it the result of applying the function f to the two operands. We alsostore the tag of the issuing instruction.If the unit chosen for completion is valid and ready, we pass its result on to the resultbus (pout) and mark it invalid. Note that ready is a completely nondeterministic bit here,modeling an unknown delay in the execution unit. Also note that in practice, we wouldde�ne some policy for choosing a unit to issue to and a unit to complete (presumably we donot want to choose to issue to an already valid unit, for example). This would likely involveintroducing a priority encoder or round-robin policy, which would break the symmetry ofthe EU type. Symmetry breaking is a topic for another section, however.The last part of the implementation is the witness function for the initial state of theabstract model register �le:layer arch:forall(i in REG)init(r[i]) := ir[i].val;4.10.4 Re�nement mapsAs before, now that we have an abstract model and an implementation, we will write re-�nement maps that relate the two, and then break these into cases that are small enoughproblems to verify with model checking. Surprisingly, the re�nement maps that we will useare almost identical to the ones we used for the simple pipeline. That is, we have one lemmathat states that operands obtained by the reservation stations are correct, and one thatstates that results returning from the execution units are correct.Also as before, to write these speci�cations, we will add some auxiliary state to theimplementation, to remember what the correct values of the operands and results are. Eachreservation station will have an auxiliary structure containing values for opra, oprb and res.In addition, we'll include the source register indices srca and srcb (recall that last time weused these values for case splitting):aux : array TAG of struct {opra, oprb, res : WORD;srca, srcb : REG;}Now, when we store an instruction in a reservation station, we want to record the correctvalues from the abstract model into the auxiliary structure:if(~stallout & opin = ALU){next(aux[st_choice].opra) := opra;next(aux[st_choice].oprb) := oprb;next(aux[st_choice].res) := res;next(aux[st_choice].srca) := srca;next(aux[st_choice].srcb) := srcb;} 63

Now that we've recorded the correct values, we can specify our re�nement maps. For theoperands (lemma1) we state that if a given RS holds a valid operand, its value must matchthe correct value. For the \a" operand, we have:forall(k in TAG)layer lemma1 :if(st[k].valid & st[k].opra.valid)st[k].opra.val := aux[k].opra;The \b" operand is similar. Now, for the result lemma (lemma2) we state that, if a resultis returning on the result bus, tagged for a given reservation station, then its value is thecorrect result for that reservation station:forall (i in TAG)layer lemma2[i] :if(pout.tag = i & pout.valid)pout.val := aux[i].res;4.10.5 Case splittingNow, let's split our lemmas into cases, so that we only have to think about one possible pathfor data to follow from one re�nement map to the other. We begin with the operand lemma.Consider a result returning on the result bus. That result is the result value of a givenreservation station i. It then (possibly) gets stored in a register j. Finally it gets read asan operand for reservation station k. This suggests a case split which will reduce the size ofthe veri�cation problem to just two reservation stations and one register. For each operandarriving at reservation station k, we split cases based on the reservation station i that itcame from (this is the \tag" of the operand) and the register j that it passed through (thisis the source operand index, srca or srcb, that we store in the auxiliary state for just thispurpose). We also want to split cases on the correct data value, since WORD is an unde�nedscalarset type. Thus, here is the case splitting declaration for the \a" operand:forall (i in TAG) forall (j in REG) forall (k in TAG) forall(c in WORD)subcase lemma1[i][j][c]of st[k].opra.val//lemma1for st[k].opra.tag = i & aux[k].srca = j & aux[k].opra = c;That is, we consider only the case where the tag (i.e. the producing reservationstation)is i, and source register is j and the correct value is c. The \b" operand is similar.For the result lemma (lemma2), we consider a pair of operands that start in some reser-vation station i and pass through execution unit j. Since i is a parameter of the lemmaalready, we are left with just j to split cases on (this is the value of the signal complete eu).However, we now also have three data values to split cases on: the two operands a and b,and the result, c = f[a][b]. As before, this will reduce the data type WORD and the tablef down to a tractable size. Thus, here is our case splitting declaration for lemma2:64

forall(i in TAG) forall(j in EU)forall(a in WORD) forall(b in WORD) forall(c in WORD)subcase lemma2[i][j][a][b][c]of pout.val//lemma2[i]for aux[i].opra = a & aux[i].oprb = b & f[a][b] = c& complete_eu = j;Finally, we have one last thing to prove, which is that the data output is correct accordingto the architrectural model (layer arch). This is quite similar to the operand lemma. Thatis, every data output value was produced as a result by some instruction and then stored inthe source register for the RD instruction. Therefore, when proving that data output valuesare correct, we will split cases on the producing reservation station (this is obtained from thetag of the source register) and the source register index. In addition, as before, we consideronly the case where the correct value is some arbitary constant c:forall (i in TAG) forall (j in REG) forall (k in TAG) forall(c in WORD)subcase arch[i][j][c]of dout//archfor srca = j & ir[j].tag = i & r[j] = c;4.10.6 The proofNow we procede to de�ne the abstractions used to prove the cases of the two lemmas. Asbefore, when proving lemma1 we use lemma2 and vice versa. Also as before, we free theresults in the abstract model when verifying operands, and free the operands when verifyingthe results.Here is the proof for the operand lemma lemma1 and the data output (both of theseassume lemma2):forall (i in TAG) forall (j in REG) forall (k in TAG) forall(c in WORD)using res//free, pout//free, pout.val//lemma2[i]prove st[k]//lemma1[i][j][c], dout//arch[i][j][c];Notice the we also freed the signals in the pout bus (other than the value itself, which isgiven by lemma2), so that none of the execution unit logic appears in the cone.For the results lemma (lemma2), we take a similar tack: we use lemma2 for the operands,and otherwise free them in order to eliminate the operand fetch logic from the cone:forall(i in TAG) forall(j in EU)forall(a in WORD) forall(b in WORD) forall(c in WORD)using opra//free, oprb//free, st[i]//lemma1, f//undefined, f[a][b]prove lemma2[i][j][a][b][c];Notice we've set all the elements of the lookup table for f to unde�ned except for f[a][b]since this is the only element of the table that matters to our particular case.Now, open the �le. For st[k].opra.val//lemma1[i][j][c], the \a" operand correct-ness lemma, you'll notice we have two cases to prove:65

st[0].opra.val//lemma1[0][0][0]st[1].opra.val//lemma1[0][0][0]This is because both i (the producer RS) and k (the consumer RS) are both of typeTAG. Thus SMV must verify one case where i = k and one case where i 6= k. All the othercases are equivalent to one of these by permuting values of type TAG. Now, select propertyst[1].opra.val//lemma1[0][0][0] (this is the more interesting of the two cases, since itinvolves two reservation stations). Now, look in the Cone pane. You should observe thatall of the state variables of type TAG (such as st[1].opra.tag) require two bits to encodethem. This is because the type TAG has been reduced to three values: 0, 1, and an abstractvalue representing all the other tags. On the other hand, register indices (such as srca)have been reduced to just two values, and hence are represented by a single boolean value.These reductions were made by default, because we didn't specify data type reductions forthe unde�ned scalarsets.Notice also that we have freed signals in such a way as to cut o� any connection tothe exectution units in the abstract model and the implementation. Thus, for example, thefunction f does not appear in the cone. Finally, as a result of the data type reductions, wehave only register zero and RS's zero and one in the Cone. Accesses to any other elementsof these arrays will yield the unde�ned value. The result of all these reductions is that thecone contains only 25 state bits. Try verifying the property. Because of the smal number ofstate bits, it veri�es on my machine in a little under one second.Now let's consider the results lemma (lemma2). This appears as a collection of cases ofthe form:pout.val//lemma2[i][j][a][b][c]which states that results for RS i on the result bus pout are correct, in the case whereexecution unit j is returning a result, the \a" operand is a, the \b" operand is b and thef[a][b] (the correct result) is c. Since a, b and c are all of te same type, we have 3! = 6cases to prove:pout.val//lemma2[0][0][0][0][0]pout.val//lemma2[0][0][0][1][0]pout.val//lemma2[0][0][1][0][0]pout.val//lemma2[0][0][1][1][0]pout.val//lemma2[0][0][2][0][0]pout.val//lemma2[0][0][2][1][0]This is enough to represent all the possible equality relatiopnships between a, b, and c. Themost di�cult case should be the last one, since it hase three di�erent values of type WORD.In fact, if you select this property and look in the cone pane, you should observe that thevalues of type WORD are reprsented by two boolean variables (enough to encode the values 0,1,and 2, plus an abstract value). In addition, because the index data types are reduced toonly those values occurring in the property, we have only one reservation station in the cone.If we access any RS's other than zero, we'll get an unde�ned value. However, this shouldnot a�ect the truth of our property, since it only tests returning results that derive from66

resrevation station zero. The other results will, of course, be incorrect in the reduced model,but our property ignores them. You can validate this argument by selecting \Prop|Verifypout.val//lemma2[0][0][2][1][0]". The property veri�es quite quickly, because there are only18 state variables in the cone (it takes less than half a second on my machine).Now choose \Prop|Verify All" to verify the remaining cases. It should take on the orderof �ve seconds to do this. We have veri�ed an out-of-order execution unit with an arbitrarynumber of registers and reservation stations, an arbitrary size data word and an arbitraryfunction. The basic strategy we used to do this was the same as for the simpler pipelinedunit:1. Re�nement maps and auxiliary state. We broke the problem into two parts, bywriting re�nement maps that specify the correct values for the operands and resultsobtained in the implementation. To do this, the correct values are obtained from theabstract model, and stored in auxiliary state.2. Path splitting. We broke the large data structures (the register �le and RS array)down into just a few components by splitting cases on the path taken by a data itemfrom one re�nement map to another.3. Symmetry. The large number of cases produced by the above two steps are reducedto a small �nite number by considerations of symmetry.4. Data type reductions. After case splitting, we can reduce the large (or in�nite)types, such as data words, to small �nite types by grouping all the irrelevant values intoa single abstract value. A special case of this is the uninterpreted function abstraction,in which we use a large table to represent and arbitrary function, but then split casesin such a way that we use only one element of the table for each case, after the datatype reduction.As a result of this strategy, the problem has been reduced to 11 rather small �nite-statelemmas.4.10.7 Abstract counterexamplesVeriifcation runs that succeed are not generally very interesting. To convince yourself thatthe above proof strategy actually works, you might wat to try introducing a bug into theimplementation to see what happens. For example, let's remove the bypass logic from theoperand fetch to see what happens. Replace the following code:/* fetch the a operand (with bypass) */if(pout.valid & ir[srca].resvd & pout.tag = ir[srca].tag){next(st[st_choice].opra.valid) := 1;next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := pout.val;} else {next(st[st_choice].opra.valid) := ~ir[srca].resvd;67

next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := ir[srca].val;}with this:/* fetch the a operand (without bypass) */next(st[st_choice].opra.valid) := ~ir[srca].resvd;next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := ir[srca].val;Now, open the modi�ed version and select \Prop|Verify All". You should get a counterex-ample for propertyst[1].opra.val//lemma1[0][0][0]This is what happens inthe counterexample. At step 1, an instruction with destinationregister 0, and result 0 is loaded into RS 0. At step 2 this is issued to an exectution unit,and at step 3, the result returns on the result bus (pout.val is true). At the same time, a newinstruction with \a" source register 0 is store in RS 1. However, because we have removedthe bypass path, this instruction doesn't notice that its operand is currently returnin on theresult bus. Thus, it gets a tag 0 instead of a value for its \a" operand. Now, in step 4, anew instruction is loaded into RS 0, again with destination 0, but this time with some valueother than zero as its result. Notice the the value of res (the abstract model result) at step 4is NaN. In the reduced model, this represents any value other than zero. Then in step 5, thisresult returns on the result bus, with tag 0, and thus gets fowarded to RS 1, which is waitingfor tag 0. Unfortunately, RS 1 is expecting a value of zero (see aux[0].opra, since it is reallywaiting for the result of an earlier instruction with tag 0. Thus our property is violated atstep 6: the expected operand was zero, but the actual obtained operand (st[1].opra.val) isnon-zero (represented by NaN). Even though the counterexample is abstract (i.e., it containsthe abstract value NaN), it represents a class of real counterexamples (where, for example,the value 1 is obtained instead of 0).In fact, the counterexample is abstract in another way. Notice that at step 5, a resultreturns on the the result bus pout.valid is true, even though the reservation station (st[0])is not yet in the issued state. This is because the result bus is being driven by the re�nementmap lemma2 rather than by the real execution unit. Our re�nement map didn't specify thata result would not return from an execution unit before it was issued. Interestingly, ourdesign for the reservation stations and register �le is su�ciently robust that a result arrivingearly in this way does not cause us to obtain correct operands output incorrect values. Thus,we are able to verify the implementation with rather \loose" re�nement maps. This is a caseof a more general phenomenon: the more robust the individual components of a design are,the simpler are the re�nement maps.
68

4.10.8 Multiple execution unitsNote �nally, that we have only veri�ed our implementation of Tomasulo's algorithm for oneexecution. We could easily enough verify our design for some small �nite number of units aswell. However, with multiple execution units, we can't abstract away all the execution unitsexcept the one we're interest in. This is because one of these abstracted units might returnan incorrect tag, which would reset the state of our reservation station prematurely. Youcan see observe this phenomen by changing the declaration of the type EU to the following:scalarset EU 0..7;Thus, we now have 8 execution units. If you open this modi�ed version, and try verifyingall the properties, you should obtain a counterexample for lemma2, in which reservationstation 0 issues an instruction to execution unit zero, but then some other execution unit(which is abstracted by SMV's default heuristics) returns an unde�ned value as its tag,causing the state of reservation station 0 to be corrupted.We can �x this problem by forcing SMV not to abstract the control information in theother execution units (though the data can still be left abstract, since we don't care abutit). To see this, change the proof declarion for lemma2 to the following:forall(i in TAG) forall(j in EU) forall(k in EU)forall(a in WORD) forall(b in WORD) forall(c in WORD)using opra//free, oprb//free, st[i]//lemma1, f//undefined, f[a][b],eu[k].tag, eu[k].ready, eu[k].validprove pout//lemma2[i][j][a][b][c];The only change here is that we have said, for all execution units k, to include theimplementation de�nitions of tag, ready and valid. The overrides the daufult behavior,which is to abstract these to undefined. Now, open this modi�ed version, and try verifyingall the properties. This should succeed, but take about a minute, instead of the �ve secondsrequired for the one-EU version. The reason is that we have greatly increased the numberof state variables. If you select property pout//lemma2[0][0][2][1][0], you'll notice thatthe control bits of all the execution units are present in the cone, and as a result, the numberof state bits is increased to 32.As we have observed, the problem with eight execution units is still within the realm thatcan be solved with BDD's. However, if we want to verify the design for an arbitrary numberof execution units, we'll need to deal with the problem of interference, the subject of thenext section.4.10.9 Proving non-interferenceOur problem in verifying Tomasulo's algorithmwith an arbitrary number of execution units isthat we are forced consider only one execution unit at a time, in order to obtain a �nite-stateveri�cation problem. Thus, we consider the correctness only of the results of one particularexecution unit. When we perform this veri�cation, the other execution units are abstractedto an unde�ned value Thus, although we are not concerned with the correctness of the data69

values they produce, they may still upset the control state in the given reservation stationby returning spurious tags.To rule out this possibility, we add a non-interference lemma. This states that while areservation station is expecting a result from a given execution unit, no other unit returns aresult for that particular RS. In general, such a lemma is needed whenever the state of onesystem component might be corrupted by a spurious message from other components thathave been abstracted away.In order to state the condition that a given reservation station does not receive an unex-pected result, we �rst have to add some auxiliary state information to tell us which executionunit the reservation station is actually expecting a result from. To do this, we add an addi-tional �eld to the auxiliary state array:forall (i in TAG)aux[i].eu : TAG;Now, each time that a given reservation station issues an instruction to an execution unit,we record the index of that execution unit in the auxiliary state:if(exe_valid)next(aux[issue_choice].eu) := issue_eu;We can now state the non-interference lemma as follows:lemma3 : assert G (pout.valid -> (complete_eu = aux[pout.tag].eu));That is, lemma3 states that, at all times, if a result is returning on the pout bus, with agiven tag pout.tag, then the unit returning the result (complete eu) must be the unit thatthe indicated reservation station is waiting for (aux[pout.tag].eu).Now, lets see if we can prove lemma3. The �rst thing we'll have to do is to break thelemma into cases, so we only have to consider one reservation station and one execution unit.So let's add the following case splitting declaration:forall(i in TAG) forall(j in EU)subcase lemma3[i][j] of lemma3 for pout.tag = i & complete_eu = j;That is, we only consider the case where the returning result is for reservation station i andthe execution unit returning the result is j. With the above additions, open the �le, andselect property lemma3[0][0]. If you look in the cone pane, you should see that SMV hasautomatically perfomed data type reductions, reducing TAG to just f0,NaNg and EU to0,NaN. As a result, there are only 9 state variables (notice also that no data variables appearin the cone, because lemma3 is a control property, and does depend on any data variables.However, if you try to verify the property, you'll �nd that it's false. The counterexampleshows a case where reservation station 0 is waiting for a result from execution unit 0, butinstead, at state 3, a result returns from some other execution unit (that is complete eu= NaN. In other words, in trying to prove non-interference, we've run into an interferenceproblem. You might think that we are cought in an in�ntie regression here. However, in factall is not lost. This is because when proving a particular case of lemma3 at time t, SMV will70

allow us to assume the full lemma holds up to time t � 1. In other words, we only have toprove that execution unit 0 is not the em first execution unit to interfere. If this is true forall execution units, we can then safely infer that no execution unit interferes. To tell SMVto assume the full lemma up to time t� 1, add the following declaration:forall(i in TAG) forall(j in EU)using (lemma3) prove lemma3[i][j];The parentheses around lemma3 tell SMV to make the weaker assumption that lemma3 onlyholds up to t� 1. If we leave them out, SMV will complain that the proof is circular. Withthis addition, open the �le, and try to prove lemma3[0][0]. This time it should be true.Now that we've proved that other executions can't interfere, let's return to the proof oflemma2 (correctness of returning results). We want to prove that a result coming back onthe result bus is correct, assuming that no previous interference has occured. To do this,add (lemma3) to the assumptions used to prove lemma2. You should get a declaration likethe following:forall(i in TAG) forall(j in EU)forall(a in WORD) forall(b in WORD) forall(c in WORD)using opra//free, oprb//free, st[i]//lemma1,f//undefined, f[a][b], (lemma3)prove pout//lemma2[i][j][a][b][c];Notice that we only assume the non-interference lemma up to time t � 1 when provinglemma2 up to time t. In fact, SMV won't allow us to use lemma3 up to time t. This isbecause lemma2 is a re�nement map. Thus, we might well choose to use it use it when provinglemma3, which would result in a circularity. Fortunately, the weaker assumption is su�cientto prove the lemma. To con�rm this, open the new version, and choose \Prop|Verify all".With the addition of a non-interference lemma, we have now proved that our implemen-tation of Tomasulo's algorithm works for any word size, any ALU function, any number ofregisters, any number of reservation stations, and any number of execution units.4.11 Adding a reorder bu�erNow, let's modi�y the design to use a \reorder bu�er". This means that instead of writingresults to the register �le when they are produced by an execution unit, we store them in abu�er, and write them back to the register �le in program order. This is usually done so thatthe processor can be returned to a consistent state after an \exceptional" condition occurs,such as an arithmetic overow. The simplest way to do this in the present implementationis to store the result in an extra �eld res of the reservation station, and then modify theallocation algorithm so that reservation stations are allocated and freed in round-robin order.The result of an instruction is written to the register �le when its reservation station is freed.To e�ect this change, add the following �elds to the reservation stat structure st:completed : boolean;res : WORD; 71

Also add a variable complete st to indicate which reservation station should be deallocated:complete_st : TAG;Now, change the instruction completion logic, so that, when a result appears on the the buspout, instead of storing it in the register �le, we store it in the res �eld of the reservationstation and set the completed bit. If the reservation station indicated by complete st hasits completed bit set, we store its result from the res �eld into the register �le. Thus, wereplace the instruction completeion logic with the following:default {/* result writeback logic */if(st[complete_st].valid & st[complete_st].completed){forall(i in REG)if(ir[i].resvd & ir[i].tag = complete_st){next(ir[i].resvd) := 0;next(ir[i].val) := st[complete_st].res;}next(st[complete_st].valid) := 0;}} in default {/* instruction completion logic */if(pout.valid){forall(i in TAG){if(~st[i].opra.valid & st[i].opra.tag = pout.tag){next(st[i].opra.valid) := 1;next(st[i].opra.val) := pout.val;}if(~st[i].oprb.valid & st[i].oprb.tag = pout.tag){next(st[i].oprb.valid) := 1;next(st[i].oprb.val) := pout.val;}if(st[i].issued && pout.tag = i){next(st[i].completed) := 1;next(st[i].res) := pout.val;}}}} in ...Finally, we have to make sure that a result sitting in the res �eld of a completed instruction,but not yet written back to the register �le, gets forwarded to any new instructions that mightneed it. Thus, for example, we change the operand fetch logic for the opra operand to thefollowing: 72

/* fetch the a operand (with bypass) */if(pout.valid & ir[srca].resvd & pout.tag = ir[srca].tag){next(st[st_choice].opra.valid) := 1;next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := pout.val;} else if(ir[srca].resvd & st[ir[srca].tag].completed){next(st[st_choice].opra.valid) := 1;next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := st[ir[srca].tag].res;} else {next(st[st_choice].opra.valid) := ~ir[srca].resvd;next(st[st_choice].opra.tag) := ir[srca].tag;next(st[st_choice].opra.val) := ir[srca].val;}Here, we have inserted a clause so that, if register srca is holding a tag, pointing to acompleted reservation station, then we forward the res �eld of that reservation station asopra operand. Change the oprb logic correspondingly.Finally, we introduce logic for choosing the reservation station to allocate (st choice)and free (complete st), so that reservation stations are used in round-robin order:#define NUM_RS 32breaking(TAG){init(st_choice) := 0;init(complete_st) := 0;if(~stallout & opin = ALU)next(st_choice) := st_choice + 1 mod NUM_RS;if(st[complete_st].valid & st[complete_st].completed)next(complete_st) := complete_st + 1 mod NUM_RS;Note, we chose here, arbitrarily, to use reservations stations numbered from 0 to 31 in theround-robin. Also note that since this logic breaks the symmetry of the type TAG, we haveto put it in a breaking clause. If a new instruction is stored in a reservation station, weincrement st choice modulo 32. Similarly, if a reservation station is freed (i.e., the stationchosen to be freed is marked completed), then we increment complete st module 32. Thisis done so that results of instructions are written to the register �le in the same order thatthe instructions are received.Now, open the new version and choose \Prop|Verify all". You should �nd that all ofthe properties are still true. That is, after this design change, the processor can be veri�edwithout modifying one line of the proof! This is because our three lemmas (for operands,results and noninterference) are not a�ected by the design change. Now, select an instanceof lemma1, and look in the cone pane. You will notice that the signals st choice andcomplete st are free. This is because the assignments to these signals break the symmetryof type TAG, and thus cannot be used to verify this property, as we are using a symmetry73

reduction on type TAG. Thus, we have in fact veri�ed the correctness of our design's dataoutput independent of the de�nition of these signals, and have not used in any way the factthat these signals obey a round-robin policy. This should not be too surprising, as in theprevious version of the design, no particular ordering was used. If we were to introduce someform of \exception", however, that interrupts the instruction stream, we would presumablyneed to use the round-robin policy to show that a consistent state is obtained after anexception.Nonetheless, the fact that our proof was una�ected by the design change illustrates animportant general point about compositional proofs. That is, our proof has the virtue that itonly speci�es the values of three key signals: the source operands in the reservation stations(lemma1), the value on the result bus (lemma2) and the tag on the result bus (lemma3).Since the function of these signals was not changed in adding the reorder bu�er, our proofremained valid. In general, when designing a proof decomposition, it is best to do it in sucha way that as few signals as possible are referenced. In this way, the proof will be less likelyto be invalidated by localized design changes.4.12 Proving livenessUp to now, we've proved that our implementation of Tomasulo's algorithm is a re�nementof an abstract model (in this case a sequential implementation of the same instruction set).However, we should note that a circuit that simply asserted the stall signal at every timeunit would also satisfy this speci�cation. Thus, we have shown that every behavior of theimplementation is correct, in the sense that no bad outputs are produced, but we haven'tshown that the circuit necessarily does any actual work. To do this, we also need to provea liveness property.The most obvious speci�cation for liveness of the implementation is that it always even-tually does not stall. We will begin, however, by proving something stronger: that everyinstruction eventually completes. Notice that this is a su�cient but not necessary conditionfor liveness. That is, if an instruction's result is never used as the source operand of a laterinstruction, then that instruction's failure to terminate would not cause any future stallsof the machine. However, we would also like to make sure that no reservation station ispermanently lost as a resource, even if its result is never needed. Thus, we will prove thatwhenever a reservation station is full, it eventually becomes empty.The proof of liveness follows the same basic lines as the re�nement proof. That is, webreak the liveness problem into two lemmas: one for operands, and one for results. The �rstlemma states that the operands of any given valid reservation station are always eventuallyvalid. The second lemma states that a result for a given valid reservation station alwayseventually returns. As before, we construct a circular compositional proof, using operandliveness to prove result liveness, and vice versa. We will also use the same path splittingapproach and data type reductions as in the re�nement proof.The main di�erence from the re�nement proof is that we will need to �ll in more detailabout the resource allocation policies in order for the implemention liveness to be guaranteed.Up to now, we have left a number of choices completely nondeterministic, for example, thechoice of which reservation station issue to an execution unit. However, in order to ensurethat every instruction eventually executes, we will require that this choice be made in a fair74

way. Also, we will have to gauranteee that execution units always eventually �nish. On theother hand, liveness does not depend in this case on data values, thus we will �nd that thedata path logic does not enter into the proof.4.13 Liveness lemmasTo begin with, let's take our implementation from the previous section and add two livenesslemmas. The �rst states (in temporal logic) that if a given reservation station holds a validinstruction, then its operands (opra or oprb) are eventually valid. Here is the lemma foropra:forall (i in TAG)live1a[i] : assert G (st[i].valid -> F st[i].opra.valid);In other words, at all times, if rs[i] is valid, then eventually the opra operand of rs[i] isvalid. Write a similar lemma for the oprb operand.Now, for the result liveness, lemma, we have:forall (i in TAG)live2[i] : assert G (st[i].valid -> F ~st[i].valid);That is, if rs[i] has a vaild instruction, then eventually the instruction completes, resultingin rs[i] being invalid. Note, we could have stated that eventually the result bus has a validresult with tag pout.tag = i. The two are equivalent, since the reservation station goes tothe invalid state if and only if a corresponding result returns on the bus.4.14 Path splittingNow we consider the problem of proving the operand liveness lemma. As in the re�nementproof, we observe that every operand consumed by a given reservation station i was producedby some reservation station jand stored in some source register k. If we split cases on theproducer reservation station and the source register, we can show that the operand eventuallyarrives in any one case, using just two reservation stations and one register in the proof. Thus,add the following case splitting declaration for the opra operand:forall(i in TAG) forall(j in TAG) forall(k in REG)subcase live1a[i][j][k] of live1a[i]for st[i].opra.tag = j & aux[i].srca = k;Recall that st[i].opra.tag is the producer reservation station for the opra operand ofreservation station i, and aux[i].srca is the source register of the opra operand, whichwe previously recorded in an auxiliary variable. Thus, the subcase live1a[i][j][k] statesthat (at all times), if reservation station rs[i] is holding an instruction, whose opra operandis to be produced by rs[j], and stored in source register ir[k], then eventually the opraoperand will become valid.Note that in the re�nement proof, we also had to split cases on the data value. Thisis unnecessary in the livenes proof, however, since liveness does not depend on data. Note,75

also that we will have to assume that the producer reservation station eventually producesa valid result. However, this is allowed by the circular compositional rule, as we will see inthe next section.Now, for the results liveness lemma, we would like to prove that if a reservation stationholds an instruction, it will eventually terminate. As before, we would like to split cases onthe execution unit that produces the result, so that we can deal with an arbitrary number ofexecution units. This presents a slight problem, however, since at the time the reservationstation becomes valid, the execution unit has not yet been chosen. In order to split cases,we therefore need to refer to a future value of a variable, in particular, the value of theexecution unit choice at the time the instruction is issued. Fortunately, we can do this usinga temporal logic operator.The temporal logic formula p when q is true at a given time if p holds at the �rst occasionwhen q holds (and is taken to be true if q never holds). It is simply an abbreviation for (qU (q & p)). SMV recognizes that at any given time, for any given variable v,(v = i) when qmust be true for some value of i in the range of v. This allows us to split cases on a futurevalue of a variable instead of the current. In this case, we can split the results lemma intocases based on the the future choice of execution unit in the following way:forall(i in TAG) forall(j in EU)subcase live2[i][j] of live2[i]for (aux[i].eu = j) when st[i].issued;That is, we split cases on the value of the variable aux[i].eu (the auxiliary variable thatrecords execution unit choice) when the instruction is issued.4.15 The circular compositional proofNow, in order to prove that an operand eventually arrives at a consumer reservation station,we have to assume that the producer reservation station eventually yields a result. Similarly,to prove the result of a reservation station is eventually produced, we must assume that itsoperands eventually arrive.While this argument is circular on its face, we can eliminate the circularity by introducinga time delay. Thus, to prove that operands are live at time t, we assume that results are liveup to time t� 1. This is su�cient, since if the consumer reservation station is valid at timet, the producer reservation must have been valid at some time t � 1 or earlier (that is, theproducer instruction must have arrived at an eariler time than the consumer instruction).In essence, we show that an operand of an instruction must eventually arrive assuming thatall instructions arriving at earlier times eventually terminate.To implement this argument, use the following declarations:forall (i in TAG) forall(j in TAG) forall(k in REG)using pout//free, (live2[j]) prove live1a[i][j][k], live1b[i][j][k];forall (i in TAG) forall(j in EU)using opra//free, oprb//free, live1a[i], live1b[i], prove live2[i][j];76

That is, we assume that the producer reservation station j is live up to t� 1 when provingthe operands eventually arrive at the consumer. The time delay is indicated by putting theassumption live2[j] in parentheses. Then we can assume that operands are live up to timet when proving results are live up to t. SMV will detect the cirularity, but notice that it isbroken by the time delay.Note that, as in the re�nement proof, we free the result bus when verifying the operandsand free the operands when verifying the results. This breaks the system into two separateparts for veri�cation.4.16 FairnessNow, open the new version. You should see several new properties in the properties pane:instances of live1a, live1b and live2. Select, for example, live1a[1][0][0]. This saysthat operands are always eventually forwarded from producer 0, via source register 0, toconsumer 1. It should verify correctly.On the other hand, try to verify live2[0][0], which states that results for reservationstation 0 always eventually arrive when using execution unit 0. For this property you shouldget a counterexample, where the reservation station is loaded with an instruction, obtainsboth its operands, and then waits forever to be issued to an execution unit. Note thatmany reasons are possible for this. For example, we have not speci�ed issue choice, whichindicates the reservation station chosen for issue to an execution unit. Thus it is possiblethat reservation 0 is never chosen (a failure of fairness of the arbiter). Or, it is possible thatreservation station 0 is chosen, but never at a moment that there is an available executionunit. Or, it is possible that issue eu, which chooses an execution unit never choses anavailable, or that there is never an available unit because no execution unit ever terminates.Or, because we are using an abstraction where all execution units except for eu[0] areabstracted away (because of the default data type reduction), it is possible that issue eualways choose a unit other than zero, and this unit, being abstracted away, always claims tobe busy (in fact, this is the counterexample that I got).For the moment, let's rule out all these possibilities by simply assuming that an instruc-tion does not remain unissued forever with its operands ready. Later, when we actuallyimplement a policy for issue choice and issue eu, we'll discharge this assumption. Hereis one way to state this assumption:forall (i in TAG) {issue_fair[i] : assert G F (st_ready[i] -> st_issue[i]);assume issue_fair[i];}That is, it is not possible that a reservation station remains ready and not issued. We de�nethese terms as follows:forall(i in TAG) {st_ready[i], st_issue[i] : boolean;st_ready[i] := st[i].valid & st[i].opra.valid & st[i].oprb.valid & ~st[i].issued;st_issue[i] := issue_choice = i & exe_rdy;77

}Now, add issue fair[i] to the assumptions used to prove live2[i][j]. With this addi-tion, try again to verify live2[0][0]. You should get another counterexample, this timewhere an instruction does get issued to execution unit 0, but the execution unit nevercompletes. To correct this problem, let's add the assumption that execution units alwayseventually complete:forall(i in EU){eu_fair[i] : assert G (eu[i].valid -> F ~eu[i].valid);assume eu_fair[i];}That is, we assume that if an execution unit becomes valid (contains an instruction), it even-tually becomes invalid (completes). We'll have to discharge this assumption later when we�ll in the details of the execution units and the completion arbitration. Add the assumptioneu fair[j] to those used to prove live2[i][j]. Now, try again to verify live2[0][0].You should �nd the property true. Now try \Prop|Verify all". All the properties shouldbe true, although the system will warn that there are unproved assumptions (the propertiesissue fair and eu fair).4.17 Implementing the issue arbiterNow we come to the problem of implementing an issue arbiter that guarantees the propertyissue fair. That is, we want to choose issue choice in such a way that every readyinstruction is eventually issued. One way to do this is by using a rotating priority scheme. Inthis scheme, one requester (reservation station) is assigned highest priority. If this requesteris rejected (i.e., requests but is not acknowledged), it retains the highest priority. Otherwise,priority rotates to the next requester. In this way, we can guarantee that, if a resource(execution unit) always eventually becomes available, then all requesters will eventually beserved (or withdraw their request). Here is an implementation of the issue arbiter (we leavethe choice nondeterministic in the case where the high priority requester is not requesting):issue_prio : TAG;if(st_ready[issue_prio])issue_choice := issue_prio;else issue_choice := {i : i in TAG};breaking(TAG)if(~(st_ready[issue_prio] & ~exe_rdy))next(issue_prio) := issue_prio + 1 mod TAGS;Note that by incrementing issue prio, we break the symmetry of the type TAG. This meanswe have to enclose the assignment within a breaking(TAG) declaration, so disable type check-ing of type TAG. Further, we now have to explicitly declare the number TAGS of reservationstations. So let's change the declaration of type TAG to the following:78

scalarset TAG 0..(TAGS-1);De�ne TAGS to be some reasonable value (say 32). Similarly, set some reasonable numberof execution units (say 4). Now, we need also to de�ne a policy for choosing an availableexecution unit for issue. The simplest way to do this is to specify a nondeterministic choiceamong all the available (non-valid) execution units:issue_eu := {i ?? ~eu[i].valid : i in EU};Now, remove the statementassume issue_fair[i];and add instead:breaking(TAG) breaking(EU) forall(i in TAG)usingst_ready//free, exe_rdy//free, eu//freeprove issue_fair[i];Note, the breaking statements are used so that we can use assignments in the proof thatbreak they symmetry of these types. Note also that we free the input signals of the arbiter;the arbiter should satisfy the fairness property for all possible inputs.5 Synchronous VerilogThose familiar with the Verilog modeling language may �nd it easier to write models forSMV in Synchronous Verilog (SV). This language is syntactically only a slight variation ofthe Verilog language. However its semantics is not based on an event queue model, as inVerilog. Rather, SV is a synchronous language, in the same family as Esterel, Lustre, andSMV. Because SV provides a functional description of a design rather than an operationaldescription of how to simulate it, SV is better suited than Verilog to such applications ashardware synthesis, cycle-based (functional) simulation and model checking. Nonetheless,the meaning of most SV programs should be readily apparent to one familiar with modelingin Verilog.5.1 Basic concepts5.1.1 SynchronySV is a synchronous language. This means that all statements in SV (except the waitstatement) execute in exactly zero time. For example, consider the following simple program:module main();wire x,y,z; 79

alwaysbeginx = y;endalwaysbeginy = z;endendmoduleIn SV, the two always blocks execute exactly simultaneously, in zero time. As a result, theassignments x = y and y = z can be viewed as simultaneous equations. Therefore, it is trueat all times that x = z. Because values on wires propagate in exactly zero time, there is noneed for a notion of a triggering \event". That is, we need not (and may not) writealways @(y)beginx = y;endIn SV, any change in y is always reected instantaneously in x.As in other synchronous languages, the instantaneous propagation of signals can lead to\paradoxes". For example, if we writewire x,y;alwaysbeginx = y;endalwaysbeginy = !x;endthen we have two simultaneous equations with no solution. On the other hand, in this case:wire x,y;alwaysbeginx = y;end 80

alwaysbeginy = x;endwe have simultaneous equations with two solutions: x = 0, y = 0 and x = 1, y = 1. In ahardware implementation, these cases would correspond to combinational cycles in the logic.There are a number of ways of dealing with such cycles. However, we will leave the behaviorin such cases unde�ned. The SMV system simply disallows combinational cycles.5.1.2 Wires and registersThere are two distinct classes of signals in SV: wires and signals. These di�er in two respects.First, a wire has no memory. It does not maintain its previous state in the case it is notassigned. Rather, the value of an unassigned wire is unde�ned. A register on the otherhand will maintain its previous state when unassigned. Second, a value assigned to a wirepropagates in exactly zero time. On the other hand, a register entails exactly one unit ofdelay: a value assigned to a register becomes visible exactly one time unit later.For example, suppose we have:wire x;reg y;alwaysbeginx = y;endalwaysbeginy = z;endThe net result of this code is that the value of x lags the value of z by exactly one timeunit. Note that although the result of an assignment to a register becomes visible one timeunit later, the assignment statement itself executes in zero time. For example, consider thefollowing block of code:wire x,z;reg y;alwaysbeginy = z;x = y;end 81

The e�ect of this code is that at all times x = z, whereas the register y lags x and z by onetime unit. That is, within the always block, all statements except wait statements appearto execute in zero time. Thus, the assignment y = z executes in zero time, setting the valueof y and then this value is assigned to x, again in zero time. However, an observer outsidethe always block sees the value of y with one time unit of delay. Another example:reg [31:0] y;initial y = 0;alwaysbeginy = y + 1;y = y + 1;endIn this case, the observed sequence of values of y is 0,2,4,6,. . . . That is, the always blockexecutes both assignment statements in exactly zero time, in e�ect adding 2 to y. This e�ectis seen outside the block one time unit later.5.1.3 Wait statementsThe only statement that takes time in SV is the wait statement. A statement of the formwait(cond)causes a delay until the condition cond is true, but always delays at least one time unit.Thus, wait(1) always waits exactly one time unit. For example,wire x;alwaysbeginx = 0;wait(1);x = 1;endresults in the observed sequence of values 0,1,0,1,. . . for x. Note that a new iteration of analways block begins exactly one time unit after the previous iteration terminates.5.1.4 LoopsA loop of the formwhile(cond)block 82

executes block as long as the condition cond is true. If cond is false, it falls through to thenext statement in exactly zero time. The last statement of block must be a wait statement.As an example,reg [1:0] x;initial x = 0;alwaysbeginwhile(x < 3)beginx = x + 1;wait(1);endx = 0;endresults in the sequence 0,1,2,3,0,1,. . . for x.A for loop, on the other hand, must have static upper and lower bounds, and is unrolledat compile time. Thus, for example,for(i = 0; i < 4; i = i + 1)block(i)is exactly equivalent toblock(0);block(1);block(2);block(3);The block in this case need not contain a wait statement.5.1.5 ConditionalsThe conditional statement of the formif(cond)block1elseblock2executes block1 if cond is true, and block2 if cond is false. The evaluation of the conditiontakes exactly zero time.
83

5.1.6 ResolutionIn a case where more than one value is assigned to a signal at exactly the same time, thenthe following resolution rule applies:� If all assigned values are equal, then the signal is assigned the common value.� If any assigned values are unequal, then the signal is assigned X (the unde�ned value).This rule can be used, for example, to model a tristate bus. For example:alwaysbeginif(enable1) bus = data1;endalwaysbeginif(enable2) bus = data2;endIn this case, when only one of the two enable signals is true, then the bus is equal to thecorresponding data signal. If both enables are true and the data values are the same, thenbus = data1 = data2. Else bus = X.5.1.7 Embedded assertionsAn assertion of the formassert label: cond;will evaluate cond whenever it executes (in zero time). If cond is ever false, the propertynamed label is reported to be false. These assertions can be veri�ed formally by SMV.5.2 Example { tra�c light controllerThis example is a controller that operates the tra�c lights at an intersection where two-waystreet running north and south intersects a one-way street running east. The goal is to designthe controller so that collisions are avoided, and no tra�c waits at a red light forever.The controller has three tra�c sensor inputs, N Sense, S Sense and E Sense, indicatingwhen a car is present at the intersection traveling in the north, south and east directionsrespectively. There are three outputs, N Go, S Go and E Go, indicating that a green lightshould be given to tra�c in each of the three directions.module main(N_SENSE,S_SENSE,E_SENSE,N_GO,S_GO,E_GO);input N_SENSE, S_SENSE, E_SENSE;output N_GO, S_GO, E_GO; 84

wire N_SENSE, S_SENSE, E_SENSE;reg N_GO, S_GO, E_GO;In addition, there are �ve internal registers. The register NS Lock is set when tra�c isenabled in the north or south directions, and prevents east-going tra�c from being enabled.Similarly EW LOCK is set when tra�c is enabled in the east direction, and prevents north orsouth{going tra�c from being enabled. The three bits N Req, S Req, E Req are used to latchthe tra�c sensor inputs.reg NS_LOCK, EW_LOCK, N_REQ, S_REQ, E_REQ;The registers are initialized as follows:initial beginN_REQ = 0; S_REQ = 0; E_REQ = 0;N_GO = 0; S_GO = 0; E_GO = 0;NS_LOCK = 0; EW_LOCK = 0;endAlways, if any of the sense bits are true, we set the corresponding request bit:always begin if (!N_REQ & N_SENSE) N_REQ = 1; endalways begin if (!S_REQ & S_SENSE) S_REQ = 1; endalways begin if (!E_REQ & E_SENSE) E_REQ = 1; endThe code to operate the north-going light is then as follows:always beginif (N_REQ)beginwait (!EW_LOCK);NS_LOCK = 1;N_GO = 1;wait (!N_SENSE);if (!S_GO) NS_LOCK = 0;N_GO = 0;N_REQ = 0;endendThat is, when a north request is detected, we wait for the EW lock to be cleared, thenset the NS lock, and switch on the north light. Note, these last two assignments occursimultaneously, since they execute in zero time. Then we wait for the north sensor to be o�,indicating there is no more tra�c in the north direction. We then clear the NS lock, butonly if the south light is currently o�. Otherwise, we might cause a collision of south andeast tra�c. Finally, we switch o� the north light and clear the north request ag. Note, thelast two actions occur simultaneously with switching o� the lock, so there is no danger ofhaving the lock o� but the light on.The code for the south light is similar. 85

always beginif (S_REQ)beginwait (!EW_LOCK);NS_LOCK = 1; S_GO = 1;wait (!S_SENSE);if (!N_GO) NS_LOCK = 0;S_GO = 0; S_REQ = 0;endendFinally, here is the code for the east light:always beginif (E_REQ)beginEW_LOCK = 1;wait (!NS_LOCK);E_GO = 1;wait (!E_SENSE);EW_LOCK = 0; E_GO = 0; E_REQ = 0;endendThis di�ers slightly from the north and south cases. When an east request is detected, weset the EW lock, and then wait for the NS lock to be cleared, turn on the light, wait for thetra�c sensor to clear, and �nally, clear lock, light and request.There are two kinds of speci�cation we would like to make about the tra�c light con-troller. The �rst is called \mutex", and states that lights in cross directions are never on atthe same time:always beginassert mutex: !(E_GO & (S_GO | N_GO));endThis assert statement executes at every time unit, and fails if the east light is on at the sametime as either the north or the south lights.Second, we have \liveness" speci�cations. For each direction, we specify that if the tra�csensor is on for a given direction, then the corresponding light is eventually on, thus no tra�cwaits forever at a red light:always beginif (E_SENSE) assert E_live: eventually E_GO;if (S_SENSE) assert S_live: eventually S_GO;if (N_SENSE) assert N_live: eventually N_GO;end 86

Notice that since assert statements execute in zero time, each of these statements executesonce every time unit. Further, this shows the use if the \eventually" operator in an assertion.This is equivalent to the temporal logic operator F. For example, if at any time the assertionE live executes, then E GO must eventually be true.Our tra�c light controller is designed so that it depends on drivers not waiting foreverat a green light. We want to verify the above properties given that this assumption holds.To do this, we write some \fairness constraints", as follows:always beginassert E_fair: eventually !(E_GO & E_SENSE);assert S_fair: eventually !(S_GO & S_SENSE);assert N_fair: eventually !(N_GO & N_SENSE);endEach of these assertions states that, always eventually, it is not the case that a car is at agreen light. To tell SMV to assume these \fairness" properties when proving the \liveness"properties, we say:using N_fair, S_fair, E_fair prove N_live, S_live, E_live;assume E_fair, S_fair, N_fair;endmoduleIn e�ect, we are telling SMV to ignore any execution traces where one of these assumptionsis false. The fairness constraints themselves will simply be left unproved. Now, open this�le and try to verify the property mutex. The result should be \false", and in the \Trace"panel, you should see a counterexample trace in which the north light goes o� exactly at thetime when the south light goes on. In this case, the north light controller is trying to set theNS lock bit at exactly the same time that the south light is trying to clear it. The result ofthis is unde�ned, hence SMV attempts to verify both cases. It reports the case where theNS lock bit is cleared, which allows the east light to go on, violating the mutex property.To �x this problem, let's insure that this situation doesn't arise by making the south lightwait to go on if the north light is currently going o�. Change the code for the north lightcontroller to the following (and make the corresponding change in the south light controller):always beginif (N_REQ)beginwait (!EW_LOCK & !(S_GO & !S_SENSE));NS_LOCK = 1;N_GO = 1;wait (!N_SENSE);if (!S_GO) NS_LOCK = 0;N_GO = 0;N_REQ = 0;endend 87

Open this new version and verify the property mutex. It should be true. Now try to verifyN live. It should come up false, with a counterexample showing a case where both the northand south lights are going o� at exactly the same time. In this case neither the north codenor the south code clears the lock, because each thinks that the other light is still on. As aresult, the lock remains on, which prevents an east request from being served. This leavesthe EW lock set forever, hence the controller is deadlocked, and remains in the same stateinde�nitely (note the \repeat signs" on the last state).To �x this problem, we'll have the north controller switch o� the lock when the south lightis either o�, or going o� (and make the corresponding change to the south light controller).Here is the new code for the north controller:always beginif (N_REQ)beginwait (!EW_LOCK & !(S_GO & !S_SENSE));NS_LOCK = 1; N_GO = 1;wait (!N_SENSE);if (!S_GO | !S_SENSE) NS_LOCK = 0;N_GO = 0; N_REQ = 0;endendOpen this new version and verify the properties mutex, N live, S live and E live. Theyshould all be true. Note that if you try to verify the fairness constraints N fair, S fairand E fair, they will come up false. These are unprovable assumptions that we made indesigning the controller. However, if we used the controller module in a larger circuit, wecould (and should) verify that the environment we put the controller into actually satis�esthese properties. In general, it's best to avoid unproved assumptions if possible, since if anyof these assumptions is actually false, all the properties we \proved" are invalid.5.3 Example { bu�er allocation controllerThis example is designed to control the allocation and freeing of bu�ers in, for example,a packet router. It will demonstrate how to embed assertions within Synchronous Verilogcontrol constructs, such as if and while in order to specify temporal properties, withoutusing temporal logic.The controller keeps an array of \busy" bits, one for each available data bu�er. The busybit is true when the bu�er is in use, and false otherwise. An input alloc indicates a requestto allocate a new bu�er for use. If there is a bu�er available, the controller outputs the indexof this bu�er on a signal alloc addr. If there is no bu�er available, it asserts an outputnack. To make the circuit a little more interesting, we'll add a counter that keeps track ofthe number of busy bits that are set. Thus nack is asserted when the count is equal to thetotal number of bu�ers. To begin with, we'll de�ne the number of bu�ers to be 16, using amacro de�nition. We also need to de�ne the log of this number, to indicate the number ofbits in the bu�er addresses. 88

`define SIZE 16`define LOG_SIZE 4module main(alloc,nack,alloc_addr,free,free_addr);input alloc;output nack;output [(`LOG_SIZE-1):0] alloc_addr;input free;input [(`LOG_SIZE-1):0] free_addr;reg busy[0:(`SIZE - 1)];reg count[`LOG_SIZE:0];initial beginbusy = 0;count = 0;endHere is the logic for the counter and the nack signal. Notice, we add one to the counter whenthere is an allocation request and nack is not asserted. We subtract one from the counterwhen there is a free request, and the bu�er being freed is actually busy. Note, if we didn'tcheck to see that the freed bu�er is actually busy, the counter could get out of sync with thebusy bits.always beginnack = alloc & (count == `SIZE);count = count + (alloc & ~nack) - (free & busy[free_addr]);endNext we handle the setting and clearing of the busy bits:always beginif(free) busy[free_addr] = 0;if(alloc & ~nack) busy[alloc_addr] = 1;endNote, that if a bu�er is both freed and allocated at the same time, the net result is that itsbusy bit is set. Finally, we choose a bu�er to allocate using a priority encoder. Our priorityencoder is implemented as follows:always beginfor(i = (`SIZE - 1); i >= 0; i = i - 1)if (~busy[i]) alloc_addr = i;endNote, the entire for loop executes in zero time. Also, in the case when all bu�ers are busy,alloc addr is not assigned, and thus remains unde�ned (since it is a wire, not a register).Now, we consider the problem of specifying the bu�er allocator. We will write a separatespeci�cation for each bu�er, stating that the given bu�er is never allocated twice without89

being freed in the interim. This is a technique known as \decomposition", that is, breakinga complex speci�cation of a system into smaller parts that can be veri�ed separately. Tomake it simpler to state the speci�cation, it helps to de�ne some additional signals: a bitallocd[i] to indicate that bu�er i is currently being allocated, and a bit freed[i] toindicate that bu�er i is currently being freed:wire [0:(`SIZE - 1)] allocd, freed;for(i = 0; i < `SIZE; i = i +1)alwaysbeginallocd[i] = alloc & ~nack & alloc_addr == i;freed[i] = free & free_addr == i;endNote, we used a for constructor to make an instance of these de�nitions for each bu�er i.To write the speci�cation that a bu�er is not allocated twice, we simply write a block ofcode that waits for the given bu�er to be asserted, then while it is not freed, asserts that itmust not be allocated again. At the end, when the bu�er is freed, we also assert that it isnot simultaneously allocated again. Note that we have given both these assertions the samelabel safe[i]. Thus, a failure in either case will cause a failure of safe[i].for(i = 0; i < `SIZE; i = i + 1)always beginif (allocd[i]) beginwait(1);while(~freed[i]) beginassert safe[i]: ~allocd[i];wait(1);endassert safe[i]: ~allocd[i];endendNow, let's verify this speci�cation. Open the �le and verify the property safety[0]. Itshould be true. You might want to modify the code so that the counter is decrementedwhenever free is asserted (whether or not the busy bit is set for the freed bu�er). If youtry to verify this version you will �nd that in fact the property safety[0] false, and get acounterexample showing a case where the counter gets out of sync.
90

