Getting started with SMV

K. L. McMillan
Cadence Berkeley Labs
2001 Addison St.
Berkeley, CA 94704
USA

mcmillan@Qcadence.com

March 23, 1999

‘cadence

Abstract

This tutorial introduces the SMV verification system. It includes examples of tem-
poral logic model checking, and refinement verification, including techniques of circular
compositional proof, temporal case splitting, symmetry reduction, data type reduction
and induction.

(©1998 Cadence Berkeley Labs, Cadence Design Systems.

1 Introduction

This is a short tutorial introduction to SMV, a verification system for hardware designs. SMV
is a formal verification tool, which means that when you write a specification for a given
system, it verifies that every possible behavior of the system satisfies the specification. This
is in contrast to a simulator, which can only verify the system’s behavior for the particular
stimulus that you provide.

A specification for SMV is a collection of properties. A property can be as simple as
a statement that a particular pair of signals are never asserted at the same time, or it
might state some complex relationship in the values or timing of the signals. Properties are
specified in a notation called temporal logic. This allows concise specifications about temporal
relationships between signals. Temporal logic specifications about finite state systems can
be automatically formally verified by a technique called model checking.

SMV is quite effective in automatically verifying properties of combinational logic and
interacting finite state machines. Sometimes, when checking properties of complex control
logic, the verifier will produce a counterexample. This is a behavioral trace that violates
the specified property. This makes SMV a very effective debugging tool, as well as a formal
verification system.

Model checking by itself is limited to fairly small designs, because it must search every
possible state that a system can reach. For large designs, especially those including sub-
stantial data path components, the user must break the correctness proof down into parts
small enough for SMV to verify. This is known as compositional verification. SM'V provides
a number of tools to help the user reduce the verification of large, complex systems to small
finite state problems. These techniques include refinement verification, symmetry reduction,
temporal case splitting, data type reduction, and induction.

This tutorial will introduce all of the above techniques by example.

2 Modeling, specifying and verifying

We will start with some very simple examples, to illustrate the process of entering a model,
specifying properties, and running SMV to verifying them. You can enter the examples
yourself, using a text editor (and thus become acquainted with SMV’s response to syntax
errors). Or, if you are reading this tutorial on-line, you can follow the hyperlinks to the
corresponding files.

Consider, for example, the following description of a very simple combinational circuit,
with some assertions added. This example is written in SMV’s native language. Use a text
editor to enter the following program into a file called “prio.smv”.

module main(reql,req2,ackl,ack?2)
{
input reql,req2 : boolean;
output ackl,ack2 : boolean;

ackl
ack?2 :

reql;
req2 & “reql;

mutex : assert ~(ackl & ack2);
serve : assert (reql | req2) -> (ackl | ack2);
wastel : assert ackl -> reql;
waste2 : assert ack2 -> req2;

This example shows most of the basic elements of an SMV module. The module has four
parameters, reql, req2, ackl and ack2, of which the former two are inputs, and the latter
two outputs. It contains:

o Type declarations. In this case the signals reql, req2, ackl and ack2 are declared to
be of type boolean.

o Signal assignments. These give logic functions for outputs ackl and ack2 in terms of
inputs reql and req2.

e Assertions. These are properties to be proved.

The program models a (highly trivial) two bit priority-based arbiter, which could be
implemented with a two-gate circuit. The assert statements specify a number of properties
that we would like to prove about this circuit. For example, the property called mutex says
that outputs ackl and ack2 are not true at the same time. Note that & stands for logical
“and” while ~ stands for logicol “not”. The property serve says that if either input reql
or req?2 is true, then one of the two outputs ackl or ack2 is true. Note that | stands for
logical “or”, while => stands for “implies”. Logically, a => b is equivalent to “a | b, and
can be read “a implies b” or “if a then b”.

We would like to verify these specifications formally, that is, for all possible input patterns
(of which in this case there are only four). To do this under Unix, enter the following shell
command:

VW prio.smv

On a PC under Windows, double-click the icon for the file “prio.smv”. This will start
the SMV viewer, called “vw”, with the file “prio.smv”. This interface has a number of
tabbed pages, which can be accessed by clicking an the appropriate tab. When you start the
interface, you see the browser, which is a tree representation of all the signals and assertions
in your source file, and the source page, which shows the source file. If you made a syntax
error in the source file, this error will be pointed out on the source page. Correct the error,
and then choose “Reopen” from the “File” menu.

If you have no syntax errors, expand top level in the browser by double-clicking it, or
by clicking the + icon. The + indicates that top level has children which are not currently
visible. You should see under top level the names of all the signals and properties in your
source file. Since none of these has children, they will not be marked with a +. Select one
of these, and notice the highlight in the source page moves to the location in the program
where that signal or property is declared. Select the signal ack2, and then in the source

page, select “Where assigned” in the “Show” menu. The souce line where ack?2 is assigned
will now be highlighted.

Now select “Verify all” from the “Prop” menu. SMV verifies the four properties in our
program. The results page now shows the results of this verification run. In this case, all
the properties are true.

Now let’s modify the design so that one of the specifications is false. For example, change
the line

ackl reql;
to

ackl

reql & “req2;

Save the modified text file and choose “Reopen” from the “File” menu (or, if you are on-line,
just click here to save typing). Then select “Prop—Verify all” again. Notice that this time
the property serve is false. Also note, not all of the properties appear in the results pane.
This is because SMV stops when it reaches the first property that is false. Thus, not all the
properties were checked.

When a property is false, SMV produces a counterexample that shows a case when it
doesn’t hold. To see the counterexample for serve, select it in the results page by clicking
on it. The trace page will appear, showing a counterexample — a truth assignment to all the
signals that shows that our property is false. The counterexample shows the case when both
inputs are true and both outputs are false.

The verifier keeps track of which properties have been verified since the most recent
source file change. You can see which properties have been verified thus far, by selecting the
properties page. Currently only mutex is verified. To verify wastel, for example, click on
it in the properties page, and then choose “Verify wastel” from the “Prop” menu. Notice
that only the property you select is verified in this case. The name of the property that is
currently selected appears at the bottom of the window.

2.1 Sequential circuits and temporal properties

To specify sequential circuits, we need to be able to make statements about how signals
evolve over time. SMV uses a notation called temporal logic for this purpose. Temporal logic
formulas are like formulas in ordinary boolean logic, except that truth value of a formula
in temporal logic is a function of time. Some new operators are added to the traditional
boolean operators “and”, “or”, “not” and “implies”, in order to specify relationships in time.

For example, the F operator is used to express a condition that must hold true at some
time in the future. The formula F p is true at a given time if p is true at some later time.
On the other hand, G p means that p is true at all times in the future. Usually, we read F
p as “eventually p” and G p as “henceforth p”.

In addition, we have the “until” operator and the “next time” operator. The formula p
U q, which is read “p until q” means that q is eventually true, and until then, p must always
be true. The formula X p means that p is true at the next time.

Here are the exact definitions of the temporal logic operators, with example time lines
showing the states when they hold true:

e The “globally” operator: G p is true at time ¢ if p is true at all t' > t.

I I I I

pp

1t
PP PpPpPPP p...\
Gp... i

e The “future” operator: F p is true at time ¢ if p is true at some t' > t.

| 1 1 1

1 =
P P P P
Fp... ..Fp
e The “until” operator: p U q is true at time ¢ iff
— q is true at some t' > t, and
— p is true in the range [t,t')
S S D N R N R R N
PP PP PPPQ
pUg... pUq

e The “next time” operator: X p is true at time ¢ if p is true at time ¢ + 1.

As an example, suppose we are designing a bus arbiter with two “grant” signals, ack1
and ack2. Among other things, we want to specify that the two grant signals are never
asserted at the same time. In temporal logic, we would write G ~(ackl & ack2). The G
operator is used to say that our specification should hold true at all times. This is needed
because SMV interprets “assert” statements to hold at the initial state of execution of the
program. If we wrote only “(ackl & ack2), SMV would interpret this only to mean that
both grants may not be asserted at time ¢t = 0.

Return to our original example, and edit the four properties we specified so that they
begin with the G operator. Make sure to undo the error we introduced in the previous section.
You should have something like this:

module main(reql,req2,ackl,ack?2)
{
input reql,req2 : boolean;
output ackl,ack2 : boolean;

ackl := reql;
ack2 := req2 & “reql;
mutex : assert G “(ackl & ack2);

serve : assert G ((reql | req2) -> (ackl | ack2));
wastel : assert G (ackl -> reql);

waste2 : assert G (ack2 -> req2);

¥

Open the file and choose “Prop—Verify all” again to confirm that the properties we
specified in fact hold true for all time. This is because the two logic equations we wrote
for ackl and ack2 hold implicitly for all time. Now let’s write a more interesting temporal
specification. Suppose we want to use our priority circuit as a bus arbiter. In addition to
the above properties, we would like to avoid “starvation” of the low priority requester. That
is, we don’t want req2 to be asserted forever while ack2 is never asserted. Put another way,
we want it to always eventually be true that either req2 is negated or ack?2 is asserted. In
temporal logic, we write “always eventually” by combining G and F. In this case we assert:
G F (Creq2 | ack2). Therefore, add the following specification to the program:

no_starve : assert G F (“req2 | ack2);

Now open the new version and verify the property no_starve. The property should be
false, and a counterexample trace with one state should appear in the trace page. Notice
that the state number is marked with “repeat” signs, thus: |: 1 :|. This is to indicate
that the first state repeats forever. In this state, both reql and req2 are asserted. Since
reql has priority, ack?2 is never asserted, hence requester 2 “starves”.

As an aside, you might also have observed that the signal ackl doesn’t appear in the
trace. This is because SMV noticed that the property no_starve doesn’t actually depend on
this signal, so it left ackl out of its analysis. The set of signals that a property depends on is
referred to as the cone of that property. When you have selected a given property to verify,
you can view the cone of that property by clicking the “Cone” tab. In this case, you’ll notice
that the signals reql and req2 are listed as “free”. This is because they are unconstrained
inputs to the circuit, and thus are free to take on any values in their type. These signals each
contribute one “combinational” variable to the verification problem. SMV must verify the
property you specified for all possible combinations of these variables. Thus, it is generally
best to keep the number of variables in the cone small, when possible.

Now, to prevent this starvation case, let’s add a latch to the circuit that remembers
whether ackl was asserted on the previous cycle. In this case we’ll give priority to requester 2
instead. To do this, add the following code to the program:

bit : boolean;
next(bit) := ackl;

The above means that bit is a boolean variable, and that the value of bit at time ¢t + 1
is equal to the value of ackl at time ¢. This is how a state variable (or a register, if you like)
is represented to SMV — as an equation involving one time unit of delay. Now, replace the
definitions of ackl and ack2 with the following:

if (bit) {
ackl := reql & "req2;
ack2 := req2;

b

else {
ackl
ack?2 :
}

reql;
req2 & “reql;

That is, when bit is set, we reverse the priority order. Note that even though this may look
like a sequential program, it really represents two simultaneous equations. If you like, you
can write the same thing instead like this:

ackl
ack?2 :

bit 7 reql & "req2 : reql;
bit ? req2 : req2 & “"reql;

Now open the new version and verify property no_starve. It should be true. By the way,
you might have noticed that we didn’t specify an initial (i.e. reset) value for the register bit.
In fact, SMV verified no_starve for both possible initial values. If you check the “Cone”
panel, you'll notice that there are now two combinational variables (the inputs) and one
state variable (the signal bit).

2.2 A three-way arbiter

Now let’s try to apply the same idea to a three-way bus arbiter. In this version, we will have
one latched bit for each requester. This bit holds a one when the corresponding requester
was granted the bus on the previous cycle. We'll still use a fixed priority scheme, but if a
given request was granted on the previous cycle, we’ll give it lowest priority on the current
cycle. Thus, if the bit for a given requester is set, its request is served only if no others are
requesting. Further, the requester with its bit set does not inhibit lower priority requesters.
Here is one attempt at such an arbiter:

module main(reql,req2,req3,ackl,ack2,ack3)

{

input reql,req2,req3 : boolean;

output ackl,ack2,ack3 : boolean;

bitl,bit2,bit3 : boolean;

next(bitl) := ackl;

ackl := reql & (bitl ? "(req2 | req3) : 1);

next(bit2) := ack2;

ack2 := req2 & (bit2 7 “(reql | req3) : “(reql & ~ bitl));

next (bit3) := ack3;

ack3 := req3 & (bit3 ? "(req2 | req3)

“(req2 & "bit2 | reql & “bitl));

+

The specifications for the three-way arbiter are as follows:

mutex : assert G ~“(ackl & ack2 | ackl & ack3 | ack2 & ack3);
serve : assert G ((reql | req2 | req3) -> (ackl | ack2 | ack3));
wastel : assert G (ackl -> reql);

waste2 : assert G (ack2 -> req2);

waste3 : assert G (ack3 -> req3d);

no_starvel : assert G F ("reql | ackl);
no_starve2 : assert G F ("req2 | ack2);
no_starve3 : assert G F ("req3 | ack3);

They are similar to the two-way case, but note that in mutex we consider all pairs. Also,
we’ve specified non-starvation for all of the requesters, just in case. Save this program in a
file (you can put the specifications anywhere inside the module declaration — statement order
is irrelevant in SMV). Then open the file and choose “Verify all”. You should get a false
result for no_starve3. Click on no_starve3 and observe the counterexample trace. This is
an example of a “livelock”. The last two states in the counterexample repeat forever. Notice
that requesters 1 and 2 are served alternately while requester 3 starves.

In fact, there is another error in the design. If you select the serve property and try to
verify it, you’ll find that serve can be false in the initial state. This occurs if more than
one of the bits are true initially. We could rule this out by specifying initial values for these
bits, as follows:

init(bitl) := 0;
init(bit2) := 0;
init(bit3) := 0;

Alternatively, if we don’t care if no one gets served in the initial state, we can change
the specification. In temporal logic X p means that p is true at the “next” time. Thus, for
example X G p means that p holds from the second state onward. Thus, we could change
the specification to:

serve : assert X G ((reql | req2 | req3) —> (ackl | ack2 | ack3));

As an exercise, you might want to try designing and verifying a three-way arbiter that
satisfies all the specifications above.

2.3 A traffic light controller

Now we’ll consider a slightly more complex example that uses some additional features of
SMV’s language. The example is a controller that operates the traffic lights at an intersection
where two-way street running north and south intersects a one-way street running east. The
goals are to design the controller so that collisions are avoided, and no traffic waits at a red
light forever.

The controller has three traffic sensor inputs, N_Sense, S_Sense and E_Sense, indicating
when a car is present at the intersection traveling in the north, south and east directions
respectively. There are three outputs, N_Go, S_Go and E_Go, indicating that a green light
should be given to traffic in each of the three directions.

7

module main(N_Sense,S_Sense,E_Sense,N_Go,S_Go,E_Go){
input N_Sense,S_Sense,E_Sense : boolean;
output N_Go,S_Go,E_Go : boolean;

In addition, there are four internal registers. The register NS_Lock is set when traffic is
enabled in the north or south directions, and prevents east-going traffic from being enabled.
The three bits N_Req, S_Req, E_Req are used to latch the traffic sensor inputs.

NS_Lock, N_Req, S_Req, E_Req : boolean;
The registers are initialized as follows:

init (N_Go) 0;
init (S_Go) 0;
init(E_Go) := 0;
init (NS_Lock)
init(N_Req)
init (S_Req)
init (E_Req)

Il
S O O Il o~

In modeling the traffic light controller’s behavior, we will use two new SMV statements. The
case statement is a conditional form. The sequence:

case{
condl : {blockl}
cond2 : {block2}
cond3 : {block3}
+

is equivalent to

if (condl) {blockl}
else if (cond2) {block2}
else if (cond3) {block3}

In addition, we will use the default construct to indicate that certain assignments are to
be used as defaults when the given signals are not assigned in the code that follows. In a
sequence like this:

default {blockl}
in {block2}

assignments in block2 take precedence over assignments in blockl. SMV enforces a “single
assignment rule”, meaning that only one assignment to a given signal can be active at any
time. Thus, if we have more than one assignment to a signal, we must indicate which of the
two takes precedence in case both apply.

Now, returning to the traffic controller, if any of the sense bits are true, we set the
corresponding request bit:

default{

if (N_Sense) next(N_Req) := 1;
if (S_Sense) next(S_Req) := 1;
if (E_Sense) next(E_Req) := 1;

}
The code to operate the north-going light is then as follows:

in default caseq{
N_Req & “N_Go & “E_Req : {
next (NS_Lock) := 1;
next (N_Go) := 1;
+
N_Go & “N_Sense : {
next (N_Go) := 0;
next (N_Req) := 0;
if ("S_Go) next(NS_Lock) := 0;
+
}

This says that if a north request is latched, and the north light is not green and there is no
east request, then switch on the north light and set the lock (in effect, we give priority to
the east traffic). If the north light is on, and there is no more north traffic, switch off the
light, clear the request, and switch off the lock. Note however, that if the south light is on,
we don’t switch the lock off. This is to prevent south and east traffic from colliding. The
south light code is similar:

in default caseq{

S_Req & "S_Go & "E_Req : {
next (NS_Lock) := 1;
next(S_Go) := 1;

}

S_Go & ~“S_Semnse : {
next (S_Go) := 0;
next (S_Req) := 0;
if ("N_Go) next(NS_Lock) := 0;

+

}

Finally, the east light is switched on whenever there is an east request, and the lock is off.
When the east sense input goes off, we switch off the east light and reset the request bit:

in caseq{
E_Req & "NS_Lock & “E_Go : next(E_Go) := 1;
E_Go & "E_Sense : {
next (E_Go) := 0;
next (E_Req) := 0;

b
b

There are two kinds of specification we would like to make about the traffic light controller.
The first is a “safety” specification that say that lights in cross directions are never on at
the same time:

safety: assert G “(E_Go & (N_Go | S_Go));

The second is a “liveness” specification, for each direction, which says that is the traffic
sensor is on for a given direction, then the corresponding light is eventually on, thus no
traffic waits forever at a read light:

N_live: assert G (N_Sense -> F N_Go);
S_live: assert G (S_Sense -> F S_Go);
E_live: assert G (E_Sense -> F E_Go);

Note, however, that our traffic light controller is designed so that it depends on drivers not
waiting forever at a green light. We want to verify the above properties given that this
assumption holds. To do this, we write some “fairness constraints”, as follows:

N_fair: assert G F “(N_Sense & N_Go);
S_fair: assert G F “(S_Sense & S_Go);
E_fair: assert G F “(E_Sense & E_Go);

Each of these assertions states that, always eventually, it is not the case that a car is at a
green light. To tell SMV to assume these “fairness” properties when proving the “liveness”
properties, we say:

using N_fair, S_fair, E_fair prove N_live, S_live, E_live;
assume E_fair, S_fair, N_fair;

}

Because of the assume statement, the fairness constraints themselves will simply be left
unproved. Now, open this file and try to verify the property safety. The result should be
“false”, and in the “Trace” panel, you should see a counterexample trace in which the south
light goes off exactly at the time when the north light goes on. The result is that the lock
bit is cleared. This is because the code for the south light takes precedence over the code
for the north light, due to our use of default. With the north light on and the lock cleared,
the east light can now go on, violating the safety property.

To fix this problem, let’s change the south light code so that it tests to see whether that
north light is about to go on before clearing the lock. Here is the revised code for the south
light:

in default casef{
S_Req & “S_Go & "E_Req : {
next (NS_Lock) := 1;
next(S_Go) := 1;

10

}
S_Go & ~“S_Semnse : {
next(S_Go) := 0;
next (S_Req) := 0;
if("(N_Go | N_Req & "N_Go & "E_Req)) next(NS_Lock) := 0;
}
}

Open this new version and verify the property safety. It should be true. Now try to verify
N_live. It should come up false, with a counterexample showing a case where both the north
and south lights are going off at exactly the same time. In this case neither the north code
nor the south code clears the lock, because each thinks that the other light is still on. As
a result, the lock remains on, which prevents an east request from being served. Since the
east request takes priority over north and south requests, the controller is deadlocked, and
remains in the same state indefinitely (note the “repeat signs” on the last state).

To fix this problem, we’ll give the north light controller the responsibility to turn off the
lock when both lights are going off. Here’s the new north light code:

in default casef{
N_Req & "N_Go & "E_Req : {
next (NS_Lock) := 1;
next (N_Go) := 1;
}
N_Go & “N_Sense : {
next (N_Go) := 0;
next (N_Req) := 0;
if("S_Go | ~S_Sense) next(NS_Lock) := 0;
}
}

Open this new version and verify the properties safety, N_1live, S_1ive and E_live. They
should all be true. Note that if you try to verify the fairness constraints N_fair, S_fair
and E_fair, they will come up false. These are unprovable assumptions that we made in
designing the controller. However, if we used the controller module in a larger circuit, we
could (and should) verify that the environment we put the controller into actually satisfies
these properties. In general, it’s best to avoid unproved assumptions if possible, since if any
of these assumptions is actually false, all the properties we “proved” are invalid.

3 Symbolic model checking

A model checker verifies a property by building a graph of all of the states in the model. In
SMV, the number of states in the model is 2", where n is the number of state variables in
the cone of the property. In fact, it is only necessary for the model checker to consider the
states that are “reachable” from an initial state. However, as you might expect, the amount
of computational effort required to verify a property still tends to grow very rapidly with
the number of state variables. This is known as the “state explosion problem”.

11

To address this problem, SMV uses a structure called a “Binary Decision Diagram”
(BDD) to implicitly represent the state graph of the model, and sets of states satisfying given
properties. For some models and properties, the use of BDD’s (implicit enumeration) allows
SMV to handle models with many orders of magnitude more states than could be handled
by considering individual states (explicit enumeration). First, we see a simple example of a
circuit with a very large number of states that can still be handled efficiently using BDD’s.
Later we’ll consider what to do when a direct approach using BDD’s doesn’t work.

3.1 A buffer allocation controller

This example is designed to control the allocation and freeing of buffers in, for example,
a packet router. The controller keeps an array of “busy” bits, one for each available data
buffer. The busy bit is true when the buffer is in use, and false otherwise. An input alloc
indicates a request to allocate a new buffer for use. If there is a buffer available, the controller
outputs the index of this buffer on a signal alloc_addr. If there is no buffer available, it
asserts an output nack. To make the circuit a little more interesting, we’ll add a counter
that keeps track of the number of busy bits that are set. Thus nack is asserted when the
count is equal to the total number of buffers. To begin with, we’ll define the number of
buffers to be 32, using a C-style macro definition:

#define SIZE 32
module main(alloc,nack,alloc_addr,free,free_addr)
{

input alloc : boolean;

output nack : boolean;

output alloc_addr : 0..(SIZE - 1);

input free : boolean;

input free_addr : 0..(SIZE - 1);

busy : array 0..(SIZE - 1) of boolean;
count : 0..(SIZE);

init(busy) := [0 : i = 0..(SIZE-1)];
init(count) := 0;

Note that we initialized busy to a vector of 32 zeros using an iterator expression. Here is
the logic for the counter and the nack signal. Notice, we add one to the counter when there
is an allocation request and nack is not asserted. We subtract one from the counter when
there is a free request, and the buffer being freed is actually busy. Note, if we didn’t check
to see that the freed buffer is actually busy, the counter could get out of sync with the busy
bits.

nack := alloc & (count = SIZE);
next(count) := count + (alloc & “nack) - (free & busy[free_addr]);

Next we handle the setting and clearing of the busy bits. We use a default statement
to indicate that, if a given buffer is being both freed and allocated at the same time, the
allocation request takes precedence.

12

defaultq

if (free) next(busy[free_addr]) := 0;
} in {

if (alloc & “nack) next(busylalloc_addr]) := 1;
+

Finally, we choose a buffer to allocate using a priority encoder. This is most easily generated
using the chain constructor. This repeats a given block of statements for a range of index
values, given precedence to later iterations. So, for example

chain (i = 0; 1 < 3; 1 =1+ 1) block(i)
is equivalent to

default block(0) in default block(1l) in default block(2)
Our priority encoder is defined as follows:

chain(i = (SIZE - 1); 1 >=0; i =1 - 1{
if ("busy[i]) alloc_addr := i;
}

Since the last statement in the chain is the case i = 0, we effectively give highest priority
to buffer 0. Note, in the case when all buffers are busy, alloc_addr in not assigned, and
thus remains undefined.

Now, we consider the problem of specifying the buffer allocator. We will write a separate
specification for each buffer, stating that the given buffer is never allocated twice without
being freed in the interim. This is a technique known as “decomposition”, that is, breaking
a complex specification of a system into smaller parts that can be verified separately. To
make it simpler to state the specification, it helps to define some additional signals: a bit
allocd[i] to indicate that buffer i is currently being allocated, and a bit freed[i] to
indicate that buffer i is currently being freed:

for(i = 0; 1 < SIZE; i =1 +1){
allocd[i], freed[i] : boolean;

allocd[i] := alloc & “nack & alloc_addr = i;
freed[i] := free & free_addr = i;

}

Note, we used a for constructor to make an instance of these definitions for each buffer i.
To write the specification that a buffer is not allocated twice, we can use “until” operator of
temporal logic. Recall that the formula p U q in temporal logic means that q is eventually
true, and until then, p must always be true.

for(i = 0; 1 < SIZE; i =1 +1){
safe[i] : assert G (allocd[i]l -> ~ X (("freed[i]) U allocd[il));
}
}

13

Here we state that, if buffer i is allocated, then it is not the case that, starting at the next
time, it remains unfreed until it is allocated a second time.

Now, let’s verify this specification. Open the file and verify the property safety[0]. This
should take something under a minute. If you watch the log output during the verification
process, you'll notice that it is reporting a sequence of “iterations”. These are the steps
of a breadth-first search of the model’s state space, starting from the initial states. The
numbers reported are the sizes of the BDD’s representing the set of states reached thus far
in the search. The size of the BDD’s can be much smaller than the number of states in the
set. To see this, select “Prop—State count”. This will rerun the verification and report the
number of states reached at each iteration. The final number of states reached in this case
is something over two billion.

Now let’s increase the number of buffers from 32 to 64. Change the definition of SIZE at
the beginning of the program to

#define SIZE 64

Open the new version, select the property safety[0], and then select “Prop—=State count”.
This will verify the property, and also compute the number of states reached. You might
want to go make a cup of coffee at this point, since the computation will take ten or twenty
minutes. The only point to be made here is that the number of states reached is on the
order of 10'?, while the BDD representing this set of state has about 4000 “nodes”. This
shows that the BDD’s can be a very compact representation for large sate sets. Sometimes,
this makes it possible to verify a model, even though the number of states is much too large
to be searched “explicitly” (i.e. larger than the number of atoms in the universe).

There is no guarantee, however, that SMV’s BDD-based algorithms will be able solve
a given verification problem. This is because the problem is SMV is trying to solve is
fundamentally hard (PSPACE complete, to be precise). On the other hand, when SMV
fails to solve a verification problem (or when we run out of patience waiting for it to solve
the problem), there are usually many ways to make the problem simpler for SMV to solve.
This usually involves decomposition — breaking big problems into small problems, and then
localizing the verification of each subproblem to a small part of the overall model. This
technique is described in the following section.

4 Refinement verification

Refinement verification is methodology of verifying that the functionality of an abstract
system model is correctly implemented by a low-level implementation. It can be used, for
example, to verify that a packet router or bus protocol, modeled at the clock-cycle level,
correctly implements a given abstract model of end-to-end data transfer. Similarly one can
verify that a clock-accurate model of a pipelined, out-of-order processor correctly implements
a given instruct-set architecture (i.e., a programmer’s model of a machine).

By breaking a large verification problem into small, manageable parts, the refinement
methodology makes it possible to verify designs that are much too large to be handled directly
by model checking. This decomposition of the verification problem is enabled by specifying
refinement maps that translate the behavior of the abstract model into the behavior of given

14

ABSTRACT MODEL

\

REFINEMENT MAPS

v IMPLEMENTION v
COMPONENT

Figure 1: Refinement maps

interfaces and structures in the low-level design. This makes it possible to verify small parts
of the low-level design in the context of the abstract model. Thus, the proof obligations can
be reduced to a small enough scale to be verified by model checking.

SMV supports this methodology by allowing one to specify many abstract definitions
for the same signal. A new construct called a “layer” is introduced for this purpose. A
layer is a collection of abstract signal definitions. A layer can, for example, define low-level
implementation signals as a function of abstract model signals, and thus provide a refinement
map (i.e., a translation between abstraction levels). The low-level implementation of a signal
must be simultaneously consistent with all of its abstract definitions. Thus, each abstract
definition entails a verification task — to show that every implementation behavior is allowed
by this definition. For the purpose of this verification task, one may use whichever abstract
definition is most convenient for defining of the other signals. Suppose, for example, that
we have abstract definitions of both the inputs and outputs of a given low-level block as a
function of a high-level model, as depicted in figure 1. We can use the abstract definitions
of the inputs to drive the inputs of the block from the high-level model when verifying that
the outputs are consistent with their abstract definitions. Thus, the abstract model provides
the context (or environment) for verifying the block, and we do not need to consider the
remainder of the low-level model.

SMYV also supports design by a successive refinement. One can define a sequence of layers,
each of which is more detailed than the previous layer. The implementation of each signal
is given by the lowest-level definition in the hierarchy.

4.1 Layers

A layer is a collection of abstract signal definitions. These are expressed as assignments in
exactly the same way that the implementation is defined, except that they are bracketed by

15

a layer statement, as follows:

layer <layer_name> : {
assignmentl;
assignment2;

assignmentn;

}

where each assignment is of the form

<signal> := <expression>;
or

next (<signal>) := <expression>;
or

init(<signal>) := <expression>;

High level control structures, such as if, switch and for can also be used inside a layer
construct, since these are simply “syntactic sugar” for assignments of the above form.

The layer declaration is actually a formal specification, which states that every imple-
mentation behavior must be consistent with all of the given assignments. If this is the case,
we say the implementation refines the specification.

As an example, let’s consider a very simple example of a specification and implementation

of a finite state machine:

module main(){
X : boolean;

/* the specification */

layer spec: {
init(x) := 0;
if (x=0) next(x) :=

else next(x) := {0,1};

}

/* the implementation */

Il
(@]

init(x)
next (x)

Il
>

16

Note that spec is not a keyword here — it is just an arbitrary name given to our specification.
This specification is nondeterministic, in that at state 1, it may transition to either state 0
or state 1. The implementation on the other hand has only one behavior, which alternates
between state 0 and state 1. Since this is one possible behavior of spec, the specification
spec is satisfied.

If you enter this example into a file, and open the file with vw, you will find in the
Properties page a single entry named x//spec. This is a notation for “the definition of signal
x in layer spec”. It appears in the Properties page because it is an obligation to be verified,
rather than a part of the implementation. You can verify it by selecting “Prop—Verify
all”. SMV does this by translating the assignment into an initial condition and transition
invariant. The former states that x is 0 at time ¢ = 0, while the latter states that the value
of x at time t + 1 is 1 if x is 0 at time ¢, and else is either 0 or 1. The implementation must
satisfy these two conditions, which are verified by exhaustive search of the state space of the
implementation.

If more than one signal is assigned in a layer, then the two definitions are verified sep-
arately. This is known as decomposition. The reason for using decomposition is that we
may be able to use a different abstraction of the implementation to prove each component
of the specification. As a very simple example, consider the following program:

module main(){
X,y : boolean;

/* the specification */
layer spec: {

x :=1;

y :=1;
}

/* the implementation */

init(x) := 1;
next(x) :=y;
init(y) := 1;
next(y) := x;

}

Both state bits in the implementation start at 1, and at each time they swap values. Thus,
the specification is easily seen to be satisfied — both x and y are always equal to 1. If you open
this example with vw, you will find two entries in the Properties page: x//spec and y//spec.
Each of these can be verified separately (1.e., we can verify separately that x is always equal
to 1 and that y is always equal to 1). Suppose we want to verify x//spec (select it in the
Properties page). We now have two choices: we can use either the specification definition of y
or the implementation definition y. Note, however, that if we use the specification definition
of y, we eliminate one state variable from the model, since y is defined to be identically 1.

17

Thus, by decomposing a specification into parts, and using one part as the “environment”
for another, we have reduced the number of state variables in the model, and thus reduced
the verification cost (though it is in any event trivial in this case). In fact, if you click on
the Cone tab in vw, you will see that SMV has selected layer spec to define y, and that as
a result, y is not a state variable. This is because SMV assumes by default that it is better
to use an abstract definition of a signal than a detailed one. Select “Prop—Verify x//spec”
to verify the property using this abstraction.

Note that y//spec can now be verified using x//spec to define x. This might at first
seem to be a circular argument. However, SMV avoids the potential circularity by only
assuming y//spec holds up to time ¢ — 1 when verifying x//spec at time ¢, and vice versa.
Because of this behavior, we need not be concerned about circularities when choosing an
abstract definition to drive a signal. SMV does the bookkeeping to insure that when all
components of the specification are declared “verified”, then in fact the implementation
refines the specification.

4.2 Refinement maps

The most effective way to decompose the specification and verification of a system into
manageable parts is to define an abstract model as a specification, and then to specify
“refinement maps” that relate abstract model behaviors to implementation behaviors. Gen-
erally, abstract models specify “what” is being done, without specifying the “how”, “where”
or “when”. The “where” and “when” are given by the refinement maps, while the imple-
mentation determines the “how”. In the simplest case the abstract model does nothing at
all. For example, in the case of a link-layer protocol that simply transfers a stream of data
from point A to point B without modifying it, there is no “what” and the only important
information is the “where” and “when”. The abstract model in this case might consist only
of the stream of data itself. In the case of a microprocessor, the abstract model might de-
termine the sequence of instructions that are executed according to the ISA (instruction set
architecture). The refinement map would determine what instruction appears at each stage
of the pipeline at any given time.

4.2.1 A very simple example

We will consider first a very simple example of specifying abstractions and refinement maps.
Suppose that we would like to design a circuit to transmit an array of 32 bytes from its
input to its output, without modifying the array. The abstract model in this case is just
an unchanging array of bytes, since no actual operations are performed on the array. The
refinement maps specify the protocol by which the array is transferred at the input and
output. We’'ll assume the the input consists of three components: a bit valid indication the
the input currently holds valid data, an index idx that tells which element of the array is
currently being transferred, and a byte data that gives the value of this element. Assume
the output uses a similar protocol. Thus far, we have the following specification:

typedef BIT 0..7;
typedef INDEX 0..31;

18

typedef BYTE array BIT of boolean;
module main(){
/* the abstract model */

bytes : array INDEX of BYTE;
next (bytes) := bytes;

/* the input and output signals */

inp, out : struct{
valid : boolean;
idx : INDEX;
data : BYTE;

}

/* the refinement maps */

layer spec: {
if (inp.valid) inp.data := bytes[inp.idx];
if (out.valid) out.data := bytes[out.idx];
}

Note that the abstract model simply states that nothing happens to the array of bytes.
The refinement map is partially specified. For example, if inp.valid is 0, then inp.data is
allowed to have any value, since there is no else clause in the conditional. You can think of
this as a “don’t care” case in the specification.

Now let’s add a very trivial implementation:

init(out.valid) := 0;
next(out) := inp;

}

That is, the output is just the input delayed by one time unit. Note, at time ¢ = 0 we have
to signal that the output is not valid, but we don’t have to specify initial values for idx and
data since they are “don’t cares” in this case.

Save this program in a file and open it with vw. Note that there are eight properties in the
file, of the form out.datal[il//spec, where i = 0..7. Select property out.data[0]//spec,
for example. If you click on the Cone tab, you’ll notice that only signals with bit index 0
appear. This is because SMV has detected the property you selected doesn’t depend on the
other bit indices. Also notice that the data input signal inp.datal[0] has used layer spec
for its definition (since this is in fact the only available definition at this point). Thus, we
are driving the input of our implementation from the abstract model (through a refinement
map) and verifying the output with respect to the abstract model (again through a refinement
map). Now, select “Prop—Verify out.data[0]//spec”. It should take less than 2 seconds

19

to verify this property. You can select “Prop—Verify All” to verify the remainder of the
refinement maps. SMV will quickly recognize that the 7 remaining verification problems are
isomorphic to the one we just solved, and report “true” for all of them. Note that although
we have reduced the number of state bits by a factor of eight by using decomposition (since
we only deal with one bit index at a time) we are still using 32 bits out of the data array for
each verification. This gives us 39 state bits, which is a fairly large number and guarantees us
at least 4 billion states. In this case, the large state space is easily handled by the BDD-based
model checker, so we do not have to do any further decomposition. In general however, we
cannot rely on this effect. Later we’ll see how to decompose the problem further, so that we
only use one bit from the data array.

4.2.2 End-to-end verification

Now we’ll consider a more complex (though still trivial) implementation with multiple stages
of delay. The goal is to verify the end-to-end delivery of data by considering each stage in
turn, specifying a refinement map for each stage. The refinement map for each stage drives
the input of the next. Suppose we replace the above implementation with the following
implementation that has three time units of delay:

stagel, stage2 : struct{
valid : boolean;
idx : INDEX;
data : BYTE;

}

init(stagel.valid) := 0;
next(stagel) := inp;
init(stage2.valid) := 0;
next(stage2) := stagel;
init(out.valid) := O;
next(out) := stage2;

We’ll include a refinement map for each intermediate delay stage, similar to the maps for
the input and output:

layer spec: {
if (stagel.valid) stagel.data :
if (stage2.valid) stage2.data :
}

bytes[stagel.idx];
bytes[stage2.idx];

¥

When verifying the output of one stage, we can drive the output of the previous stage from
the abstract model, via the refinement map, thus decomposing the verification of each stage
into a separate problem. Open this version in vw and select, for example, the property
out.datal[0]//spec. That is, we want to verify the final output against the refinement
map. Select the Cone page, and notice that to define the data outputs of the stage2,

20

SMV has chosen the layer spec, rather that the implementation definition. The number
of state bits remaining (51) is still larger than in the previous case, however, because spec
doesn’t give any definition of the signals valid and idx, hence these are still driven by the
implementation.

If you select “Prop—Verify out.datal[0]//spec”, you’ll observe that we can still quickly
verify this property, even thought the number of state variables is larger. Nonetheless, we
would like to make the verification of the last stage independent of the previous stages, to be
sure we can still verify it if the previous stages are made more complex. We can do this by
explicitly “freeing” the signals stage2.valid and stage2.idx, that is, allowing these signals
to range over any possible values of their types. This is the most abstract possible definition
of a signal, and is provided by a built-in layer called free. To tell SMV explicitly to use the
free layer for these signals, we add the following declaration:

using

stage2.valid//free, stage2.idx//free
prove

out.data//spec;

Open this new version, and select property out.datal[0]//spec. Note the the number of
state bits (in the Cone page) is now 39, as in our original problem. In fact, if you select
“Prop—Verify out.datal[0]//spec” you will probably get a very fast answer, since SMV
will notice that the verification problem you are trying to solve is isomorphic to that of the
one-stage implementation we started with. This information was saved in a file for future
use when that property was verified.

To verify stage?2, in the same way, we need to make similar using. . .prove declaration,
as follows:

using stagel.valid//free, stagel.idx//free prove stage2.data//spec;

Note that we don’t need a corresponding declaration for stagel, since the input signals
inp.valid and inp.idx have been left undefined, and are thus free in any event. With
this addition, chose “Prop—Verify all”, and observe that all the properties are verified very
quickly, since they are all isomorphic.

4.2.3 Refinement maps as types

You may have observed that it is getting a bit tedious to refinement maps for each stage
of the implementation, when they are actually all the same. SMV provides a way to avoid
this by specifying abstract definitions of a signal as part of its data type. We can also give
a type a parameter, so that we can specify in the type declaration which abstract object an
implementation object corresponds to. A parameterized type in SMV is otherwise known as
a module. Let’s declare a type with a refinement map as follows:

module byte_intf (bytes){

bytes : array INDEX of BYTE;

21

valid : boolean;
idx : INDEX;
data : BYTE;

layer spec:

if (valid) data := bytes[idx];
}

This defines an interface type that transfers an array bytes of bytes according to a specific
protocol. This protocol is defined by layer spec. Now, lets rewrite our example using this

type:

module main(){
/* the abstract model x*/

bytes : array INDEX of BYTE;
next (bytes) := bytes;

/* the input and output signals */
inp, out : byte_intf (bytes);
/* the implementation */

stagel, stage2 : byte_intf(bytes);

init(stagel.valid) 0;
next(stagel) := inp;
init(stage2.valid) 0;
next(stage2) := stagel;
init(out.valid) := O;

next(out) := stage2;

/* abstraction choices */

using stage2.valid//free, stage2.idx//free prove out.data//spec;
using stagel.valid//free, stagel.idx//free prove stage2.data//spec;
}

Notice that there’s no need to write the intermediate refinement maps. They are part of the
data type.

4.2.4 The effect of decomposition

To see the effect of using refinement maps let’s make two versions of our simple example,
one with and one without intermediate refinement maps. We can easily do this by changing

22

the types of the intermediate stages. To make it interesting, we’ll use 32 delay stages. Here
is the version with intermediate refinement maps:

/* the implementation */

stages : array 1..31 of byte_intf(bytes);
init(stages[1] .valid) := 0;
next(stages[1]) := inp;

for(i = 2; i <=31; 1i =1+ 1){

init(stages[il.valid) := 0;
next(stages[i]) := stages[i-1];
}
init(out.valid) := 0;
next(out) := stages[31];

/* abstraction choices */

for(i = 2; 1 <=31; i=1+1)
using stagesl[i-1].valid//free, stages[i-1].idx//free
prove stages[i].data//spec;

using stages[31].valid//free, stages[31].idx//free prove out.data//spec;
Here is the version without intermediate refinement maps:

/* the implementation */

stages : array 1..31 of
structq{
valid : boolean;
idx : INDEX;
data : BYTE;

init(stages[1] .valid) := 0;
next(stages[1]) := inp;

for(i = 2; 1 <=31; i =1+ 1){
init(stages[i].valid) := 0;
next(stages[i]) := stages[i-1];

}

23

init(out.valid) := O;
next(out) := stages[31];

Note, we don’t want to free any of the intermediate signals in this version. Now, open the
first version, and select “Props—Verify all”. It should verify all 256 properties in something
like 15 seconds (depending on your machine). Now, open the second version (without refine-
ment maps). There are only 8 properties to verify in this case (one for each output bit), bit
SMV cannot verify these properties, as you may observe by select “Prop—Verify all”. When
you get bored of watching SMV do nothing, select “Prop—Kill Verification” (note, this may
not work under Windows), and click the Cone tab. Observe that the cone contains 256 state
variables, which is usually to large for SMV to handle (though occasionally SMV will solve
a problem of this size, if the structure of the problem is appropriate for BDD’s). Note that
it is possible to construct even a fairly trivial example which cannot be verified directly by
model checking, but can be verified by decomposition and model checking. Generally, when
a direct model checking approach fails, it’s best to look for a decomposition of the problem
using refinement maps, rather than to try to determine why the BDD’s exploded.

4.3 Decomposing large data structures

In our trivial example, we are sending an array of 32 bytes. Because we only need to
consider one bit out of each byte at a time, we were able to verify the implementation
without explicitly decomposing this data structure. However, cases often arise when it is
necessary to consider only one element at a time of a large structure. For example, we
might increase the size of our array to 1 million bytes. As we will see later, sometimes even
small arrays must be decomposed in this way. One one of decomposing a large array in the
abstract model is to write an array of refinement maps (we’ll see a more elegant way later, in
section 4.6). Each element of this array defines a given low-level signal only when it contains
the value of the corresponding element in the abstract array. For example, let’s rewrite our
interface data type to use a decomposed refinement map of this kind:

module byte_intf (bytes){
bytes : array INDEX of BYTE;

valid : boolean;
idx : INDEX;
data : BYTE;

forall(i in INDEX)
layer specl[i]:
if(valid & idx = i) data := bytes[il;
}

Notice that layer spec is now an array, with one element for each element of the array bytes.
The layer spec[i] specifies the value of data only when idx is equal to i, and otherwise

24

leaves data undefined. The advantage of this refinement map is that spec[i] refers to only
one element of the array bytes. Thus, the other elements will not appear in the cone when
verifying it, and we have reduced the number of state variables that the model checker must
handle.

Let’s go back to our 3-stage delay example, and use this new definition of byte_intf.
Because we have changed the layer declarations, we also have to change the corresponding
using...prove declarations. Replace these with the following:

forall(i in INDEX){
using stage2.valid//free, stage2.idx//free prove out.data//speclil;
using stagel.valid//free, stagel.idx//free prove stage2.data//speclil;

}
Now, when you try to open this file, you'll get an error message, something like this:

The implementation layer inherits two definitions of inp.datal[5]
...in layer spec[31], "map7.smv", line 15

...in layer spec[30], "map7.smv", line 15

Perhaps there is a missing "refines" declaration?

This is because we have given many abstract definitions for inp.data without providing
an implementation. By default, if there is only one abstract definition, SMV takes this
as the implementation. However, if there are many abstract definitions, it is possible that
these definitions are contradictory, and hence there is no possible implementation. There are
several possible ways to make SMV stop complaining about this. One is to provide an actual
implementation. For example, we could simply implement inp.data by a nondeterministic
choice among all possible data values. This would mean, of course, that we could not then
prove consistency with the maps inp.data//spec[i]. On the other hand, we don’t really
want to prove these, since they are actually assumptions about the inputs to our design,
and not properties to be proved. One way to tell SMV this is to declare inp explicitly as an
input to the design. SMV does not attempt to verify refinement maps driving global inputs.
It just takes them as assumptions. If our main module is later used as a submodule in a
later design, we’ll have to verify these maps in the context of the larger design. Meanwhile,
let’s change the header of our main module to look like the following:

module main(bytes,inp,out){
bytes : array INDEX of BYTE;
input inp : byte_intf (bytes);
output out : byte_intf(bytes);

Notice we’ve also make bytes a parameter to the module. If we later use this module in a
larger design, we can then specify what abstract data array we want the module instance
to transmit. Now, open this file, and select, for example, property out.data[0]//spec[0].
You’ll notice that there are now only 8 state variables in the cone, since 31 of data bits have
been eliminated. Also, notice that SM'V chose the layer spec[0] to define stage2.datal[0],
out of the 32 possible abstract definitions. This is a heuristic choice, which was made on the
basis of the fact that we are verifying an abstraction in layer spec[0]. If you'd like to see

25

the reasoning SMV went through to arrive at this choice, select the signal stage2.datal[0]
and pull down “Abstraction—Explain Layer”.

If you now select “Prop—Verify out.datal[0]//spec[0]”, you can observe that the ver-
ification is in fact faster than in the previous case. However, you’ll also notice that the
number of properties to prove is now very large. In fact, it is 32 times greater than before,
since every property has now been decomposed into 32 cases! Select “Prop—Verify All”,
and you will find that the total verification time for this long list of properties is about 15
seconds, actually longer than before. Surely it is unnecessary to verify all of the 32 cases for
each refinement map, since each is in effect symmetric to all the others. In fact, if we simply
tell SMV where the symmetry is, we can convince it to prove only one case out of 32.

4.4 Exploiting Symmetry
Change the type declaration for INDEX from
typedef INDEX 0..31;

to

scalarset INDEX 0..31;

This is exactly the same as an ordinary type declaration, except it tells SMV that the given
scalar type is symmetric, in the sense that exchanging the roles of any two values of the type
has no effect on the semantics of the program. In order to ensure that this symmetry exists,
there are a number of rules placed on the use of variables of a scalarset type. For example, we
can’t use constants of a scalarset type, and the only operation allowed on scalarset quantities
is equality comparison. In addition, we can’t mix scalarset values with values of any other
type. We can, however, declare an array whose index type is a scalarset. This makes it legal
for us to make the type INDEX into a scalarset. Now, when SMV encounters an array of
properties whose index is of scalarset type, it chooses only one case to prove, since if it can
prove one case, then by symmetry it can prove all of them.

Let’s see the effect of this on our example. Open the new file (with INDEX changed to
a scalarset), and look in the Properties page. You'll see that there are now only properties
from layer spec[0]. Pull down “Prop—Verify All”, and you’ll find the total verification
time reduced to about a half second (a savings of a factor 32!).

We can go a step further than this, and make the type BIT a scalarset as well. This is
because all of the bits within a byte are symmetric to each other. So change

typedef BIT 0..7;
to
scalarset BIT 0..7;

and open the new file. Now, in the Properties pane, there are only three properties, one for
each stage! Thus, using symmetry, we have reduced the number of properties, by a factor of
32 x 8 = 256.

26

4.5 Decomposing large structures in the implementation

Thus far, we’ve seen how we can decompose a large structure in the abstract model (such as
the byte array in our example), and verify properties relating only to one small component
of the structure. Now, we’ll consider the case where we have a large structure in the imple-
mentation, and wish to consider only one component at a time. Let’s keep the specification
from our previous example, but design an implementation that has a large buffer that can
store data bytes in transit. To make the problem more interesting, we’ll put flow control in
the protocol, so that our implementation can stop the flow of incoming data when its buffer
is full. To implement flow control, we’ll use two signals, one to indicate the sender is ready
(srdy) and one to indicate the receiver is ready (rrdy). A byte is transferred when both of
these signals are true. Here’s the definition of this protocol as an interface data type:

module byte_intf (bytes){
bytes : array INDEX of BYTE;

srdy,rrdy : boolean;
idx : INDEX;
data : BYTE;

valid : boolean;
valid := srdy & rrdy;

forall(i in INDEX)
layer specl[il:
if(valid & idx = i) data := bytes[il;
}

Note that the refinement map only specifies the value of the data when both srdy and rrdy
are true. Our system specification is exactly the same as before:

module main(bytes,inp,out){
bytes : array INDEX of BYTE;
input inp : byte_intf (bytes);
output out : byte_intf(bytes);

/* the abstract model */

next (bytes) := bytes;

For the implementation, we’ll define an array of 8 cells. Since all of the cells are symmetric,
we’ll define a scalarset type to index the cells:

scalarset CELL 0..7;

Each cell holds an index and a data byte. Each cell also needs a bit to say when the data in
the cell are valid:

27

cells : array CELL of struct{
valid : boolean;
idx : INDEX;
data : BYTE;

}

We also need pointers to tell us which cell is to receive the incoming byte and which cell is
to send the outgoing byte:

recv_cell, send_cell : CELL;

The implementation is ready to receive a byte when the cell pointed to by recv_cell is
empty (i.e., not valid). On the other hand, it is ready to send a byte when the cell pointed
to by send_cell is full (i.e., valid):

“cells[recv_cell] .valid;
cells[send_cell] .valid;

inp.rrdy :
out.srdy :

Here is the code that implements the reading and writing of cells:

forall(i in CELL)init(cells[i].valid) := 0;

default{
if (inp.valid){
next(cells[recv_cell] .valid) := 1;
next (cells[recv_cell] .idx) := inp.idx;
next (cells[recv_cell] .data) := inp.data;
}
} in Ao

if (out.valid){
next (cells[send_cell] .valid) := 0;
+
}

out.idx := cells[send_cell].idx;
out.data := cells[send_cell].data;

For the moment, we will leave the pointers recv_<cell and send_cell undefined, and thus
completely nondeterministic. This will allow us to cover all possible policies for choosing
cells. Later, we can refine these signals to use a particular policy (e.g., round-robin) without
invalidating our previous work.

Finally, having defined our implementation, we will define a refinement map for the
structure cells so that we do not have to consider the entire array at once. In fact, this
refinement map almost defines itself, given the way the data structure cells is encoded. We
want to say that if a cell i is valid, then its data is equal to the element of bytes pointed to
by its index idx. Here is the refinement map:

28

forall(i in INDEX)
layer specl[i]:
forall(j in CELL)
if(cells[j].valid & cells[j].idx = i) cells[j]l.data := byteslil;

Note that once again, we have decomposed the map into separate indices. If cell j’s index
is i, then cell j contains byte i from the abstract array.

Now that we have defined each cell’s contents in terms of the abstract model, we can
verify each cell separately. We can then assume that all the cells are correct when we verify
the implementation output. Open this file, and notice that in the properties pane, there
are just two properties: cells[0].datal[0]//spec[0] and out.data[0]//spec[0]. All the
other properties are equivalent to one of these by symmetry. Try “Prop—Verify All” to
check that in fact our refinement is correct. Now select cells[0] .data[0]//spec[0] in the
Properties pane, and the click on the Cone tab. There are 15 state variables in total for this
property. Notice that once again SMV has chosen layer spec[0] to drive inp.data[0], since
this is the layer we are verifying. Because of the decomposition we have used, data bits from
only one cell and one element of the bytes array appear in the cone. In fact, most of the
state bits come from the valid bits of the cells. These are included in the cone because the
bit inp.rrdy depends on them. However, it is reasonable to hypothesize that the correctness
of cell 0 does not actually depend on the valid bits of the other cells. We should be able
to free them and still verify the property. To do this, add the following declaration to the
program:

forall(i in INDEX) forall(j in CELL) forall(k in BIT)
using cells//free, cells[jl
prove cells[j].datalk]//spec[il;

This declaration probably requires some explanation. First, even though we are only inter-
ested in proving one property, cells[0] .datal[0]//spec[0], we give a prove declaration
for cells[j].datalk]//specl[il, for all i,j,k. This is because we are not allowed to use
constants of a scalarset type in the program. Second, in order to free the signals in all the
cells except cell j, we specity cells//free, indicating that all components of cells should
use the free layer, and then specify cells[j] to override this choice for the specific case of
cell j. In a using declaration, a signal name without a layer indicates the implementation
definition of that signal.

Open this version and select the property cells[0].data[0]//spec[0]. The number of
state variables should now be 8 rather than 15, since the valid bits for the other cells are
now free variables. Select “Prop—Verify cells[0].data[0]//spec[0]” and observe that
our hypothesis is confirmed — the correctness of cell 0 is preserved, even when we free the
state of the other cells. Also note that verification time is reduced.

Note, that by freeing some signals, we have decreased the number of state variables in the
cone, we have also increased the number of “combinational” variables. These are variables
that act as free or constrained inputs to the model. We can go a step further and substitute
the “undefined” value for these bits. This is very much like an “X” value in a logic simulator.
For example:

29

0 & undefined = 0
1 & undefined = undefined
0 | undefined = undefined
1 | undefined =1

Using the undefined value has the advantage that no combinational variables will introduced,
since these signals are given the constant value “undefined”. The difficulty is that, as in a
logic simulator, these undefined values can propagate widely, giving a pessimistic result — we
may find that a counterexample is produced to the property using undefined values, even
though the property is actually true. However, we can never “prove” a false property by
introducing undefined values.

We can set signals to the undefined value using a predefined layer called undefined. For
example, replace cells//free in the using ... prove declaration above with

cells//undefined

This will cause the signals that were previously freed to be given the undefined value instead.
Open the new file and select the property cells[0].data[0]//spec[0]. Notice in the
Cone pane that the other valid bits are no longer combinational variables. Thus we have
eliminated 7 combinational variables from the cone. On the other hand, you can observe by
selecting “Prop—Verify cells[0].data[0]//spec[0]” that the property is still provable
under this weaker assumption about the environment.

Finally, let’s go back to the other property we need to prove in this example, which is that
the outputs are correct with respect to the specification (out.datal[0]//spec[0]). Select
this property in the Properties pane, and observe that there are still 49 state variables in the
cone. This is because, although our refinement map drives the data value for each cell from
the abstract model, the control bits idx and valid for each cell are still driven from the
implementation. This is not a problem for us, since BDD’s come to our rescue in this case.
You can confirm this by selecting “Prop—Verify out.data[0]//spec[0]”. This verification
should take less than 2 seconds. Nonetheless, if this were not the case, we could reduce the
number of state bits by freeing the cells’ control bits. That is, our refinement map provides
that the data in a cell are correct, for any values of the control bits valid and idx. So let’s
add the following declaration to the program:

forall(i in INDEX) forall(j in CELL) forall(k in BIT)
using cells[j].idx//free, cells[jl.valid//free
prove out.datalk]//specl[i];

Open the new version and select the property out.datal[0]//spec[0]. Notice that the
number of state bits is now reduced to 1, a single bit of the abstract array. The verification
time is also reduced, as you can observe by selecting “Prop—Verify out .data[0]//spec[0]”.

4.6 Case analysis

Suppose that we have a condition p, and we would like to show that p holds true at all times.
For any particular variable x, we could break the problem into cases. For each possible value

30

of v of x, we could show that condition p is true at those times when x = v. Since at all
times x must have one of these values, we can infer that p must be true at all times.

SMYV has a special construct to support this kind of case analysis. It is especially useful
for compositional verification, since for each case we can use a different abstraction of the
system, including different components in the verification. This allows us to break large
verification problems into smaller ones.

The above described case analysis is expressed in SMV in the following way:

forall (v in TYPE)
subcase qlv] of p for x = v;

Now suppose that p is some temporal assertion G cond, where cond is any boolean
condition. The above declaration effectively defines a collection of properties q[v], as if we
had written

forall (x in TYPE)
qlv] assert G (x=v -> cond);

That is, each q[v] asserts that p holds at those times when x = v. Clearly, if q[v] holds
for all values of v, then p holds. Thus, SMV is relieved of the obligation of proving p, and
instead separately proves all the cases of q[v]. Note that if TYPE is a scalarset type, we may
in fact have to prove only one case, since all the other cases are symmetric.

4.6.1 A very simple example

Now, let’s look at a trivial example of this. Let’s return to our very simple example of
transmitting a sequence of bytes. Here is the specification again:

scalarset BIT 0..7;
scalarset INDEX 0..31;
typedef BYTE array BIT of boolean;

module main(){
/* the abstract model x*/

bytes : array INDEX of BYTE;
next (bytes) := bytes;

/* the input and output signals */

inp, out : struct{
valid : boolean;
idx : INDEX;
data : BYTE;

}

31

/* the refinement maps */

layer spec: {
if (inp.valid) inp.data := bytes[inp.idx];
if (out.valid) out.data := bytes[out.idx];
}

And let’s use our original very trivial implementation:

init(out.valid) := 0;
next(out) := inp;

¥

That is, the output is just the input delayed by one time unit.

Note that our specification (layer spec) says that at all times the output value must be
equal to the element of array bytes indicated by the index value out.idx. We would like to
break this specification into cases and consider only one index value at a time. To do this,
we add the following declaration:

forall (i in INDEX)
subcase spec_case[i] of out.data//spec for out.idx = i;

In this case, the property we are splitting into cases is out .data//spec, the assignment to
out.data in layer spec. The resulting cases are out.data//spec_case[i]. Note, however,
that in the subcase declaration, we only give a layer name for the new cases, since the signal
name is redundant. This declaration is exactly as if we had written

forall (i in INDEX)
layer spec_casel[i]:
if (out.idx = i)
out.data := bytes[out.idx];

except that SMV recognizes that if we prove out.data//spec_casel[i] for all i, we don’t
have to prove out.data//spec. Run this example, and look in the properties pane. You’ll
see that out.data//spec does not appear, but instead we have out.data//spec_case[0].
Note that only the case i = 0 appears, since INDEX is a scalarset type, and SMV knows
that all the other cases are symmetric to this one. Now look in the cone pane. You’ll notice
that all of the elements of the array bytes are in the cone. This is because the definition of
inp.data in layer spec references all of them. However, all of them except element 0 are in
the undefined layer. This is a heuristic used by SMV: if a property references some specific
value or values of a given scalarset type, then only the corresponding elements of arrays
over that type are used. The rest are given the undefined value. You might try clicking
on element bytes[1] and choosing Abstraction|Explain Layer to get an explanation of
why this signal was left undefined. You can, of course, override this heuristic by explicitly
specifying a layer for the other elements. In this case, however, the heuristic works, since
property out.data//spec_case[0] verifies correctly.

32

4.6.2 Using case analysis over data paths

Now we’ll look at a slightly more complex example, to show how case ananlysis can be used
to reduce a verification problem to a smaller one, by considering only one path that a given
data item might take from input to output. This technique is quite useful in reasoning about
data path circuitry.

We'll use essentially the same specification as before, but in this case our implemen-
tation will be the array of cells that we used previously when discussing refinement maps
(section 4.5). We have an array of cells, and each incoming byte is stored in an arbitrarily
chosen cell. Recall that the specification in this case has to take into account the handshake
signals. That is, the data are only valid when both sdry and rrdy are true:

/* the abstract model x*/

bytes : array INDEX of BYTE;
next (bytes) := bytes;

/* the input and output signals */

inp, out : struct{
srdy,rrdy : boolean;
idx : INDEX;
data : BYTE;

b

/* the refinement maps */

layer spec: {
if (inp.srdy & inp.rrdy) inp.data :
if (out.srdy & out.rrdy) out.data :
}

bytes[inp.idx];
bytes[out.idx];

For reference, here is the implementation again:

/* the implementation */

cells : array CELL of struct{
valid : boolean;
idx : INDEX;
data : BYTE;

}

recv_cell, send_cell : CELL;

inp.rrdy := “cells[recv_cell].valid;
out.srdy := cells[send_cell].valid;

33

forall(i in CELL)init(cells[i].valid) := 0;

default{
if (inp.srdy & inp.rrdy){
next (cells[recv_cell] .valid) := 1;
next (cells[recv_cell].idx) := inp.idx;
next (cells[recv_cell] .data) := inp.data;
}
} in {

if (out.srdy & out.rrdy){
next (cells[send_cell] .valid) := O0;
}
+

out.idx := cells[send_cell].idx;
out.data := cells[send_cell].data;

Recall that in the previous example, we wrote refinement maps for the data in the
individual cells, in order to break the verification problem into two pieces: one to show that
cells get correct data, and the other to show that data in cells are correctly transfered to
the output. Now, we will use case analysis to get a simpler decomposition, with only one
property to prove.

Our case analysis in this example will be a little finer. That is because we have two
arrays we would like to decompose. One is the array of bytes to transfer, and the other
is the array of cells. We would like to consider separately each case where byte[i] gets
transfered through cell[j]. In this way, we can consider only one byte and one cell at a
time. This is done with the following declaration:

forall (i in INDEX) forall (j in CELL)
subcase spec_case[i] [j] of out.data//spec
for out.idx = i & send_cell = j;

Notice that our case analysis now has two parameters. Each case is of the form out.idx =
i & send_cell = j where i is an INDEX and k is a CELL. We can, in fact, have as many
parameters in the case analysis as we like, provided we write the condition in the above form.
SMV recognizes by the form of the expression that the cases are exhaustive.

Now run this example, and observe that once again, we have a single property to prove:
out.data//spec_case[0] [0]. The other cases are symmetric. If you look in the cone, you’ll
see that, while all elements of bytes and cells are referenced, all except element 0 of these
arrays is left undefined, according to SMV’s default heuristic. This makes the verification
problem small enough that we can handle it directly, without resorting to an intermediate
refinement map. You can confirm this by verifying out.data//spec_case[0] [0].

This technique of breaking into cases as a function of the specific path taken by a data
item through a system is the most important reduction in using SMV to verify data path

34

circuitry. Notice that symmetry is crucial to this reduction, since without it we would have
a potential explosion in the numer of different paths.

4.7 Data type reductions

Now suppose that we would like to verify the correct transmission of a very large array of
bytes, or even an array of unknown size. SMV provides a way to do this by reducing a type
with a large or unknown number of values to an abstract type, with a small fixed number of
values. This type has one additional abstract value to represent all the remaining values in
the original type.

For example, when verifying the correct transmission of byte i, we might reduce the
index type to just two values — i and a value representing all numbers not equal to i,
(which SMV denotes NaN). This is an abstraction, since NalN, when compared for equality
against itself, produces an undetermined value. In fact, here is a truth table of the equality
operator for the reduced type:

| = [|i] Nav |
i |1 0
NaN || 0 | {0,1}

The program with the reduced index data type is an abstraction of the original program,
such that any property that is true of the abstract program is true of the original (though
the converse is not true).

4.7.1 A very simple example

Let’s return to our very simple example of transmitting a sequence of bytes (section 4.6.1).
For reference, here is the specification again:

scalarset BIT 0..7;

scalarset INDEX 0..31;

typedef BYTE array BIT of boolean;
module main()q{

/* the abstract model x*/

bytes : array INDEX of BYTE;
next (bytes) := bytes;

/* the input and output signals */
inp, out : struct{

valid : boolean;

idx : INDEX;

data : BYTE;

35

/* the refinement maps */

layer spec: {
if (inp.valid) inp.data :
if (out.valid) out.data :
}

bytes[inp.idx];
bytes[out.idx];

And let’s use our original very trivial implementation:

init(out.valid) := O;
next (out) := inp;

}

That is, the output is just the input delayed by one time unit.
As before, let’s break the specification up into cases, one for each index value:

forall (i in INDEX)
subcase spec_case[i] of out.data//spec for out.idx = i;

If you run this example, and look in the cone pane, you’ll see that there are five state
variables in the cone for both inp.idx and out.idx. This is expected, since five bits are
needed to encode 32 values. However, notice that for case i, if the index value at the output
is not equal to i, we don’t care what the output is. Our property spec_case[i] only specifies
the output at those times when out.idx = i. We can therefore group all of the index values
not equal to i into a class, represented by a single abstract value (Nal), and expect that the
specification might still be true. To do this, add the following declaration:

forall (i in INDEX)
using INDEX->{i} prove out.data//spec_case[i];

This tells SMV to reduce the data type INDEX to an astract type consisting of just the
value i and NalN (note, we don’t specify NalN explicitly). Now, open the new version, and
observe the cone. You’ll notice the state variables inp.idx and out.idx now require ony one
boolean variable each to encode them, since their type has been reduced to two values. Now
try verifying the property out.data//spec_case[0]. The result is true, since the values we
reduced to the abstract value don’t actually matter for the particular case of the specification
we are verifying.

Now, let’s suppose that we don’t know in advance what the size of the array of bytes will
be. Using data type reductions, we can prove the correctness of our implemenation for any
size array (including an infinite array). To do this, change the declaration

scalarset INDEX 0..31;

to the following:

36

scalarset INDEX undefined;

This tells SMV that INDEX is a symmetric type, but doesn’t say exactly what the values
in the type are. In such a case, SMV must have a data type reduction for INDEX to prove
any properties, because it can only verify properties of finite state systems. Now run the
new version. You'll notice that the result is exactly the same as in the previous case. One
boolean variable is used to encode values of tye INDEX, and the specification is found to be
true. In fact, in the previous case, SMV didn’t in any way use the fact that type INDEX was
declared to have the specific range 0..31. Thus it’s not surprising that when we remove
this information the result is the same. By using finite state verification techniques, we have
proved a property of a system with an infinite number of states (and an infinite number of
systems with finite state spaces).

One might ask what would happen if, using a scalarset of undefined range, we ommitted
the data type reduction. Wouldn’t that give us an infinite state verification problem? Try
removing the declaration

forall (i in INDEX)
using INDEX->{i} prove out.data//spec_case[i];

from the problem and run the resulting file. You’ll observe that nothing has changed
from the previous case. Since SMV can’t handle undefined scalarsets without a data type
reduction, it guesses a reduction. It simply includes in the reduced type all the specific values
of the given type that appear in the property. In this case, there is only one, the index i.

4.7.2 A slightly larger example

Now, let’s reconsider the example from the previous section of an implementation with an
array of cells (section 4.6.2). For reference, here are the specification and implementation:

/* the specification */

layer spec: {
if (inp.srdy & inp.rrdy) inp.data :
if (out.srdy & out.rrdy) out.data :
}

bytes[inp.idx];
bytes [out.idx];

/* the implementation */

cells : array CELL of struct{
valid : boolean;
idx : INDEX;
data : BYTE;

}

recv_cell, send_cell : CELL;

37

“cells[recv_cell] .valid;
cells[send_cell] .valid;

inp.rrdy :
out.srdy :

forall(i in CELL)init(cells[i].valid) 0;
defaultq
if (inp.srdy & inp.rrdy){
next (cells[recv_cell] .valid) := 1;
next (cells[recv_cell] .idx) := inp.idx;
next (cells[recv_cell] .data) := inp.data;
}
} in {
if (out.srdy & out.rrdy){
next(cells[send_cell] .valid) := 0;
+
}

out.idx := cells[send_cell].idx;
out.data := cells[send_cell].data;

Let’s make just one change to the source: we’ll redefine the scalarset types INDEX and
CELL to have undefined range:

scalarset INDEX undefined;
scalarset CELL undefined;

Since these types have undefined ranges, SMV will choose a data type reduction for use
(though, of course, we could specify one if we wanted to). Now, run this modified version.
You’ll notice that in the properties pane, we have just one property to prove, as before:
out.data//spec_case[0] [0]. In the cone pane, obverve that the variables of type INDEX
and CELL have only one boolean variable encoding them (representing the value 0 and NaN).
In addition, only cell[0] and byte[0] appear. This is because SMV chose to reduce the
types INDEX and CELL to contain only those values appearing in the property being verified,
which in this case are just the value 0 for both types. Confirm that in fact the specification
can be verified using this reduction.

Note that the proof reduction that we used for the case of a fixed number of cells and
a fixed number of bytes, worked with no modification when we switched to an arbitrary
number of bytes and cells!

These very simple examples provide a paradigm of the verification of complex hardware
systems using SMV. One begins by writing refinement maps. They specifiy the inputs and
outputs of the system in terms of a more abstract model, and possibly specify internal points
as well, to break the verification problem into parts. The resulting properties are then broken
into cases, generally as a function of the different paths that a data item may take from one
refinement map to another. These cases are then reduced to a tractable number by symmetry
considerations. Finally, for each case, a data type reduction is chosen which reduces the large

38

(or even infinite) data types to a small fixed number of values. The resulting verification
subproblems are then handled by symbolic model checking.

4.8 Proof by induction

Suppose now that we want to verify some property of a long sequence. For example, we
may have a counter in our design that counts up to a very large number. Such counters can
lead to inefficient verification in SMV because the state space is very deep, and as a result,
SMV’s breadth first search technique requires a large number of iterations to exhaustively
search the state space. However, the usual mathematic proof technique when dealing with
long sequences is proof by induction. For example, we might prove that a property holds
for 0 (the base case), and further that if it holds fr some arbitrary value i, then it holds for
i + 1. We then conclude by induction that the property holds for all i.

Data type reductions provide a mechanism for inductive reasoning in SMV. To do this,
however, we need a data symmetric data type that allows adding and subtracting constants.
In SMV, such data types are called ordsets. An ordset is just like a scalarset, except the
restrictions on ordsets are slightly relaxed. If we delcare a type as follows:

ordset TYPE 0..1000;

then, in addition to the operations allowable on scalarset types, the following are also legal:
l.x + 1land x - 1,
2. x = 0and x = 1000

where x is of type TYPE. That is, we can increment and decrement values of ordset types,
and also compare them with the extremal values of the type.

Induction is done in the following way: suppose we want to prove property p[i], where i
is the induction paremeter, ranging over type TYPE. We use a data type reduction that maps
TYPE onto a set of four values: X,i-1,i,Y. Here the symbolic value X abstracts all the values
less that i-1, and Y abstracts all the values greater than i. Incrementing a value in this
reduced type is defined as follows:

{X,i-1}
= 1
=Y

X
(i-1)
i
Y = Y

+ + + +

1
1
1
1

That is, adding one to a value less than i-1 will result in either i-1 or a value less that i-1.
Decrementing is similary defined. Any property provable in this abstract interpretation is
provable in the original. In addition, we can show that all the cases from i = 2 up to i =
999 are isomorphic. Thus it is sufficient to prove oly the cases i = 0, 1, 2, 1000.

As an example, suppose we hae a counter that starts from zero and increments once per
clock cycle, up to 1000. We’d like to show that for any value i from 0 to 1000, the counter
eventually reaches i. Here’s how we might set this up:

39

ordset TYPE 0..1000;
module main()
{

x : TYPE;

/* the counter x*/

init(x) := 0;
next (x) X+ 1;

/* the property */

forall(i in TYPE)
pli] : assert F (x = i);

/* the proof */
forall(i in TYPE)
using pli-1] prove plil];

}

We prove each case p[i] using p[i-1]. That is, when proving the counter eventually reaches
i, we assume that it eventually reaches i-1. (Note that technically, for the case i = 0, we
are asking SMV to use p[-1], but since this doesn’t exist, it is ignored).

SMV can verify that this proof is noncircular. Further, using its induction rule, it auto-
matically generates a data type reduction using the values 1 and i-1, and it generates the
four cases we need to prove: p[0], p[1], [2], p[1000]. To confirm this, run the example,
and look in the properties ane. You should see the four aforementioned properties. Now
choose Verify A1l to verify that in fact the induction works, and that p[i] holds for all i.

4.8.1 Induction over infinite sequences

Now, suppose we have a counter that ranges from zero to infinity. We can still prove by
induction that any value i is eventually reached. To do this, we declare TYPE to be an ordset
without an upper bound:

ordset TYPE O..;

With this change, run the example, and notice that in the properties pane there are now
only three cases to prove: p[0], p[1], [2]. We don’t have to prove the maximum value as
a special case, because there is no maximum value. Now choose Verify A1l to verify that
in fact the induction works, and that p[i] holds for all i. We've just proved a property of
an infinite-state system by model checking.

40

4.8.2 A simple example

To see how we can use induction in practice, let’s return to our example of transmitting an
array of bytes. This time, however, we will assume that the bytes are in an infintie sequence.
They are received at the input in the order 0, 1, 2, ... and they must be transmitted to
the output in that order.

To begin with, let’s define our types:

scalarset BIT 0..7;
typedef BYTE array BIT of boolean;

ordset INDEX O..;

Note that we defined INDEX as an ordset type, so we can prove properties by induction
over indices.

We begin with the original refinement specification. As in section 4.2.3, we encapsulate
it in a module, so we can reuse it for both input and output:

module byte_intf (bytes){
bytes : array INDEX of BYTE;
valid : boolean;
idx : INDEX;
data : BYTE;
layer spec:

if(valid) data := bytes[idx];

To specify ordering we simply introduce a counter cnt that counts the number of bytes
received thus far. If there is valid data at the interface, we specify that the index of that
data is equal to cnt. Thus, add the following declarations to module byte_intf:

cnt : INDEX;
init(cnt) := 0;
if(valid) next(cnt) := cnt + 1;

ordered: assert G (valid -> idx = cnt);

Note, we can include temporal properties, like the above property ordered inside modules.
Thus, for each instance of the interface definition, we’ll get one instance of this property. As
our first implementation, we’ll just use the trivial implementation that delays the input by
one clock cycle. Here’s what the main module looks like:

41

module main(bytes,inp,out){
bytes : array INDEX of BYTE;
input inp : byte_intf (bytes);
output out : byte_intf(bytes);
/* the abstract model */

next (bytes) := bytes;

/* the implementation */

init(out.valid) := O;

next (out.valid) := inp.valid;
next(out.data) := inp.data;
next (out.idx) = inp.idx;

¥

To prove the correctness of the data output (with respect to the refinement specification),
we use the same proof as before — we split into cases based on the index of the output:

forall(i in INDEX)
subcase spec_case[i] of out.data//spec
for out.idx = 1i;

Note that anything that can be done with a scalarset can also be done with an ordset.

So much for the data correctness — the interesting part is the correct ordering. For the
proof of the ordering property, we're going to use induction over the value of the counter
cnt. The intuition here is that, if the output index equals the counter when the counter is i,
then at the next valid output the counter and index will both be one greater, and hence they
will be equal for cnt = i + 1. This assumes, of course, that the input values are ordered
correctly. To verify this, we must first break the output ordering property into cases based
on the value of ¢nt:

forall(i in INDEX)
subcase ord_case[i] of out.ordered for out.cnt = i;

Then, we prove case i using case i-1 and the input ordering property. We leave
inp.ordering as an assumption:

forall(i in INDEX){
using ord_casel[i-1], inp.ordered prove ord_casel[i];
assume inp.ordered;

}

Now, run this example, and observe the properties pane. You’ll notice that we now have
three cases of the property out.data//spec_case[i] to prove: i = 0, 1, 2. In fact, all of

42

these cases are isomorphic, but since INDEX is defined as an ordset rather than a scalarset,
SMV’s type checking rules don’t guarantee this. Thus, SMV will effectively prove the same
property three times. Fortunately, each case takes only a fraction of a second.

Now observe that we also have three cases of ord_case[i] to prove. Select, for example,
property ord_case[2] from the properties pane and observe the cone. You’ll notice that
each value of type INDEX requires two boolean variables to encode it. This is because there
are four values in the reduced type: i-1, i and two abstract values to represent the ranges
0..i-1 and i+1..infinity. Notice also that there are no data values in the cone, since
the indices do not depend on the data. Thus, we have effectively separated the problem of
correct ordering from correct delivery of data.

Now, try Prop|Verify all. All the cases should be verified in less than a second.

A note: for ordsets, a data type reduction may be specified, in lieu of SMV’s default.
The general form of the data type reduction for ordset types is:

TYPE -> { min..min+a, i-b..i+c, max-d..max};

where min is the minimum value of TYPE, i is the induction parameter, and max is the
maximum value of TYPE. Thus, SMV allows us to use any finite number of values around the
induction parameter i and the extremal values. In this case, the number of cases that need
to proved will be larger, however.

4.8.3 A circular buffer

Now let’s consider transmission of an infinite sequence of bytes again, but this time using
our array of cells as a circular buffer (an implementation of a FIFO queue).

To begin with, we need to add handshaking to our interface definition, so add the following
to module byte_intf:

srdy, rrdy : boolean;
valid := srdy & rrdy,

The signal srdy indicates that the sender is ready, while rrdy indicates the the receiver
is ready. The data are valid, by definition, when both are ready.

Now, as in section 4.5, we’ll use an array of 32 cells, to hold our data items. So define
the type CELL as:

ordset CELL 0..31;

The reason for making it an ordset type will become apparent later. Now, replace the
previous “trivial” implementation with the following:

cells : array CELL of struct{
valid : boolean;
idx : INDEX;
data : BYTE;

}

43

recv_cell, send_cell : CELL;

inp.rrdy := “cells[recv_cell].valid;
out.srdy := cells[send_cell].valid;

forall(i in CELL)init(cells[i].valid) := O;

default{
if (inp.valid){
next (cells[recv_cell] .valid) := 1;
next (cells[recv_cell].idx) := inp.idx;
next (cells[recv_cell] .data) := inp.data;
}
} in {

if (out.valid){
next (cells[send_cell] .valid) := O;
}
}

out.idx := cells[send_cell].idx;
out.data := cells[send_cell].data;

Note, recv_cell is the cell we are receiving a byte into, and send_cell is the cell we are
sending a byte from. We block our input (setting inp.rrdy to zero) when the cell wwe are
receiving into is full, and block our output (setting out.srdy to zero) when the cell we are
sending from is empty. When we receive into a cell, we set its valid bit to true, and when
we send from the cell, we clear its valid bit.

Up to this point, we haven’t said what policy is used to choose recv_cell and send_cell.
To make our buffer ordered, we can use a round-robin policy. This means that each time we
receive a byte, we increment recv_cell by one, and each time we send a byte, we increment
send_cell by one. When either of these reaches its maximum value, it returns to zero. To
accomplish this, add to following code to the implementation:

init(recv_cell) := 0;
if (inp.srdy & inp.rrdy)
next(recv_cell) := (recv_cell = 31) ? 0 : recv_cell +1;
init(send_cell) := O;
if (out.srdy & out.rrdy)
next(send_cell) := (send_cell = 31) ? 0 : send_cell +1;

Note that, since CELL is an ordset type, rather than a scalarset, it’s legal to compare
it against the maximum value (31) and set it back to the minumum value (0). If CELL were
a scalarset, it wouldn’t be legal to introduce any constants of the type.

Now that we have our implementation, lets prove both the correctness of the data output
and correctness of the ordering. The case splitting statement for data correctness is the

44

same as when we did this example in section 4.6.2, where we weren’t concerned with data
ordering:

forall(i in INDEX) forall(j in CELL)
subcase spec_case[i] [j] of out.data//spec
for out.idx = i & send_cell = j;

That is, we consider separately the case of each byte index i, and the cell j that it is stored
in. That way, we only need to consider one cell in the aray at a time. Notice that adding
ordering does not change the proof of data correctness in any way.

Now for the ordering question. Again, we are going to use induction. The ordering
property says that when the output data are valid, the output index must be equal to are
count of the number of previous values. We’ll do the proof by induction over the value of the
counter. That is, we’ll assume that the index was correct when the count was i-1, and then
prove that the index is correct when the count is i. This means that, as before, we have
to split cases based on cnt. However, in this case we also have to split cases on the cell in
which the current output value stored. Thus, we use the following case splitting declaration:

forall(i in INDEX) forall(j in CELL)
subcase ord_case[i][j] of out.ordered
for out.cnt = 1 & send_cell = j;

Now, the question is, what data type reduction to use for type CELL. We know we need
to use cell j, since that is the one holding the data item we are interested in. However, in
addition, we need to use the previous cell. The intuition behind this is as follows. We are
assuming that the output index is correct for byte i-1. If byte i is stored in cell j, then
byte i-1 is stored in cell j-1 (which one exception). This means we need to inclde cell j-1.
Then, if cell j-1 contains index i-1, and the inputs are ordered, it follows that cell j will
contain index i, which is what we are trying to prove. Thus, we might use the data type
reduction:

CELL -> {j-1..j}

However, note that the exception to the above reasoning is the case j = 0. In this case, the
“previous” cell is cell 31. Since there’s no way (yet) to write a special data type reduction for
this case, we’ll just include the value 31 in our data type reduction for all the cases. Thus,
we write:

forall(i in INDEX) forall(j in CELL)
using CELL -> {j-1..j,31} prove ord_case[i] [j];

Now comes the actual inductive step: we use the case cnt = i-1 to prove the case cnt
= 1i:

forall(i in INDEX} forall(j in CELL)
using ord_casel[i-1], inp.ordered prove ord_casel[i][j];

assume inp.ordered;

45

Notice that we use the entire array ord _case[i-1] (for all cells) in this verification. This
isn’t really necessary, since only the “previous cell” (j-1 or 31) is needed in any give case,
but its harmless. Note that we aren’t doing induction over the cell number. In fact, we can’t
do this, since the cells are used in a circular manner. This would result in a cycle in the
proof.

Now, run this example, and note the properties that appear in the properties pane. You'll
observe that the property ord_case[i] [j] has to be proved for all the combinations of i =
0,1,2and j = 0,1,2,30,31. The reason we have extra cases to prove for the cell index j,
is that we included the maximum value 31 in the data type reduction. SMV reasons that
the case j=30 might not be isomorphic to the case j=31, since we might compare j in some
way with the value 31. However, as you can observe by selecting “Prop—Verify All”, all of
these cases can be verified quickly. This is because the number of state variables is small
after data type reductions.

Thus, we've proved that a circular buffer implementation correctly transmits an infinite
sequence of bytes using a given handshake protocol.

4.8.4 Abstract variables

Notice that the case of the circular buffer, we don’t really have to send the byte indices,
since they can be inferred from the ordering property of the interface. The data output
doesn’t depend on them. Thus, in the actual implementation, we would leave out the idx
output of the buffer, considering it only an “auxiliary” variable used in the verification. This
use of “auxiliary state” added to the implementation gives us a convenient way to specify
interfaces as a function of abstract models. The auxiliary information tells us which object in
the abstract model is currently appearing at the interface. This in turn allows us to specify
what data should be appear at the interface as a function of the abstract model. In the next
section, we’ll see a slightly different way to do this.

We can tell SMV that a given variable is part of the proof only, and not part of the actual
implementation, by declaring it as abstract. For example, in the byte_intf module, we
would declare the idx component as:

abstract idx : INDEX;

SMV will verify for us that no actual implementation logic depends on this variable.
The abstract variables can thus be excised from the implementation while retaining all the
properties we’ve proved.

4.9 Instruction processors

Up to now, when discussing refinement verification, we’ve considered only the transfer of
data from one place to another, without actually operating on the data. Now we’ll have
a look at how to verify instruction set processors, that is, machines that input a sequence
of operations to be performed on some data structure, such as a register file or a memory.
In this case, our abstract model is usually an “instruction set architecture” (ISA). This is
represented by a simple sequential machine the processes instructions on at a time, in the

46

order they are received. The implementation is usually a more complex machine that works
on more than one instruction at a time. This can be done, for example, by pipelining, or
out-of-order execution techniques.

The key to verification of such designs in SMV is to break the problem up into individual
instructions. Usually, we break an instruction up into two parts, which correspond to two
lemmas int the proof. The first lemma is that all the operands fed to the function unit(s)
are correct, according to the abstract model. The second is that all results produced by the
functional unit(s) are correct (again, with respect to the abstract model). Needless to say,
we use lemma 1 to prove lemma 2, and vice versa. The reason for breaking the probelm into
two lemmas is that the operand fetching operation and the functional unit operation are
somewhat different in nature, so it’s convenient to separate the two issuues, so we can apply
a different proof approach to each (much as we separated the issues of data correctness and
ordering in the circular buffer).

Now, in order to specify that the operands and results are correct with respct to the
abstract model, we usually have to add some auxiliary information to the implementation
(see the previous section). In this case, we add to each instruction moving through the im-
plementation a few extra fields to store the correct operands and results for that instruction,
as computed by the abstract model.

4.9.1 A very simple example

As a very simple example, let’s define an instruction set architecture with just one instruction,
performed on values in a register file. Each instruction has two source operands and a
destination operand. Thus, an opcode consists of three fields — srca, srcb and dst. For
simplicity, we’ll make the operation addition. Here’s what the ISA model might look like:

scalarset REG undefined;
typedef WORD array 0..31 of boolean;

module main()

{
r : array REG of WORD;
srca, srcb, dst : REG;

opra, oprb, res : WORD;

opra := r[srcal;
oprb := r[srcb];
res := opra + oprb;
next (rldst]) := res;

}

We've declared a type REG to represent a register index, a type WORD to represent a data
word (in this case a 32 bit word). Notice that REG is a undefiend scalarset. That is, we don’t
say, for the moment, how many registers there are.

47

Notice, also, that we’ve given names to the operand values opra and oprb, and to the
operation result res. It wasn’t necessary to do this. That is, we could have written:

next (res[dst]) := rlsrcal + r[srcb]l;

This would have been more concise. However, it’s convenient to give the intermediate
quantities names, since we will use these later in writing refinement relations. Now let’s
implement this abstract model with a simple 3 stage pipeline, where the fisrt stage fecthes
the operands, the second stage does the addition, and the third stage stores the result into
the register file. The implementation has a reguster bypass path that forwards the results
directly from later stages of pipe to the operand fetch stage.

/* the implementation */

/* implementation register file */
ir : array REG of WORD;

/* pipe registers */

stagel : struct {
valid : boolean;
dst : REG;
opra, oprb : WORD;
}

stage2 : struct{
valid : boolean;
dst : REG;
res : WORD;

}

/* read stage : fetch operands with bypass */

next(stagel.opra) :=
caseq{
stagel.valid & srca
stage2.valid & srca
default : irl[srcal;

3

next(stagel.oprb) :=
caseq{
stagel.valid & srcb = stagel.dst : alu_output;
stage2.valid & srcb = stage2.dst : stage2.res;
default : irl[srcbl;

stagel.dst : alu_output;
stage2.dst : stage2.res;

48

I

next(stagel.dst) := dst;
init(stagel.valid) := 0;
next(stagel.valid) := 1;

/* alu stage: add operands */

alu_output : WORD;
alu_output := stagel.opra + stagel.oprb;

next(stage2.res) := alu_output;
next (stage2.dst) := stagel.dst;
init(stage2.valid) := 0;
next(stage2.valid) := stagel.valid;

/* writeback stage: store result in r */

if (stage2.valid)
next(ir[stage2.dst]) := stage2.res;

Note that each stage has a valid bit, which says whether there is an instruction in it.
Initially, these bits are zero.

Now, we would like to write two refinement maps — one which defines the correct operand
values in stagel and the other which defines the correct result at the adder output. To
do this, we add some auxiliary state information to each stage tat remembers the correct
operand and result values for the given stage, as computed by the abstract model. Let’s add
the following component to stagel :

stagel.aux : struct{
opra, oprb, res : WORD;
}

Now, let’s add some code to record the correct operand and result values for the first
stage:

next (stagel.aux.opra) := opra;
next(stagel.aux.oprb) := oprb;
next(stagel.aux.res) := res;

That is, we simply record the abstract model’s values for opra, oprb and res. Note,
this is why we gave them explicit names in the abstract model. This is all the auxiliary
information we’ll need to state our refinement relations. However, for e deeper pipeline,

49

we could just pass the auxiliary information down the pipe along with the instructions, as
follows:

next(stage2.aux) := stagel.aux;

Now, we can state the two refinement maps in terms of the auxiliary state information.
For the operands, we specify that, if stage 1 has a valid instruction, then its operands are
equal to the correct operand values:

layer lemmal: {
if (stagel.valid) stagel.opra := stagel.aux.opra;

if (stagel.valid) stagel.oprb := stagel.aux.oprb;
}

For the ALU results, we specify that, if stagel has a valid instruction, then the ALU
output is equal to the correct result value:

layer lemma?2:
if (stagel.valid) alu_output := stagel.aux.res;

We would like to show, of course, the correct operands imply correct results, and con-
versely, correct results imply correct operands. However, since we have an arbitrary number
of registers to deal with, we’ll need to break lemmal into cases as a function of which register
is being read. The only problem we have in doing this is that we don’t know which registers
were the source operands for the instruction in stage one, because our implementation does
not store this information. This problem is easily solved, however, since we can store the
information in our auxiliary state. So let’s add two components to the auxiliary state:

next(stagel.aux.srca)
next(stagel.aux.srcb)

srca;
srchb;

Of course, we have to remember to declare these components in our auxiliary structure
(their type is REG). Now, we split the operand refinement maps into cases based on which
are the actual source registers of the instruction in stage 1. For the srca operand, we have:

forall(i in REG)

subcase lemmal[i] of stagel.opra//lemmal for stagel.aux.srca = i;
Similarly, for srcb, we have:
forall(i in REG)

subcase lemmal[i] of stagel.oprb//lemmal for stagel.aux.srcb = i;

This way, we only have to consider one register at a time, so we can reduce an arbitrary
number of registers to just one, for each case. Note, we don’t need to do this for lemma?2,
the result refinement maps, since it doesn’t depend on the register file. It depends only on
the operands.

Now we're ready to prove the various cases of our lemmas. For lemmal, we say:

20

forall(i in REG)
using res//free, alu_output//lemma2 prove stagel//lemmall[i];

That is, we assume that the ALU ouput is correct, and show that (future) operands we
obtain are correct. Notice that there are several paths that an ALU result might take to get
back to the operand registers in stage 1. It might follow the bypass path, or it might get
stored in register i. Either way, it should agree with what the abstract model gets. Notice
also that the correct storage and forwarding of a result deosn’t depend on what the result
actually is. For this reason, we free the abstract model’s result res. This eliminates the
abstract model’s ALU from the cone.

To prove the result lemma (lemma2), we assume that operands entering the ALU are
correct:

using opra//free, oprb//free, stagel//lemmal
prove alu_output//lemma?2;

Note, in this case, we don’t care what the correct operands actually are — we only care that
the abstract model and the implementation agree on them (lemmal). Thus, we free opra
and oprb, and eliminate the abstract model register file from the cone. This is important,
since this register file is of unbounded size, and in this case we have no single register index
to which we can reduce the type REG.

Now, run this example. You’'ll notice that there are 32 instances to prove for each of

stagel.opral[il]//lemmal[0]
stagel.oprb[i]//lemmal [0]
alu_output[i]//lemma2

where i is a bit index within a word. This is because SMV proves the refinement maps for
each of the 32 bits of the data path separately. Later we’ll see how to reduce this rather
large number of properties. For the moment, however, select property

stagel.opral[0]//lemmal[0]

and try to verify it. You should get a counterexample. In this counterexemple, the initial
value of r[0] [0] (a bit in the abstract register file) is zero, while the initial value of ir [0]0]
(the corresponding bit in the implementation register file) is one. The problem here is that
the abstract model is underspecified. Because we have specified the initial state of the register
file, it is nondeterministic. As a result of this, the abstract model and implementation have
diverged.

When there is a nondeterministic choice in an abstract model, we sometimes have to
provide a “witness function” for this choice. That is, as a function of the implementation
behavior, we plug in a suitable value in the abstract model. In this case, since the initial
value in the specification is complete undefined, we are free to plug in any value we like. So
let’s write the following:

init(r) := ir;

ol

That is, we just set the initial value of the abstract model register file to be the same as
the initial value of the implementation register file. You might be wondering why we have to
do this. That is, why can’t SMV figure out what the correct initial value of the register file
is. The answer is that it could, for any given property. However, it might use different intial
values to prove different properties. As a result, even though we would have “verified” all
the properties, there would be no single choice that makes all the properties true. Thus, for
reasons of soundness, SMV requires you to fix the choice once and for all, and then verifies
all the properties for the particular choice you make.

In any event, let’s open the new version, with the witness function, and try again to verify
stagel.opral[0]//1lemmal[0]. You should find that the property is true. Look in the Cone
pane, and observe that it contains only 11 boolean state variables. This is bacause we are
considering only registers r[0] and ir[0], and only bit 0 of the data path. We obtain only
bit 0 of the data path since neither the abstract model ALU nor the implementation ALU
is in the cone. The former was eliminated by freeing res, while the latter was eliminated by
using lemma2 to drive the ALU output in the implementation.

Now select property alu output[0]//lemma2. The cone is rather large in this case (66
state variables) because bit 0 depends in this case on all the other bits of the data path
through the ALU. (This is because bit 0 is the most significant bit,and depeds on all the
others through the carry chain). However, notice the register files are not in the cone in this
case, because we have freed opra and oprb, and we have driven the implementation operand
registers using lemmal.

Go ahead and verify property alu output[0]//lemma2. You should find that it checks
fairy quickly in spite of the large number of state variables. This is because the ALU
operation is addition, and SMV succeeds in finding an ordering of the BDD variables that
maes the addition function compact. In fact, select Prop|Verify All to verify all the
remaining properties. On my machine, this takes a little under eight seconds.

On the other hand, if we had had a multiplier in the ALU the story would have been
different. This is because there is no BDD variable ordering that makes this function com-
pact. The verification of multipliers is beyond the scope of this tutorial. There is, however,
a way of separating the problem of airthmentic verification from the processor verification
problem. In this way, we can verify the processor design independent of the ALU function.
Then we can plug in any ALU function we like.

4.9.2 Uninterpreted functions

Suppose that instead of specifying the exact function of the ALU in our abstract model, we
simply use a symbol £ to denote this function. Suppose further that we use the same function
symbol in our implementation, and we are able to prove a refinement relation between the
two. It would then follow that the refinement holds for any concrete function we might want
to plug in place of £.

To represent such an uninterpreted function symbol in SMV, we simply introduce an
array to represent its lookup table. For example, if we have a function f that takes two WORD
arguments and produces a WORD result, we might write:

forall (a in WORD) forall (b in WORD)

52

flal[b] : WORD;

or equivalently
f : array WORD of array WORD of WORD;

The only thing we need to know about function f is that it doesn’t change over time. To
declare this in SMV, we can simply write:

next(f) := f;

Now, to evaluate function £ over two arguments a and b, we just look up the result in
the table. For example:

res := f[opral [oprb];

The trick here is that, without a data type reduction for type WORD, the lookup table
for £ will be of astronomical size. However, by case splitting, we can consider only the case
when the arguments are some fixed values, and the result of the function is some fixed value.
By doing this, we then have to consider only one element of the table for £ at a time. This
is a good thing, but it requires that WORD be a symmetric type (a scalarset or an ordset),
so that we can reduced the very large numer of cases (here 232 x 232 x 232) to a tractable
number (for example, 6).

So now let’s rewrite our example using an uninterpreted function symbol £ for the ALU
function. First, let’s redefine type WORD to be a scalarset:

scalarset WORD undefined;

We don’t have to say what the range of the type is. Instead, we’ll verify our design for
any word size. Now, in the main module, let’s define an uninterpreted function f:

f : array WORD of array WORD of WORD;
next(f) := f;

Finally, we’ll replace the ALU functions in both abstract model and implementation with
function f. In the abstract model, change

res opra + oprab;

to

res f [opral [oprb] ;

In the implementation, change

alu_output stagel.opra + stagel.oprb;

to

alu_output f[stagel.opra] [stagel.oprbl;

23

Now that we’ve modeled our problem with an uninterpreted function, we need to do a little
further case splitting, so that we only have to think about a few values of WORD at a time.

For the operand lemma, we’ll split cases on the cirrect operand value. That is, we’ll prove
that the operands we obtain are correct when the correct value is some fixe number j:

forall(i in REG) forall(j in WORD)
subcase lemmal[i] [j] of stagel.opra//lemmal
for stagel.aux.srca = i & stagel.aux.opra = j;

(and similarly for oprb). For the results lemma, we want to consider only one entry in
the lookup table for f at a time. We'll split our result refinement map (lemma2) into cases
based on the values of the two operands, and the value of function f for those two particular
values. Thus for example, we might verify that the alu_output signal is correct only in the
particular case when opra = 0 and oprb = 1 and when f[0][1] = 2. Here is a suitable
case splitting declaration:

forall (a in WORD) forall(b in WORD) forall(c in WORD)
subcase lemma2[a][b][c] of alu_output//lemma2
for stagel.aux.opra = a
& stagel.aux.oprb =D
& flal[b]l = c;

Our using. . .prove declarations are exactly the same as before, except that they have added
parameters for the additional case splits:

forall(i in REG) forall(j in WORD)
using res//free, alu_output//lemma2 prove stagel//lemmall[i][j];

forall (a in WORD) forall(b in WORD) forall(c in WORD)
using opra//free, oprb//free, stagel//lemmal
prove alu_output//lemma2[a] [b] [c];

Now, open the new version. For alu_output//lemma2[a][b] [c], there are six cases to
prove:

alu_output//lemma2[0] [0] [O]
alu_output//lemma2[1] [0] [0]
alu_output//lemma2[2] [0] [0]
alu_output//lemma2[0] [1] [0]
alu_output//lemma2[1] [1] [0]
alu_output//lemma2[2] [1] [0]

That is, SMV generates enough cases so that we see all the possible equality relationships

between a, b and c, of which there are 3 factorial. For lemma 1, we now have just one case
each for opra and oprb, since there is only one parameter of type WORD.

o4

Select property alu_output//lemma2[0] [0] [0] and look at the cone. You’ll notice that
only one element of the lookup table for £ appears in the cone: £[0] [0]. This is because 0
is the only specific valued in the reduced type WORD. (SMV automatically chose a reduction
for us, including just those values that specifically appear in the property we’re proving).
Verify this property. It’s not surprising that the verification is rather fast, since there are
only 5 state variables.

Now select property alu output//lemma2[2] [1] [0]. Notice that in this case we have
nine cases of f[a] [b] in the cone (all the combinations of a,b = 0,1,2). This is because
SMV isn’t smart enough to figure out that the only element that actually matters is £ [2] [1].
We could, if we wanted to, include a declaration to make the remaining values undefined:

forall (a in WORD) forall(b in WORD) forall(c in WORD)
using f//undefined, f[al[b] prove alu_output//lemmall[a] [b][c];

This would reduce the number of state variables quite a bit, but it isn’t really necessary.
Even with the extraneous variables, the verification is quite fast, as you may observe.

Finally, select Prop|Verify All to verify the remaining cases. We have now verified our
trivial pipeline design for an arbitrary number of registers, an arbitrary word size, and an
arbitrary ALU function.

4.9.3 What about outputs?

Up to now, we’ve proved a certain relationship between the abstract model and the implemen-
tation, but we haven’t really proved that the circuit observably implements its specification.
This is because the pipeline has no outputs. We could easily, however, give the processor
and output instruction (perhaps one that outputs the sum of two registers). In this case the
output of our pipeline would likely appear with some delay, relative to the specification. This
means we would need to write a refiement map for the pipeline output that delays the ab-
stract model output by some fixed amount. In this case, since the delay is finitely bounded,
writing such a map is straightforward (we’ll leave it as an “exercise for the reader”). If there
isn’t a known fixed bound on the output delay, we might, for example, borrow a technique
from a previous section. That is, we could attach in index to each instruction, so that we
know which instruction’s value is appearing at any given time at the output. We could then
use induction, as before, to show that the output values appear in the correct order.

In any event, in the next section, we’ll see an example of a more interesting implementa-
tion, with an output.

4.10 An out-of-order instruction processor

The above may have seemed like a great deal of effort to verify such a simple design. However,
we will find that the proof becomes only incrementally more complex when we move to a
much more complex implementation — an instruction processor using Tomasulo’s algorithm.

25

"VIRTUAL" REGISTERS

= T

"VIRTUAL OP, DST -
OPERANDS' Vo1 | Vo2

[INSTRUCTIONS > -
OP, DST

Vo1 | Vo2

EU

OP, DST EU
vo | voz

RESERVATION
STATIONS

Figure 2: Flow of instructions in Tomasulo’s algorithm

4.10.1 Tomasulo’s algorithm

Tomasulo’s algorithm allows execution of instructions in data-flow order, rather than sequen-
tial order. This can increase the throughput of the unit, by avoiding pipeline stalls. Each
pending instruction is held in a “reservation station” until the values of its operands become
available, then issued “out-of-order”.

The flow of instructions is pictured in figure 2. Each instruction, as it arrives, fetches
its operands from a special register file. Each register in this file holds either an actual
value, or a “tag” indicating the reservation station that will produce the register value
when it completes. The instruction and its operands (either values or tags) are stored in a
reservation station (RS). The RS watches the results returning from the execution pipelines,
and when a result’s tag matches one of its operands, it records the value in place of the tag.
When the station has the values of both of its operands, it may issue its instruction to an
execution pipeline. When the tagged result returns from the pipeline, the RS is cleared, and
the result value, if needed, is stored in the destination register. However, if a subsequent
instruction has modified the register tag, the result is discarded. This is because its value in
a sequential execution would be overwritten.

In addition to an ALU instruction, we include instructions that read register values to
an external output and write values from an external input. There is also a “stall” output,
indicating that an instruction cannot be received either because there is no available RSto
store it, or because the value of the register to be read to an output is not yet available.

4.10.2 The abstract model

As before, our abstract model is a simple machine that executes instructions in order as they
arrive. Additionally, in this case, it has the ability to stall. The choice of whether to stall or
not is nondeterministic.

As before, we make the register index values and data values undefined scalarsets:

scalarset WORD undefined;
scalarset REG undefined;

module main()

26

We define an uninterpreted function £ for the ALU:

f : array WORD of array WORD of WORD;

next (f)

= £

Here is the abstract model:

opin : {

ALU,RD,WR,NOP};

srca,srcb,dst : REG;

din,dout

: WORD;

r : array REG of WORD;
opra,oprb,res : WORD;

stallout

: boolean;

/* the abstract model */

layer arch:

if("st
swit

allout)
ch(opin){

ALU : {

}

RD :

¥

WR :

}
}

nothing).

opra := r[srcal;
oprb := r[srcbl;
res := flopral [oprb]l;

next(r[dst]) := res;
{

dout := rlsrcal;
{

next(r[dst]) := din;

/*
/%
/%
/%
/*
/*

opcode input */

source and dest indices input */
data input and output */

the register file */

operands and result */

stall output (nondeterministic) */

Note that we’ve put our specification inside a layer called arch, so that we can refine the
data output signal dout in the implementation. Also note that since we haven’t specified a
value for stallout it remains nondeterministic. In case of an ALU operation, our behavior
is as before: apply the ALU operation £ to the two source operands, and store the result in
the register file. In case of a RD operation, we read the srca operand from the register file
and assign it to dout, the data output. In case of a WR opration, we store the value of the
data input, din, into the destination register. (Finally, in case of a NOP operation, we do

o7

4.10.3 Implementation

In the implemenation, we have two main data structures: the register file and the array of
reservation stations. We define these as follows:

ir : array REG of
struct{
resvd : boolean;
tag : TAG;
val : WORD;
}

st : array TAG of
structq{
valid : boolean;
opra, oprb : st_opr;
dst : REG;
issued : boolean;

}

Each register has a bit resvd, which is true when it is holding a tag (we say it is “reserved”)
and false when it is holding a value. Each reservation station has a bit valid to indicate
is is holding a valid instruction, a bit issued to indicate its instruction has been issued to
an execution unit, and two operand fields, opra and oprb. The operand type is defined as
follows:

typedef st_opr struct{
valid : boolean;
tag : TAG;
val : WORD;

+

Each operand has a bit valid. When valid is true, it holds a value, otherwise it holds a
tag. The type TAG is an index into the reservation station array, and is declared as follows:

scalarset TAG undefined;
The result bus is called pout and is declared as follows:

pout : struct{
valid : boolean;
tag : TAG;
val : WORD;

}

We also need arbitrary choices for the reservation station to store a new instruction into,
and the reservation to issue to an execution unit at any given time:

o8

st_choice : TAG;
issue_choice : TAG;

Now, we begin with the implementation behavior. Initially, all the reservation stations
are empty, and all the registers are unreserved:

forall(i in TAG)

init(st[i] .valid) := 0;
forall(i in REG)
init(ir[i] .resvd) := 0;

There are three basic operations that occur on the register file and reservation stations:
e incoming instructions stored in a RS,
e instruction issue to execution unit and
e instruction completion (writeback to register file).
These three operations appear in the following default...in structure:

default

{...instruction completion logic...}
in default

{...incoming instruction logic...}
in

{...instruction issue logic...}

This is done to specify the relative priority of the three operations in case they write to
the same register at the same time. However, in principle they shouldn’t interfere with
eachother, except in one case where we need a register bypass.

Now, here is the implementation of instruction completion:

if (pout.valid){
forall(i in REG)
if(ir[i].resvd & ir[i].tag = pout.tag){

next (ir[i] .resvd) := 0;
next (ir[i] .val) := pout.val;

}

forall(i in TAG){

if ("st[i] .opra.valid & st[i].opra.tag = pout.tag){
next(st[i] .opra.valid) := 1;
next(st[i] .opra.val) := pout.val;

}

if("st[i].oprb.valid & st[i].oprb.tag = pout.tag){
next (st[i] .oprb.valid) := 1;
next(st[i] .oprb.val) := pout.val;

29

}
if(st[i].issued && pout.tag = i)
next(st[i] .valid) := 0;
}
}

The signal pout . tag tells us which instruction the returning result is for. We match it against
the tags in the register file — if any reserved register has this tag, we store the returning value
in it, and mark it unreserved. Similarly, we match the tag against any reservation stations
that are valid — if one of the operands has this tag, we store the result in it, and mark it
valid. Finally, the reservation station whose index is pout.tag has now completed, so we
mark it invalid.

Now, here’s the code for incoming instructions. Note, we have to consider a special case
where an operand of the incoming instruction is returning on the result bus at precisely this
moment. In this case, we bypass the register file and send the result dirctly to the reservation
station:

if(“stallout)

switch(opin){
ALU : {

/* store the instruction in an RS */

next (ir[dst] .resvd) := 1;
next(ir[dst].tag) := st_choice;
next(st[st_choice] .valid) :=1

2
2

next(st[st_choice] .issued) :=
/* fetch the a operand (with bypass) */

if (pout.valid & ir[srcal.resvd & pout.tag = ir[srcal.tag){

next (st[st_choice] .opra.valid) := 1;
next(st[st_choice] .opra.tag) := irl[srcal.tag;
next (st [st_choice] .opra.val) := pout.val;
} else {
next (st [st_choicel] .opra.valid) := “ir[srcal.resvd;

next(st[st_choice] .opra.tag)
next (st[st_choice] .opra.val)

ir[srcal.tag;
ir[srca] .val;

/* fetch the a operand (with bypass) */
if (pout.valid & ir[srcb].resvd & pout.tag = ir[srcb].tag){

next (st[st_choice] .oprb.valid) := 1;
next (st[st_choice] .oprb.tag) := ir[srcbl.tag;

60

next (st[st_choice] .oprb.val) := pout.val;

} else {
next (st [st_choicel] .oprb.valid) := “ir[srcb].resvd;
next (st[st_choice] .oprb.tag) := ir[srcbl.tag;
next (st [st_choice] .oprb.val) := ir[srcb].val;
}
}
RD : dout := irl[srca].val;
WR : {
next (ir[dst] .val) := din;
next (ir[dst] .resvd) := 0;
+

}

Note that when when fetching an operand from a reserved register, if the tag matches the
returning result on pout, we directly move the pout data into the operand field of the
reservation station. Otherwise, we move the contents of the register (whether a tag or a
value).

Finally, here is the code for instruction issue:

if (st [issue_choice] .valid
& st[issue_choice] .opra.valid
& stlissue_choice].oprb.valid
& “st[issue_choice].issued
& exe_rdy)
{
exe_valid := 1;
next(st[issue_choice] .issued)

I
'—\

}

else exe_valid := 0;

exe_tag
exe_opra :
exe_oprb :

}

issue_choice;
st[issue_choice] .opra.val;
st [issue_choice] .oprb.val;

If the RS chosen for issue has a valid instruction, and if both its operands are valid, and
if it is not already issued, and if an execution unit is available, we send an instruction to the
execution units, and mark the RS as issued.

There are two reasons why the above operations might result in a stall: the reservation
station chosen for an incoming instruction might be full, or the register chosen for reading
out might be reserved. Thus, here is the definition of stallout:

ASSIGN stallout :=

61

opin = ALU & st[st_choice].valid
| opin = RD & ir[srca].resvd;

Now, for the execution units, we will use a fairly abstract model. Each execution unit
computes its result, and stores it for an arbitrary length of time, before signaling that it is
ready. Here is our data structure for an execution unit:

eu : array EU of struct{
valid, ready : boolean;
res : WORD;
tag : TAG;

}

We also need two arbitrary choices for execution units to receive the issued instruction,
and to send completed results to the result bus:

issue_eu, complete_eu : EU;

Initially, let’s use only one execution unit, to simplify the proof. Later, we’ll see how to
handle multiple execution units.

scalarset EU 0..0;
Here is the rest of the code for the execution unit(s):

exe_rdy,exe_valid : boolean;
exe_tag : TAG;
exe_opra, exe_oprb : WORD;

forall(i in EU)
init(euli] .valid) := 0;

default{
if ("eulissue_eu] .valid){
next(eul[issue_eu] .valid) := exe_valid;
next (eu[issue_eu] .res) f [exe_opral [exe_oprb];

next(eulissue_eu] .tag) := exe_tag;
}
} in {
pout.valid := eulcomplete_eu].valid & eulcomplete_eu].ready;
pout.val := eulcomplete_eu] .res;

pout.tag := eulcomplete_eu].tag;
if (pout.valid)
next (eulcomplete_eu] .valid) := 0;

62

Initially, all the execution units are invalid. If the unit chosen for issue is not valid, we mark
it valid, and store in it the result of applying the function £ to the two operands. We also
store the tag of the issuing instruction.

If the unit chosen for completion is valid and ready, we pass its result on to the result
bus (pout) and mark it invalid. Note that ready is a completely nondeterministic bit here,
modeling an unknown delay in the execution unit. Also note that in practice, we would
define some policy for choosing a unit to issue to and a unit to complete (presumably we do
not want to choose to issue to an already valid unit, for example). This would likely involve
introducing a priority encoder or round-robin policy, which would break the symmetry of
the EU type. Symmetry breaking is a topic for another section, however.

The last part of the implementation is the witness function for the initial state of the
abstract model register file:

layer arch:
forall(i in REG)
init(r[i]) := ir[i].val;

4.10.4 Refinement maps

As before, now that we have an abstract model and an implementation, we will write re-
finement maps that relate the two, and then break these into cases that are small enough
problems to verify with model checking. Surprisingly, the refinement maps that we will use
are almost identical to the ones we used for the simple pipeline. That is, we have one lemma
that states that operands obtained by the reservation stations are correct, and one that
states that results returning from the execution units are correct.

Also as before, to write these specifications, we will add some auxiliary state to the
implementation, to remember what the correct values of the operands and results are. Each
reservation station will have an auxiliary structure containing values for opra, oprb and res.
In addition, we’ll include the source register indices srca and srcb (recall that last time we
used these values for case splitting):

aux : array TAG of struct {
opra, oprb, res : WORD;
srca, srcb : REG;

}

Now, when we store an instruction in a reservation station, we want to record the correct
values from the abstract model into the auxiliary structure:

if ("stallout & opin = ALU){

next (aux[st_choice] .opra) := opra;
next (aux[st_choice] .oprb) := oprb;
next (aux[st_choice] .res) := res;

next (aux[st_choice] .srca) := srca;
next (aux[st_choice] .srcb) := srcb;

63

Now that we’ve recorded the correct values, we can specify our refinement maps. For the
operands (lemmal) we state that if a given RS holds a valid operand, its value must match
the correct value. For the “a” operand, we have:

forall(k in TAG)
layer lemmal
if (st[k] .valid & st[k].opra.valid)
st[k] .opra.val := aux[k].opra;

The “b” operand is similar. Now, for the result lemma (lemma2) we state that, if a result
is returning on the result bus, tagged for a given reservation station, then its value is the
correct result for that reservation station:

forall (i in TAG)
layer lemma2[i]
if (pout.tag = i & pout.valid)
pout.val := aux[i].res;

4.10.5 Case splitting

Now, let’s split our lemmas into cases, so that we only have to think about one possible path
for data to follow from one refinement map to the other. We begin with the operand lemma.

Consider a result returning on the result bus. That result is the result value of a given
reservation station i. It then (possibly) gets stored in a register j. Finally it gets read as
an operand for reservation station k. This suggests a case split which will reduce the size of
the verification problem to just two reservation stations and one register. For each operand
arriving at reservation station k, we split cases based on the reservation station i that it
came from (this is the “tag” of the operand) and the register j that it passed through (this
is the source operand index, srca or srcb, that we store in the auxiliary state for just this
purpose). We also want to split cases on the correct data value, since WORD is an undefined
scalarset type. Thus, here is the case splitting declaration for the “a” operand:

forall (i in TAG) forall (j in REG) forall (k in TAG) forall(c in WORD)
subcase lemmal[i][j][c]
of st[k].opra.val//lemmal
for st[k].opra.tag = i & aux[k].srca = j & aux[k].opra = c;

That is, we consider only the case where the tag (i.e. the producing reservationstation)
is i, and source register is j and the correct value is c. The “b” operand is similar.

For the result lemma (lemma2), we consider a pair of operands that start in some reser-
vation station i and pass through execution unit j. Since i is a parameter of the lemma
already, we are left with just j to split cases on (this is the value of the signal complete_eu).
However, we now also have three data values to split cases on: the two operands a and b,
and the result, ¢ = f[al[b]. As before, this will reduce the data type WORD and the table
f down to a tractable size. Thus, here is our case splitting declaration for lemma?2:

64

forall(i in TAG) forall(j in EU)
forall(a in WORD) forall(b in WORD) forall(c in WORD)
subcase lemma2[i] [j][a] [b] [c]
of pout.val//lemma2[i]
for aux[i].opra = a & aux[i].oprb = b & flallb] = ¢
& complete_eu = j;

Finally, we have one last thing to prove, which is that the data output is correct according
to the architrectural model (layer arch). This is quite similar to the operand lemma. That
is, every data output value was produced as a result by some instruction and then stored in
the source register for the RD instruction. Therefore, when proving that data output values
are correct, we will split cases on the producing reservation station (this is obtained from the
tag of the source register) and the source register index. In addition, as before, we consider
only the case where the correct value is some arbitary constant c:

forall (i in TAG) forall (j in REG) forall (k in TAG) forall(c in WORD)
subcase arch[i] [j] [c]
of dout//arch
for srca = j & ir[jl.tag = 1 & r[j] = c;

4.10.6 The proof

Now we procede to define the abstractions used to prove the cases of the two lemmas. As
before, when proving lemmal we use lemma2 and wice versa. Also as before, we free the
results in the abstract model when verifying operands, and free the operands when verifying
the results.

Here is the proof for the operand lemma lemmal and the data output (both of these
assume lemma2):

forall (i in TAG) forall (j in REG) forall (k in TAG) forall(c in WORD)
using res//free, pout//free, pout.val//lemma2[i]
prove st[kl//lemmal[i]l[j1[c]l, dout//arch[il[jl[c];

Notice the we also freed the signals in the pout bus (other than the value itself, which is
given by lemma2), so that none of the execution unit logic appears in the cone.

For the results lemma (lemma2), we take a similar tack: we use lemma2 for the operands,
and otherwise free them in order to eliminate the operand fetch logic from the cone:

forall(i in TAG) forall(j in EU)
forall(a in WORD) forall(b in WORD) forall(c in WORD)
using opra//free, oprb//free, stl[il//lemmal, f//undefined, f[a]l[b]
prove lemma2[i] [j][a][b][c];

Notice we’ve set all the elements of the lookup table for £ to undefined except for £ [a] [b]
since this is the only element of the table that matters to our particular case.

Now, open the file. For st[k].opra.val//lemmal[i][j] [c], the “a” operand correct-
ness lemma, you’ll notice we have two cases to prove:

65

st [0] .opra.val//lemmal [0] [0] [0]
st[1] .opra.val//lemmal [0] [0] [0]

This is because both i (the producer RS) and k (the consumer RS) are both of type
TAG. Thus SMV must verify one case where i = k and one case where i # k. All the other
cases are equivalent to one of these by permuting values of type TAG. Now, select property
st[1] .opra.val//lemma1[0] [0] [0] (this is the more interesting of the two cases, since it
involves two reservation stations). Now, look in the Cone pane. You should observe that
all of the state variables of type TAG (such as st[1].opra.tag) require two bits to encode
them. This is because the type TAG has been reduced to three values: 0, 1, and an abstract
value representing all the other tags. On the other hand, register indices (such as srca)
have been reduced to just two values, and hence are represented by a single boolean value.
These reductions were made by default, because we didn’t specify data type reductions for
the undefined scalarsets.

Notice also that we have freed signals in such a way as to cut off any connection to
the exectution units in the abstract model and the implementation. Thus, for example, the
function £ does not appear in the cone. Finally, as a result of the data type reductions, we
have only register zero and RS’s zero and one in the Cone. Accesses to any other elements
of these arrays will yield the undefined value. The result of all these reductions is that the
cone contains only 25 state bits. Try verifying the property. Because of the smal number of
state bits, it verifies on my machine in a little under one second.

Now let’s consider the results lemma (lemma2). This appears as a collection of cases of
the form:

pout.val//lemma2[i] [j] [a] [b] [c]

which states that results for RS i on the result bus pout are correct, in the case where
execution unit j is returning a result, the “a” operand is a, the “b” operand is b and the
flal [b] (the correct result) is c. Since a, b and c are all of te same type, we have 3! = 6
cases to prove:

pout.val//lemma2[0] [0] [0] [0] [0]
pout.val//lemma2[0] [0] [0] [1] [0]
pout.val//lemma2[0] [0] [1] [0] [0]
pout.val//lemma2[0] [0] [1] [1] [0]
pout.val//lemma2[0] [0] [2] [0] [0]
pout.val//lemma2[0] [0] [2] [1] [0]

This is enough to represent all the possible equality relatiopnships between a, b, and c. The
most difficult case should be the last one, since it hase three different values of type WORD.
In fact, if you select this property and look in the cone pane, you should observe that the
values of type WORD are reprsented by two boolean variables (enough to encode the values 0,
l,and 2, plus an abstract value). In addition, because the index data types are reduced to
only those values occurring in the property, we have only one reservation station in the cone.
If we access any RS’s other than zero, we’ll get an undefined value. However, this should
not affect the truth of our property, since it only tests returning results that derive from

66

resrevation station zero. The other results will, of course, be incorrect in the reduced model,
but our property ignores them. You can validate this argument by selecting “Prop—Verify
pout.val//lemma2[0][0][2][1][0]”. The property verifies quite quickly, because there are only
18 state variables in the cone (it takes less than half a second on my machine).

Now choose “Prop—Verify All” to verify the remaining cases. It should take on the order
of five seconds to do this. We have verified an out-of-order execution unit with an arbitrary
number of registers and reservation stations, an arbitrary size data word and an arbitrary
function. The basic strategy we used to do this was the same as for the simpler pipelined
unit:

1. Refinement maps and auxiliary state. We broke the problem into two parts, by
writing refinement maps that specify the correct values for the operands and results
obtained in the implementation. To do this, the correct values are obtained from the
abstract model, and stored in auxiliary state.

2. Path splitting. We broke the large data structures (the register file and RS array)
down into just a few components by splitting cases on the path taken by a data item
from one refinement map to another.

3. Symmetry. The large number of cases produced by the above two steps are reduced
to a small finite number by considerations of symmetry.

4. Data type reductions. After case splitting, we can reduce the large (or infinite)
types, such as data words, to small finite types by grouping all the irrelevant values into
a single abstract value. A special case of this is the uninterpreted function abstraction,
in which we use a large table to represent and arbitrary function, but then split cases
in such a way that we use only one element of the table for each case, after the data
type reduction.

As a result of this strategy, the problem has been reduced to 11 rather small finite-state
lemmas.
4.10.7 Abstract counterexamples

Veriifcation runs that succeed are not generally very interesting. To convince yourself that
the above proof strategy actually works, you might wat to try introducing a bug into the
implementation to see what happens. For example, let’s remove the bypass logic from the
operand fetch to see what happens. Replace the following code:

/* fetch the a operand (with bypass) */

if (pout.valid & ir[srcal.resvd & pout.tag = ir[srcal.tag){

next(st[st_choicel] .opra.valid) := 1;
next (st[st_choicel] .opra.tag) := ir[srcal.tag;
next (st [st_choice] .opra.val) := pout.val;
} else {
next (st[st_choice] .opra.valid) := “ir[srca].resvd;

67

next(st[st_choice] .opra.tag)
next (st[st_choice] .opra.val)

}

ir[srcal.tag;
ir[srca] .val;

with this:

/* fetch the a operand (without bypass) */

next (st[st_choicel] .opra.valid) := “ir[srca].resvd;
next(st[st_choice] .opra.tag) ir[srcal .tag;
next (st [st_choice] .opra.val) ir[srcal .val;

Now, open the modified version and select “Prop—Verify All”. You should get a counterex-
ample for property

st[1].opra.val//lemmal[0] [0] [0]

This is what happens inthe counterexample. At step 1, an instruction with destination
register 0, and result 0 is loaded into RS 0. At step 2 this is issued to an exectution unit,
and at step 3, the result returns on the result bus (pout.val is true). At the same time, a new
instruction with “a” source register 0 is store in RS 1. However, because we have removed
the bypass path, this instruction doesn’t notice that its operand is currently returnin on the
result bus. Thus, it gets a tag 0 instead of a value for its “a” operand. Now, in step 4, a
new instruction is loaded into RS 0, again with destination 0, but this time with some value
other than zero as its result. Notice the the value of res (the abstract model result) at step 4
is NaN. In the reduced model, this represents any value other than zero. Then in step 5, this
result returns on the result bus, with tag 0, and thus gets fowarded to RS 1, which is waiting
for tag 0. Unfortunately, RS 1 is expecting a value of zero (see aux[0] . opra, since it is really
waiting for the result of an earlier instruction with tag 0. Thus our property is violated at
step 6: the expected operand was zero, but the actual obtained operand (st [1] .opra.val) is
non-zero (represented by NaN). Even though the counterexample is abstract (i.e., it contains
the abstract value NaN), it represents a class of real counterexamples (where, for example,
the value 1 is obtained instead of 0).

In fact, the counterexample is abstract in another way. Notice that at step 5, a result
returns on the the result bus pout.valid is true, even though the reservation station (st [0])
is not yet in the issued state. This is because the result bus is being driven by the refinement
map lemma2 rather than by the real execution unit. Our refinement map didn’t specify that
a result would not return from an execution unit before it was issued. Interestingly, our
design for the reservation stations and register file is sufficiently robust that a result arriving
early in this way does not cause us to obtain correct operands output incorrect values. Thus,
we are able to verify the implementation with rather “loose” refinement maps. This is a case
of a more general phenomenon: the more robust the individual components of a design are,
the simpler are the refinement maps.

68

4.10.8 Multiple execution units

Note finally, that we have only verified our implementation of Tomasulo’s algorithm for one
execution. We could easily enough verify our design for some small finite number of units as
well. However, with multiple execution units, we can’t abstract away all the execution units
except the one we’re interest in. This is because one of these abstracted units might return
an incorrect tag, which would reset the state of our reservation station prematurely. You
can see observe this phenomen by changing the declaration of the type EU to the following:

scalarset EU 0..7;

Thus, we now have 8 execution units. If you open this modified version, and try verifying
all the properties, you should obtain a counterexample for lemma2, in which reservation
station 0 issues an instruction to execution unit zero, but then some other execution unit
(which is abstracted by SMV’s default heuristics) returns an undefined value as its tag,
causing the state of reservation station 0 to be corrupted.

We can fix this problem by forcing SMV not to abstract the control information in the
other execution units (though the data can still be left abstract, since we don’t care abut
it). To see this, change the proof declarion for lemma2 to the following:

forall(i in TAG) forall(j in EU) forall(k in EU)
forall(a in WORD) forall(b in WORD) forall(c in WORD)
using opra//free, oprb//free, stl[il//lemmal, f//undefined, f[a]l[b],
eulk] .tag, eulk].ready, eulk].valid
prove pout//lemma2[i] [j][a][b] [c];

The only change here is that we have said, for all execution units k, to include the
implementation definitions of tag, ready and valid. The overrides the daufult behavior,
which is to abstract these to undefined. Now, open this modified version, and try verifying
all the properties. This should succeed, but take about a minute, instead of the five seconds
required for the one-EU version. The reason is that we have greatly increased the number
of state variables. If you select property pout//lemma2[0] [0] [2] [1] [0], you’ll notice that
the control bits of all the execution units are present in the cone, and as a result, the number
of state bits is increased to 32.

As we have observed, the problem with eight execution units is still within the realm that
can be solved with BDD’s. However, if we want to verify the design for an arbitrary number
of execution units, we’ll need to deal with the problem of interference, the subject of the
next section.

4.10.9 Proving non-interference

Our problem in verifying Tomasulo’s algorithm with an arbitrary number of execution units is
that we are forced consider only one execution unit at a time, in order to obtain a finite-state
verification problem. Thus, we consider the correctness only of the results of one particular
execution unit. When we perform this verification, the other execution units are abstracted
to an undefined value Thus, although we are not concerned with the correctness of the data

69

values they produce, they may still upset the control state in the given reservation station
by returning spurious tags.

To rule out this possibility, we add a non-interference lemma. This states that while a
reservation station is expecting a result from a given execution unit, no other unit returns a
result for that particular RS. In general, such a lemma is needed whenever the state of one
system component might be corrupted by a spurious message from other components that
have been abstracted away.

In order to state the condition that a given reservation station does not receive an unex-
pected result, we first have to add some auxiliary state information to tell us which execution
unit the reservation station is actually expecting a result from. To do this, we add an addi-
tional field to the auxiliary state array:

forall (i in TAG)
aux[i] .eu : TAG;

Now, each time that a given reservation station issues an instruction to an execution unit,
we record the index of that execution unit in the auxiliary state:

if (exe_valid)next (aux[issue_choice].eu) := issue_eu;
We can now state the non-interference lemma as follows:
lemma3 : assert G (pout.valid -> (complete_eu = aux[pout.tagl.eu));

That is, lemma3 states that, at all times, if a result is returning on the pout bus, with a
given tag pout.tag, then the unit returning the result (complete_eu) must be the unit that
the indicated reservation station is waiting for (aux [pout.tag] .eu).

Now, lets see if we can prove lemma3. The first thing we’ll have to do is to break the
lemma into cases, so we only have to consider one reservation station and one execution unit.
So let’s add the following case splitting declaration:

forall(i in TAG) forall(j in EU)
subcase lemma3[i] [j] of lemma3 for pout.tag = i & complete_eu = j;

That is, we only consider the case where the returning result is for reservation station i and
the execution unit returning the result is j. With the above additions, open the file, and
select property lemma3[0] [0]. If you look in the cone pane, you should see that SMV has
automatically perfomed data type reductions, reducing TAG to just {0,NaN} and EU to
0,NaN. As a result, there are only 9 state variables (notice also that no data variables appear
in the cone, because lemma3 is a control property, and does depend on any data variables.
However, if you try to verify the property, you'll find that it’s false. The counterexample
shows a case where reservation station 0 is waiting for a result from execution unit 0, but
instead, at state 3, a result returns from some other execution unit (that is complete_eu
= NaN. In other words, in trying to prove non-interference, we’ve run into an interference
problem. You might think that we are cought in an infintie regression here. However, in fact
all is not lost. This is because when proving a particular case of lemma3 at time ¢, SMV will

70

allow us to assume the full lemma holds up to time ¢t — 1. In other words, we only have to
prove that execution unit 0 is not the em first execution unit to interfere. If this is true for
all execution units, we can then safely infer that no execution unit interferes. To tell SMV
to assume the full lemma up to time ¢ — 1, add the following declaration:

forall(i in TAG) forall(j in EU)
using (lemma3) prove lemma3[i] [j];

The parentheses around lemma3 tell SMV to make the weaker assumption that lemma3 only
holds up to t — 1. If we leave them out, SMV will complain that the proof is circular. With
this addition, open the file, and try to prove lemma3[0] [0]. This time it should be true.

Now that we’ve proved that other executions can’t interfere, let’s return to the proof of
lemma2 (correctness of returning results). We want to prove that a result coming back on
the result bus is correct, assuming that no previous interference has occured. To do this,
add (lemma3) to the assumptions used to prove lemma2. You should get a declaration like
the following:

forall(i in TAG) forall(j in EU)
forall(a in WORD) forall(b in WORD) forall(c in WORD)
using opra//free, oprb//free, st[i]//lemmal,
f//undefined, flal[b], (lemma3)
prove pout//lemma2[i] [j][al[b][c];

Notice that we only assume the non-interference lemma up to time ¢ — 1 when proving
lemma2 up to time t. In fact, SMV won’t allow us to use lemma3 up to time ¢. This is
because lemma?2 is a refinement map. Thus, we might well choose to use it use it when proving
lemma3, which would result in a circularity. Fortunately, the weaker assumption is sufficient
to prove the lemma. To confirm this, open the new version, and choose “Prop—Verify all”.

With the addition of a non-interference lemma, we have now proved that our implemen-
tation of Tomasulo’s algorithm works for any word size, any ALU function, any number of
registers, any number of reservation stations, and any number of execution units.

4.11 Adding a reorder buffer

Now, let’s modifiy the design to use a “reorder buffer”. This means that instead of writing
results to the register file when they are produced by an execution unit, we store them in a
buffer, and write them back to the register file in program order. This is usually done so that
the processor can be returned to a consistent state after an “exceptional” condition occurs,
such as an arithmetic overflow. The simplest way to do this in the present implementation
is to store the result in an extra field res of the reservation station, and then modify the
allocation algorithm so that reservation stations are allocated and freed in round-robin order.
The result of an instruction is written to the register file when its reservation station is freed.
To effect this change, add the following fields to the reservation stat structure st:

completed : boolean;
res : WORD;

71

Also add a variable complete_st to indicate which reservation station should be deallocated:
complete_st : TAG;

Now, change the instruction completion logic, so that, when a result appears on the the bus
pout, instead of storing it in the register file, we store it in the res field of the reservation
station and set the completed bit. If the reservation station indicated by complete_st has
its completed bit set, we store its result from the res field into the register file. Thus, we
replace the instruction completeion logic with the following:

default {
/* result writeback logic */

if (st [complete_st].valid & st[complete_st].completed){
forall(i in REG)
if(ir[i].resvd & ir[i].tag = complete_st){

next (ir[i] .resvd) := 0;
next (ir[i] .val) := st[complete_st].res;
+
next (st [complete_st].valid) := 0;

}
} in default {
/* instruction completion logic */

if (pout.valid){
forall(i in TAG){

if ("st[i] .opra.valid & st[i].opra.tag = pout.tag){
next(st[i] .opra.valid) := 1;
next(st[i] .opra.val) := pout.val;

}

if("st[i].oprb.valid & st[i].oprb.tag = pout.tag){
next (st[i] .oprb.valid) := 1;
next(st[i] .oprb.val) := pout.val;

}

if (st[i].issued && pout.tag = i){
next (st[i] .completed) := 1;
next(st[i] .res) := pout.val;

}

}
}
}in ...

Finally, we have to make sure that a result sitting in the res field of a completed instruction,
but not yet written back to the register file, gets forwarded to any new instructions that might
need it. Thus, for example, we change the operand fetch logic for the opra operand to the
following:

72

/* fetch the a operand (with bypass) */

if (pout.valid & ir[srcal.resvd & pout.tag = ir[srcal.tag){

next (st [st_choicel] .opra.valid) := 1;
next (st[st_choice] .opra.tag) := ir[srcal.tag;
next (st[st_choice] .opra.val) := pout.val;
} else if(ir[srcal .resvd & st[ir[srcal.tag].completed){
next (st[st_choice] .opra.valid) := 1;
next (st[st_choicel] .opra.tag) := ir[srcal.tag;
next (st[st_choice] .opra.val) := stlir[srcal.tagl.res;
} else {
next (st[st_choicel] .opra.valid) := “ir[srca].resvd;
next(st[st_choice] .opra.tag) := irl[srcal.tag;
next (st [st_choice] .opra.val) := ir[srcal.val;

}

Here, we have inserted a clause so that, if register srca is holding a tag, pointing to a
completed reservation station, then we forward the res field of that reservation station as
opra operand. Change the oprb logic correspondingly.

Finally, we introduce logic for choosing the reservation station to allocate (st_choice)
and free (complete_st), so that reservation stations are used in round-robin order:

#define NUM_RS 32

breaking (TAG) {
init(st_choice) := 0;
init(complete_st) := 0;

if (“"stallout & opin = ALU)

next(st_choice) := st_choice + 1 mod NUM_RS;
if (st [complete_st].valid & st[complete_st].completed)
next (complete_st) := complete_st + 1 mod NUM_RS;

Note, we chose here, arbitrarily, to use reservations stations numbered from 0 to 31 in the
round-robin. Also note that since this logic breaks the symmetry of the type TAG, we have
to put it in a breaking clause. If a new instruction is stored in a reservation station, we
increment st_choice modulo 32. Similarly, if a reservation station is freed (i.e., the station
chosen to be freed is marked completed), then we increment complete_st module 32. This
is done so that results of instructions are written to the register file in the same order that
the instructions are received.

Now, open the new version and choose “Prop—Verify all”. You should find that all of
the properties are still true. That is, after this design change, the processor can be verified
without modifying one line of the proof! This is because our three lemmas (for operands,
results and noninterference) are not affected by the design change. Now, select an instance
of lemmal, and look in the cone pane. You will notice that the signals st_choice and
complete_st are free. This is because the assignments to these signals break the symmetry
of type TAG, and thus cannot be used to verify this property, as we are using a symmetry

73

reduction on type TAG. Thus, we have in fact verified the correctness of our design’s data
output independent of the definition of these signals, and have not used in any way the fact
that these signals obey a round-robin policy. This should not be too surprising, as in the
previous version of the design, no particular ordering was used. If we were to introduce some
form of “exception”, however, that interrupts the instruction stream, we would presumably
need to use the round-robin policy to show that a consistent state is obtained after an
exception.

Nonetheless, the fact that our proof was unaffected by the design change illustrates an
important general point about compositional proofs. That is, our proof has the virtue that it
only specifies the values of three key signals: the source operands in the reservation stations
(lemmal), the value on the result bus (lemma2) and the tag on the result bus (lemma3).
Since the function of these signals was not changed in adding the reorder buffer, our proof
remained valid. In general, when designing a proof decomposition, it is best to do it in such
a way that as few signals as possible are referenced. In this way, the proof will be less likely
to be invalidated by localized design changes.

4.12 Proving liveness

Up to now, we've proved that our implementation of Tomasulo’s algorithm is a refinement
of an abstract model (in this case a sequential implementation of the same instruction set).
However, we should note that a circuit that simply asserted the stall signal at every time
unit would also satisfy this specification. Thus, we have shown that every behavior of the
implementation is correct, in the sense that no bad outputs are produced, but we haven’t
shown that the circuit necessarily does any actual work. To do this, we also need to prove
a liweness property.

The most obvious specification for liveness of the implementation is that it always even-
tually does not stall. We will begin, however, by proving something stronger: that every
instruction eventually completes. Notice that this is a sufficient but not necessary condition
for liveness. That is, if an instruction’s result is never used as the source operand of a later
instruction, then that instruction’s failure to terminate would not cause any future stalls
of the machine. However, we would also like to make sure that no reservation station is
permanently lost as a resource, even if its result is never needed. Thus, we will prove that
whenever a reservation station is full, it eventually becomes empty.

The proof of liveness follows the same basic lines as the refinement proof. That is, we
break the liveness problem into two lemmas: one for operands, and one for results. The first
lemma states that the operands of any given valid reservation station are always eventually
valid. The second lemma states that a result for a given valid reservation station always
eventually returns. As before, we construct a circular compositional proof, using operand
liveness to prove result liveness, and wvice versa. We will also use the same path splitting
approach and data type reductions as in the refinement proof.

The main difference from the refinement proof is that we will need to fill in more detail
about the resource allocation policies in order for the implemention liveness to be guaranteed.
Up to now, we have left a number of choices completely nondeterministic, for example, the
choice of which reservation station issue to an execution unit. However, in order to ensure
that every instruction eventually executes, we will require that this choice be made in a fair

74

way. Also, we will have to gauranteee that execution units always eventually finish. On the
other hand, liveness does not depend in this case on data values, thus we will find that the
data path logic does not enter into the proof.

4.13 Liveness lemmas

To begin with, let’s take our implementation from the previous section and add two liveness
lemmas. The first states (in temporal logic) that if a given reservation station holds a valid
instruction, then its operands (opra or oprb) are eventually valid. Here is the lemma for
opra:

forall (i in TAG)
livela[i] : assert G (st[i].valid -> F st[i].opra.valid);

In other words, at all times, if rs[i] is valid, then eventually the opra operand of rs[i] is
valid. Write a similar lemma for the oprb operand.
Now, for the result liveness, lemma, we have:

forall (i in TAG)
live2[i] : assert G (st[i].valid -> F ~st[i].valid);

That is, if rs[i] has a vaild instruction, then eventually the instruction completes, resulting
in rs[i] being invalid. Note, we could have stated that eventually the result bus has a valid
result with tag pout.tag = i. The two are equivalent, since the reservation station goes to
the invalid state if and only if a corresponding result returns on the bus.

4.14 Path splitting

Now we consider the problem of proving the operand liveness lemma. As in the refinement
proof, we observe that every operand consumed by a given reservation station i was produced
by some reservation station jand stored in some source register k. If we split cases on the
producer reservation station and the source register, we can show that the operand eventually
arrives in any one case, using just two reservation stations and one register in the proof. Thus,
add the following case splitting declaration for the opra operand:

forall(i in TAG) forall(j in TAG) forall(k in REG)
subcase livelalil[j][k] of livelalil
for st[il.opra.tag = j & aux[i].srca = k;

Recall that st[i].opra.tag is the producer reservation station for the opra operand of
reservation station i, and aux[i].srca is the source register of the opra operand, which
we previously recorded in an auxiliary variable. Thus, the subcase 1ivela[i] [j] [k] states
that (at all times), if reservation station rs[i] is holding an instruction, whose opra operand
is to be produced by rs[jl], and stored in source register ir[k], then eventually the opra
operand will become valid.

Note that in the refinement proof, we also had to split cases on the data value. This
is unnecessary in the livenes proof, however, since liveness does not depend on data. Note,

75

also that we will have to assume that the producer reservation station eventually produces
a valid result. However, this is allowed by the circular compositional rule, as we will see in
the next section.

Now, for the results liveness lemma, we would like to prove that if a reservation station
holds an instruction, it will eventually terminate. As before, we would like to split cases on
the execution unit that produces the result, so that we can deal with an arbitrary number of
execution units. This presents a slight problem, however, since at the time the reservation
station becomes valid, the execution unit has not yet been chosen. In order to split cases,
we therefore need to refer to a future value of a variable, in particular, the value of the
execution unit choice at the time the instruction is issued. Fortunately, we can do this using
a temporal logic operator.

The temporal logic formula p when q is true at a given time if p holds at the first occasion
when q holds (and is taken to be true if q never holds). It is simply an abbreviation for (q
U (g & p)). SMV recognizes that at any given time, for any given variable v,

(v = i) when q

must be true for some value of i in the range of v. This allows us to split cases on a future
value of a variable instead of the current. In this case, we can split the results lemma into
cases based on the the future choice of execution unit in the following way:

forall(i in TAG) forall(j in EU)
subcase live2[i] [j] of live2[i]
for (aux[i].eu = j) when st[i].issued;

That is, we split cases on the value of the variable aux[i] .eu (the auxiliary variable that
records execution unit choice) when the instruction is issued.

4.15 The circular compositional proof

Now, in order to prove that an operand eventually arrives at a consumer reservation station,
we have to assume that the producer reservation station eventually yields a result. Similarly,
to prove the result of a reservation station is eventually produced, we must assume that its
operands eventually arrive.

While this argument is circular on its face, we can eliminate the circularity by introducing
a time delay. Thus, to prove that operands are live at time ¢, we assume that results are live
up to time ¢t — 1. This is sufficient, since if the consumer reservation station is valid at time
t, the producer reservation must have been valid at some time ¢ — 1 or earlier (that is, the
producer instruction must have arrived at an eariler time than the consumer instruction).
In essence, we show that an operand of an instruction must eventually arrive assuming that
all instructions arriving at earlier times eventually terminate.

To implement this argument, use the following declarations:

forall (i in TAG) forall(j in TAG) forall(k in REG)
using pout//free, (live2[j]) prove livelal[i]l[j][k], livelb[il[jI] [k];

forall (i in TAG) forall(j in EU)
using opra//free, oprb//free, livelalil, livelb[i], prove live2[il[j];

76

That is, we assume that the producer reservation station j is live up to ¢ — 1 when proving
the operands eventually arrive at the consumer. The time delay is indicated by putting the
assumption 1ive2[j] in parentheses. Then we can assume that operands are live up to time
t when proving results are live up to £. SMV will detect the cirularity, but notice that it is
broken by the time delay.

Note that, as in the refinement proof, we free the result bus when verifying the operands
and free the operands when verifying the results. This breaks the system into two separate
parts for verification.

4.16 Fairness

Now, open the new version. You should see several new properties in the properties pane:
instances of livela, livelb and live2. Select, for example, 1ivela[1] [0] [0]. This says
that operands are always eventually forwarded from producer 0, via source register 0, to
consumer 1. It should verify correctly.

On the other hand, try to verify 1ive2[0] [0], which states that results for reservation
station 0 always eventually arrive when using execution unit 0. For this property you should
get a counterexample, where the reservation station is loaded with an instruction, obtains
both its operands, and then waits forever to be issued to an execution unit. Note that
many reasons are possible for this. For example, we have not specified issue_choice, which
indicates the reservation station chosen for issue to an execution unit. Thus it is possible
that reservation 0 is never chosen (a failure of fairness of the arbiter). Or, it is possible that
reservation station 0 is chosen, but never at a moment that there is an available execution
unit. Or, it is possible that issue_eu, which chooses an execution unit never choses an
available, or that there is never an available unit because no execution unit ever terminates.
Or, because we are using an abstraction where all execution units except for eul[0] are
abstracted away (because of the default data type reduction), it is possible that issue_eu
always choose a unit other than zero, and this unit, being abstracted away, always claims to
be busy (in fact, this is the counterexample that I got).

For the moment, let’s rule out all these possibilities by simply assuming that an instruc-
tion does not remain unissued forever with its operands ready. Later, when we actually
implement a policy for issue_choice and issue_eu, we’ll discharge this assumption. Here
is one way to state this assumption:

forall (i in TAG) {
issue_fair[i] : assert G F (st_ready[i] -> st_issuelil]);
assume issue_fair[i];

}

That is, it is not possible that a reservation station remains ready and not issued. We define
these terms as follows:

forall(i in TAG) {
st_ready[i], st_issue[i] : boolean;
st_ready[i] := st[i].valid & st[i].opra.valid & st[i].oprb.valid & “st[i].issued;
st_issue[i] := issue_choice = i & exe_rdy;

7

}

Now, add issue_fair[i] to the assumptions used to prove live2[i] [j]. With this addi-
tion, try again to verify 1ive2[0] [0]. You should get another counterexample, this time
where an instruction does get issued to execution unit 0, but the execution unit never
completes. To correct this problem, let’s add the assumption that execution units always
eventually complete:

forall(i in EU){
eu_fair[i] : assert G (euli].valid -> F “euli].valid);
assume eu_fair[i];

}

That is, we assume that if an execution unit becomes valid (contains an instruction), it even-
tually becomes invalid (completes). We’ll have to discharge this assumption later when we
fill in the details of the execution units and the completion arbitration. Add the assumption
eu fair[j] to those used to prove live2[i][j]. Now, try again to verify live2[0] [0].
You should find the property true. Now try “Prop—Verify all”. All the properties should
be true, although the system will warn that there are unproved assumptions (the properties
issue_fair and eu_fair).

4.17 Implementing the issue arbiter

Now we come to the problem of implementing an issue arbiter that guarantees the property
issue_fair. That is, we want to choose issue_choice in such a way that every ready
instruction is eventually issued. One way to do this is by using a rotating priority scheme. In
this scheme, one requester (reservation station) is assigned highest priority. If this requester
is rejected (i.e., requests but is not acknowledged), it retains the highest priority. Otherwise,
priority rotates to the next requester. In this way, we can guarantee that, if a resource
(execution unit) always eventually becomes available, then all requesters will eventually be
served (or withdraw their request). Here is an implementation of the issue arbiter (we leave
the choice nondeterministic in the case where the high priority requester is not requesting):

issue_prio : TAG;

if (st_ready[issue_prio])
issue_choice := issue_prio;
else issue_choice := {i : i in TAG};

breaking (TAG)
if (" (st_readylissue_priol & “exe_rdy))
next (issue_prio) := issue_prio + 1 mod TAGS;

Note that by incrementing issue_prio, we break the symmetry of the type TAG. This means
we have to enclose the assignment within a breaking (TAG) declaration, so disable type check-
ing of type TAG. Further, we now have to explicitly declare the number TAGS of reservation
stations. So let’s change the declaration of type TAG to the following:

78

scalarset TAG O..(TAGS-1);

Define TAGS to be some reasonable value (say 32). Similarly, set some reasonable number
of execution units (say 4). Now, we need also to define a policy for choosing an available
execution unit for issue. The simplest way to do this is to specify a nondeterministic choice
among all the available (non-valid) execution units:

issue_eu := {i 7?7 “euli].valid : i in EU};
Now, remove the statement
assume issue_fair[il;
and add instead:

breaking (TAG) breaking(EU) forall(i in TAG)
using
st_ready//free, exe_rdy//free, eu//free
prove issue_fair[il];

Note, the breaking statements are used so that we can use assignments in the proof that
break they symmetry of these types. Note also that we free the input signals of the arbiter;
the arbiter should satisfy the fairness property for all possible inputs.

5 Synchronous Verilog

Those familiar with the Verilog modeling language may find it easier to write models for
SMV in Synchronous Verilog (SV). This language is syntactically only a slight variation of
the Verilog language. However its semantics is not based on an event queue model, as in
Verilog. Rather, SV is a synchronous language, in the same family as Esterel, Lustre, and
SMV. Because SV provides a functional description of a design rather than an operational
description of how to simulate it, SV is better suited than Verilog to such applications as
hardware synthesis, cycle-based (functional) simulation and model checking. Nonetheless,
the meaning of most SV programs should be readily apparent to one familiar with modeling
in Verilog.

5.1 Basic concepts
5.1.1 Synchrony

SV is a synchronous language. This means that all statements in SV (except the wait
statement) execute in exactly zero time. For example, consider the following simple program:

module main();

wire x,y,z;

79

always
begin
X =Yy,
end

always
begin
y =2
end

endmodule

In SV, the two always blocks execute exactly simultaneously, in zero time. As a result, the
assignments x = y and y = z can be viewed as simultaneous equations. Therefore, it is true
at all times that x = z. Because values on wires propagate in exactly zero time, there is no
need for a notion of a triggering “event”. That is, we need not (and may not) write

always 0(y)
begin
X =y,
end

In SV, any change in y is always reflected instantaneously in x.
As in other synchronous languages, the instantaneous propagation of signals can lead to
“paradoxes”. For example, if we write

wire Xx,y;

always
begin
X =Yy,
end

always
begin
y = !x;
end

then we have two simultaneous equations with no solution. On the other hand, in this case:

wire Xx,y;

always
begin
X =Yy,
end

80

always
begin
y = X%
end

we have simultaneous equations with two solutions: x = 0, y = 0andx = 1, y = 1. Ina
hardware implementation, these cases would correspond to combinational cycles in the logic.
There are a number of ways of dealing with such cycles. However, we will leave the behavior
in such cases undefined. The SMV system simply disallows combinational cycles.

5.1.2 Wires and registers

There are two distinct classes of signals in SV: wires and signals. These differ in two respects.
First, a wire has no memory. It does not maintain its previous state in the case it is not
assigned. Rather, the value of an unassigned wire is undefined. A register on the other
hand will maintain its previous state when unassigned. Second, a value assigned to a wire
propagates in exactly zero time. On the other hand, a register entails exactly one unit of
delay: a value assigned to a register becomes visible exactly one time unit later.

For example, suppose we have:

wire x;
reg y;

always
begin
X =Y;
end

always
begin
y =2
end

The net result of this code is that the value of x lags the value of z by exactly one time
unit. Note that although the result of an assignment to a register becomes visible one time
unit later, the assignment statement itself executes in zero time. For example, consider the
following block of code:

wire x,z;
reg y;

always
begin

81

The effect of this code is that at all times x = z, whereas the register y lags x and z by one
time unit. That is, within the always block, all statements except wait statements appear
to execute in zero time. Thus, the assignment y = z executes in zero time, setting the value
of y and then this value is assigned to x, again in zero time. However, an observer outside
the always block sees the value of y with one time unit of delay. Another example:

reg [31:0] y;

initial y = O;

always
begin
y=y+1
y=y+1
end
In this case, the observed sequence of values of y is 0,2,4,6,.... That is, the always block

executes both assignment statements in exactly zero time, in effect adding 2 to y. This effect
is seen outside the block one time unit later.

5.1.3 Wait statements

The only statement that takes time in SV is the wait statement. A statement of the form
wait (cond)

causes a delay until the condition cond is true, but always delays at least one time unit.
Thus, wait (1) always waits exactly one time unit. For example,

wire x;
always
begin
x = 0;
wait(1);
x = 1;
end

results in the observed sequence of values 0,1,0,1,...for x. Note that a new iteration of an
always block begins exactly one time unit after the previous iteration terminates.

5.1.4 Loops

A loop of the form

while(cond)
block

82

executes block as long as the condition cond is true. If cond is false, it falls through to the
next statement in exactly zero time. The last statement of block must be a wait statement.
As an example,

reg [1:0] x;
initial x = 0;

always
begin
while(x < 3)
begin
x =x + 1;
wait (1) ;
end

results in the sequence 0,1,2,3,0,1,... for x.
A for loop, on the other hand, must have static upper and lower bounds, and is unrolled
at compile time. Thus, for example,
for(i =0; 1< 4; 1i=1+1)
block(i)

is exactly equivalent to

block(0);
block(1);
block(2);
block(3);

The block in this case need not contain a wait statement.

5.1.5 Conditionals

The conditional statement of the form

if (cond)
blockl

else
block?2

executes blockl if cond is true, and block?2 if cond is false. The evaluation of the condition
takes exactly zero time.

83

5.1.6 Resolution

In a case where more than one value is assigned to a signal at exactly the same time, then
the following resolution rule applies:

e [f all assigned values are equal, then the signal is assigned the common value.
e If any assigned values are unequal, then the signal is assigned X (the undefined value).
This rule can be used, for example, to model a tristate bus. For example:

always
begin
if (enablel) bus
end

datal;

always
begin
if (enable2) bus
end

data2;

In this case, when only one of the two enable signals is true, then the bus is equal to the
corresponding data signal. If both enables are true and the data values are the same, then
bus = datal = data2. Else bus = X.

5.1.7 Embedded assertions

An assertion of the form
assert label: cond;

will evaluate cond whenever it executes (in zero time). If cond is ever false, the property
named label is reported to be false. These assertions can be verified formally by SMV.

5.2 Example — traffic light controller

This example is a controller that operates the traffic lights at an intersection where two-way
street running north and south intersects a one-way street running east. The goal is to design
the controller so that collisions are avoided, and no traffic waits at a red light forever.

The controller has three traffic sensor inputs, N_Sense, S_Sense and E_Sense, indicating
when a car is present at the intersection traveling in the north, south and east directions
respectively. There are three outputs, N_Go, S_Go and E_Go, indicating that a green light
should be given to traffic in each of the three directions.

module main(N_SENSE,S_SENSE,E_SENSE,N_GO,S_GO,E_GO) ;

input N_SENSE, S_SENSE, E_SENSE;
output N_GO, S_GO, E_GO;

84

wire N_SENSE, S_SENSE, E_SENSE;
reg N_GO, S_GO, E_GO;

In addition, there are five internal registers. The register NS_Lock is set when traffic is
enabled in the north or south directions, and prevents east-going traffic from being enabled.
Similarly EW_LOCK is set when traffic is enabled in the east direction, and prevents north or
south—going traffic from being enabled. The three bits N_Req, S_Req, E_Req are used to latch
the traffic sensor inputs.

reg NS_LOCK, EW_LOCK, N_REQ, S_REQ, E_REQ;
The registers are initialized as follows:
initial begin
N_REQ = O0; S_REQ = 0; E_REQ = 0;
N_GO = 0; S_GO = 0; E_GO = O;
NS_LOCK = 0; EW_LOCK = 0;
end

0

Always, if any of the sense bits are true, we set the corresponding request bit:

always begin if ('N_REQ & N_SENSE) N_REQ = 1; end
always begin if (!S_REQ & S_SENSE) S_REQ = 1; end
always begin if (!E_REQ & E_SENSE) E_REQ = 1; end

The code to operate the north-going light is then as follows:

always begin

if (N_REQ)
begin
wait (!EW_LOCK);
NS_LOCK = 1;
N_GO = 1;

wait (!N_SENSE);
if (!'S_GO) NS_LOCK = 0;
N_GO = 0;
N_REQ = 0;
end
end

That is, when a north request is detected, we wait for the EW lock to be cleared, then
set the NS lock, and switch on the north light. Note, these last two assignments occur
simultaneously, since they execute in zero time. Then we wait for the north sensor to be off,
indicating there is no more traffic in the north direction. We then clear the NS lock, but
only if the south light is currently off. Otherwise, we might cause a collision of south and
east traffic. Finally, we switch off the north light and clear the north request flag. Note, the
last two actions occur simultaneously with switching off the lock, so there is no danger of
having the lock off but the light on.
The code for the south light is similar.

85

always begin
if (S_REQ)
begin
wait (!EW_LOCK) ;
NS_LOCK = 1; S_GO = 1;
wait (!S_SENSE);
if (!N_GO) NS_LOCK = 0;
S_GO = 0; S_REQ = 0;
end
end

Finally, here is the code for the east light:

always begin

if (E_REQ)
begin
EW_LOCK = 1;
wait (!NS_LOCK);
E_GO = 1;

wait (!E_SENSE);
EW_LOCK = 0; E_GO = 0; E_REQ = O0;
end
end

This differs slightly from the north and south cases. When an east request is detected, we
set the EW lock, and then wait for the NS lock to be cleared, turn on the light, wait for the
traffic sensor to clear, and finally, clear lock, light and request.

There are two kinds of specification we would like to make about the traffic light con-
troller. The first is called “mutex”, and states that lights in cross directions are never on at
the same time:

always begin
assert mutex: !(E_GO & (S_GO | N_G0));
end

This assert statement executes at every time unit, and fails if the east light is on at the same
time as either the north or the south lights.

Second, we have “liveness” specifications. For each direction, we specify that if the traffic
sensor is on for a given direction, then the corresponding light is eventually on, thus no traffic
waits forever at a red light:

always begin
if (E_SENSE) assert E_live: eventually E_GO;
if (S_SENSE) assert S_live: eventually S_GO;
if (N_SENSE) assert N_live: eventually N_GO;
end

86

Notice that since assert statements execute in zero time, each of these statements executes
once every time unit. Further, this shows the use if the “eventually” operator in an assertion.
This is equivalent to the temporal logic operator F. For example, if at any time the assertion
E_live executes, then E_.GO must eventually be true.

Our traffic light controller is designed so that it depends on drivers not waiting forever
at a green light. We want to verify the above properties given that this assumption holds.
To do this, we write some “fairness constraints”, as follows:

always begin
assert E_fair: eventually !(E_GO & E_SENSE);
assert S_fair: eventually !(S_GO & S_SENSE);
assert N_fair: eventually !(N_GO & N_SENSE);
end

Each of these assertions states that, always eventually, it is not the case that a car is at a
green light. To tell SMV to assume these “fairness” properties when proving the “liveness”
properties, we say:

using N_fair, S_fair, E_fair prove N_live, S_live, E_live;
assume E_fair, S_fair, N_fair;

endmodule

In effect, we are telling SMV to ignore any execution traces where one of these assumptions
is false. The fairness constraints themselves will simply be left unproved. Now, open this
file and try to verify the property mutex. The result should be “false”, and in the “ITrace”
panel, you should see a counterexample trace in which the north light goes off exactly at the
time when the south light goes on. In this case, the north light controller is trying to set the
NS lock bit at exactly the same time that the south light is trying to clear it. The result of
this is undefined, hence SMV attempts to verify both cases. It reports the case where the
NS lock bit is cleared, which allows the east light to go on, violating the mutex property.
To fix this problem, let’s insure that this situation doesn’t arise by making the south light
wait to go on if the north light is currently going off. Change the code for the north light
controller to the following (and make the corresponding change in the south light controller):

always begin

if (N_REQ)
begin
wait (!EW_LOCK & !'(S_GO & !S_SENSE));
NS_LOCK = 1;
N_GO = 1;

wait (!N_SENSE);
if (!'S_GO) NS_LOCK = 0;
N_GO = 0;
N_REQ = 0;
end
end

87

Open this new version and verify the property mutex. It should be true. Now try to verify
N_live. It should come up false, with a counterexample showing a case where both the north
and south lights are going off at exactly the same time. In this case neither the north code
nor the south code clears the lock, because each thinks that the other light is still on. As a
result, the lock remains on, which prevents an east request from being served. This leaves
the EW lock set forever, hence the controller is deadlocked, and remains in the same state
indefinitely (note the “repeat signs” on the last state).

To fix this problem, we’ll have the north controller switch off the lock when the south light
is either off, or going off (and make the corresponding change to the south light controller).
Here is the new code for the north controller:

always begin
if (N_REQ)
begin
wait (!'EW_LOCK & !'(S_GO & !S_SENSE));
NS_LOCK = 1; N_GO = 1;
wait (!N_SENSE) ;
if (!S_GO | !S_SENSE) NS_LOCK = 0;
N_GO = 0; N_REQ = 0;
end
end

Open this new version and verify the properties mutex, N_1ive, S 1ive and E_live. They
should all be true. Note that if you try to verify the fairness constraints N_fair, S_fair
and E_fair, they will come up false. These are unprovable assumptions that we made in
designing the controller. However, if we used the controller module in a larger circuit, we
could (and should) verify that the environment we put the controller into actually satisfies
these properties. In general, it’s best to avoid unproved assumptions if possible, since if any
of these assumptions is actually false, all the properties we “proved” are invalid.

5.3 Example — buffer allocation controller

This example is designed to control the allocation and freeing of buffers in, for example,
a packet router. It will demonstrate how to embed assertions within Synchronous Verilog
control constructs, such as if and while in order to specify temporal properties, without
using temporal logic.

The controller keeps an array of “busy” bits, one for each available data buffer. The busy
bit is true when the buffer is in use, and false otherwise. An input alloc indicates a request
to allocate a new buffer for use. If there is a buffer available, the controller outputs the index
of this buffer on a signal alloc_addr. If there is no buffer available, it asserts an output
nack. To make the circuit a little more interesting, we’ll add a counter that keeps track of
the number of busy bits that are set. Thus nack is asserted when the count is equal to the
total number of buffers. To begin with, we’ll define the number of buffers to be 16, using a
macro definition. We also need to define the log of this number, to indicate the number of
bits in the buffer addresses.

88

‘define SIZE 16
‘define LOG_SIZE 4
module main(alloc,nack,alloc_addr,free,free_addr);
input alloc;
output nack;
output [(‘LOG_SIZE-1):0] alloc_addr;
input free;
input [(‘LOG_SIZE-1):0] free_addr;

reg busy[0: (‘SIZE - 1)1;
reg count[‘LOG_SIZE:0];

initial begin
busy = 0;
count = 0;
end

Here is the logic for the counter and the nack signal. Notice, we add one to the counter when
there is an allocation request and nack is not asserted. We subtract one from the counter
when there is a free request, and the buffer being freed is actually busy. Note, if we didn’t
check to see that the freed buffer is actually busy, the counter could get out of sync with the
busy bits.

always begin

nack = alloc & (count == ‘SIZE);

count = count + (alloc & “nack) - (free & busy[free_addr]);
end

Next we handle the setting and clearing of the busy bits:

always begin

if (free) busyl[free_addr] = 0;

if (alloc & “nack) busyl[alloc_addr] = 1;
end

Note, that if a buffer is both freed and allocated at the same time, the net result is that its
busy bit is set. Finally, we choose a buffer to allocate using a priority encoder. Our priority
encoder is implemented as follows:

always begin
for(i = (‘SIZE - 1); i >=0; i
if (“busyl[il) alloc_addr = i;
end

=i-1)

Note, the entire for loop executes in zero time. Also, in the case when all buffers are busy,

alloc_addr is not assigned, and thus remains undefined (since it is a wire, not a register).
Now, we consider the problem of specifying the buffer allocator. We will write a separate

specification for each buffer, stating that the given buffer is never allocated twice without

89

being freed in the interim. This is a technique known as “decomposition”, that is, breaking
a complex specification of a system into smaller parts that can be verified separately. To
make it simpler to state the specification, it helps to define some additional signals: a bit
allocd[i] to indicate that buffer i is currently being allocated, and a bit freed[i] to
indicate that buffer i is currently being freed:

wire [0:(‘SIZE - 1)] allocd, freed;
for(i = 0; i < ‘SIZE; i = i +1)

always
begin
allocd[i] = alloc & “nack & alloc_addr == i;
freed[i] = free & free_addr == i;
end

Note, we used a for constructor to make an instance of these definitions for each buffer i.
To write the specification that a buffer is not allocated twice, we simply write a block of
code that waits for the given buffer to be asserted, then while it is not freed, asserts that it
must not be allocated again. At the end, when the buffer is freed, we also assert that it is
not simultaneously allocated again. Note that we have given both these assertions the same
label safe[i]. Thus, a failure in either case will cause a failure of safe[i].

for(i = 0; i < ‘SIZE; i =1 + 1)
always begin
if (allocd[i]) begin
wait (1) ;
while("freed[i]) begin
assert safel[i]: ~allocdl[il];
wait (1) ;
end
assert safelil]: ~allocd[il;
end
end

Now, let’s verify this specification. Open the file and verify the property safety[0]. It
should be true. You might want to modify the code so that the counter is decremented
whenever free is asserted (whether or not the busy bit is set for the freed buffer). If you
try to verify this version you will find that in fact the property safety[0] false, and get a
counterexample showing a case where the counter gets out of sync.

90

