
—DRAFT MATERIAL—

January 26, 2009

Lecture Notes for CSCI C241/H241

Induction, Recursion and Programming∗

Steven D. Johnson
Computer Science Department

Indiana University School of Informatics

Notice: This is draft material for use in the course C241,
Discrete Structures for Computer Science. Enrolled students
are permitted to print copies for use during this course. They
should discard their copies on completion of the course. Past
students may contact the author for a current revision. Further
distribution in any form is not permitted without permission of
the author. Contact: sjohnson@cs.indiana.edu.

∗Induction, Recursion, and Programming is a Working title. Some content
derives from the book Induction, Recursion, and Programming by Mitchell
Wand (North-Holland, 1976). All rights to original content are reserved.

New content c© 2008 Steven D. Johnson

Contents

1 Sets 3
1.1 Set Operations . 6
1.2 Words and Languages . 10
1.3 A Simple Algorithmic Language 14

2 Propositional Logic and Boolean Algebra 19
2.1 Propositions and Truth Tables 19

2.1.1 Implication* . 19
2.2 Truth Tables . 22
2.3 Boolean Algebra . 25

2.3.1 Duality . 27
2.4 Normal Forms . 28
2.5 Application of Boolean Algebra to Hardware Synthesis* 30

3 Counting 37
3.1 Cardinality . 37
3.2 Permutations and Combinations 38

4 Induction 47
4.1 Numerical Induction . 47
4.2 More Examples of Induction . 55

5 Countability and Order 63
5.1 Cardinality and Countability . 63
5.2 Order Notation and Order Arithmetic 67
5.3 Complexity . 70

5.3.1 The Halting Problem . 70
5.3.2 Infeasible Problems. 72
5.3.3 Orders of Infinity. 72

5.4 Additional Problems . 73

6 Relations 77
6.1 Functions . 78

6.1.1 Infix Notation . 84

i

ii CONTENTS

6.2 Relations on a Single Set . 87
6.2.1 Attaching Information to Graphs 90

6.3 Trees . 92
6.4 DAGs . 98
6.5 Equivalence Relations . 99
6.6 Partial Orders* . 102
6.7 Decision Diagrams* . 105

7 Induction II 111
7.1 Introduction . 111

7.1.1 The Problem of Self Reference 113
7.2 Inductively Defined Sets . 114
7.3 The Principle of Structural Induction. 117
7.4 Validity of the Induction Principle* 120
7.5 Defining Functions with Recursion 127
7.6 Evaluation of Recursive Functions 129
7.7 Reasoning about Recursive Functions 132

8 Languages and Meanings 139
8.1 Language Definitions . 139
8.2 Defining How Languages are Interpreted 141
8.3 Specifying Precedence . 144
8.4 Environments . 146
8.5 Backus-Naur Form . 149
8.6 Propositional Formulas . 150
8.7 Substitution . 153
8.8 The Programming Language of Statements 157
8.9 *Discussions . 162

8.9.1 Parenthesized Expressions 162

9 Formal Logic 165
9.1 Propositional Logic . 165
9.2 Formal Proofs . 170

9.2.1 Deducability and Validity 172
9.2.2 A More Useful Propositional Calculus 174

9.3 First-order Predicates . 177
9.4 Predicate Calculus . 180

10 Proving Programs 183
10.1 The Language of Statements . 183

10.1.1 Operational Interpretation of Statements 184
10.1.2 Axiomatic Interpretation of Statements 185
10.1.3 Reasoning Rules for Statements 185
10.1.4 The Compound Rule . 187
10.1.5 The Conditional Rule . 187
10.1.6 The Repetition Rule . 188

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

CONTENTS 1

10.1.7 The Relaxation Rule . 188
10.2 Using the Rules . 188

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2 CONTENTS

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 1

Sets

The concepts of set and set membership are fundamental. A set is determined
by its elements (or members) and to say that x is an element of the set S, we
write:

x ∈ S

To say that y is not a member of S we write:

y 6∈ S

Simple sets are specified by listing all of their elements between braces. A set
A of five numbers is specified:

A = {1, 2, 3, 4, 5}

A set B of three colors is specified:

B = {red, blue, green}

Example

Ex 1.1 List the set S of whole numbers between 1 and 15 which are evenly
divisible by either 2 or 3.
Solution: We might begin by listing the numbers divisible by 2: {2, 4, 6, 8, 10, 12, 14, . . .
and then the numbers divisible by 3: . . . , 3, 6, 9, 12, 15}. So the set we are looking
for could be written

S = {2, 4, 6, 8, 10, 12, 14, 3, 6, 9, 12, 15}

This listing contains duplications and the numbers are listed in a strange order.
Neither of these problems makes the description incorrect, but it is less confusing
to list each element just once. A better description for S is

{2, 3, 4, 6, 8, 9, 10, 12, 14, 15}

3

4 CHAPTER 1. SETS

One way to abbreviate a long list of elements is to use ellipses to indicate
a large, possibly infinite, range of values. For example, the set of lower-case
letters ranging from ‘a’ to ‘z’ could be expressed as follows:

{‘a’, ‘b’, . . . , ‘z’}

The set of numbers ranging from 1 to 10,000 could be specified:

{1, 2, 3, . . . , 10000}

The following definition uses ellipses to describe some infinite sets that are used
throughout this book.

Definition 1.1

(a) The set of whole numbers is W = {1, 2, 3, . . .}.

(b) The set of natural numbers is N = {0, 1, 2, 3, . . .}

(c) The set of integers is Z = {. . . ,−2,−1, 0, 1, 2, 3, . . .}

Ellipses are useful when it is natural to list a set’s elements in some consecutive
order, but care is needed in their use. Consider the set specification:

B = {2, 4, . . . , 64}

It is not completely obvious from this set definition whether the elements of B
are:

• the even numbers from 2 to 64:

B
?= { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34,

36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 },

• or the powers-of-2 from 2 to 64:

B
?= {2, 4, 8, 16, 32, 64},

• or something else.

The rule-of-thumb is to take the simplest sequence that clearly describes the
set exactly, but “simplest” can be a matter of judgment involving assumptions
about the knowledge of the Reader. One way to avoid confusion is to include a
formula representing a typical element of the list; for example:

B = {2, . . . , 2i, . . . , 64}

This description says that the elements of B have the form 2i; they are even
numbers. Although even this definition relies on the reader to understand that
i refers to a whole number, the specification is better determined.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

5

A more general way to specify the elements of a set is to write down a
property that is satisfied exactly by the elements of the set. The notation for
doing this is called set builder notation:

{x ∈ U | P [x]}

U is the universe or domain from which prospective elements x originate, and
P [x] stands for some property that the members must satisfy. The property
P must “make sense” with respect to U ; that is, is, P [u] must be either true
or false for every element of U . The set specified contains all of the elements
for which P [x] is true. Mention of U may be omitted if either the surrounding
context or P make clear what U is.

For example, the second version of B above might be specified

B = {x ∈W | x = 2i for i ∈W such that 1 ≤ i ≤ 6}

The property P in this case is

P [x] ≡ “x = 2i for some i ∈W such that 1 ≤ i ≤ 6”

Even though P [x] contains two variables, x and i, it is nevertheless a statement
about x only; the statement itself quantifies i by saying that i ∈ {1, 2, 3, 4, 5, 6}.

Remark: You may have noticed that property P is defined using ‘[’, ‘]’ and
‘≡’, rather than ‘(’, ‘)’ and ‘=’. There is no difference in meaning,
but throughout this book the F [x] ≡ “—” notation is used for the
purpose of defining syntax , or how to formulate something.

End Remark

In this instance, the set-builder description is not much of an an improvement
over simply listing the elements, although if i ranged from 1 to 100 it would be.
We can do a little better by writing a formula in place of the simple variable x:

B = {2i | i ∈W and 1 ≤ i ≤ 6}

we have omitted the declaration “2i ∈ W” because it is clear from the context
of the example that B is a set of whole numbers.

Example

Ex 1.2 Specify the infinite set E of nonnegative even numbers using ellipses
and then again using set-builder notation

Solution: Using ellipses, one could write E = {0, 2, 4, 6, . . .}
It would be clearer to include a representative element E = {0, 2, . . . , 2i, . . .}.

Using set-builder notation, we would write {2n | n ∈ N}.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6 CHAPTER 1. SETS

Here are some other sets used in this book.

Definition 1.2

(a) The set of integers modulo n is Zn = {0, 1, . . . , n− 1}.

(b) The set of rational numbers, Q, consists of all fractions:

Q = { n
m | n ∈ N and m ∈W}

(c) The real numbers.

Remark: Despite the fact that most of our mathematical education has dealt
with real numbers, it is hard to find a concise property P

R
charac-

terizing the real numbers, R = {r | P
R

[r]}. End Remark

1.1 Set Operations

There is that set which contains no elements. One way to express this set is to
place nothing between braces: {}. We also use the symbol ∅ for this set.

Definition 1.3 The empty set, denoted by ∅, has no elements: ∅ = {}.

A common mistake is writing “{∅}” for the empty set. However, {∅} is not
the “really empty” set but rather a set with a single element, namely, ∅. In
set-builder notation, ∅ = {x | false(x)}, where false represents a property that
nothing satisfies.

Sets are compared by asking what elements they have in common.

Definition 1.4 Let A and B be two sets.

(a) A equals B, written A = B, if A and B contain exactly the same elements.

(b) A contains B, written B ⊆ A, if every element of B is also an element
of A. A is said to properly contain B when B ⊆ A and B 6= A. This is
sometimes written as B (A.

(c) A and B are disjoint when they have no elements in common, that is,
A ∩B = ∅.

To prove that two sets, A and B are equal, one often shows that each contains
the other. The following proposition follows immediately from Definition 1.4.

Fact 1.1 A = B iff A ⊆ B and B ⊆ A.

There are numerous ways to build new sets from sets which are given. The
most common of these have names and special symbols associated with them as
defined below.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

1.1. SET OPERATIONS 7

Definition 1.5 Let A and B be two sets.

(a) The intersection of A and B, written A ∩B, is the collection of elements
that A and B have in common. That is,

A ∩B = {x | x ∈ A and x ∈ B}

(b) The union of A and B, written A∪B, is the collection of all those elements
in either set or both. That is,

A ∪B = {x | x ∈ A or x ∈ B}

(c) The (set) difference of A and B, written A \ B is the collection of those
elements of A which are not in B. That is,

A \B = {x | x ∈ A and x 6∈ B}

(d) The power set of A written P (A), is the collection of A’s subsets. That
is,

P (A) = {S | S ⊆ A}

(e) The product of A and B, written A × B is the collection of all ordered
pairs whose first elements come from A and whose second elements come
from B. That is,

A×B = {(a, b) | a ∈ A and b ∈ B}

Example

Ex 1.3 Let A be the set {1, 5}; and let B be the set {1, 2, 3}. Describe the sets
A ∩B, A ∪B, A \B, P (A), A×B, B ×A, and A× N.

Solution: The sets are

A ∩B = {1}

A ∪B = {1, 2, 3, 5}

A \B = {5}

P (A) = {∅, {1}, {5}, {1, 5}}

A×B = {(1, 1), (1, 2), (1, 3), (5, 1), (5, 2), (5, 3)}

B ×A = {(1, 1), (1, 5), (2, 1), (2, 5), (3, 1), (3, 5)}

A× N = {(1, n) | n ∈ N} ∪ {(5, n) | n ∈ N}

= {(1, 0), (5, 0), (1, 1), (5, 1), . . . (1, i), (5, i), . . .}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8 CHAPTER 1. SETS

In listing the elements of A ∪ B, each distinct element is written just once.
Consult Definition 1.4 to verify that each element of P (A) is, in fact, a subset
of A.

Ordered pairs (1, 3) and (3, 1) are unequal, for while they contain the same
numbers, these numbers are in a different order. Thus, A × B and B × A are
distinct sets because, for instance, (1, 3) ∈ A× B but (1, 3) 6∈ B × A. However
A×B and B ×A are not disjoint; they share the element (1, 1).

Example

Ex 1.4 Let A = {a, b}; let B = {0, 1}; and let C = {1, 3}. Compare the sets
(A×B)× C and A× (B × C)

Solution: First,

A×B = {(a, 0), (a, 1), (b, 0), (b, 1)}

Now, the set (A×B)×C is a set of ordered pairs, each of which has an ordered
pair in its first position:

(A×B)× C = {((a, 0), 1), ((a, 1), 1), ((b, 0), 1), ((b, 1), 1),
((a, 0), 3), ((a, 1), 3), ((b, 0), 3), ((b, 1), 3) }

Elements of the set A × (B × C) have the same “information content” but a
different structure:

A× (B × C) = {(a, (0, 1)), (a, (1, 1)), (b, (0, 1)), (b, (1, 1)),
(a, (0, 3)), (a, (1, 3)), (b, (0, 3)), (b, (1, 3)) }

Each of the ordered pairs in A × (B × C) has its first element coming from A
and its second element coming from B × C.
As Example 1.4 illustrates, compound set products may introduce structure
that is not wanted. The next definition extends the notion of “product” to an
arbitrary number of sets, as well as other variations of the “set-×” operation.

Definition 1.6 The product of n sets, A1, A2, . . ., An, is

A1 ×A2 · · · ×An = {(a1, a2, . . . , an) | ai ∈ Ai, 1 ≤ i ≤ n}

The elements of A1 × A2 × A3 are called ordered n-tuples. The n-fold product
An is

An =

n times︷ ︸︸ ︷
A× · · · ×A

By convention, A0 is the empty set.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

1.1. SET OPERATIONS 9

Exercises 1.1

1. List the following sets:

(a) {2i | i ∈ N and 0 ≤ i ≤ 8}

(b) {i2 | i ∈ N and 0 ≤ i ≤ 8}

(c) {2k + 1 | k ∈ N}

(d) {m | 23 < m < 29 and m is a prime number}

2. Let A = {a, b}; let B = {1, 2, 3}; let C = ∅; and let D = {a, b, c, d}. List
the following sets:

(a) A ∪B (f) A ∪ C
(b) A ∩B (g) A ∩D
(c) A×B (h) A3

(d) P (A) (i) P (∅)
(e) B × ∅ (j) (D ∩A)×B

3. Let A = {a, b}; let B = {1, 2, 3}; and let E = A × B. List the following
sets:

(a) {(x, y, y) | (x, y) ∈ E}

(b) {(x, x) | x ∈ E}

(c) {(y, z) | (x, y) ∈ E and z ∈ B}

4. In this book, the set S = {1, 2, 2, 3, 3} denotes a three-element set in which
2 and 3 have both been listed twice. So we understand that this another
way to describe the set {1, 2, 3}. Some other books interpret {1, 2, 2, 3, 3}
as a five element mulitset allowing multiple occurances of equal elements.
Write a version of Definition 1.5 for multisets.

5. Define a set Pn representing the prime divisors of a number n.

Comment: A simple set of numbers does not work because the convention
is to allow listing redundant elements. So if one were to define P72 to be
{2, 2, 2, 3, 3}, the specified set is actually just {2, 3}.

The question is asking you to devise a way, using just sets and set opera-
tions, to “represent” a number’s prime decomposition. Unless you know
more about how you are going to use this representation, there is no best
way to do it. Nevertheless, you should take “elegance,” (economy of ex-
pression, utility of notation) into consideration.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

10 CHAPTER 1. SETS

1.2 Words and Languages

Any set can be used as an alphabet of symbols, from which we can build the
words, phrases, and sentences of a . For example, if one thinks of how to express
decimal numbers in a typical programming language, the alphabet includes
decimal digits, a plus-sign, a minus-sign, a decimal point, and an exponentiation
symbol for scientific notation. From the alphabet:

A = {0 , 1 , . . . , 9 , + , - , . , e}

a vocabulary of numerals can be specified to express numbers. You can think
of a numeral as the “name” of a number. Some examples of numerals accepted
by most programming languages are shown below:

1126 -65385 1.20 0.314159

1.06e12 -3.5e-2 0 0.0

If we think of numerals as corresponding to words in a natural language,
then we might think of numeric terms as phrases. Some examples of terms are

12 * 3.0 5 * 6 mod 4 12.0 + -3.5

2 + 3 * 6 3 / 4.0 / 1.3e-22 log(0.0)

Now, the alphabet for forming terms might consist of

all the letters used to make numerals plus * , / , m , o , d , + , l , g
, (,) , and so on.

Or, we could use numerals as basic symbols, so that the alphabet contains all
possible numerals, together with the new symbols * , / , (,) , mod , + , log ,
and so on.
We might even want numbers themselves to serve as symbols, so that the al-
phabet becomes

R, together with the new symbols * , / , (,) , mod , + , log , and
so on.

Thus, the concept of “alphabet” is general enough to include any collection
of elementary symbols, and our notion of “symbol” may include not only textual
objects but also other kinds of objects as well.

In this book, teletype font is reserved for concrete syntax , literal textual
symbols. A set of such symbols designating colors might be

Colors = {red , orange , yellow , green , blue , violet}

This is an alphabet of names identifying colors, not the colors themselves.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

1.2. WORDS AND LANGUAGES 11

A set of punctuation symbols used in a programming language is

Punctuation = {(,) , . , , , ;}

The following definitions provide us the basic mathematical notions used in
talking about words.

Definition 1.7 Let V be any set. The set of words over V , denoted by V +,
consists of all finite sequences of symbols from V . V is called the alphabet for
V +.

Example
Ex 1.5 Let V = {a , b , c} and list V +.

Solution: The set of words over V is

V + = { a, b , c ,
aa, ab , ac , ba , bb , bc , ca , cb , cc ,
aaa, aab , aac , aba , abb , abc , aca , acb , acc ,
baa, bab , bac , bba , bbb , bbc , bca , bcb , bcc ,
caa, cab , cac , cba , cbb , cbc , cca , ccb , ccc ,
aaaa, aaab , aaac , aaba , . . . , cccc ,
...

This listing shows all the one-letter words in the first line, all the two-letter
words in the second line, and so forth. Within each line, the words listed
systematically, in “alphabetic” order.

Example
Ex 1.6 Let W = {5, 17}. List W+.

Solution: In the description below, an explicit concatenation mark is used to
set individual symbols apart.

W+ = {5, 17, 5̂ 5, 5̂ 17, 17̂ 5, 17̂ 17, 5̂ 5̂ 5, 5̂ 5̂ 17, 5̂ 17̂ 5, 5̂ 17̂ 17,
. . .}

For instance the word 17̂ 5̂ 5 is composed of the three symbols 17, 5, and 5 from
W .

The concatenation symbol is omitted—unless to do so causes confusion—
just as the multiplication symbol is omitted in arithmetic formulas. It should
be clear that the concatenation of two words is a word.

Definition 1.8 The concatenation of words u and v, is the word formed by
juxtaposing u and v, that is, first spelling u and then spelling v; This new word
is denoted by u v̂, or where possible, simply by uv. We write un for

n times︷ ︸︸ ︷
uˆuˆ· · ·ˆu

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

12 CHAPTER 1. SETS

Example

Ex 1.7 Let V = {a , b , c} and consider V +, as defined in Example 1.5. Let
u = aab , v = cc , and w = abc .

ccâ abb = ccaabb
â bbbbˆa = abbbba

(aˆc)u = acaab
vbv = ccbcc
uvw = aabccabc
uuu = u3 = aabaabaab

If u, v, and w are words, then

u (̂vˆw) = (u v̂)̂ w

In other words, when three or more words are concatenated, it does not matter
whether the concatenation is done from left to right or from right to left (or in
any other way) so long as the order is preserved.

It is sometimes useful to include a “word” containing no letters. The follow-
ing definition provides a symbol for this word.

Definition 1.9 The empty word, over any alphabet, is denoted by ε. Given
alphabet V , for any word w ∈ V +,

ε̂ w = w and w ε̂ = w

The language V ∗ includes all words in V + together with ε,

V ∗ = V + ∪ {ε}

Usually, we are interested in some particular subset of words over an alphabet.
For example, not every word over

W = {0 , 1 , . . . , 9 , + , - , . , e}+

is a legal numeral. Only those words that satisfy certain spelling laws are legal.
A numeral can have at most one decimal point so while 55.27.33 is a word in
W , it is not a numeral. By language we simply mean a specific subset of words
over a given alphabet.

Definition 1.10 A language over alphabet V is any subset of V +.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

1.2. WORDS AND LANGUAGES 13

Example

Ex 1.8 Describe the language of decimal numerals.

Solution: Let

D = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9}

represent the set of digits. We will also need punctuation symbols from the set

P = {. , + , -}

The components of a numeral are

(a) A sign, which may be omitted for a positive number. Hence the sign comes
from the set

S = {+ , - , ε}

(b) the integer part, a string of one or more digits, D+.

(c) the fractional part, if present, is a period followed by a string of zero or
more digits,

E = {ε} ∪ {. f̂ | f ∈ D∗}

Putting these together, the language of decimal numerals is described by

Numerals = {ŝ m f̂ | s ∈ S, m ∈ D+, and f ∈ E}

Here are some word instances in Numeral :

(a) The word +2.731 is a valid numeral. It breaks down into a sign, integral
part, and factional part according to the specification expression

+ ˆ 2 ˆ .735
S D∗ E

(b) The word 42 is also valid, having an empty sign and fractional part

ε 42 ε

(c) The words 55.126.99 , ++5 and ε do not satisfy the description and hence
are not in the specified language

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

14 CHAPTER 1. SETS

Exercises 1.2

1. Let V = {a , b , $}. For each of the following languages Li ⊆ V +, list
enough elements to make it clear what each contains.

(a) In language L1 each word has exactly one $ and equally many a s
as b s.

(b) In each word of language L2, a s and b s alternate with any number
of $ s mixed in.

(c) In each word of language L3, no a occurs next to a b .

(d) L4 = {uˆ$ v̂ | u ∈ {a}+ and v ∈ {$, b}+}
(e) L5 = {akˆ$ˆbk | k ∈ N}

2. In Exercise 1.5 the listing of {a , b , c}+ shows that there are 3 one-letter
words and 9 two-letter words. The third and fourth rows of the listing do
not show all the possible words. How many words would there be in the
third row; that is, how many three-letter words are there in {a , b , c}+?
How many four-letter words? How many n-letter words?

1.3 A Simple Algorithmic Language

A very simple programming language is used later this book. We introduce the
language informally in this section; in Chapter 10, once we have the needed
mathematical foundations, we examine this language in more detail. It is a
structured, sequential language of statements, similar in form to many lan-
guages that exist today, such as C and Java. It is assumed that you have some
experience with, and intuition about, programming in this kind of language.
There are just four kinds of statements.

1. The assignment statement , has the form

v := E

The object to the left of the assignment symbol is called an identifier , or
sometimes program variable (but never just “variable”). To the right is
an expression, E, whose value is calculated and then associated with the
program variable from that point on. Program variables can be simple
names, such as x and answer , or array references, such as a[i] and
b[5, j] .

2. A conditional statement has the form

if T then S1 else S2

Where S1 and S2 are, themselves, statements. If the test T holds then
statement S1 is executed; otherwise, statement S2 is executed;

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

1.3. A SIMPLE ALGORITHMIC LANGUAGE 15

3. A repetition statement has the form

while T doS

Statement S is repeatedly executed so long as the test T remains true.

4. Finally, a compound statement has the form

beginS1 ;S2 ; . . . ;Sn end

Statements S1, S2, . . ., Sn are executed in order.

Figure 1.3 shows an equivalent specification of the Statement language. It uses
Backus-Naur notation, or “BNF,” a form often seen in programming manuals.
Unlike the description above, Figure 1.3 says nothing about what statements
mean, only what they look like. BNF only describes what sentences are syntac-
tically correct.

Both descriptions are self referencing , meaning that they refer to the lan-
guage in the process of defining it. Conditional, repetition, and compound
statements contain statements. Although self reference used in this way may
seem natural and intuitive, not all self-referencing definitions are meaningful.
For example, consider the language described by items 1–3 above, leaving out
the assignment statement. Can you give an example of a program in that lan-
guage?

The statement language has no input/output operations. We can talk about
the result of a program in terms of the final values of its identifiers. Here is an
example of a program in the language of statements:

{A, B ∈ N}
P : begin

x := A;
y := B;
z := 0;

`1 : while x 6= 0 do { This is the loop `1 }
begin
x := x− 1;

`2 : z := z + y
end

end
{z = AB }

The program labels, P, `1 and `2 are not part of the language—there is no
goto statements so labels aren’t needed—but are used in discussions to refer to
points of the program.

Comments written between braces, { · · · } , are called assertions. For now,
comments are optional, but in Chapter 10 they become a formal part of the
language, used to reason logically about a program’s data state. After some
staring perhaps, it should be clear that program P computes the product of
natural numbers A and B, as the comments assert.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

16 CHAPTER 1. SETS

Exercises 1.3

1. In the programming language just described, write programs for each of
the following specifications.

(a) Assume that program variables x and y have been initialized with
values in N. Compute the sum of these values, leaving the result in
program variable z, using only the operations of adding or subrtract-
ing 1 to (from) a program variable.

(b) Assume that program variables x and y have been initialized with
values in N. Compute the product of x and y using only the opera-
tions of addition and subtraction.

(c) Assume that program variables x and y have been initialized with
values, A and B respectively, in N. Compute the value AB using
only addition and multiplication.

(d) Write a program to compute the quotient, q, and remainder, r of two
values initially held in variables x (the dividend) and y, the divisor.
Assume that you have only addition and subtraction.

(e) Write a program to compute the greatest common divisor, gcd(x, y),
of A, B ∈ N held in program variables x and y respectively, using
only addition and subtraction.

(f) Assume that in addition to ‘+’ and ‘−’ you also have an operation,
half(v) that divides its operand, v by two. Use this operation to
improve the performance of the gcd program of the previous exercise.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

1.3. A SIMPLE ALGORITHMIC LANGUAGE 17

〈STMT〉 ::= 〈IVS〉 := 〈TERM〉 (assignment)

if 〈QFF〉 then 〈STMT〉 else 〈STMT〉 (conditional)

while 〈QFF〉 do 〈STMT〉 (repetition)

begin 〈STMT〉 ; 〈STMT〉 end (compound)

〈IVS〉 ::= · · · (identifier)
〈TERM〉 ::= · · · (expression)
〈QFF〉 ::= · · · (test)

Figure 1.1: Partial description of the Statement programming language STMT,
expressed in Backus-Naur form (Sec. 8.5)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

18 CHAPTER 1. SETS

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 2

Propositional Logic and
Boolean Algebra

2.1 Propositions and Truth Tables

A proposition is a statement of fact, a sentence to which a value of true or false
can be assigned. Compound propositions are built from simpler propositions
using logical connectives, such as “and,” “or,” and “implies.” A propositional
formula is an expression involving simple propositions and logical connectives.
Suppose that P and Q stand for propositional formulas. Then the following are
also propositional formulas:

¬P negation P ⇒ Q implication
P ∧Q conjunction P ⇔ Q coincidence
P ∨Q disjunction P ⇔| Q exclusive-or

Figure 2.1 shows some of the ways these connectives are expressed in English.
The following definition tells what the connectives mean.

Definition 2.1 The tables below define how the propositional connectives are
interpreted.

P ¬P

F T
T F

P Q P ∧Q P ∨Q P ⇒ Q P ⇔ Q P ⇔| Q

F F F F T T F
F T F T T F T
T F F T F F T
T T T T T T F

2.1.1 Implication*

The definition of implication, P ⇒ Q, sometimes becomes confusing when con-
sidered in isolation. Since explaining it may simply compound the confusion,

19

20 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

¬P

 It is not the case that P .
P does not hold.
Not P .

P ∧Q

{
P and Q.
P but Q.

P ∨Q

 P or Q.
either P or Q or both
at least one of P and Q

P ⇒ Q



P implies Q.
if P then Q.
Q whenever P .
Q if P .
P only if Q.
P is sufficient for Q.
Q is necessary for P .
Q follows from P .

P ⇔ Q


P if and only if Q.
P iff Q.
P exactly when Q.
P is necessary and sufficient for Q.
Whenever P then Q and conversely.

P ⇔| Q

 Either P or Q but not both.
Exactly one of P and Q.
P exclusive-or Q.

Figure 2.1: The logical connectives and some corresponding English utterances.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.1. PROPOSITIONS AND TRUTH TABLES 21

you may wish to defer reading this section until a question like “What does ⇒
really mean?” comes to mind and motivates you to read about it.

We are not accustomed to thinking about what “P implies Q” should mean
when the antecedent P is known to be false or when the consequent Q is known
to be true. In most mathematical arguments, there is a connection between the
two. P must be used to carry the argument through. The following examples
illustrate why the definition of implication is natural.

Example

Ex 2.1 Proposition If A is any set, then ∅ ⊆ A.

Proof: According to Definition 1.4, ∅ ⊂ A is true provided, “every element
of ∅ is also an element of A.” This means that the statement x ∈ ∅ ⇒ x ∈ A
must be valid, no matter what element is chosen for x. But no matter what
x is, “x ∈ ∅” is a false statement. In other words, “∅ ⊆ A” logically reduces
to F ⇒ x ∈ A, and by Definition 2.1, this proposition is true whether or not
x ∈ A.

Another way to put it is that no choice of x exists that can be used falsify
“x ∈ ∅ ⇒ x ∈ A.” It cannot be false, so it must be true. We say that the
proposition holds vacuously , since the antecedent is logically false.

Example

Ex 2.2 Proposition If A is any set, then A ⊆ A.

Proof: According to Definition 1.4, A ⊆ A means that the statement x ∈
A⇒ x ∈ A must be valid no matter what x is. But if “x ∈ A” is true, then the
statement reduces to T ⇒ T , and if x 6∈ A we have F ⇒ F . In either case, the
proposition is true.

We say that the proposition is tautologically valid because it reduces to a purely
logical trueism. See Definition 2.2 later in this chapter.

Example

Ex 2.3 Proposition For all n, m ∈ Z, if a > 0 and b > 0 then (a+b)1 ≥ a1+b1.

Proof: By definition, raising any number to the “first power” yields the same
number. In other words, for any z ∈ Z, z1 = z. Thus,

(a + b)1 = a + b = a1 + b1

so it follows immediately that (a + b)1 ≥ a1 + b1, as desired.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

22 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

The antecedent “a > 0 and b > 0” is irrelevant, the truth of the proposition
does not depend on whether or not a and b is positive. (Had the proposition
been (a + b)2 ≥ a2 + b2, the antecedent would be relevant.)

We say that this proposition holds trivially , that is, the consequent holds
independently of the antecedent.

A good way to think about P ⇒ Q is that it says, “either P is false or Q is
true, or possibly both.” Or, “it is never the case that Q is true and P is false.
Or, Q (is true) only if P (is also true).”

2.2 Truth Tables

Definition 2.1 gives us the means to evaluate complex propositions. We do so
by first evaluating the innermost terms and then working outward. We keep
track of intermediate results in a truth table, similar to the table shown in the
definition.

Example

Ex 2.4 Evaluate the formula (P ∨R)⇒ Q.

A truth table for this formula includes one row for each combination of truth
values that might be assigned to its sub-formulas. In this case there are eight
possibilities. To the right is the evaluation of the formula. In this example,
sub-terms P ∨R and Q are evaluated first, and then the ‘⇒’ is evaluated.

P Q R (P ∨R) ⇒ Q

F F F F T F
F F T T F F
F T F F T T
F T T T T T
T F F T F F
T F T T F F
T T F T T T
T T T T T T

(1) (3) (2)

According to the table, there are three cases in which the proposition (P ∨R)⇒
Q is false.

Truth tables are sometimes used to analyze “story problems.” Consider the
following example:

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.2. TRUTH TABLES 23

Example

Ex 2.5 Dick, Jane, and Sally are working together on a programming project.
Dick says, “Sally’s routine is correct; but my routine is correct only if Jane’s
is.” Sally says, “If my routine has a bug, so does Dick’s; but my routine is
correct.” Jane says, “Either Dick’s routine has a bug or Sally’s does; but not
both.” Assuming all three are telling the truth, whose routine has a bug? Whose
is correct? Assuming all the routines are correct, who’s not telling the truth?

Let us identify the atomic propositions. Define1 D, J and S as follows:

D ≡ “Dick’s routine is correct.”
J ≡ “Jane’s routine is correct.”
S ≡ “Sally’s routine is correct.”

The assertions made by the three programmers are

Dick: S ∧ (D ⇒ J)
Jane: D ⇔| S
Sally: (¬S ⇒ ¬D) ∧ S

and we are interested in the truth of the proposition D ∧ J ∧ S. Here is a truth
table:

D J S S ∧ (D ⇒ J) D ⇔| S (¬S ⇒ ¬D) ∧ S

F F F F F F
F F T T T T ?
F T F F F F
F T T T T T ?
T F F F T F
T F T F F T
T T F F T F
T T T T F T

For both cases in which Dick’s, Jane’s, and Sally’s statements are true, D is false
and S is true. Thus, we can conclude that, Dick’s routine has a bug and Sally’s
does not, provided all three programmers are telling the truth. We cannot draw
any conclusion about Jane’s routine. The last row of the truth table is the case
where all three routines are correct; and in that row, Jane’s statement is false.

Propositions may be characterized and compared using truth tables. Our study
of mathematical reasoning in later sections involves truth-table analysis of the
assertions made in proofs. The next two definitions provide a basic vocabulary
for classifying propositions.

1Throughout this book a triple-equals sign is used when names are assigned to formulas.
There is more about this in Chapter 6.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

24 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

Definition 2.2 A proposition is called a tautology when all rows of its truth
table evaluate to T. A proposition is called a contradiction when all rows of
its truth table evaluate to F. A proposition which is neither a tautology nor a
contradiction is called a contingency.

Definition 2.3 Two propositions are said to be logically equivalent when their
truth tables are identical.

How many logical connectives do we need? As the following proposition says,
all the connectives we have defined can be implemented using only negation and
disjunction.

Proposition 2.1 If P and Q are propositions then the following pairs of for-
mulas are logically equivalent:

(a) P ⇒ Q and (¬P) ∨Q
(b) P ∧Q and ¬((¬P) ∨ (¬Q))
(c) P ⇔ Q and (P ⇒ Q) ∧ (Q⇒ P)
(d) P ⇔| Q and ¬(P ⇔ Q)

Proof:
In each case logical equivalence is established by a comparison of truth tables,

as specified in Definition 2.3. The tables for part (a) are shown below and the
rest of the proof is left as an exercise.

P Q P ⇒ Q (¬P) ∨ Q

F F T T T F
F T T T T T
T F F F F F
T T T F T T

Other sufficient sets of connectives are developed as exercises. There is much
more to say about propositions. But now we have enough information about
them to consider the next topic of this chapter.

Exercises 2.2

1. Let P stand for the proposition “Sue says it.” Let Q stand for the propo-
sition “Sam saw it.” Let R stand for the proposition “Sid did it.” Express
the following sentences as formulas involving the logical connectives. If
there is more than one way to translate a sentence, use truth tables to
explain any differences in the meaning among these translations.

(a) Sid did it, Sam saw it, and Sue says it.

(b) If Sid did it, Sam saw it.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.3. BOOLEAN ALGEBRA 25

(c) Sid did it only if Sam saw it.

(d) Sue says it only if Sid did it, and Sam saw it.

(e) If Sue says it implies Sam saw it, Sid did it.

2. Definition 2.1 gives the meaning of five logical operations of two argu-
ments. How many distinct logical connectives of two arguments are there?

3. Consider the logical operation defined below:

P Q P ↓ Q

F F T
F T T
T F T
T T F

Show that ‘↓’ can be used to implement (in the sense of Prop. 2.1) all of
the operations of Definition 2.1.

4. Determine another logical operation, different than ↓, which can be used
to implement all of the operations of Definition 2.1.

2.3 Boolean Algebra

Digital computers are based on systems in which there are just two values.
Electronically the two values are realized as voltage levels (voltage is a measure
of electrical force). All the components of a digital system are carefully designed
to produce and respond to just these two levels. Mathematically, the binary
values of a digital system are represented as a two-element set of binary digits,
or bits, {0, 1}. The basic operations on bits are defined below.

Definition 2.4 The operations of inversion, addition, and multiplication, de-
fined on bits, are given by the following tables.

x

0 1

1 0

· 0 1

0 0 0

1 0 1

+ 0 1

0 0 1

1 1 1

The multiplication sign is dropped where possible, so that the expression

(x · y) + (x · y)

is usually written
x y + x y

The next proposition states a number of algebraic laws that are valid for the
operations just defined.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

26 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

Proposition 2.2 Assume variables x, y, and z range over bits, and let the
operations of negation, addition, and multiplication be as defined in Definition
2.4. These operations obey the following algebraic identities.

Boolean Identities

Negation x = x

Identity 0 + x = x 1 ·x = x

Dominance 1 + x = 1 0 ·x = 0

Idempotence x + x = x x ·x = x

Cancellation x + x = 1 x ·x = 0

Commutativity x + y = y + x x · y = y ·x

Associativity x + (y + z) = (x + y) + z x · (y · z) = (x · y) · z

Distributivity x · (y + z) = (x · y) + (x · z) x + (y · z) = (x + y) · (x + z)

DeMorgan (x + y) = x · y (x · y) = x + y

Proof: Each of the laws can be verified by comparing truth tables according
to Definitions 2.4 and 2.3.

Definitions 2.4 and ?? form a system in which we can reason about equality.
As the exercises at the end of this section illustrate, we can generalize this binary
algebra, or system of laws, to other structures.

Definition 2.5 A set B containing distinguished elements 1 and 0, and having
operations ‘ · ’, ‘+’, and ‘ ’ which satisfy the laws of Proposition 2.2 for x, y,
and z ranging over B, is called a Boolean Algebra.

Example

Ex 2.6 Use the boolean identities to show that a(a + b) = a.

We shall show this by performing a derivation starting from the left-hand
side.

a(a + b) = (a + 0)(a + b) (identity)
= a + 0b (distributivity)
= a + 0 (dominance)
= a (identity)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.3. BOOLEAN ALGEBRA 27

Example

Ex 2.7 Use the boolean identities to show that a + ab = a.

Compare this equation with the one in Example 2.6. It is the dual of the one
shown here, obtained by interchanging addition and multiplication. We can
already conclude that it is valid by the previous derivation, since there must be
a dual derivation to prove it. Here it is:

a + ab = a1 + ab (identity)
= a(1 + b) (distributivity)
= a1 (dominance)
= a (identity)

2.3.1 Duality

The laws dealing with bit addition and bit multiplication come in pairs. For
every identity that holds for addition, there is a corresponding identity for mul-
tiplication, and conversely. This property is called duality.

We have already suggested a correlation between the boolean values and
operations, and truth values with logical operations. For if we think of the bit
0 as meaning false and the bit 1 as meaning true, then inversion, addition, and
multiplication, implement negation, disjunction, and conjunction, respectively.
Compare the following tables with those in Definition 2.1:

¬x

F T

T F

∧ F T

F F F

T F T

∨ F T

F F T

T T T

But there is another way to associate truth values with bits. Let bit 0 represent
true and bit 1 represent false. In this case, bit addition implements logical
conjunction and bit multiplication implements disjunction:

¬x

T F

F T

∨ T F

T T T

F T F

∧ T F

T T F

F F F

Associating true with bit 1 is called the positive logic interpretation. and asso-
ciating false with 1 is called the negative logic interpretation. Digital designers
commonly use both interpretations. Even so, the ‘+’ sign is called “or” and the
‘ · ’ sign “and.”

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

28 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

2.4 Normal Forms

Consider the truth table, given below, for the proposition ((P ⇒ Q) ∧ (Q ⇒
R))⇔ (P ⇒ R)

P Q R ((P ⇒ Q) ∧ (Q⇒ R)) ⇔ (P ⇒ R)
F F F T T • T T T
F F T T T • T T T
F T F T F F F T
F T T T T • T T T
T F F F F T T F
T F T F F T F T
T T F T F F T F
T T T T T • T T T

Comparing the truth tables for A ≡ (P ⇒ Q) ∧ (Q ⇒ R) and B ≡ (P ⇒ R)
one can see it is not the case that A eq B.

Look now at the truth table for formula A. It is true in four cases and false
in the other four. We can construct a formula describing just the true cases by
recording the truth values of P , Q and R.

A is true just when

P = F , Q = F and R = F , or

P = F , Q = F and R = T , or

P = F , Q = T and R = T , or

P = T , Q = T and R = T .

In each case, a formula can be written singling out exactly that case

A is true just when

(¬P) ∧ (¬Q) ∧ (¬R) is true, or

(¬P) ∧ (¬Q) ∧R is true, or

(¬P) ∧Q ∧R is true, or

P ∧Q ∧R is true.

Equivalently,

A is true just when

(¬P ∧¬Q∧¬R) ∨ (¬P ∧¬Q∧R) ∨ (¬P ∧Q∧R) ∨ (P ∧Q∧R) is true

That is,

A eq (¬P ∧¬Q∧¬R) ∨ (¬P ∧¬Q∧R) ∨ (¬P ∧Q∧R) ∨ (P ∧Q∧R)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.4. NORMAL FORMS 29

It should be evident that one can extract such a formula from any truth table,
and is, in essence, just a way of describing the truth table. The result is always
disjunction of and-clauses, each of which contains every variable just once in
either positive or negated instance.

The formula thus derived is called the disjunctive normal form (DNF) of
the original expression, A in this case. Since every proposition has a DNF, we
have shown that for any logical expression, there is an equivalent one expressed
in terms of ‘∧’, ‘∨’ and ‘¬’, as suggested by Proposition 2.1.

We have now seen two essentially equivalent ways to represent propositions
in a way a way that makes them easier to analyze or compare: truth tables and
DNFs. We will see others later in this book. Both of them suggest computer
encodings that could be used in automating the analyses.

(a) An array of 1s and 0s could be used to represent the truth table. For the
proposition A

1 1 0 1 0 0 0 1

(b) A list of 3-bit quantities, one for each clause in the DNF. For the propo-
sition A the list would be

(000 001 011 111)

In both cases, the encodings contain the essential information characterizing A.
However, to interpret the encodings, one needs additional information about
how many variables are used in the formula and in what order those variables
are used in developing the truth table. We will see when we look at other
representations, later in this book, that more compact computer representations
always entail prior knowledge about the number and order of the variables.

Exercises 2.4

1. Prove Proposition 2.2

2. Reduce the following boolean expressions to simpler terms

(a) xy + (x + y)z + y

(b) x + y + (x + y + z)

(c) yz + wx + z + [wz(xy + wz)]

3. Define x⊕ y to be xy + xy. Use boolean algebra to prove

(a) x⊕ y = x⊕ y

(b) x(y ⊕ z) = xy ⊕ xz

(c) (x⊕ y) = x⊕ y

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

30 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

4. Let A = {a, b, c} and define the following correspondence for P (A):

1 7→ A

0 7→ ∅
X 7→ A \X

X ·Y 7→ X ∩ Y

X + Y 7→ X ∪ Y

Show that this correspondence forms a Boolean algebra, according do
Definition 2.5.

5. Let D be the set of numbers that divide 30, D = {1, 2, 3, 5, 6, 10, 15, 30},
and define the following correspondence.

1 7→ 30
0 7→ 1
x 7→ 30÷ x

x · y 7→ the greatest common divisor of x and y

x + y 7→ the least common multiple of x and y

Show that this correspondence forms a Boolean algebra.

6. Show that the connectives ‘∧’, ‘∨’, and ‘¬’ form a Boolean algebra under
a notion of equality that says, P = Q iff P is logically equivalent to Q.

7. Construct truth tables and DNFs for the following propositional formulas

(a) (P ∧ (P ⇒ Q))⇒ Q

(b) ((P ⇒ R) ∧ (Q⇒ R))⇔ ((P ∧Q)⇒ R)

(c) ((P ⇒ R) ∨ (Q⇒ R))⇒ ((P ∨Q)⇒ R)

(d) ((P ⇒ R) ∨ (Q⇒ S))⇒ ((P ∨Q)⇒ (R ∨ S))

8. The term disjunctive normal form suggests that there might be such a
thing as conjunctive normal form (CNF), and there is. What would the
CNF of a formula look like? Devise a systematic way to synthesize a CNF
from the truth table of a propositional formula.

2.5 Application of Boolean Algebra to Hardware
Synthesis*

The Boolean algebra for {1, 0} has applications to the description of digital
hardware. Addition of binary numbers involves the same column-by-column

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.5. APPLICATION OF BOOLEAN ALGEBRA TO HARDWARE SYNTHESIS*31

procedure as decimal addition, except that the arithmetic is base 2. For instance
to add the numbers 11110012 and 1010102,

1 1 1 0 0 1

0101

1

01

0011 (0)

100

01

0101 1

1

a

b+ +
sum

carry

start at the least significant position adding the two right-most digits. If the
result is 102 or 112, the “2’s place” is carried into the next column. To make the
algorithm uniform, we start out with a carry-in of 0; and if the most-significant
carry-out is 1, another place is given to the sum.

The procedure is implemented in hardware by connecting a series of identical
single-bit full adders, one for each bit of the operands.

q q qcico

ba

s

bna
n

sn

cn
cico

ba

s

b1a
1

s2

c1
cico

ba

s

b0a
0

s0

c0c2

sn+1

cn+1
0

So building an n-bit adder requires designing a full adder and replicating it n
times.

co ci

?

?

?

� �

ba

s
FA

Digital hardware is built using a set of devices, or logic gates, that operate
on two distinct voltage levels, called high (H) and low (L). The actual voltage
values depend on the technology used to make the devices2 The simplest of
these devices realize the functions and, or and not, which are represented by
the schematic symbols

and or not

2In integrated circuits, H is 3-5 volts and L is 0 volts relative to a reference voltage called
ground. Of course, in physical devices the voltages are not exact, and may range a bit from
their ideal values.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

32 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

The truth table below specifies what the Full Adder does. It has two outputs,
s for the sum and co for the carry-out, so two truth tables are needed. required

a b ci s co

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

If we express these tables in disjunctive normal form (sometimes called sum-
of-products form in this context), a naive implementation is obtained, since we
have logic gates to realize each operation.

s = a b c + a b c + a b c + a b c

co = a b c + a b c + a b c + a b c

However, it would be better to reduce these formulas to something smaller,
in order to use fewer gates. One way to do this is to reduce the expressions
algebraically to equivalent but smaller formulas. The co output can be reduced
to

co = a b c + a b c + a b c + a b c (truth table)

= a b c + a b c + a b c + (a b c + a b c) (idempotence)

= a b c + a b c + a b c + a b c + a b c (commutativity,
associativity)

= a b c + a (b c + b c + b c) (distributivity)

= a b c + a b c + a (b c + b c + b c + b c) (idempotence)

= a b c + a b c + a ((b + b) c + b (c + c) (distributivity, twice)

= a b c + a b c + a (c + b) (idempotence)

= (a + a) b c + a (c + b) (distributivity)

= 1 b c + a (c + b) (cancellation)

= b c + a (c + b) (identity)

= b c + a c + a b (distributivity)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.5. APPLICATION OF BOOLEAN ALGEBRA TO HARDWARE SYNTHESIS*33

Hence, co is implemented with

ci

co

and

and

and

or

or

b

a

The derivation of co followed the typical pattern of enlarging the formula so
that it could later be simplified. Such algebraic manipulations are often done
with a goal in mind, and reaching that goal may involve expansion, even if the
ultimate objective is reduction.

“Simplification” of s is even more subtle. Suppose we have a device that
realizes the the exclusive-or operation,

x⊕ y
def= x y + x y

and

and

not

not

or xor

x

y

x

y

The goal now is to derive and equivalent expression that uses instances of ‘oplus’

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

34 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

. . .

s = a b c + a b c + a b c + a b c (truth table)

= a (b c + b c) + a (b c + b c) (distributivity, twice)

b c + b c

= b c + b c (negation)

= (b c) (b c) (DeMorgan’s Law)

= (b + c) (b + c) (DeMorgan’s Law)

= (b + c) (b + c) (negation)

= (b + c)b + (b + c) c) (distributivity)

= b b + cb + b c + c c (distributivity)

= 0 + cb + b c + 0 (cancellation)

= bc + b c (identity,
commutativity)

= a (b c + b c) + a (b c + b c) (boxed derivation)

...

A subsidiary derivation is used to refine the sub-formula b c + b c to b c + b c.
Continuing with with the derivation,

...

= a (b c + b c) + a (b c + b c)

= a (b⊕ c) + a (b⊕ c) (definition ‘⊕’)

= a⊕ (b⊕ c) (definition ‘⊕’ (!))

The implementation of s becomes

ci
s

xor
xorb

a

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

2.5. APPLICATION OF BOOLEAN ALGEBRA TO HARDWARE SYNTHESIS*35

The second instance of ‘⊕’ involves sub-expressions rather than simple variables.
So even in boolean algebra, derivations can become very complex, as you already
know from ordinary algebra.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

36 CHAPTER 2. PROPOSITIONAL LOGIC AND BOOLEAN ALGEBRA

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 3

Counting

One often wants to know how many elements a set contains. In fact, knowing
this number is often more important than knowing just what the elements are!
Definition 3.1, introduces notation and terminology relating to a set’s size.

Section 3.2 lays a foundation for counting the elements in a set. This is
usually done by posing a kind of experiment in which the question, ”How many
elements are in set S?” is decomposed into a sequence of simpler decisions
for which the number of outcomes is already known. One then tallies all the
outcomes to get a final answer.

3.1 Cardinality

Definition 3.1 |S| denotes the number of elements in S. |S| is called the size
or cardinality of S.

For example, |{a, b, c, d, e}| = 5, |∅| = 0; and

|{p | p is a prime number less than 30}| = 10

Fact 3.1 Let A and B be finite sets.

(a) |A ∪B| = |A|+ |B| − |A ∩B|

(b) |A ∩B| = |A|+ |B| − |A ∪B|

(c) |A×B| = |A| · |B|

(d) |A \B| = |A| − |A ∩B|

Comparing this list with the set operations defined in Definition 1.5, |P (A) | is
missing. We will calculate |P (A) | later.

37

38 CHAPTER 3. COUNTING

3.2 Permutations and Combinations

Let A = {a, b, c} and consider the different orders that A’s elements can be
listed. Try it yourself, and compare your answer with

abc
acb

bac
bca

cab
cba

Let A = {a, b, c, d} and consider the different orders that A’s elements can be
listed. Try it yourself, and check your answer with

abcd
abdc

acbd
acdb

adbc
adcb

bacd
badc

bcad
bcda

bdac
bdca

cabd
cadb

cbad
cbda

cdab
cdba

dabc
dacb

dbac
dbca

dcab
dcba

The listing is organized according to the choice of which letter is first. Having
made that choice, all orderings for the remaining three letters are listed. This
is a problem we have already solved: there are six possibilities. Figure 3.1(a)
shows a tree, labeled to show how the listing is organized. Each path through the
tree (i.e., from the root to a leaf) represents one letter ordering, as determined
by reading the edge labels in order, Trees used in this way are called decision
trees. along the path.

If we are interested only in the number of solutions, and not what they are,
the decision tree can be reduced in size by taking symmetries into account. In
Figure 3.1(a) the subtrees at any level are isomorphic, differing only in their
labels. So instead of drawing all of them, we just keep track of how many of
them there are. Figure 3.1(b) depicts a decision tree in which the edges are
labeled with the number of isomorphic subtrees they represent. The product of
the numbers along a path gives the number of solutions represented.

How many letter-orderings does a five-letter alphabet have? There are five
choices for the first letter, and we have already shown that there are 24 ways to
order the remaining four letters. Hence, the answer to the five-letter question
is 5× 24 = 120.

Let us generalize this discussion.

Fact 3.2 Let S be a set of size n. There are

1× 2× · · · × n

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

3.2. PERMUTATIONS AND COMBINATIONS 39

1s
t

a
b

d

d
b

d
a

b

b
d

a
d

a

a4t
h

4t
h

4t
h

4t
h

4t
h

4t
h

3r
d

3r
d

3r
d

2n
d

b

a
b

c

c
b

c
a

b

b
c

a
c

a

a4t
h

4t
h

4t
h

4t
h

4t
h

4t
h

3r
d

3r
d

3r
d

2n
d

b

a
c

d

d
c

d
a

c

c
d

a
d

a

a4t
h

4t
h

4t
h

4t
h

4t
h

4t
h

3r
d

3r
d

3r
d

2n
d

c

b
c

d

d
c

d
b

c

c
d

b
d

b
c b4t

h
4t

h
4t

h
4t

h
4t

h
4t

h

3r
d

3r
d

3r
d

2n
d

b
c

a
d

ca
bd

ca
db

cb
ad

cb
da

cd
ab

cd
ba

da
bc

da
cb

db
ac

db
ca

dc
ab

dc
ba

ba
cd

ba
dc

bc
ad

bc
da

bd
ac

bd
ca

ab
cd

ab
dc

ac
bd

ac
db

ad
bc

ad
cb

1st

3rd

4th

2nd

1

2

3

4

wxyz

(a) (b)

Figure 3.1: A decision tree (a) and counting tree (b) for ordering a 4-letter
alphabet

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

40 CHAPTER 3. COUNTING

different orders in which the elements of S can be listed. Such a listing, in which
each s ∈ S occurs exactly once, is called permutation of S.

The “product of whole numbers from 1 to n” is useful enough to be given
its own notation:

Definition 3.2 The product
n∏

k=1

k = 1× 2× · · · × n

is called n factorial, written n!. By convention (Recall Example ??), 0! is defined
to be 1.

Thus, if |S| = n it has n! permutations.

How many ways are there to list two distinct elements from A = {a, b, c, d}?
Without actually doing it, we could reason as before that

1. There are four possibilities for the first letter.

2. Once the first letter is chosen, three possibilities remain for the second.

So the number of two-letter orderings is 4 × 3 = 12. Counting by taking the
product of the successive outcomes is called the Rule of Products in some text-
books, and the Principle of Choice in others.

Another way to look at the problem problem is to start with something
you already know—the number of permutations of a set of four elements—and
eliminate rudundant representatives. The listing below strikes out all but one
of the permuations whose first two letters are the same.

abcd
abdc

acbd
acdb

adbc
adcb

bacd
badc

bcad
bcda

bdac
bdca

cabd
cadb

cbad
cbda

cdab
cdba

dabc
dacb

dbac
dbca

dcab
dcba

So the number of 2-letter permutations is equal to the number of 4-letter
permutations divided by the number which represent the same 2-letter outcome.
Again, we are taking advantage of a symmetry in the problem, knowing that
the partitioning is uniformly independent of what the first two letters actually
are. Definition 3.3, below, summarizes this discussion.

Definition 3.3 Let ∀ be a set with |A| = n. For m ≤ n, the number of distinct
ways to list m distinct elements from A is

n!
(n−m)!

Such a listing is called an m-permutation.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

3.2. PERMUTATIONS AND COMBINATIONS 41

Example

Ex 3.1 You have 26 trophies you would like to display across your fireplace
mantel, but there is for only room 10 of them. How many different ways can
you do this?

Solution 1: There are 10 positions at which a trophy can be placed, so the
question is simply asking how many 10-permutations are there for a set with 26
elements. By Definition 3.3 this number is

26!
16!

or 26 × 25 × · · · × 17. Unless you have a computer handy and the time, don’t
bother to calculate this number; it is 19,275,223,968,000.

Suppose you’ve placed 10 trophies on the mantel, and you decide it is better
to place the largest one in the middle. Does swapping two of the selected trophies
result in a “different” display? The problem statement fails to make this clear,
but the solution given presumes that the order of the trophies matters.

Now suppose we are interested in selecting two letters from A = {a, b, c, d}
but don’t care about the order. In other words we are asking how many distinct
subsets of size 2 are there in a set of four elements. As before, we can consider
the set of A’s 2-permutations and strike out the redundant ones—those having
the same two first letters in either order.

abcd
abdc

acbd
acdb

adbc
adcb

bacd
badc

bcad
bcda

bdac
bdca

cabd
cadb

cbad
cbda

cdab
cdba

dabc
dacb

dbac
dbca

dcab
dcba

Definition 3.4 The chose function1
(
n
k

)
is the number of ways to choose k

unordered elements from a set of size n. This number is given by the formula(
n

k

)
=

n!
k!× (n− k)!(

n
k

)
is calculated by dividing the number of permutations of an n-element set

by k!, the number of ways to permute the first k elements times (n − k)! the
number of ways to permute the remaining elements beyond the kth .

1Also known as the binomial coefficient , and the combinational number.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

42 CHAPTER 3. COUNTING

Example

Ex 3.2 You have 26 trophies you would like to display across your fireplace
mantel, but there is for only room 10 of them. How many different ways can
you do this?

This is the same problem as Ex. 3.1, which took the ordering of the ten
trophies into account. I the order doesn’t matter, we should divide out the
number of ways they can be arranged on the mantel:

19, 275, 223, 968, 000
10!

=
19, 275, 223, 968, 000

3, 628, 800
= 5, 311, 735 =

26!
10!× 16!

=
(

26
10

)

Example

Ex 3.3 In how many ways can a set six elements, A = a, b, c, d, ef , be parti-
tioned into three subsets, X, Y and Z, containing three, two and and elements,
respectively?
Solve this problem by counting the partitions one at a time:

(a) By Definiton 3.4 there are(
6
3

)
=

6!
3!× 3!

=
6 · 5 · 4
3 · 2 · 1

= 20

ways to choose three elements from A.

(b) Once X has been determined, there are three elements left to choose for
Y . The number of ways to do that is(

3
2

)
=

3!
2!× 1!

= 3

(c) Once X and Y have been determined, there is one remaining element to
choze for Z (

1
1

)
=

1!
1!× 0!

=
1

1 · 1
= 1

(d) The number of partitionings is the product of the numbers of these choices,
20 · 3 · 1 = 60.

Remark: It shouldn’t matter what order you choose X, Y and Z. Check that(
6
1

)
×
(

5
2

)
×
(

3
3

)
=
(

6
2

)
×
(

4
1

)
×
(

3
3

)
= etc.

End Remark

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

3.2. PERMUTATIONS AND COMBINATIONS 43

In Step (b) of Ex. 3.3 calculated that there were
(
3
2

)
ways to choose two elements

from 3 for Y . An equivalent problem is to choose one element not to include in
Y , and there are

(
3
1

)
ways to do that. In general,

Proposition 3.3 (
n

k

)
=
(

n

n− k

)
Proof: By Definition 3.4 and since n− (n− k) = k,(

n

k

)
=

n!
k!× (n− k)!

=
n!

(n− k)!× k!
=

n!
(n− k)!× (n− (n− k))!

=
(

n

n− k

)

Example

Ex 3.4 You’re having a dinner party for sixteen guests, including yourself, of
which half are male and half are female. You have two tables each seating eight,
with four places on two sides:

?
?
?
?

Table
1

?
?
?
?

?
?
?
?

Table
2

?
?
?
?

You want to make sure that both tables have an equal number of guys and gals.
Bob is coming, but you don’t know about Jane yet. If Jane does come you need
to make sure that she and Bob sit at different tables. How many ways are there
to do this?
Solution: There are two cases to consider, according to whether or not Jane
comes to the party

1. If Jane is not coming, then anyone can sit at either table. You need to
choose four guys and four gals to sit at Table 1. The number of ways to
do this is (

4
8

)
×
(

4
8

)
Once the people sitting at Table 1 are determined, all the rest will be as-
signed to Table 2, and there is only one way to do that.

2. If Jane comes she must sit at one table and Bob at the other.

(a) Suppose Jane is assigned to Table 1. Then you need to choose:

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

44 CHAPTER 3. COUNTING

i. 3 other gals from the remaining 7 to sit at Table 1. There are(
7
3

)
ways to do that.

ii. Four guys from the remaining set of 7—Bob is excluded—will sit
at Table 1. There are

(
7
4

)
ways to do that.

iii. Once the assignments are made to Table 1, all the remaining
guests sit at Table 2, so there is only just one choice.

So there are
(
7
3

)
×
(
7
4

)
seating assignments in this case.

(b) If Jane is assigned to Table 2, it’s the same problem. So the number
of assignments in this case is also

(
7
3

)
×
(
7
4

)
.

The answer, then, is that there are(
8
4

)
×
(

8
4

)
+
(

7
3

)
×
(

7
4

)
+
(

7
3

)
×
(

7
4

)
ways to assign people to tables.

You may already be thinking that there are many more ways to assign seating
for this party. Once 8 people are selected for a table, there are 8! ways to arrange
them. In the next example we will consider seating assignments. A counting
tree for Example 3.4 might look like

4
7)(

3
7)(

4
8)(

4
8)(3

7)(

4
7)(

1 1 Choose 4 guys

Choose 4 gals

Table 2

Table 2

1 1

1

11

 excluding Bob

more gals excluding Jane

more guys

yes

Jane

no

Bob

Is Jane coming?

Choose 4 guys

Choose 3 Choose 4 gals

Choose 3

Table 1

The total number of solutions for a problem is the sum, over all the paths through
(i.e., from the root to a leaf) its counting tree of the product of numbers along
each path. More formally,

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

3.2. PERMUTATIONS AND COMBINATIONS 45

Fact 3.4 let T ⊆ A×A be a decision tree with root r and edge labeling L : T →
N. Let P = {〈r, a1, . . . , `〉 | ` a leaf in T}. The number of solutions represented
by T is ∑

p∈P

(∏
e∈p

L(e)
)

The formula above takes some liberties with notation. The indexing specifier
“e ∈ p” is saying “take all the edges in (or along) path p.” Although in Chapter
6, paths are defined to be sequences, not sets, the meaning is should be clear.

Example

Ex 3.5 For the same party as Example 3.4, how many ways are there to assign
guests to seats in such a way that every guy is sitting next to at least one gal,
and vice versa.

Solution: Decompose the problem by first assigning guests to tables, as
in Example 3.4. Now assign seats along each side of each table. One way to
do this is simply to list all the possibilities: guy-gal-guy-gal, gal-guy-gal-guy,
guy-gal-gal-guy and gal-guy-guy-gal. So the decision tree looks like

X
2+ 2

Gender arrangement

Assign Tables

Permute gals

Permute guys

4

4

2! = 2

2! = 2

4

8)(3

7)(4

7)([]

2 tables, 2 rows

and since
(
7
3

)
=
(
7
4

)
, the number of solutions is

64

[(
8
4

)2

+ 2
(

7
4

)2
]

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

46 CHAPTER 3. COUNTING

Exercises 3.2

1. Suppose you want to assign seats for a single row of 4 guys and 4 gals
in such a way that each guy is sitting next to at least one gal, and vice
versa. How many ways are there to do this? Hint: Use a decision tree,
and practice by solving the 3-guy, 3-gal problem.

2. In Example 3.5, suppose you want to assign seats so that each guy is
sitting next to or across from at least one gal, and vice versa. How many
ways are there to do this? Hint: List out all the gender arrangements.

3. A standard deck of cards has 52 cards consisting of 13 cards in each of four
suits: ♠, ♥, ♦ ♣. In each suit, cards have face values from {1, 2, . . . , 13},
each card having a different face value. A hand is a set of five cards from
the deck. A hand is called a flush if all five cards are of the same suit.
A hand is called a straight if the five cards are sequential in value, for
instance, {3♥, 4♠, 5♦, 6♦, 7♥}.

(a) How many different flushes are there in a standard deck?

(b) How many different straights are there in a standard deck?

4. Prove: For all n, k ∈ N,
(

n + 1
k + 1

)
=
(

n

k

)
+
(

n

k + 1

)
5. If |A| = n guess the value of |P (A) | by listing a few small examples.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 4

Induction

The mathematics of programming—indeed, programming itself—is deeply re-
lated to inductive reasoning. It is the the most important topic in this book.
The word “induction” derives from the notion of learning from seeing, or ar-
riving at a generalization from observation of instances—a fundamental aspect
of science, certainly, and perhaps human experience as well. The mathemat-
ical notion of induction involves proving some instance (base cases) and then
showing how to prove the rest (the induction cases).

Various styles of inductive reasoning arise in computer science. They are
all fundamentally equivalent, so each style can be thought of as an abbreviated
form of a basic reasoning principle. In addition, proof by induction is just one
aspect of a of a collection of schemes for defining sets, functions and relations
on these sets, properties of these relations. These are ultimately reflected in the
way programs are expressed, starting with recursive programming styles and
extending to “loops” in sequential programs.

4.1 Numerical Induction

The induction principle for the natural numbers gives a method for proving that
a property holds for all natural numbers. Let H be any predicate on N (Recall
Definition 6.7). In words, the induction principle says,

47

48 CHAPTER 4. INDUCTION

If you can prove

(base case) the assertion H(0) holds, and

(induction step) for an arbitrary k ∈ N, H(k) im-
plies H(k + 1),

then you may conclude

by induction, H holds for all n ∈ N.

The base case is usually proved by some direct argument about 0. In the induc-
tion step, H(k) ⇒ H(k + 1), the antecedent is called the induction hypothesis.
The argument for the induction case must in no way depend on the choice of k
We are actually proving: “For all k ∈ N, H(k) implies H(k + 1).

Example

Ex 4.1 Prove: For all n ∈ N,
n∑

i=0

i =
n(n + 1)

2

Proof: The proof is by induction on k ∈ N with hypothesis

H(k) ≡
k∑

i=0

i =
k(k + 1)

2

base case: For k = 0,
0∑

i=0

i = 0 =
0(0 + 1)

2

This proves the base case.
induction step: Assume that

∑k
i=0 i = k(k + 1)/2. We want to show that∑k+1

i=0 i = (k + 1)(k + 2)/2. Starting from the left-hand side, we have

k+1∑
i=0

i =

(
k∑

i=0

i

)
+ (k + 1) (expand

∑
)

=
k(k + 1)

2
+ (k + 1) (induction hypothesis)

=
k(k + 1)

2
+

2k + 2
2

(multiply by 2
2)

=
k2 + 3k + 2

2
(add fractions, arithmetic)

=
(k + 1)(k + 2)

2
(factor the numerator)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

4.1. NUMERICAL INDUCTION 49

This proves the induction step, and we may now conclude that for all n ∈ N,∑n
i=0 i = n(n + 1)/2.

Remark: The sum
n∑

i=0

i = 0 + 1 + · · ·+ n

can be thought of as an array of 0, 1, . . . , n dots A diagrammatic
argument shows that two such triangles fit together to form an
n× (n + 1) rectangle.

=
...

0

n

3

2

1
...

n

3

1

0

2
+ n+1

n

The area of the sum is half the area of this rectangle, or n(n+ 1)/2.
To most people, this picture is convincing enough to know that
the theorem is valid. This diagrammatic proof is often attributed
to Eighteenth Century mathematician Karl Friedrich Gauss. The
story goes that as a punishment, the teacher assigned Gauss’s 3rd

grade class to from 1 to 100. Writing this once and then again in
reverse:

1 + 2 + · · · + 100
+ 100 + 99 + · · · + 1

= 101 + 101 + · · · + 101

Gauss saw that each column has the same partial sum so the final
sum is 100× 101 divided by 2.

Whether inspired by the diagram or by a manipulation of sums, the
intuitive explanation is more compelling than the induction proof.
Whether the intuitive explanation is really a proof is debatable,
but it can be seen as an application of Theorem 4.2, later in this
chapter. End Remark

The outline of an inductive proof is shown in Figure 4.1. You should include
this “boilerplate” when doing the exercises in this section, even though some of
it is repetitive. It will help clarify some of the variations on inductive arguments
we explore later on.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

50 CHAPTER 4. INDUCTION

theorem For all n ∈ N, H(n).

[H is a predicate on natural numbers. Later we do
induction on other kinds of sets.]

Proof The proof is by induction on k ∈ N with hypothesis
H(k).

[Always announce the induction; it helps orient the
reader. The induction hypothesis is the unquantified
property H(k). Any variable could be used in place
of k—even n—but it is less confusing to introduce a
new variable. Always state the variable over which
the induction is done and state exactly what H(k)
is.]

base case

[Argue directly for the truth of H(0).]

This concludes the base case.

induction step Assume H(k).

[State the induction hypothesis. The proof of H(k +
1) may use this assumption once or several times.
Always say exactly where the assumption is used.]

This concludes the induction. We may conclude that H(n) holds
for all n ∈ N.

Figure 4.1: Outline of an induction proof

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

4.1. NUMERICAL INDUCTION 51

Example

Ex 4.2 Prove: For given constants, a and r 6= 1, and for all natural numbers
n,

n∑
i=0

ari =
arn+1 − a

r − 1

Proof: The proof is by induction on k with hypothesis

H(k) ≡
k∑

i=0

ari =
ark+1 − a

r − 1

base case: We are to prove that ar0 = (ar(0+1) − a)/r − 1. Reasoning from
the right-hand side,

(ar(0+1) − a)
r − 1

=
ar − a

r − 1
(r(0+1) = r1 = r)

=
a(r − 1)
r − 1

(distribute a)

= a (cancel r − 1)

= a · 1 (multiply by 1)

= ar0 (substitute, r0 = 1)

This proves the base case.
induction step: Assume that

∑k
i=0 ari = (ark+1 − a)/(r − 1). To prove

H(k + 1),

k+1∑
i=0

ari =

(
k∑

i=0

ari

)
+ ark+1 (expand

∑
)

=
ark+1 − a

r − 1
+ ark+1 induction hypothesis

=
ark+1 − a

r − 1
+

ark+1(r − 1)
r − 1

(multiply by 1 =
(r − 1)
(r − 1)

)

=
ark+1 − a + ark+1(r − 1)

r − 1
(add fractions)

=
ark+1 − a + ark+1r − ark+1

r − 1
(multiplication)

=
ark+1r − a

r − 1
(cancel negatives)

=
ark+2 − a

r − 1
(add exponenets)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

52 CHAPTER 4. INDUCTION

This completes the induction case. We have shown by induction that for all
natural numbers n,

∑n
i=0 ari = (arn+1 − a)/(r − 1).

Both the base and induction cases show more details of algebra than would
usually be required. From now on, algebraic derivations will be shorter. How-
ever, one must always show precisely where the induction hypothesis is applied.

Example

Ex 4.3 Assume that each number M is can be written as a product of prime
numbers, M = q1 ·q2 · · · qk and that this decomposition is unique. Prove: There
are infinitely many prime numbers.

Proof: The proof is by induction on k with hypothesis

H(k) ≡ “there are more than k prime numbers.”

base case: H(0) holds because there are more than 0 prime numbers. In
particular, 2 is prime. This concludes the base case.
induction step: Assume H(k); that is, assume there are more than k prime
numbers. To prove H(k + 1), that there are more than k + 1 prime numbers,
we will assume there are not and derive a contradiction.

If there are more than k but not more than k + 1 prime numbers, then there
must be exactly k + 1 primes. Let these numbers be denoted by p1, p2, . . . ,
pk+1. Now consider the number

N = 1 + p1p2 · · · pk+1

N is not equal to any of the k+1 known primes so it cannot be prime. Therefore,
N must be evenly divisible by at least one prime number, pi. But if pi evenly
divides N , since it divides p1p2 · · · pk+1 it must also divide 1. This is impossible
and so we have reached a contradiction from the hypothesis that there are just
k + 1 primes. There are more; but this is just what we wanted to prove. This
completes the induction step and we may conclude that

for all n ∈ N, there are more than n primes.

Another way to state this conclusion is, “there are infinitely many primes.”

Sometimes, inductions start at some number other than zero. This is really
just a matter of how the induction hypothesis is stated.

Example

Ex 4.4 Any amount of postage exceeding 7c/ can be made up using only 3c/ and
5c/ stamps.

For example, a postage of 29c/ is made up of eight 3c/ stamps and one 5c/ stamp.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

4.1. NUMERICAL INDUCTION 53

Proof: The proof is by induction on k with hypothesis

H(k) ≡ Any postage of up to kc/, k ≥ 8, can be made up from 3c/ and
5c/ stamps.

base case: One 5c/ and one 3c/ stamps make 8c/ postage.
induction step: Assume H(k) and consider making (k +1)c/ postage. There
are two cases to consider, depending on whether a 5c/ stamp is used to make kc/
postage.

case I If a 5c/ stamp is used to make kc/ postage then replacing that
stamp with two 3c/ stamps makes (k + 1)c/ postage.

case ii If kc/ postage is made up of 3c/ stamps only, then there must be
at least three 3c/ stamps because k ≥ 8. Replacing three of the 3c/ stamps
with two 5c/ stamps then makes (k + 1)c/ postage.

The two cases complete the induction case and the proof of the claim.

Had the induction hypothesis been, “Postage of (k + 8)c/ can be made up
from 3c/ and 5c/ stamps,” then the base case would have been for k = 0, but the
algebra would have been more complicated. Starting at some number n > 0 is
called a base translation.

Sometimes, it is convenient to use a form of inductive argument in which the
hypothesis is assumed to hold for all numbers up to k. In words,

If you can prove

(base case) the assertion H(0) holds, and

(induction step) whenever H(0), H(1), . . ., H(k−1)
all hold, so does H(k),

then you may conclude

by induction, H holds for all n ∈ N.

This principle is equivalent to the first principle because the induction hy-
pothesis is still a proposition about a natural number k. See Exercise 7.

Example

Ex 4.5 Every natural number greater than 2 is uniquely decomposable into a
product of prime numbers.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

54 CHAPTER 4. INDUCTION

Proof: The proof is by (course-of-values) induction on k with hypothesis

H(k) ≡ all numbers less than k are uniquely decomposable into a prod-
uct of primes.

base case: The base case, for k = 2, holds because 2 is the only prime divisor
of 2.
induction step: Assume that every number less than k is uniquely decom-
posable, and suppose that k can be decomposed in two ways,

k = p1p2 · · · pn

and
k = q1q2 · · · qm

such that each of the p’s and q’s is prime. Since k is decomposable, it can’t
itself, be prime, so we also know that k = st for two smaller numbers s and t.
Without loss of generality, we can assume that the p’s and q’s are arranged so
that

k = st = (p1 · · · pi)(pi+1 · · · pn)

and
k = st = (q1 · · · qj)(qj+1 · · · qm)

for indices i and j, where 1 ≤ i ≤ n and 1 ≤ j ≤ m. Since s and t are both
less than k, by the induction hypothesis each has a unique decomposition. This
implies that i = j, n = m, and for 1 ≤ ` ≤ n, p` = q`. In other words,
k’s decomposition is unique. This completes the induction case and we may
conclude that all natural numbers are uniquely decomposable into primes.

Remark: In the induction step, the phrase “without loss of generality” ac-
knowledges a specific assumption made in order to simplify the ar-
gument. In this case, it is assumed that the p’s and the q’s hap-
pen to be arranged in an order that exposes the decompositions
of s and t. There is no loss of generality because multiplication is
commutative—we are free to rearrange the p’s and the q’s as we
want. However, to do so would make the argument much longer
without adding any insight. End Remark

Exercises 4.1

1. Prove that for all natural numbers, n,

n∑
i=0

i2 =
n(n + 1)(2n + 1)

6

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

4.2. MORE EXAMPLES OF INDUCTION 55

2. Prove that for all natural numbers, n,

n∑
i=0

i(i!) = (n + 1)!− 1

3. Prove that for all natural numbers n, 6 evenly divides n3 − n.

4. Prove that for all natural numbers n > 4, 2n > n2.

5. Prove that for all natural numbers n,
n∑

i=0

i3 =

(
n∑

i=0

i

)2

.

6. Recall that the choose function, defined(
s

r

)
=

s!
r! (s− r)!

is the number of different ways to choose r objects from a set of s objects.
Prove that for all n ∈ N,

n−1∑
i=0

(2i)2 =
(

2n

3

)

7. Let H be a predicate on N. Explain how the proposition for all n ∈ N such
that n > M , H(n) can be transformed to an equivalent proposition, for all
n ∈ N, H ′(n), for some predicate H ′ on N. Perform this transformation
on the proposition in Exercise 4

8. Let H be a predicate on N. Explain how the proposition for all n ∈ N such
that n > M , H(n) can be transformed to an equivalent proposition, for all
n ∈ N, H ′(n), for some predicate H ′ on N. Perform this transformation
on the proposition in Exercise 4

9. Repeat the proof of Exercise 4.5 using the first Principle of Induction,
with the induction hypothesis:

H(k) ≡ For all j ≤ k, j is uniquely decomposable into a product of
primes

4.2 More Examples of Induction

Although inductive proofs can always be reduced to arguments about a nat-
ural number, induction is not used only to prove facts about arithmetic. In
this section, we look at a few non-arithmetic results. The first has to do with
geometry.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

56 CHAPTER 4. INDUCTION

Example

Ex 4.6 A polygon is convex if every line joining the points of the polygon lies
within the polygon. Equivalently, all vertices of a convex polygon “point out.”
Prove that the sum of the interior angles of a n-sided convex polygon, n ≥ 3, is
equal to (n− 2) · 180◦.

Proof: The proof is by induction, with predicate

H(k) ≡ The sum of the interior angles of a convex polygon with at most
k sides is (k − 2) · 180◦.

base case: In the base case, H(3) asserts that the sum of the angles of a
triangle is (3 − 2) · 180◦ = 180◦. We know from elementary geometry that this
is the case. To prove it, place the triangle between two parallel lines as shown
below. Since lines ED and AB are parallel, angles ACE = CAB and DCB =
CBA. Furthermore, since ECD is a straight line, ECA+ACB +DCB = 180◦.

E C D

A B
(Check that the argument doesn’t depend on ABC being an acute triangle!)
induction step: Assume H(k). Now consider any polygon P with k+1 sides.
Since P has at least 4 sides, it is possible to divide it into two convex polygons
by drawing an interior line between two of its vertices:

Q

R
P

Call these two polygons Q and R. Now, both Q and R are convex and have
fewer sides than P . In particular, each has at most k sides. Suppose Q has
lQ ≤ k sides and R has lR ≤ k sides. Together, Q and R have two more sides
than P ; that is,

lQ + lR − 2 = k + 1 (4.1)

In addition, since P is formed by putting Q and R side-by-side: The sum of
P ’s interior angles is equal to the sum of the interior angles of Q and R. By the

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

4.2. MORE EXAMPLES OF INDUCTION 57

induction hypothesis, the sum of the interior angles of Q is (lQ − 2) · 180◦. By
the induction hypothesis the sum of the interior angles of R is (lR − 2) · 180◦.
Therefore, the sum of P ’s interior angles is

((lQ − 2) + (lR − 2)) · 180◦

= ((lQ + lR − 2)− 2) · 180◦ (rearrange sums)

= ((k + 1)− 2) · 180◦ (by Equation 4.1)

This completes the induction and proves that the sum of the interior angles of
any convex polygon with n sides is (n− 2) · 180◦.

Discussion: There are three points of interest about Example 4.6. First, the
statement has the form: For all n ≥ 3, H(n), so the base case is k = 3. The
hypothesis could be changed to make 0 the base case:

H ′(k) ≡ The sum of the interior angles of a convex polygon with at most
k + 3 sides is (k + 1) · 180◦.

Second, had the proof been declared to be course-of-values induction, the hy-
pothesis could have been written:

H ′(k) ≡ The sum of the interior angles of a convex polygon with k sides
is (k − 2) · 180◦.

The missing phrase “at most” becomes part of the proof scheme. (In fact, this
proposition can just as easily be proved using the first induction principle with
the above hypothesis. See Exercise 3 at the end of this section.)

Third, notice that in this proof the induction hypothesis is used twice to
reason about polygons Q and R.

In the next example, we prove a distributive law for the operations of intersection
and union on sets. A number of similar laws are proven as exercises.

Example

Ex 4.7 Let B,A1, A2, . . . , An, n ≥ 1, be any collection of sets. Then

H(n) ≡ B ∩
n⋃

i=1

Ai =
n⋃

i=1

B ∩Ai

Proof: The proof is by induction on k with hypothesis H(k).
base case: If there is just one set, A1, then the extended union degenerates:

B ∩
1⋃

i=1

Ai = B ∩A1 =
1⋃

i=1

(B ∩Ai)

Although this proves the base case, it is still it is worthwhile looking at the case
for two sets. We can prove

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

58 CHAPTER 4. INDUCTION

Lemma
B ∩ (A1 ∪A2) = (B ∩A1) ∪ (B ∩A2)

Proof: This Venn diagram:

B ∩ (A1 ∪A2) =

A1 A2

B

= (B ∩A1) ∪ (B ∩A2)

The same argument as in the base case is used for the induction step:
induction step: Assume H(k) holds. For a collection of sets A1, A2, . . . , Ak+1,
consider

B ∩
k+1⋃
i=1

Ai

The union of the Ai can be expressed as the union of two sets,

= B ∩

(
k⋃

i=1

Ai ∪Ak+1

)

By the argument just given intersection can be written,

=

(
B ∩

k⋃
i=1

Ai

)
∪ (B ∩Ak+1)

According to the induction hypothesis, intersection with B distributes over the
extended union:

=
k⋃

i=1

(B ∩Ai) ∪ (B ∩Ak+1)

Extending the limits of the extended union, we get

=
k+1⋃
i=1

(B ∩Ai)

this completes the induction step and the proof of the claim.

With the next two examples, we embark on a study of rigorous reasoning about
programs. Our first step in the next example is a small one, but we immediately
generalize to an important fundamental principle.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

4.2. MORE EXAMPLES OF INDUCTION 59

Consider the following program, P, in which program variables w, x, y and
z range over integers.

P : begin
{A > 0}
x := A;
y := B;
z := 0;

` : while x 6= 0 do
begin
x := x− 1;
z := z + y
end;

w := z;
end {w = AB}

The comments indicate that if A is nonnegative, this program computes the
product AB, leaving the result in w. An intuitive explanation is that the while
statement ` “loops” just x times, adding y to z each time through. Of course,
this only works if x is a nonnegative value. An induction is needed to prove this
claim:

Proposition 4.1 If program P, shown above, ever reaches the loop ` with x ∈
N, then P halts with w = z + xy.

Before doing the proof, observe that if this proposition holds, then we can
conclude that P computes AB because after the initial assignments, program
variables x, y, and z hold values A, B, and 0, respectively, so that

w = 0 + AB = AB

Remark: Note also that in making a formal statement of this property, there
is a confusion between the name of a program variable and the
value it contains. For example, the equation “w = z + xy” refers to
the value in w after the loop executes and the values of x, y, and
z before the loop starts executing. It is this confusion that makes
programs hard to talk about; it is caused by the lack—at this stage
of the book—of a good mathematical model of how programs work.

End Remark

Proof: The proof is by induction on natural number k with hypothesis

H(k) ≡ If P ever reaches the loop ` with x = k, then P halts with
w = z + xy.

base case: Should P reach ` with x = 0 then the test “x 6= 0” fails; so the
program leaves the loop and sets w to z = z + 0y = z + xy. This concludes the
base case.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

60 CHAPTER 4. INDUCTION

induction step: Assume H(k) and now suppose that P reaches ` with x =
k + 1. Then the test “x 6= 0” succeeds; so P executes the body of the loop and
returns to ` with new values in the three program variables, given by:

x′ = x− 1 = k

y′ = y (y is unchanged)
z′ = z + y

But since program variable x now contains k (again, note the name/value con-
fusion) the induction hypothesis applies. Hence, P halts with w = z′ + x′y′.
That is

w = z′ + x′y′

= z + y + (x− 1)y
= z + y + xy − y

= x + xy

This concludes the induction step and we may now conclude:

If P ever reaches the loop ` with x ∈ N, then P halts with
w = z + xy.

as needed.

The proof of the previous example hinged on the discovery of a property that
held each time the program returned to the beginning of its loop. Such a property
is called a loop invariant; it captures the “essence” of what the loop does. We
can generalize the preceding argument to talk about certain kinds of loops, and
this gives us a new principle of induction to use in reasoning about programs.

Theorem 4.2 [Theorem on Loop Invariants] Let B be any test, S any state-
ment, and consider the program fragment

...
` : while B do S;
`′ :

...

Suppose I is a property such that

G ≡ whenever both I and B hold before S executes, I holds again
after S executes.

Then should P ever reach ` with I true, and if P then reaches the point `′, I
will be true and B will be false.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

4.2. MORE EXAMPLES OF INDUCTION 61

Proof: The proof is by induction, of course. It uses the fact that if P reaches
the point `′ it must do so by executing the body S some finite, integral number
of times. Hence, the induction hypothesis is

H(k) ≡ Should P ever reach ` with I true, and if P then reaches the
point `′ after going through the loop exactly k times, I will be
true and B will be false.

Completing the proof is a simple exercise.

Example

Ex 4.8 The Theorem on Loop Invariants allows us to distill the proof of Propo-
sition 4.1 to its essential details, once we have discovered the invariant property:

AB = z + xy

The theorem does the induction “once and for all.”

(a) By looking at the initial assignments we know that program P reaches the
loop with

z + xy = 0 + AB = AB

(b) In the proof of Proposition 4.1 we showed that whenever P reaches its
loop with AB = z + xy, this equation will still hold after the loop’s body
executes.

Therefore, by the Theorem on Loop Invariants, when the program leaves its
loop, we will have both AB = z + xy and x = 0, hence z = AB.

Exercises 4.2

1. Prove that for all natural numbers n ≥ 1, if B,A1, . . . , An are sets, then

B ∪
n⋂

i=1

Ai =
n⋂

i=1

(B ∪Ai)

2. Prove that for all natural numbers n ≥ 1, if B,A1, . . . , An are sets, then

B ∪
n⋂

i=1

Ai =
n⋂

i=1

(B ∪Ai)

3. For n ∈ N, let Q, P1, P2, . . . , Pn be propositions. Prove the following:

(a) Q ∧
n∨

i=1

Pi =
n∨

i=1

(Q ∧ Pi) (c) Q ∨
n∧

i=1

Pi =
n∧

i=1

(Q ∨ Pi)

(b) ¬
n∧

i=1

Pi =
n∨

i=1

(¬Pi) (d) ¬
n∨

i=1

Pi =
n∧

i=1

(¬Pi)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

62 CHAPTER 4. INDUCTION

4. Prove Example 4.6 using the First Principle of Induction, with induction
hypothesis H(k) ≡ “The sum of the interior angles of any convex polygon
with exactly k sides, k > 3, is (k − 2) · 180◦.”

5. Recall that a tree is a finite acyclic graph with a single root node of in-
degree 0 and all of whose nodes except the root have in-degree 1. Prove
that the number of nodes in a binary tree is exactly one greater than its
number of edges.

6. Recall (Exercise 2) that a binary tree is a tree whose interior nodes all
have out-degree 2. Prove that the number of leaves of a binary tree is
exactly one greater than the number of interior nodes.

7. Complete the proof of Theorem 4.2.

8. Consider the program
P : begin

{A, B > 0}
x := A;
y := B;

` : while x 6= 0 do
begin
x := x− 1;
y := y + 1
end;

end {y = A + B}

Use Theorem 4.2 and invariant assertion

I ≡ x + y = A + B

to prove that this program computes A + B.

9. Consider the program

P : begin
{A, B > 0}
q := 0;
r := A;

` : while r ≥ B do
begin
q := q + 1;
r := r −B
end;

end {A = qB + r ∧ r < B}

Use Theorem 4.2 and invariant assertion

I ≡ A = qB + r

to prove that this program computes the quotient and remainder of A and
B.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 5

Countability and Order

5.1 Cardinality and Countability

For infinite sets, it makes little sense to say |S| is a number or that S has a
“size”. Nevertheless, we are interested in comparing infinite sets, so the concept
of a set’s size must be made more general.

Definition 5.1 Two sets, S and T , said to be of the same cardinality if one
can exhibit a one-to-one correspondence between them, that is, if a bijection
f : A↔ B exists.

In the case of two finite sets, we need only show that |A| = |B|. It should also
make sense—although we do not yet have the technical means to prove it—that
if |A| 6= |B|, there can be no bijection between them: no mapping from the
larger to the smaller set can be injective. In other words, any function from the
larger set to the smaller must map two or more elements to the same target.

Fact 5.1 (Pigeon-Hole Principle) If |A| > |B| and g : A → B, then there
exists at least one b ∈ B for which |g−1{b}| > 1.

The Pigeon-Hole Principle often arises in proofs-by-counter-example, as for ex-
ample, in showing that a path in R ⊆ A × A of length n > |A| must contain a
cycle.

In the case of infinite sets, we are particularly interested in those having the
same cardinality as W. In essence, these are sets that can be indexed by whole
numbers, and so can be can be listed “in order,”

S = {s1, s2, s3, . . . , si, . . .}

For most purposes, it is enough to know that S is “small enough” to be listed
in a linear order, even if some of the indices are missing. So we don’t need a
bijection; and injection is good enough.

Definition 5.2 A set S is countable if there exists an injection, C : S →W.

63

64 CHAPTER 5. COUNTABILITY AND ORDER

Proposition 5.2 N is countable.

Proof: The mapping C : n→ n + 1 gives a bijection, hence also an injection
from N to W.

Proposition 5.3 The integers, Z, are countable.

Proof: The proof is done by exhibiting a function that satisfies Definition 5.2.
Define C : Z→ N according to:

C(x) =

{
2x if x ≥ 0
−(2x + 1) if x < 0

C maps positive integers to even numbers and negative integers to odd numbers.
Hence, it is injective; different numbers never get the same index.

The next proposition allows us to use any countable set to index another
countable set. In other words, we don’t have to be overly specific about how the
elements are ordered, because in most cases we are more interested in cardinality,
not the exact correspondence.

Proposition 5.4 A set S is countable if there exists an injection from S to a
countable set, A.

Proof: If f : S → A and C : A→W are both injections, then so is f ◦C : S →
W.

Theorem 5.5 The rational numbers, Q, are countable.

Proof: Recall that Q = { n
m | n, m ∈ Z and m 6= 0}. Looking at Propositions

5.2, 5.3 and 5.4 it suffices to restrict to positive rationals, Q+ = { n
m | n, m ∈W}.

We are actually showing that W×W is a countable set. Consider this set layed
out as an infinite two-dimensional array, below. We will define the required
bijection C so that it orders this array along successive diagonals.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

5.1. CARDINALITY AND COUNTABILITY 65

1
1

2
1

3
1

4
1

5
1

6
1

7
1

8
1

9
1
· · ·

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2

9
2
· · ·

1
3

2
3

3
3

4
3

5
3

6
3

7
3

8
3

9
3
· · ·

1
4

2
4

3
4

�� �� 4
4

5
4

6
4

7
4

8
4

9
4
· · ·

1
5

2
5

3
5

4
5

5
5

6
5

7
5

8
5

9
5
· · ·

1
6

2
6

3
6

4
6

5
6

6
6

7
6

8
6

9
6
· · ·

1
7

2
7

3
7

4
7

5
7

6
7

7
7

8
7

9
7
· · ·

1
8

2
8

3
8

4
8

5
8

6
8

7
8

8
8

9
8
· · ·

...
...

...
...

...
...

...
...

...
. . .

��	

1
9

2
9

3
9

4
9

5
9

6
9

7
9

8
9

9
9
· · ·

��	

��	

��	

��	

��	

��	

��	

��	

��	

��	��	

��	

��	

��	

��	

��	

��	

��	

��	

To calculate C(x
y) consider:

(a) x + y is two greater than the length of the diagonal just above it, and
all the rationals on that diagonal and above are counted. The number of
these points is the sum of the lengths of the preceding diagonals (Recall
Example 4.1),

x+y−2∑
i=1

i =
(x + y − 1) · (x + y − 2)

2

(b) The number of points along the diagonal leading to x
y is the same as the

number of points directly above x
y , which is y − 1. See Fig. 5.1

Adding these together, we get

C(x
y) = ((x+y)−1)((x+y)−2)

2 + y − 1

= (x+y)2−3(x+y)+2
2 + 2y−2

2

= (x+y)2−3x−3y+2+2y−2
2

= (x+y)2−3x−y
2

Remark: The display leaves out rationals of the form 0
y , which could have

been included by adding another row along the top and adjusting
the formula for C. This is left as an Exercise.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

66 CHAPTER 5. COUNTABILITY AND ORDER

x
y

(a)

(b)

Figure 5.1: Calculation of C(x
y)

You might be concerned about the fact that C maps “equivalent”
rationals to different values. For instance C(1

1) = 1, C(2
2) = 5,

C(3
3) = 13, C(4

4) = 25, and so forth, but all these fractions reduce
to the number 1. However, in this theorem we are not counting
equivalence classes, but numeric representations according to the
definition of Q. Even if we were to consider equivalent values to
represent the same number, countability just says that there are no
more elements of a set S than there are whole numbers, so it is all
right to count something more than once, as long as everything is
counted at least once.

When one thinks of rational numbers, one ordinarily thinks of the
real numbers they represent and also includes negative values. These
could be incorporated in C, for instance, by mapping positive ra-
tionals to even numbers and negative rationals to odd numbers, as
in Proposition 5.3. End Remark

The next theorem illustrates an important proof technique called diagonal-
ization, used frequently in theoretical computer science.

Theorem 5.6 R is not countable.

Proof: This is a proof by contradiction, in which we assume the result is true
and then deduce that it cannot hold. It depends on the fact that any real number
can be expressed as a possibly infinite decimal expansion, and conversely, that
any decimal numeral represents some real number. For the sake of simplicity
we will consider only the numbers in the interval [0, 1). If we can’t count these,
we certainly can’t count the entire set R.

Suppose that we can count the numbers in this interval. Then there must
be a way to list them in order, {r1, r2, r3, . . .}. Consider the decimal expansions

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

5.2. ORDER NOTATION AND ORDER ARITHMETIC 67

of the ri:

r1 = 0 . d11 d12 d13 d14 d15 d16 d17 d18 . . .

r2 = 0 . d21 d22 d23 d24 d25 d26 d27 d28 . . .

r3 = 0 . d31 d32 d33 d34 d35 d36 d37 d38 . . .

r4 = 0 . d41 d42 d43 d44 d45 d46 d47 d48 . . .

r5 = 0 . d51 d52 d53 d54 d55 d56 d57 d58 . . .

r6 = 0 . d61 d62 d63 d64 d65 d66 d67 d68 . . .
...

. . .

where each dij ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} Now consider the numeral

0 . d′11 d′22 d′33 d′44 d′55 d′66 . . . d′kk . . .

In which each digit d′kk is chosen to be different than dkk from the list of ris.
The number this numeral represents cannot be in the list because for all n ∈W
it differs at the nth decimal place from the nth numeral in the list (hence the
term diagonalization). This contradicts the assumption that all numbers are
listed, so that assumption must be false; and this completes the proof of the
theorem.

Remark: Although it is essentially correct, this argument is subtly flawed,
because the same number can have two different decimal represen-
tations. For instance, 0.0999 . . . = 0.1 which follows from the fact
that

(10x− x)÷ 9 =
9
9
x = x

The proof can be repaired by excluding such redundant decimal
expansions from the list, but the details are not illuminating.

End Remark

Exercises 5.1

1. Modify the proof of Proposition 5.5 to include rationals of the form 0
y for

y ∈W.

2. Prove: If sets A and B are countable, then so are A∪B, A×B and A\B.

3. Suppose sets A and B are countable. Explain why P (S) and f : A → B
are not necessarily countable.

5.2 Order Notation and Order Arithmetic

Functions from N to R are used to estimate program running times, memory
requirements, file sizes, and other resources that may vary depending on some

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

68 CHAPTER 5. COUNTABILITY AND ORDER

program parameter. The rate at which these resources grow as the problem
size gets larger is one way to characterize an algorithm for solving the problem.
Often, this rate cannot be precisely determined, of if it can, the formula is too
complicated to work with.

Figure 5.2 shows the measured running times of a program and three func-
tions approximating its behavior. The dotted line represents an estimated sta-
tistical average, obtained by finding a “smooth” curve of minimal distance from
the measured times. Upper line is a curve that lies close to but above all mea-
sured times; it represents an upper bound estimate of performance. Similarly,
the curve lying below the points is a lower bound . The area between the upper
and lower bounds is called the performance envelope of the program.

These approximations are all parabolas, given by formulas of the form

f(n) = an2 + bn + c

for various coefficients a, b and c. So the program’s running time can be char-
acterized as quadratic (varying with the square of input n. When comparing
f with the envelope for some other program, the first concern is whether their
growth rates are related; do they both grow quadratically, or does is one signifi-
cantly different. In making this comparison, we are interested their behavior as
n grows ever larger, and we are not interested in constant ratios. These ideas
are captured in the next definition, in which R+ stands for the set of postitive
real numbers, {x ∈ R|x > 0}.

Definition 5.3 Let f, g : N → R+. We say that f is of order g, written f ∈
O(g), if there exist N ∈ N and C ∈ R such that for all n ≤ N , f(n) ≤ C · g(n).

The N and C Definition 5.3 are sometimes called witnesses; N may be
referred to as a threshold ; and C as a proportionality constant.

Example

Ex 5.1 Let f(n) = 2n2 + 5n + 3 and e(n) = n2. Show that f ∈ O(e).
Solution: We need to find a constant factor, C and a threshold value N at
which

2N2 + 5N + 3 ≤ cN2

Consider each term in f(n) to find a dominating value in terms of n2:

(a) If 5 ≤ m then 5m ≤ m2.

(b) If 2 ≤ m then 3 ≤ m2.

(c) To satisfy both (a) and (b) take N to be 5. Then for any n ≥ N

f(n) = 2n2 + 5n + 3 ≤ 2n2 + n2 + n2 = 4n2

Thus f ∈ O(n2) with witnesses N = 5 and C = 4.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

5.2. ORDER NOTATION AND ORDER ARITHMETIC 69

“Big Oh” relationships may be expressed without giving names to the func-
tions, by just using their defining expressions. So Example 5.1 might have been
written,

Show that 2n2 + 5n + 3 ∈ O(n2)

The propositions and the exercises that follow state some basic properties about
O.

Proposition 5.7 If f ∈ O(g) and g ∈ O(h) then f ∈ O(h).

Proof: Exercise 3

Proposition 5.8 If f1 ∈ O(g1) and f2 ∈ O(g2) then f1(n)+f2(n) ∈ O
(
g1(n)+

g2(n)
)
.

Proof: Exercise 6

Proposition 5.9 If f1 ∈ O(g1) and f2 ∈ O(g2) then f1(n)×f2(n) ∈ O
(
g1(n)×

g2(n)
)
.

An example of a property for which there is no simple relationship is function
composition. If f1 ∈ O(g1) and f2 ∈ O(g2) we would wish for simple order
relationship between f1 ◦ f2 and O(g1 ◦ g2. Unfortunately, there is no simple
formula for this relationship.

Proof: Exercise 7

Exercises 5.2

1. For positive real coefficients a0, a1, . . . , an, let f : N→ R be a polynomial
function,

f(x) = anxn + · · ·+ a1x
1 + a0x

0

For example, one such function is

F (x) = 3x4 + 2.0x3 + 3.3x2 + 9x + 1

in which the coefficients are a0 = 1, a1 = 9, a2 = 3.3, a3 = 2.0, and
a4 = 3.

Show, in general, that f ∈ O(xn).

2. Define two functions, f and g, for which f 6∈ O(g) and g 6∈ O(f).

3. Prove Proposition 5.7: If f1 ∈ O(g1) and f2 ∈ O(g2) then f1(n) + f2(n) ∈
O
(
g1(n) + g2(n)

)
.

4. Prove that for any base b, logb(x) ∈ O(x).

5. Prove that for any bases b and b′, logb(x) ∈ O(logb′(x)).

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

70 CHAPTER 5. COUNTABILITY AND ORDER

6. Prove Proposition 5.8

7. Prove Proposition 5.9: If f1 ∈ O(g1) and f2 ∈ O(g2) then

f1(n)× f2(n) ∈ O
(
g1(n)× g2(n)

)
.

8. It is a fact that nx ∈ O(2n). Explain or prove this result. Hint: A
complete proof requires some familiarity with ideas from The Calculus;
specifically, that for strictly increasing functions f and g over the interval
[a, b], if f(a) < g(a) and f(b) < g(b) then f(x) < g(x) for all a ≤ x ≤ b.

9. Is 2n ∈ O(n!) or is n! ∈ O(2n)?

5.3 Complexity

Note: This section is incomplete In this chapter, we have looked at the con-
cept of “size,” first extended to non-finite sets, and later to order relationships
between functions. Two results are worth special attention:

(a) Theorem 5.6 shows that there are different orders of infinity (or infinite
magnitude).

(b) Exercises 8 and 1, together, say that the exponential function, e(n) = en

dominates every polynomial, p(n) = a0n
0 + a1n

1 + · · ·+ amnm

These results hint at a stratification of order (or cardinality) that turns out to
be relevant to computational models.

5.3.1 The Halting Problem

An important question to ask about computing is whether a program can, or
cannot, be written to solve a kind of problem. If a program can be written
to solve all instances of a problem class, that problem is said to be decidable.
To say that a problem is undecidable means that any program written to solve
the problem class will fail on some, but not necessarily all, problem instances.
“Failure” does not say that the program will get the wrong answer, but that it
will fail to find any answer at all; that is, that the program may fail to terminate.

Theorem 5.10 (The Halting Problem) It is undecidable whether a program p
terminates on input i.

Proof Outline. Here, the problem class is to determine whether a given
program terminates or not. So a program to solve this problem must take a
program as one of its inputs. Suppose PL is a programming language. A more
detailed statement of this theorem would be:

There is no program H satisfying the property that, For all programs
p ∈ PL and inputs a, H(p, a) returns true iff p terminates on input i.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

5.3. COMPLEXITY 71

Proof Sketch: The proof is by a diagonalization. Suppose there is a program
HALT : PL × INPUT → {true, false} that satisfies the property, “HALT(P, I)
returns true if and only if program P terminates when given input I.” Using
HALT construct a new program,

HALT′ ≡ begin

code of program HALT, leaving
the result in variable halt;

if halt = true
then while true do nothing

else return(true)
end

Given any program P and input I, HALT′ returns true whenever the original
HALT would return false and loops forever, not returning anything, whenever
HALT would return true. Now, consider what would happen if HALT′ were to
be given itself —this is the diagonalization part—and an arbitrary input, say 0
for instance.

• if HALT′(HALT′, 0) terminates, then HALT(HALT′, 0) returns true, in which
case HALT′ loops forever.

• if HALT′(HALT′, 0) fails to terminate then HALT(HALT′, 0) returns false,
in which case HALT′ terminates, returning true.

In other words,

HALT′(HALT′, 0) terminates iff HALT′(HALT′, 0) doesn’t terminate.

This is a logical contradiction, so the premise—that HALT exists in the first
place—must be invalid.

Remark: The theorem does not say HALT can never tell whether P termi-
nates. We can surely write programs the detect some looping pat-
terns. However, such a program cannot always answer the question
for all possible programs, p ∈ STMT .

The theorem does say not that HALT will sometimes get the wrong
answer. With the rigorous definition of PL interpretation, we be
would be able to verify that

(a) whenever HALT(p, i) returns true p terminates on i, and

(b) whenever HALT(p, i) returns false p diverges on i.

So the theorem says that for some programs and some inputs, HALT
must fail to terminate.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

72 CHAPTER 5. COUNTABILITY AND ORDER

Diagonalization is a common technique, often but not always used
in for proof-by-contraction. One example is the

Theorem. In any programming language there is a program,
P whose output is P .

It is an interesting exercise to write a program that prints its own
text. The theorem says that you can do this with any general-
purpose programming language. Note, however, that you may have
to accept some variations in “white space” (blanks and new-line
characters). End Remark

5.3.2 Infeasible Problems.

We have just seen that there are problem classes for which no computer pro-
gram can solve all problem instances. There are also problem classes that are
decidabe but infeasible, solvable but inherently hard for a computer to solve. In
the mathematical theory of computational complexity, there is a a rather clear
boundary between feasible and infeasible problems. Exercise 8 states that 2n

dominates all geometric functions, nx.
Furthermore, some problems are inherently exponential. In other words, it

is not just the case that the best known decision algorithm is O(2n), but it can
be proved that any decision algorithm must be at least O(2n).

Perhaps surprisingly, some key examples of inherently infeasible problems
include basic problems we encountered in Chapter 2, including:

(a) Deciding whether a proposition is a tautology.

(b) Finding a case for which a proposition is true.

That these are decidable problems should be evident, since we have solved small
instances systematically with truth tables. Analysis by truth table is exponential
because the number of cases grows exponentially with the number of variables
in the formula. What may be surprising is the fact that there is no way to
improve on this exponential cost, in general.

Problem (b), above, is called the satisfiability problemsatisfiability problem.
It has special status because it is “representative” of the class NP of infeasible
problems for which solving is infeasible but verifying a solution is feasible.

5.3.3 Orders of Infinity.

Theorem 5.6 shows that there are different or orders of infinity. In particular,
|R| is strictly larger than |W| in the sense that W is countable and R is not. A
question that naturally arises is: how many infinities lie between |W| and |R|?
Provisionally, the answer is that there are discrete levels of infinity, that |W| is
the lowest level and |R the next larger level, and there are none between. This is
called the Continuum Hypothesis; which has the unusual status of being neither

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

5.4. ADDITIONAL PROBLEMS 73

provable nor disprovable from the standard assumptions of mathematics, which
is not to say that it is true or false, but that its truth cannot be derived from
the usual foundations.

Exercises 5.3

1. In a programming language of your choice, write a program that outputs
its own text.

5.4 Additional Problems

Most of these exercises have to do with applications of induction to program
performance analysis.

Exercises 5.4

1. (hard) Prove:For all n ∈ N,

n∑
i=0

(
n

i

)
= 2n

Now take another look at Exercise 3.2.5. Hint: This problem’s proof uses
the result of another exercise in this book.

2. Let A = {0, 1} and consider the language of binary strings, A∗. A binary
string bn bn−1 · · · b2 b1 b0 Can be interpreted as a base 2 numeral repre-
senting

n∑
i=0

b̂i · 2i

where b̂ is the numeric value of “bit” b, namely

b̂ =

{
the number 0 if b is the letter 0
the number 1 if b is the letter 1

For alphabet B = {0, 1,∃}, define the language L ⊆ B+—similar to simi-
lar the L in Section 7.7:

1. ∃ ∈ L
2a. u ∈ L⇒ 0̂ u ∈ L
2b. u ∈ L⇒ 1̂ u ∈ L
3. n. e.

(a) Define a recursive function V : L→ N that gives the binary value of
a word in L.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

74 CHAPTER 5. COUNTABILITY AND ORDER

(b) Define a recursive function I : L → L that, given the binary word
representing the number n ∈ N, returns the word representing n + 1.
That is, prove that

For all w ∈ L, V (I(w)) = V (w) + 1

(c) Define an “addition” function, A : (L× L)→ L, and prove

For all u, v ∈ L, V (A(u, v)) = V (u) + V (v)

3. Define F : N→ N and G : N2 → N as follows:

F (0) = 1
F (k + 1) = (k + 1) · F (k)

G(0,m) = m
G(k + 1,m) = G(k, m · (k + 1))

(a) Prove by induction on n ∈ N: For all n, m ∈ N, G(n, m) = m·G(n, 1).
(b) Prove: For all n ∈ N, F (n) = G(n, 1).

4. Define F : N→ N and T : N3 → N as follows:

F (0) = 1
F (1) = 1

F (k + 2) = F (k) + F (k + 1)

FT (0, n,m) = n
FT (k + 1, n,m) = FT (k, m, n + m))

Prove: For all n ∈ N, F (n) = FT (n, 1, 1)

5. Let a ∈ N. The function T : N→ N is defined recursively by

T (0) = 0
T (1) = a + 1

2

T (k + 2) = 2T (k + 1)− T (k) + 1

Prove that (n2/2) + an satisfies the recurrence, that is, for all natural
numbers n

T (n) =
n2

2
+ an

6. Let a ∈ N. The function T : N→ N is defined recursively by

T (0) = a
T (k + 1) = T (k) + k + 1

Prove that for all n ∈ N,

T (n) = a +
n2 + n

2

7. The function q : N2 → N is defined:

q(0,m) = m
q(k + 1,m) = 1 + q(k, m)

Prove that for all n ∈ N, q(n, 0) = q(0, n).

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

5.4. ADDITIONAL PROBLEMS 75

input value

ex
ec

ut
io

n
tim

e

Program B

10 20 30 40

10

20

30

40

50

Lower Bound

Upper Bound

Figure 5.2: Bounding functions for a program.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

76 CHAPTER 5. COUNTABILITY AND ORDER

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 6

Relations

After sets, the most fundamental concept we will use is that of a relation.

Definition 6.1 If A and B are sets, then any subset of A×B may be called a
relation from A to B, or equivalently, a relation with domain A and range B.

We often write simply R ⊆ A × B to say, “R is a relation from A to B.”
This chapter is devoted to introducing the rather extensive vocabulary used in
classifying and describing relations. We shall begin with the very important
class of functions, and then discuss a number of other classes.

It is often helpful to draw pictures of relations, or graphs . In analytic
geometry, a common form of graph is the Cartesian product. In this form, the
domain and range are laid out on horizontal and vertical axes. Elements of the
relation are shown according to their coordinates on the resulting plane. For
example, let the domain A be the set {a, b, c, d}; let the range B be the set
{a, b, c, d}; and consider the relation from A to B,

R = {(a, a), (b, b), (b, d), (d, c)}

A Cartesian graph of R, looks like this:

a b c d

a

b

c

d

77

78 CHAPTER 6. RELATIONS

Another way to represent R, called a bipartite graph,1 is drawn as follows. First,
write down all the elements of A in a column (or row). Next, write down all the
elements of B in another column. Finally, whenever there is an ordered pair,
(x, y) ∈ R, draw an arrow from x to y. A bipartite graph of R is shown below:

c

d

b

a

c

d

b

a
A B

When the domain and range of a relation are the same set, one can draw a
directed graph representing the relation. In a directed graph, the elements are
written down just once. Here is a directed graph of our example R:

a

d

cb

In computer science we often deal with finite, discrete sets. The bipartite and
directed graphs of relations on such sets sometimes convey more information
than the corresponding Cartesian graphs, and we shall see them often in this
book.

6.1 Functions

A common way to think about a function is as a rule. Sometimes, the rule is
specified by a formula; for instance, we might write

f(x) = x2 + 5x + 6

1Technically, a relation R ⊂ A×A is said to be bipartite if A can be divided into disjoint
subsets in such a way that for all (x, y) ∈ R, x and y come from different subsets. The graph
shown here diagrams a particular instance of a bipartite relation in which the domain and
range are disjoint.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.1. FUNCTIONS 79

to specify a parabolic function. There is the idea of a function as a ”box” that
computes a result based on its inputs:

fx f(x)

This notion of a function is close to our notion of a computer program. However,
the concepts of “function” and “program” differ in some fundamental ways and
it is important not to identify them too closely.

We can also think of a function as a particular kind of relation. The prop-
erty that distinguishes functions from other kinds of relations is that functions
associate just one value for a given input.

Definition 6.2 A function from X to Y is a relation f ⊆ X × Y such that for
every x ∈ X there is exactly one y ∈ Y such that (x, y) ∈ f .

We write f : X → Y to indicate that f is a function from X to Y . If (x, y) ∈ f ,
we say that y is the value of f at x, and write f(x) = y.

Example

Ex 6.1 Let X = {a, b, c, d}; and let Y = {1, 2, 3, 4}. and let

= {(a, 1), (b, 1), (c, 3), (d, 2)}

The relation f ⊆ X × Y is a function because each of the possible inputs from
domain X is associated with exactly one output. In the bipartite graph of f ,
we can see that there is just one arrow from each element of the domain.

c

d

b

a 1

2

3

4

Example

Ex 6.2 Let sets X and Y be as given in the previous example, and let

g = {(a, 3), (c, 2), (b, 4), (d, 1), (a, 4)}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

80 CHAPTER 6. RELATIONS

This relation is not a function because more than one value is associated with
a:

c

d

b

a 1

2

3

4
It does not make sense to use the notation g(x) = y when g is not a function,
for then we would have

3 ?= g(a) ?= 4

Example
Ex 6.3 Let sets X and Y be as given in Example 6.1, and let

h = {(a, 3), (c, 4), (d, 1)}

This relation is not a function because h has no value for b:

c

d

b

a 1

2

3

4

This too is a violation of the conditions of Definition 6.2.

Example
Ex 6.4 Considered as a relation from {a, c, d} to {1, 2, 3, 4} the relation h =
{(a, 3), (c, 2)(d, 1)} is a function:

c

d

a 1

2

3

4

Thus, the phrase “f is a function” is not meaningful unless we also specify the
domain and range.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.1. FUNCTIONS 81

The relation h in Example 6.3 is almost a function, except that it is undefined
for some elements in its domain. In this book, the term “function” always refers
to a completely defined relation, that is, a relation with a value for every possible
input. We use the term partial function to describe relations such as h.

Definition 6.3 A relation f ⊆ X ×Y is called a partial function from X to Y
if for every x ∈ X there is at most one y ∈ Y such that (x, y) ∈ f .

Thinking again in terms of programs, a function is like a well behaved com-
putation that produces an output for any chosen input. A partial function is
just like a function except that, possibly, for some of the inputs the program
gets “stuck in a loop” and produces no output. Notice though, that a relation
which satisfies Definition 6.2 also satisfies the wording of Definition 6.3. In other
words, we may say that a relation g is a partial function when it is unknown
whether g is defined for all possible inputs.

It is sometimes useful to restrict our attention to a subset of a function’s
domain and that portion of its range to which that subset maps. The latter set
set is called an image set. A converse notion is that of a preimage set. Given a
function f with domain X and range Y , the image of f could be expressed in
set-builder notation as

{y | y ∈ Y and y = f(x) for some x ∈ X}

and the preimage of f is

{x | x ∈ X and f(x) = y for some y ∈ Y }

These sets are specified in a more abbreviated form in the following definition.

Definition 6.4 Let f ⊆ X×Y be a partial function; and let A ⊆ X and B ⊆ Y .
The image of A under f is the set

{f(a) | a ∈ A}

and the preimage of B under f is the set

{a | f(a) = b for some b ∈ B}

For notation, we use fA to denote the image of A under f and f−1B to denote
the preimage of B under f .

Example

Ex 6.5 Let X = {1, 2, 3, 4, 5, 6} and Y = {1, 2, 3, 4, 5}, and consider the partial

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

82 CHAPTER 6. RELATIONS

function g described by the following bipartite graph:

1

2

3

4

6

5

1

2

3

4

5

The following are examples of image and preimage sets:

gX = {1, 3, 5}
g−1Y = {1, 3, 4, 5, 6}

g{4, 5, 6} = {1, 5}
g−1{2, 4} = ∅
g−1{4, 5} = {3, 5, 6}

The proof of the following proposition reminds us of just what qualities a func-
tion must have. Notice that the argument that f(x) is unique breaks down into
two simple arguments; one showing that f has at least one value at x; and the
other showing that f has at most one value at x.

Proposition 6.1 If f ⊆ X × Y is a partial function, then when considered as
a relation from f−1Y to Y , f is a function.

Proof: Since f−1Y is precisely the subset of X for which f is defined, it
follows that f ⊆ f−1Y × Y . For the same reason, we know that f has at least
one value for every x ∈ f−1Y. Since we have assumed it is a partial function, f
also has at most one value for every x ∈ f−1Y and is therefore a function.

Considered as relations, functions have some very pleasant properties which we
often take for granted. The following definition helps illustrate this point, and
also provides a useful way to build new relations.

Definition 6.5 Given two relations, R ⊆ X × Y and S ⊆ Y × Z, the compo-
sition of R and S, written S ◦R, is a relation from X to Z defined by:

S ◦R = {(x, z) | for some y ∈ Y , (x, y) ∈ R and (y, z) ∈ S}

The picture below illustrates the idea of composition. It defines an edge between
elements of X and Z whenever they are both related to a common element in

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.1. FUNCTIONS 83

Y :

Z
X

Y

S R

R

S

The next proposition establishes that composing two functions yields a function.

Proposition 6.2 Let A, B, and C be sets and suppose there are two functions,
f : A→ B and g : B → C. Then g ◦ f is a also a function.

Proof: Let u ∈ A. Since f is a function, there is a unique f(u) ∈ B, such that
(u, f(u)) ∈ f . Since g is a function, there is a unique g(f(u)) ∈ C, such that
(f(u), g(f(u))) ∈ g. By definition, we have (u, g(f(u))) ∈ g ◦ f , and we have
shown that this ordered pair is unique with respect to u. Since u was arbitrary,
g ◦ f is a function.

Remark: Function composition is usually defined without reference to the
more general notion of composition of relations. The typical word-
ing of the definition is

Let f : A→ B and g : B → C. The composition of g and
f is defined by (g ◦ f)(x) = g(f(x)).

Our proof of Proposition 6.2 establishes that g ◦ f is “well defined”;
that is, g ◦ f is actually a function. Verifying well-defined-ness it is
an important part of the defining process. but it is often left to the
reader. End Remark

The following definition describes three properties that a function might have.

Definition 6.6

(a) If f : X → Y has the property that every y ∈ Y is a possible output of f ,
we say f is a surjection or onto. More formally, we say f : X → Y is
surjective iff for each y ∈ Y there is an x ∈ X such that f(x) = y.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

84 CHAPTER 6. RELATIONS

(b) If f : X → Y always sends distinct elements of X to distinct elements
of Y , we say f is an injection or one-to-one. More formally, we say
f : X → Y is injective iff for every x and x′ ∈ X, x 6= x′ implies that
f(x) 6= f(x′). An equivalent statement of this property is: If f(x) = f(x′)
then x = x′.

(c) If f : X → Y is called a bijection when f is both one-to-one and onto.

In Chapter 1, the “property” formulas used in set-builder notation are true-
or-false questions to be asked of any candidate for membership in the set. In
fact, they are functions over the appropriate domain whose range consists of
truth-values.

Definition 6.7 Given any set A, a function f : A → {true, false} is called a
predicate on A. In the context of a set description,

S = {x ∈ U | P [x]}

the predicate P on U is called the characteristic function of S.

6.1.1 Infix Notation

If f : X×Y → Z we say f is a two-place function which takes its first argument
from X and its second argument from Y . By Definition 6.2, f must be a set
of ordered pairs, not ordered triples nor anything else. Such an f is a relation
from X × Y to Z, and so it is a subset of (X × Y)× Z. A typical element of f
is ((x, y), z). By the notation introduced after Definition 6.2, we should write

f((a, b)) = c

but it is conventional in mathematics to write

f(a, b) = c

instead. Similarly, we write g(a, b, c) for the result of a three-place function,
g : A×B × C → D, and so on.

When f is an n-place function, we sometimes say that f is of rank n.
Often, the expressions for common two-place functions are even more con-

cise. For example, addition is a two-place function, +: Z × Z → Z. So, using
to our “general purpose” notation for functions, we would write sums as, for
example,

+(3, 5) = 8

Of course we don’t write sums that way; instead we write

3 + 5 = 8

“+(3, 5)” is called prefix notation and “3 + 5” is called infix notation. Infix
is the usual notation for two-place arithmetic operators, and for many other

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.1. FUNCTIONS 85

two-place operators as well (such as concatenation and the logical connectives
discussed in Chapter 1). We use infix in the next definition, which gives some
special properties of two-place functions.

Special infix notation for 3-place functions is not as common, but is still
sometimes used. One example from mathematics is modulus arithmetic: the
formula

a + b mod n

stands for the remainder of a + b on division by n. Another example—this time
from computer programming—is the conditional expression:

if B then S1 else S2

Definition 6.8 Let ‘�’ be a two-place function, � : A×A→ A. We say � is

(a) commutative iff for all x, y ∈ A, x� y = y � x;

(b) associative iff for all x, y, z ∈ A, x� (y � z) = (x� y)� z.

(c) Finally, e ∈ A is an identity for � iff for all x ∈ A, x� e = e� x = x.

Example

Ex 6.6 Integer addition is associative and commutative with zero as an identity.
Integer multiplication is associative and commutative with 1 as an identity.
Integer subtraction is not commutative or associative, and also has no identity.

Example

Ex 6.7 Concatenation of words is associative and has an identity, ε, but is not
commutative.

Example

Ex 6.8 Logical conjunction is associative and commutative with identity T.
Logical disjunction is associative and commutative with identity F. Logical im-
plication is neither associative nor commutative and has no identity;

Example

Ex 6.9 A boolean algebra (Definition 2.5) is both commutative and associative;
and both of its binary operations has an identity.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

86 CHAPTER 6. RELATIONS

Exercises 6.1

1. Let A = {1, 2} and B = {2, 3, 4}. Which of the following relations from A
to B are functions?

(a) {(1, 3), (2, 4)} (d) {(1, 3), (2, 5)}
(b) {(1, 3), (1, 4)} (e) {(2, 2), (1, 4)}
(c) {(1, 3), (1, 3)}

2. Is {(1, 2), (2, 3)} a function

(a) from {(1, 2)} to {(2, 3)}? (d) from {1, 2, 3} to {2, 3}?
(b) from N to N? (e) from {1, 2, 3} to {1, 2, 3}?
(c) from {1, 2} to N?

3. Let A = {1, 2} and B = {2, 3, 4}.

(a) List a relation that is an injective function from A to B.
(b) List a relation that is a surjective function from B to A.
(c) List two bijections from B to B.

4. Let f : A2 → A be given by the following table:

x y f(x, y)

1 1 1
1 2 2
2 1 2
2 2 2

Show that f is commutative and associative. What is the identity of f?

5. Let f : A→ B and suppose S and T are both subsets of A.

(a) Prove that f(S ∩ T) ⊆ fS ∩ fT.

(b) Take both A and B to be {a, b, c}. Define a function f and two
subsets S and T for which f(S ∩ T) 6= fS ∩ fT

(c) State a condition under which, in general, f(S ∩ T) = fS ∩ fT

6. Let f : A→ B and S ⊆ A and T ⊆ B Prove or disprove the following:

(a) f−1(fS) = S.
(b) f(f−1T) = T .

7. Prove: If f : X × X → X, and e and e′ are both identities of f , then
e = e′.

8. Prove: If f : A→ B and g : B → C are onto functions, then g ◦ f is onto.

9. Prove: If f : A→ B and g : B → C are one-to-one functions, then g ◦ f is
one-to-one.

10. Prove: if f : A→ B is a bijection, then there exists a bijection from B to
A.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.2. RELATIONS ON A SINGLE SET 87

6.2 Relations on a Single Set

Let us now consider the class of relations R ⊆ A × A, that is, relations whose
domains and ranges are the same. Recall that such relations (if they are small
enough) can be represented as directed graphs. The next definition establishes
basic terminology for describing relations of this kind.

Definition 6.9 A relation R ⊆ A×A is

(a) reflexive iff for every a ∈ A, the pair (a, a) ∈ R.

(b) symmetric iff (x, y) ∈ R and x 6= y implies (y, x) ∈ R

(c) antisymmetric iff (x, y) ∈ R and x 6= y implies (y, x) 6∈ R.

(d) transitive iff for every (x, y) ∈ R and (y, z) ∈ R, (x, z) ∈ R.

The term asymmetric is sometimes used for a relation that is not symmetric.
This is not the same as being antisymmetric (See Exercise 4).

Example

Ex 6.10 Let A = {a, b, c, d, e, f}. The relation R, whose graph is shown below,
is reflexive.

a b

c

d

f

e

It is not symmetric because, for example, (c, f) ∈ R but (f, c) 6∈ R. The
predicate “(x, y) ∈ R⇒ (y, x) ∈ R” is false in at least one case.

Example

Ex 6.11 Let A = {a, b, c, d, e, f}, as in the previous example. The relation T
whose graph is shown below is transitive, but is neither reflexive, nor symmetric,

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

88 CHAPTER 6. RELATIONS

nor irreflexive, nor antisymmetric.

a b

c

d

f

e

Saying that a relation is “not symmetric” (or non-symmetric) is not the same
as saying it is antisymmetric. Here for example, we have (a, f) and (f, a) in T
(so T isn’t antisymmetric), but we also have (e, c) ∈ T while (c, e) 6∈ T (so T
isn’t symmetric, either).

The notion of transitivity suggests that whenever there are two arrows “in se-
quence,” then there is a single arrow from the tail of the first to the head of the
second. In the relation T of Example 6.11, for example, we have:

(e, b) ∈ T and (b, c) ∈ T but also (e, c) ∈ T ;
(b, c) ∈ T and (c, d) ∈ T but also (b, d) ∈ T ;
(e, c) ∈ T and (c, d) ∈ T but also (e, d) ∈ T ;
and so on.

In general, let R be transitive, and (a1, a2), (a2, a3), and (a3, a4) all be arrows
in R. By transitivity, (a1, a3) ∈ R, so, applying transitivity to (a1, a3) and
(a3, a4), the arrow (a1, a4) ∈ R. Clearly, this argument can be extended to any
chain of arrows. We begin by formalizing the notion of a “chain of arrows.”

Definition 6.10 Let R ⊆ A × A be a relation. A path from a to b in R is a
sequence

〈x1, x2, . . . , xn〉

such that
(a) n ≥ 1
(b) for each i, xi ∈ A
(c) x1 = a and xn = b
(d) for each i such that 1 ≤ i < n, (xi, xi+1) ∈ R

If a0 = an, we call the path a cycle. We say n is the length A graph which has
no cycles is said to be acyclic.

Proposition 6.3 R is transitive iff whenever there is a path from a to b in R,
then there is an edge (a, b) ∈ R.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.2. RELATIONS ON A SINGLE SET 89

Proof: (⇐) Assume that if there is a path from a to b in R, then there is
an arrow from a to b in R. We would like to show that R is transitive, that
is, if (a1, a2) ∈ R and (a2, a3) ∈ R, then (a1, a3) ∈ R. If (a1, a2) ∈ R and
(a2, a3) ∈ R, then 〈a1, a2, a3〉 is a path from a1 to a3 in R. By the assumption,
since there is a path from a1 to a3 in R, there is an arrow from a1 to a3 in R,
which is just what we need to show that R is transitive.

(⇒) Assume that 〈a1, . . . , an〉 is a path in R, and that R is transitive. We
shall show that for each i such that 1 ≤ i ≤ n, there is an arrow (a0, ai) ∈ R.
We shall do this by giving an algorithm that, starting with the arrow (a0, a1),
builds up an arrow (a0, an) by successive applications of transitivity: Imagine
we have already built the arrow (a0, ai) ∈ R.

.
a0 a1 a2 a i a i+1 an

Since 〈a0, . . . , ai, ai+1, . . . , an〉 is a path in R, we know that there is an arrow
(ai, ai+1) ∈ R. Now transitivity requires that there be an arrow (a0, ai+1) ∈ R.
We repeat this “extension” until we reach an.

Remark: Knowing that all paths are of finite length (Definition 6.10 says
this by specifying a length, n) the algorithm certainly demonstrates
that the desired edge, (a1, an), exists and it even shows how to
determine it. Constructive arguments of this form are often used
to prove something exists. When a proof is based on an algorithm,
one should first ask two questions:

(a) Is it “definite procedure?” At every step, it must be clear and
unambiguous what to do next.

(b) Does it terminate? It must be evident that the procedure
makes progress toward completion and does not go on forever.

Of course, the algorithm must also achieve its intended purpose—
in this case, finding a edge from a0 to an. Proof narratives often
focuses on the “correctness,” aspect, leaving it to the Reader to
check definiteness and termination. End Remark

In computing, we are often more interested in the structure of a graph than
in details such as what names are given to its nodes. For example, the two
graphs shown below have the same shape, even though their nodes are labeled

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

90 CHAPTER 6. RELATIONS

differently and they are laid out differently:

a

b

c

d

e

v

w

xy

z

To “have the same shape,” an exact correspondence must exist between nodes,
and in addition, this correspondence must extend to the edges in a particular
way. These qualities are formalized in the next definition.

Definition 6.11 Two directed graphs R ⊆ A × A and S ⊆ B × B are said to
be isomorphic iff there exists a bijection f : A → B such that (a, a′) ∈ R iff
(f(a), f(a′)) ∈ S.

Example

Ex 6.12 The bijection represents the correspondence between nodes. In the
diagram above, we have A = {a, b, c, d, e} and B = {v, w, x, y, z}. One possible
bijection is

f = {(a, x), (b, z), (c, w), (d, y), (e, v)}

Check that there is a resulting correspondence between the edges of the new
relation.

6.2.1 Attaching Information to Graphs

We have already seen graph diagrams that contain information other than the
just the graph structure. For instance, the element a node represents is shown
next to the node. These instances are annotations that make it easier to inter-
pret the drawing. In many applications, it is desirable to affix information as
part of the mathematical representation—as opposed to just depicting it in a
drawing. Defining this association is called labeling .

Definition 6.12 Given a relation R ⊂ A×A, a labeling of R is a either a:

(a) edge labeling, ` : R→ L, mapping the edges to some set L, or

(b) node labeling, `′ : A→ L′, mapping nodes to some set L′.

Labelings may be depicted in any way that makes clear what the labeling
is. The graph below has both node and edge labels, depicted as circles and

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.2. RELATIONS ON A SINGLE SET 91

pentangles, respectively.

a
d

c

b

1

2 3

4

5
6

A = {w, x, y, z}, L = {a, b, c, d}, L′ = {1, 2, 3, 4, 5, 6} and

` : w 7→ a `′ : (w,w) 7→ 1
x 7→ b (w, x) 7→ 2
y 7→ c (x, y) 7→ 3
z 7→ d (y, z) 7→ 4

(z, y) 7→ 5
(z, w) 7→ 6

In this picture the node’s names, w, x, y and z, do not appear, but their labels
do. Nevertheless, we will often refer to w as “node a,” instead of the more
technically correct “the node labeled by a.”

Exercises 6.2

1. Let

A = {a, b, c, d, e}
R = {(a, b), (a, c), (b, a), (c, a), (c, d), (c, e), (d, c), (e, c)}

(a) Draw the bipartite graph representation of R.
(b) Draw the directed graph representation of R.
(c) Is R symmetric? reflexive? transitive?

2. Let R = {(a, a)}, A = {a}, and B = {a, b}. Is R ⊆ A × A reflexive? Is
R ⊆ B×B reflexive? Draw both relations as bipartite graphs and directed
graphs.

3. Let A = {a}, B = {a, b}.

(a) List all the relations R ⊆ A×A.
(b) List all the relations R ⊆ B ×B.
(c) Of the relations in (a) and (b), which are reflexive? Symmetric?

Tranansitive?

4. Draw a directed graph that is asymmetric but not antisymmetric.

5. Draw a directed graph that is symmetric and transitive, but not reflexive.

6. Draw all the directed graphs on a set with two elements. Indicate which
of these graphs are isomorphic to one another.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

92 CHAPTER 6. RELATIONS

6.3 Trees

The graphs modeling data structures are usually far from transitive. Often there
is at most a single way to get from one node to another. An important class of
graphs used in data structures is the class of trees:

Definition 6.13 A tree is a finite acyclic directed graph R ⊆ A × A in which
there is one node (called the root) with in-degree 0, and every other node has
in-degree 1. A node in a tree with out-degree 0 is called a leaf (See Figure 1.4.1).

As always, it is necessary to include A in the declaration “R ⊆ A×A is a tree”
(See Exercise 3).

Example

Ex 6.13 There are two distinct (that is, non-isomorphic, see Definition 6.11)
trees for a set of three nodes. Here they are:

If we draw trees as above, with the root at the top and all arrows pointing
downward, then we can omit the arrowheads.

Example

Ex 6.14 There are four distinct trees for a set of four nodes. Here they are:

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.3. TREES 93

Theorem 6.4 If R ⊆ A×A is a tree and x ∈ A is not the root of R, then there
is exactly one path from the root to x in R.

Proof: We shall first construct one path from the root to x, and then show
that it is unique. For the first part, see Figure 6.3. Since x is not the root, x
has in-degree 1, so there must be a path 〈a1, x〉.

Assume we have constructed a path 〈an, an−1, . . . , x〉. If an is the root, we
are done. If an is not the root, then the in-degree of an is 1, so there must be
some node an and arrow (an+1, an) ∈ R. Hence, 〈an+1, an, . . . , x〉 is a path in
R. Now, the length of this path can be no greater than the number of elements
in A. For if some node were repeated, then R would have a cycle, contradicting
the assumption that R is a tree. Therefore, our path-building procedure must
eventually halt; but it can only halt by finding an an+1 which is the root. In
other words, the procedure must halt with a path from the root to x.

Now assume that there are two paths

〈an, an−1, . . . , x〉 and 〈bm, bm−1, . . . , x〉

with an = bm = the root. Then at some point the paths must converge: There
is an integer j such that aj+1 6= bj+1, but aj = bj , aj−1 = bj−1, . . . , a1 = b1:

. . .

. . .

an

bm

. . .

an−1

b2

a1

b1

a2
a j

a j+1

b j+1

bm b j

So (aj+1, aj) ∈ R and (bj+1, aj) ∈ R. Therefore, aj must have in-degree of at
least 2, contradicting the assumption that R is a tree. Thus, there cannot be
two paths and, by the previous argument, there must be at least one. This
concludes the proof.

Remark: Like the proof of Theorem 6.3, this proof is constructive, describing
two algorithms that iterate an unknown number of times before the
argument is complete. Recall the discussion after Theorem 6.3 and
decide whether whether the procedures described are definite and
terminating. In both cases, what to do next is well determined and
iteration is limited either by the finite size of the node set or the
finite length of the path.

The proof narrative can be criticized as being “redundant” in the
sense that the two parts are very similar and can rather easily be
condensed into a single argument combining both existence and

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

94 CHAPTER 6. RELATIONS

uniqueness. (See Exercise 6. However, the argument follows a form
commonly used for uniqueness proofs:

existence: Show that there is at least one object with the
desired property.

uniqueness: Show that there is no more than one object with
the desired property. This is often done by as-
suming more than one exist and showing that
this assumption leads to a contradiction.

This proof strategy is reflected in the phrase, “There is one and only
one x with property P (x),” suggesting that there are two things to
prove. End Remark

Because of this unique-path property, it is easy to write programs that visit every
node of a tree exactly once. One could use the same algorithms on a general
directed graph if one could identify a tree “hidden” in the directed graph Such
a hidden tree is called a spanning tree of the graph.

Definition 6.14 If G ⊆ A × A is a directed graph and if R ⊆ A × A is a tree
and R ⊆ G, then we say R is a spanning tree of G.

As Figure 6.3 illustrates, a single graph may have many different spanning
trees. If r is the root of a spanning tree R of G, there must be a path in R from
r to x for every node in the tree. Since R ⊆ G, there must be a path in R from
r to x for every node in G. Theorem 6.5 states that this property is all that is
needed for G to have a spanning tree.

Definition 6.15 If G ⊆ A×A is a rooted graph iff there is a node r ∈ A (the
root) such that for every x ∈ A there is a path from r to x in G.

Theorem 6.5 Let G ⊆ A×A by a finite rooted graph with root r. Then G has
a spanning tree with root r.

Proof: We shall construct a sequence of trees

R1 ⊆ A1 ×A1

R2 ⊆ A2 ×A2

...
Rk ⊆ Ak ×Ak

...

each with root r and with Rk ⊆ G. Each Ak will contain k nodes, so if G has
N nodes, AN = A and RN will be a spanning tree for G.

First, let A1 = {r} and R1 = ∅. (You can check that R1 ⊆ A1×A1 is a tree.)
Now imagine we have built Rk ⊆ Ak × Ak, with k < N , and let us construct

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.3. TREES 95

a1

a2

a3

x

Figure 6.1: Construction of a path from the root of a tree

Figure 6.2: A graph and some of its spanning trees.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

96 CHAPTER 6. RELATIONS

Rk+1 ⊆ Ak+1×Ak+1. Since Ak has k elements, and k < N , there must be some
z ∈ A such that z 6∈ Ak. Since G is rooted, let 〈a0, a1, . . . , ap〉 be a path from
the root r = a0 to z = ap. Since Rk ⊆ Ak ×Ak, r ∈ Ak and z 6∈ Ak, there must
be some j such that a0, a1, . . . , aj all belong to Ak, but aj+1 6∈ Ak.

Set Ak+1 = A ∪ {aj+1} and Rk+1 = Rk ∪ {(aj , aj+1)}.
Now aj+1 6∈ Ak, so (aj , aj+1) is the only arrow to to aj+1. So aj+1 has

in-degree 1, and we could not have created a cycle by adding (aj , aj+1). Fur-
thermore, (aj , aj+1) ∈ G, so Rk+1 ⊆ G. Last, there is still no arrow ending at
r, so r is the root of Rk+1. Hence, Rk+1 has the required properties. Perform
the construction N times, and RN will be the desired spanning tree.

Figure 6.3 shows the construction of a spanning tree as described in the
theorem. Try the construction yourself, using different z’s and different paths,
to construct a different spanning tree.

Exercises 6.3

1. Draw all the nonisomorphic trees with five vertices.

2. A binary tree is a tree in which every nonleaf has an out-degree of two.

(a) Draw all the distinct (nonisomorphic) binary trees with five nodes.

(b) Draw all the distinct (nonisomorphic) binary trees with six nodes.

(c) Based on you answers to (a) and (b), state a property about binary
trees.

3. Let R = {(a, b)}, A = {a, b}, B = {a, b, c}. Is R ⊆ A × A a tree? Is
R ⊆ B ×B a tree?

4. Draw all the spanning trees of the following directed graph:

5. Prove: If A = {a}, there exists exactly one R ⊆ A×A that is a tree.

6. Rewrite the proof of Theorem 6.4, combining the two parts of the proof
into a single argument. This argument might begin, “Since x is not the
root, it has in-degree 1, so (a1, x) is the only edge leading to x in R; and
〈a1, x〉 is the only path of length one ending at x.”

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.3. TREES 97

A1R1

R2

R3

R4

R5

A2

A3

A4

z

z

z

z

Figure 6.3: Construction of a spanning tree
Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

98 CHAPTER 6. RELATIONS

6.4 DAGs

Computer data structures often take advantage of the fact that every datum has
an address in the computer’s memory. If two data structures contain exactly the
same information, that information coalesced into a single object whose address
may be shared by different access points to the same address. This kind of
sharing suggests a kind of graph structure similar to that of a tree but more
compact.

Definition 6.16 A directed acyclic graph, or DAG, is a rooted graph contain-
ing no cyclic paths

Consider the tree G1 on the left below. It has isomorphic subtrees rooted at
e and g. DAG G2on the right is obtained by adding the edge (c, e) and removing
notes g, k, l and n as well as the edges among them.

G1

a

b c

d e f g h

i j k l

m n

a

b c

d e f h

i j

m n

l

g

k

G2

The two graphs can be thought of a being “structurally” similar in the sense
that whenever there is a path from a to x in G1, there is a corresponding path
in G2 from a to a node corresponding to x in G2. For instance, the path

〈a, c, g, l, n〉 in G1

corresponds to
〈a, c, e, j,m〉 in G1

The two paths contain different nodes, so this notion of “similarity” must take
into account a correspondence between nodes, as was the case with graph iso-
morphism defined earlier (Defn. 6.11). This is a weaker correspondence captur-
ing the idea that one graph structure can be embedded in another.

Definition 6.17 Two directed graphs R ⊆ A×A and S ⊆ B×B are said to be
homomorphic iff there exists a function h : A→ B such that if (a, a′) ∈ R then
(h(a), h(a′)) ∈ S. Such a function h is called a homomorphism from A to B.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.5. EQUIVALENCE RELATIONS 99

Example

Ex 6.15 Graphs G1 and G2, shown earlier are homomorphic under the mapping
h given by

h : a 7→ a
h : b 7→ b
h : c 7→ c
h : d 7→ d

h : e 7→ e
h : f 7→ f
h : g 7→ e
h : h 7→ h

h : i 7→ i
h : j 7→ j
h : k 7→ i
h : l 7→ j

h : m 7→ m
h : n 7→ m

Exercises 6.4

1. Let R ⊆ A2 S ⊆ B2 T ⊆ C2 and suppose that f : A → B and g : B → C
are homomorphisms. Prove that the composition g◦f is a homomorphism.

2. Some textbooks define a graph homomorphism to be a surjective function:

Two directed graphs R ⊆ A × A and S ⊆ B × B are said to be homo-
morphic iff there exists a surjection h : A → B such that if (a, a′) ∈ R
then (h(a), h(a′)) ∈ S.

Let us call this kind of homomorphism a strong homomorphism. Prove
that the composition of two strong homomorphisms is a strong homomor-
phism.

6.5 Equivalence Relations*

Notions of equivalence are used throughout mathematics A fundamental kind
of equivalence is equality, between numbers or sets for example. But there are
also many ways that we might regard two distinct objects to be equivalent. For
example, suppose we have a sack of marbles. We might regard two marbles
as equivalent if they are the same size and color. Similarly, we might say two
programs are equivalent if they produce the same output for a given input,
ignoring other features such as speed, clarity, and so forth.

What qualities must the notion of equivalence have? In the first place,
equivalence is a relation on some set of objects. The following three properties
capture the sense of what equivalence means:

• Every object is equivalent to itself.

• Whenever x is equivalent to y, it is also the case that y is equivalent to x.

• Whenever x is equivalent to y and y is equivalent to z, it is also the case
that x is equivalent to z.

In other words,

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

100 CHAPTER 6. RELATIONS

Definition 6.18 A relation that is reflexive, symmetric, and transitive is called
an equivalence relation.

Here is an example of an equivalence relation, depicted as a directed graph:

The picture shows that the nodes are divided into “clusters.” Within each
cluster, there is an arrow from any node to any node in the same cluster, but
between different clusters there are no arrows. It is easy to see why there are no
arrows between clusters: If we added an arrow from some node in one cluster
to some node in another cluster, then in order to make the relation transitive,
we would have to add arrows between all the nodes in the two clusters. The
“clusters” are called equivalence classes.

Definition 6.19 Let R ⊆ A×A be an equivalence relation, and let a ∈ A. The
equivalence class of a under R, written [a]R, is defined as

{a ∈ A | (a, a′) ∈ R}

When we can determine R from the context, we omit the “under R” and
write just [a]. The “clusters” property may be expressed as follows.

Theorem 6.6 If R is an equivalence relation on A and a, b ∈ A, then

(a) if (a, b) ∈ R, then [a] = [b].

(b) if (a, b) 6∈ R, then [a] ∩ [b] = ∅.

Proof: (a) Assume (a, b) ∈ R. We shall show [b] ⊆ [a] and [a] ⊆ [b]. To
show [b] ⊆ [a], let x ∈ [b]. Then (b, x) ∈ R. Since (a, b) ∈ R and (b, x) ∈ R, by
transitivity, (a, x) ∈ R. Hence, x ∈ [a]. Since we have shown any member of [b]
is also a member of [a], [b] ⊆ [a].

To show [a] ⊆ [b], let y ∈ [a]. So (a, y) ∈ R and since R is a symmetric
relation, (y, a) ∈ R. We have assumed that (a, b) ∈ R and since R is transitive,
(y, b) ∈ R. By symmetry again, (b, y) ∈ R; and so y ∈ [b]. Hence [a] ⊆ [b].

(b) We shall show [a]∩ [b] 6= ∅ implies (a, b) ∈ R. If [a]∩ [b] 6= ∅. Then there
is some z such that z ∈ [a] and z ∈ [b]. Since z ∈ [a], we have (a, c) ∈ R, and
since z ∈ [b], we have (b, c) ∈ R and by symmetry, (c, b) ∈ R. R is a transitive
relation, so it follows that (a, b) ∈ R.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.5. EQUIVALENCE RELATIONS 101

Corollary 6.7 If a, b ∈ A, then either [a] = [b] or [a] ∩ [b] = ∅.

Proof: By Theorem 6.6, if (a, b) ∈ R, then [a] = [b]; and if (a, b) 6∈ R, then
[a] ∩ [b] = ∅.

Sometimes, it is preferable to think of a set in terms of its equivalence classes,
rather than its individual elements. In programming, for example, this is the
difference between a specification and an implementation. Think of a library
of mathematical routines. The user of the library may want a procedure to
compute the square root of a number—any number of functionally equivalent
routines could be written to do that. The implementer of the library needs to
provide one representative of this equivalence class.

Definition 6.20 If R is an equivalence relation on A, the quotient set A/R is
{[a]R | a ∈ A}.

Example

Ex 6.16 Let A = {1, 2, 3} and R = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 3)}. Then R
is an equivalence class on A and

[1]R = {1, 2}
[2]R = {1, 2}
[3]R = {3}

So A/R = {{1, 2}, {3}}.

Now, A/R is a subset of the power set, P (A), and so we might ask: which
subsets of P (A) are also quotient sets? That is, which subsets of P (A) are
equal to A/R for some equivalence relation R? The following definition and
theorem supply the answers and give us another way to characterize equivalence
relations.

Definition 6.21 Let A be a set. A subset ∆ of P (A) is a partition of A iff

(a) each S ∈ ∆ is nonempty, and

(b) for each a ∈ A there is exactly one S ∈ ∆ such that a ∈ S.

Theorem 6.8 A subset ∆ of P (A) is a partition iff ∆ = A/R for some equiv-
alence relation R on A.

Proof: (⇐) If R is an equivalence relation, we claim A/R is a partition. If
a ∈ A, then a ∈ [a], so there is some S ∈ A/R such that a ∈ S. By Corollary
6.7, [a] is the only equivalence class containing a. Furthermore, each equivalence
class is nonempty. So a/R is a partition.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

102 CHAPTER 6. RELATIONS

(⇒) The definition of a partition implies that we can define a function,
f : A→ ∆, mapping each a ∈ A to the set S of which it is an element. That is,

f(a) = S iff a ∈ S

Define a relation R ⊆ A×A as follows

R = {(a, b) | f(a) = f(b)}

R is easily seen to be an equivalence relation. We claim A/R = ∆. Let a ∈ A
and f(a) = S. Then

S = {x | f(x) = S} (since x ∈ S iff f(x) = S)
= {x | f(x) = f(a)}
= [a]R

So for each a ∈ A, [a] = f(a) ∈ ∆; hence, A/R ⊆ ∆. Conversely, let S ∈ ∆. By
the definition of partition, S is nonempty, so choose a ∈ S. Hence, f(a) = S,
and by the previous argument, S = [a]R. So ∆ ⊆ A/R.

Exercises 6.5

1. List A/R for each of the following equivalence relations:

(a) A = {x ∈ N | 1 ≤ x ≤ 6}
R = {(x, y) | (x− y) is evenly divisible by 3}

(b) A = {x ∈ N | 1 ≤ x ≤ 8}
R = {(x, y) | x = 2ik and y = 2jk for odd k}

(c) A = {x ∈ N | 1 ≤ x ≤ 24}
R = {(x, y) | x = 2i3jk and y = 2i′3j′k′ and i + j = i′ + j′

and k, k′ are not evenly divisible by 2 or 3}

2. If A and B are sets and f : A→ B, define the kernal of f [denoted Ker(f)]
to be {(x, y) | x, y ∈ A and f(x) = f(y)}. Prove that for any f , Ker(f) is
an equivalence relation.

3. Prove: Suppose R is an equivalence relation on A. Define a set B and a
function f : A→ B such than R = Ker(f).

6.6 Partial Orders*

Set containment and numeric inequality, are examples of a class of relations
called partial orders. These relations are of great importance in the theory of
computer science.

Definition 6.22 A relation that is reflexive, antisymmetric,2 and transitive is
called a partial order.

2If the condition of antisymmetry is removed, the relation is called a preorder .

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.6. PARTIAL ORDERS* 103

Example

Ex 6.17 Set containment is a partial order. The proofs are left as exercises:

• Reflexivity. If S is any set, then S ⊆ S.

• Antisymmetry. If S ⊆ T and S 6= T , then it is not the case that T ⊆ S.

• Transitivity. If S ⊆ T and T ⊆ U then S ⊆ U .

A special case of partial order is one in which all the elements are related to
all others.

Definition 6.23 A total order is a partial order R ⊆ A×A with the additional
property that for all x, y ∈ A, either (x, y) ∈ R or (y, x) ∈ R.

Example

Ex 6.18 N, Q and R are assumed to be totally ordered by the relation ‘≤’.

Example

Ex 6.19 A tree is not a partial order because trees are neither reflective nor
transitive. There are many times when one wants to “extend” the graph of a
tree to make it into a partial order, incorporating concepts like “node m is a
descendent of node n.” Extending a tree T (or any graph for that matter) to a
partial order is conceptually straightforward:

(a) To make T ⊆ A × A reflexive, add self-edges to every a ∈ A. The graph
T r = T ∪ {(a, a) | a ∈ A} is called the reflexive closure of T .

(b) To make T transitive, add an edge from (a, b) to T whenever there is a
path 〈a, n1, . . . , nk−1, b〉 in T . The resulting graph, call it T ∗, is called the
transitive closure of T r.

Remark: Although it is intuitively clear what it is, writing down a definition
of T ∗ is thought provoking. T ∗ could be defined as

T ∗ = T r ∪ {(a, b) | there is a path from a to b in T ∗}

In this definition T ∗ is being defined in terms of itself, and we need
to consider whether this equation is meaningful. A self referencing
definitions are not always valid or even meaningful. This point is
discussed further in Chapter 7. End Remark

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

104 CHAPTER 6. RELATIONS

Example

Ex 6.20 Define the relation R ⊆ N2 × N2 on ordered pairs as follows:

((n, m), (k, l)) ∈ R iff

(a) n ≤ k or

(b) n = k and m ≤ l.

That that R is a partial order follows from the fact that ‘≤’ is a partial or-
der. It is reflexive because, for all n, m ∈ N, ((n, m), (n, m)) ∈ R; and if
((n, m), (k, l)) ∈ R and ((k, l), (u, v)) ∈ R, so is ((n, m), (u, v)) ∈ R. To prove
transitivity, there are several cases to consider, specifically,

• n = k = u

• n = k ≤ u

• n ≤ k = u

• n ≤ k ≤ u

Check that in each case, transitivity holds. Because this ordering is like an
“alphabetical” listing, it is called the lexigraphic ordering and is often denoted
by the symbol ≤L. Notice that even though ‘≤’ is a total order, ‘≤L’ is not, and
that even when the underlying ordering is not total, the lexigraphic ordering is
still well defined.

Example

Ex 6.21 Let A be an alphabet and consider the language A∗ of all words built
from letters in A, including ε. If u, v ∈ A∗ the u is called a prefix of v if there
exists a word w such that uˆw = v. Check that the prefix relation is a partial
order.

Exercises 6.6

1. In the lexigraphic ordering of N2, give an example of two elements that
are not related.

2. In the prefix ordering of A∗, give an example of two elements that are not
related.

3. Defintion 6.22 states that a partial order is a reflexive, anti-symmetric,
transitive relation. Add the edges needed to extend this tree to a partial

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.7. DECISION DIAGRAMS* 105

order.

Exercises 6.6

1. Let A be a set. Prove that P (A) is a lattice with respect to the partial
order ‘⊆’.

6.7 Decision Diagrams*

The boolean expression E ≡ p r + q + r has the truth table

p q r E
0 0 0 1
0 0 0 0
0 1 0 1
0 1 0 0
1 0 0 1
1 0 0 0
1 1 0 1
1 1 0 1

Section 2.4 introduced a way to represent this truth table in disjunctive normal
form as

p q r + p q r + p q r + p q r + p q r

written here as a boolean term rather than a propositional formula. DNF was
described as a “standard” representation that could be used to compare and
analyze formulas, and some computer representations were mentioned.

Another way to represent terms is to use a tree. In the tree below, the
nodes are labeled with the names of variables occurring in E, and the edges

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

106 CHAPTER 6. RELATIONS

with boolean values indicating whether the variable is true or false along that
path.

0 0 0 01 11 1

0 0 11

0 1

1 0 1 0 1 0 1 1

p

r r

q

r r

q

This is a particular kind of decision tree, called a binary decision tree because
each non-leaf has out-degree 2. We will see more general classes of decision trees
in the next chapter. A more compact representation of term E can be obtained
by building a DAG to which the tree above is homomorphic. We can do this
step-wise, from the bottom up, by locating isomorphic subtrees and eliminating
all but one of them. This is done in two steps below, first eliminating redundant
leaves, and then isomorphic subtrees rooted at r

0
10 10

1

0 1 0 1

0 1

0
1

1 0

p

r r

q q

r r
0 1

0 1

0 1

0
1

1 0

1 0

p

r

q q

rrr

So now we have a binary decision DAG in which every path from root to leaf cor-
responds to a path in the original tree. These paths, taken together, correspond
to the clauses in a DNF.

In computer representations, additional transformations are used to make
the representation still more compact. If the two branches from the node go to

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.7. DECISION DIAGRAMS* 107

the same target, that node can be eliminated.

0

0 1

0
1

1

1 0

p

q

rr

q

rr

The resulting DAG is no longer homomorphic to the original tree (Can you see
why?) unless the missing variable is somehow “remembered” when traversing
the graph. The DAG above is called a reduced ordered binary decision diagram,
or ROBDD for short3

Example

Ex 6.22 Recall from 2.5 that a full adder is specified by boolean equations

s = a b c + a b c + a b c + a b c

co = a b c + a b c + a b c + a b c

Suppose we wish to implement a 2-bit adder consisting of two full adders,

cico

ba

s

s 2

c1
cico

ba

s

s 0

c2
0

s 3

FA FA

a b

c

d e

Writing this out using the specification equations above, we get the system of
equations

s0 = a b c + a b c + a b c + a b c

c1 = a b c + a b c + a b c + a b c

s1 = d e c + d e c1 + d e c1 + d e c1

c2 = d e c1 + d e c1 + d e c1 + d e c1

s2 = c2

3Authors commonly abbreviate the acronym “ROBDD” to just “BDD.”

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

108 CHAPTER 6. RELATIONS

Let us focus on the output s2. Substituting for the variables defined in this
system, we get

s2 = c2

= d e c1 + d e c1 + d e c1 + d e c1

= d e (a b c + a b c + a b c + a b c)

+ d e (a b c + a b c + a b c + a b c)

+ d e (a b c + a b c + a b c + a b c)

+ d e (a b c + a b c + a b c + a b c)

The two ROBDDs for s2 in Figure 6.4 illustrate that the size and shape of the
DAG depends on the order in which the variables occur along a path. In the DAG
on the left, the order is 〈d, e, a, b, c〉; and the the right, the order is 〈e, b, d, a, c〉.

0 1

c

bb

a

d

ee

0 1

a

bb

e

c

a

d dd d

Figure 6.4: Two ROBDDs for the third sum bit of an adder

Exercises 6.7

1. In Section 6.7 it is claimed that the two graphs shown below are not

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

6.7. DECISION DIAGRAMS* 109

homomorphic. Explain why this is true.

0

0 1

0
1

1 0
1

10

1 0

p

q

r r

q
1

1

1
0

0

1

0

0 1

p

q

r

2. Draw two distinct ROBDDs for the output s1 of the 2-bit adder.

3. Draw the ROBDD for output s2 of the 2-bit adder under the variable
order 〈c, b, a, e, d〉. [Hint. Work top-down, simplifying as you go along.
Suppose that a node labelled v represents a term Φ. Φ = v · Φ0 + v · Φ1,
in which Φ0 and Φ1 are obtained by evaluating Φ with v = 0 and v = 1,
repectively.]

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

110 CHAPTER 6. RELATIONS

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 7

Induction II

7.1 Introduction

The sets of interest in computer science tend to be complicated. For instance,
consider the problem of defining the set of all legal C programs. Of course, the
best way to think about such complicated objects is usually to to break them
down into simpler pieces. For example, we build a C program out of constituent
phrases, such as declarations, expressions, assignment statements, and so forth.

The decomposition of a complex set must be systematic. The pieces we
break it into must be meaningful, so that we can reason about more complicated
objects from facts about their pieces. We want definition methods and reasoning
techniques that apply not just to a particular set of objects, but more broadly.
We need a general scheme for the mathematical treatment of languages and
what they mean. We begin with two examples to motivate these ideas. These
examples will be used throughout this section and the next to illustrate the
topics.

Example

Ex 7.1 The Language L
Suppose we wish to define a language, call it L, of simple multiplication

expressions (You may want to review Section 1.2). Let V be a set of legal
constant symbols and program variables and assume that the symbol ‘*’ is not
a member of V . L will consist of words over the alphabet W = V ∪ {*}, such
as 120, 5*x, and width*height*5.

Constants and variables themselves are simple expressions; and given two
expressions u and v, one can build a new expression by concatenating, u *̂̂ v.
Now, if we wish to prove that some word w ∈W+ is in L, we should be able to
provide a derivation of w according to these two rules:

A. Either w ∈ V , or

B. w = u * v and both u and v have a derivation.

111

112 CHAPTER 7. INDUCTION II

For example, we know that width*height*5 is a word in L because

1. width ∈ L rule A
2. height ∈ L rule A
3. width*height ∈ L rule B with 1, 2
4. 5 ∈ L rule A
3. width*height*5 ∈ L rule B with 3, 4

Notice that this is not the only possible derivation. Conversely, if we wish to
prove that w 6∈ L then we should show that no such derivation can exist.

Of course, L does not capture all the arithmetic expressions of a program-
ming language. In a later section we will build a more realistic language. Let
us now examine a claim about elements of L:

Claim The number of constants and variables contained in any word
w ∈ L is exactly one greater than the number of ‘*’ symbols.

informal proof In the first place, each element of V has just one
constant or variable and no ‘*’s. In the second place, if any two words u
and v have this property, then so does the word u*v.

This argument is inductive! The hypothesis is:

H(w) ≡ The number of constants and variables in w is exactly
one greater than the number of *’s

In a “base case” we proved H(v) for all v ∈ V . In an “induction step” we
prove H(u) and H(v) imply H(u*v). However, the argument is not technically
a mathematical induction because H is a predicate on L rather than N.

Example

Ex 7.2 The Relation R
We are going to build a relation R ⊆ N× N, starting with the ordered pair

(0, 0). The next pair in the relation is (1, 2). In general, whenever we have a
pair (n, m) ∈ R we may add the pair (n + 1,m + 2) to R, so we can think of R
as the limit of a sequence of sets:

R0 = {(0, 0)}
R1 = {(0, 0), (1, 2)}
R2 = {(0, 0), (1, 2), (2, 4)}

...
Rk = {(0, 0), (1, 2), (2, 4), . . . , (k, 2k)}

...
R =

⋃
i∈N

Ri = {(0, 0), (1, 2), (2, 4) . . . , (k, 2k), . . .}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.1. INTRODUCTION 113

We can see in each Rk the derivation of the pair (k, 2k). We can also write down
an explicit definition of Rk:

Rk = {(x, 2x) | x ∈ N and x ≤ k}

The limit of this construction is

R = {(x, 2x) | x ∈ N}

In fact, R happens to be a function, so not only can we build languages in this
step-by-step way, but we can also define relations and functions. We will see
much more of this technique later.

7.1.1 The Problem of Self Reference

Consider the riddle

In a certain restaurant there works a Waiter who serves
every person that does not serve their self.

Question: Who serves the Waiter?

Answer: There is no such restaurant.

Let W stand for the supposed waiter. The logical problem in this riddle is that,
were such a restaurant exist, it would be have to be the case that W serves W
iff W does not serve W . Thus, the problem statement itself leads immediately
to a contradiction.

The source of the problem may be that the assertion “W serves W” does
not make sense. It seems to, but not all such self-referential statements do.
Consider, for example, this proposition, known as the Liar’s Paradox :

The sentence in this box is false.

In order to talk about this sentence, it helps to give it a name, say S. Then we
can write

S ≡ “S is false.”

S is a simple declaration of fact; it should be either true or false, but it cannot
be either. The same is true of the “system” of two sentences,

A ≡ “Sentence B is true.”
B ≡ “Sentence A is false.”

There is no consistent truth assignment for A and B. Again, self-reference
(direct or indirect) lies at the heart of the riddle.

Should we just outlaw self reference? This would be paying too high a price.
Consider the language {anbn | n ∈ N} over the alphabet {a, b}. Taking an to
mean a word consisting of n as, this language consists of all words containing

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

114 CHAPTER 7. INDUCTION II

an equal number of as and bs, with all the as occuring before any of the bs. In
a programmer’s manual, languages are often described using a a “grammar,”
called Backus-Naur notation that looks like:

〈L〉 ::= ε dc â 〈L〉̂ b

Translated to set notation, the notation says that the language L ⊆ {a, b}∗ is

L = {ε} ∪ {â w b̂ | w ∈ L}

The language description is self-referencing, but certainly makes sense. In fact,
describing languages this way is very useful.

When does self-reference make sense and when does it not? As we shall see
in this chapter, some kinds of self-referencing inductive and recursive definitions
are “sensible” and very useful.

Exercises 7.1

1. Which, if any, of the following statements are true?

P ≡ “Sentence P is true or Sentence Q is true.”
Q ≡ “Sentences P and Q are not both true.”

7.2 Inductively Defined Sets

Let us look at what the motivating examples in the Section 7.1 have in common.

• Both examples involved a set U of values: words in (V ∪ {*})+ and pairs
in N× N, respectively.

• Both constructions started from a “seed” or base set from which all ele-
ments ultimately are built. For L the base set was V ; and for R the base
set was {(0, 0)}.

• Finally, both examples employed a constructor function, to make more
complicated elements from simpler ones. For L, there was a two-place
constructor,

f(u, v) = u *̂̂ v

For R, the constructor function was g : N2 → N2,

g(n, m) = (n + 1,m + 2)

In general, such constructions may involve several different constructor
functions of various ranks.

We would like to find properties that tell us exactly what these kinds of sets
are, and how to reason about them. Part of the answer lies in the fact that sets
like L and R are closed with respect to their constructors. This means that if
you apply a constructor to elements of the set, the result is also in the set:

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.2. INDUCTIVELY DEFINED SETS 115

g

g

g

g

g

g

g

Figure 7.1: A typical subset of N × N containing base set {(0, 0)} and closed
under the constructor function g(n, m) = (n + 1,m + 2).

Definition 7.1 If f : Ur → U , and S ⊆ U , we say S is closed with respect to
f iff s1, . . . , sr ∈ S implies that f(s1, s2, . . . , sr) ∈ S.

Each constructor takes inputs from S to outputs in S.

f

The example sets L and R that we have been discussing are closed with respect
to their constructor functions. If u and v are elements of L then so is the word
u*v. And whenever (n, m) ∈ R, so is (n + 1,m + 2). So closure with respect to
the constructor functions is evidently a property of the sets we are building.

However, there may be many subsets of U closed under f . The empty set
is closed with respect to every function, vaccuously. The entire set of values,
U , is closed with respect to every constructor function, trivially. Hence, the
next question to answer is whether we can uniquely determine which closed set
a construction gives us.

Another property of the sets of interest is that they are generated by, and
therefore contain, the base set. But again, there may be many subsets S ⊆ U
which are closed with respect to a constructor f . For example, Figure 7.2

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

116 CHAPTER 7. INDUCTION II

shows the cartesian graph of a typical closed set for the function g(n, m) =
(n + 1,m + 2), the constructor function for the relation R. Any collection of
half-lines with slope 2 (of course, we are referring only to the discrete points in
N× N which lie on these lines) will be closed under g.

The figure also shows that points “generated” from the base point (0, 0) lie
on a single line. As the figure suggests, any closed subset that contains {(0, 0)},
must also contain the whole of R. In other words, R is the smallest closed
subset which contains the base set. The property of being smallest determines
R uniquely. Let us combine these observations into a definition.

Definition 7.2 Let U be a set; let B ⊆ U . and let f1, . . . , fm be a collection
of functions on U . A set A is said to be inductively defined from base set B
and constructors f1, . . . , fm, if

(a) A contains B

(b) A is closed with respect to each f1, . . . , fm.

(c) if S is any subset of U that contains B and is closed with respect to every
constructor, then A ⊆ S.

It follows immediately from the definition that inductively defined sets are
uniquely defined:

Proposition 7.1 If A and A′ are inductively defined from base set B and func-
tions f1, . . . , fm, then A = A′.

Proof: By Definition 7.2(a, b), both sets contain B and are closed under the
constructors. If we assume that both A and A′ are inductively defined, then by
7.2(c), A ⊆ A′ and A′ ⊆ A. Therefore A = A′.

The next definition gives us a concise notation for specifying inductively defined
sets.

Definition 7.3 (Inductive Set Definition Scheme) The following language
is used to specify an inductively defined set, A:

1. B ⊆ A [A contains the base set]
2a. x1, . . . , xr ∈ A

⇒ f(x1, . . . , xr) ∈ A
[A is closed under constructor f]

...
3. nothing else is in A [A is the smallest such set]

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.3. THE PRINCIPLE OF STRUCTURAL INDUCTION. 117

Example

Ex 7.3 Let us use the definition scheme to specify the language of simple mul-
tiplication expressions from the beginning of this section. Let V be a set of
constants and program variables. The language L ⊆ (V ∪ {*})+ is inductively
defined according to:

1. V ⊆ L
2. u, v ∈ L⇒ u*v ∈ L
3. nothing else

Example

Ex 7.4 The relation R ⊆ N×N from the beginning of this section is inductively
defined according to.

1. (0, 0) ∈ R
2. (n, m) ∈ R⇒ (n + 1,m + 2) ∈ R
3. n. e.

Example

Ex 7.5 We can define the natural numbers inductively, according to

1. 0 ∈ N
2. k ∈ N⇒ k + 1 ∈ N
3. n. e.

As the exercises at the end of Section 7.4 suggest, our definition of inductive
sets could be more general than it is. Of particular importance is the idea of
simultaneously defining several sets inductively (see Exercise 5). We will see
this kind of construction many times in later chapters. It is hard to come up
with a most general set definition scheme.

7.3 The Principle of Structural Induction.

Let us attempt to use Definition 7.2 to show that the relation R of Example 7.4
is exactly the relation {(x, 2x) | x ∈ N}, which we claimed but did not prove at
the begining of the last section.

Proposition 7.2 Let the relation R be defined as in Example 7.4. Define E =
{(x, 2x) | x ∈ N}. Then R = E

Proof: We will prove that E ⊆ R and R ⊆ E. Let g stand for R’s constructor
function:

g(n, m) = (n + 1,m + 2)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

118 CHAPTER 7. INDUCTION II

Since
(0, 0) = (0, 2 · 0) ∈ E

and since (x, 2x) ∈ E implies

g(x, 2x) = (x + 1, 2x + 2) = (x + 1, 2(x + 1)) ∈ E

Theorem 7.2 says that E ⊆ R because R is the smallest set that contains (0, 0)
and is closed under g.

But how do we know that R ⊆ E? The intuition is pretty clear:

1. R’s base element, (0, 0), is in E as argued above.

2. a constructed element (x + 1, y + 2) will be in E only if (x, y) is.

3. The only way to get an element of R is to build it from (0, 0)

This intuition, generalized, gives us a new Principle of Induction for inductively
defined sets:

Theorem 7.3 (Principle of Structural Induction) Let A ⊆ U be induc-
tively defined from base set B and functions f1, . . . , fm. Suppose P is a predicate
on U with the following properties:

(base case) For all x ∈ B, P (x) holds.

(induction step) For each r-place constructor f ,

P (x1) ∧ · · · ∧ P (xr) ⇒ P (f(x1, . . . , xr))

Then P (x) holds for all x ∈ A,

Proof: The proof of the principle is given in the next section.

Recall that we can think of N as a set defined inductively according to

1. 0 ∈ N
2. k ∈ N⇒ (k + 1) ∈ N
3. n. e.

The Principle of Structural Induction, applied to N, says that if you can prove
(1) H(0) and (2) H(k)⇒ H(k+1), then you may conclude, for all n ∈ N,H(n).
In other words, the Principle of Structural Induction reduces to ordinary math-
ematical induction in the case of N

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.3. THE PRINCIPLE OF STRUCTURAL INDUCTION. 119

Example

Ex 7.6 By using structural induction, we can distill the second half of Propo-
sition 7.2 to its essence. Compare the argument below with the form of a
mathematical induction.

Claim. For E and R as defined in Proposition 7.2, R ⊆ E.

Proof: The proof is by structural induction on x ∈ R with hypothesis
H(x) ≡ x ∈ E.

base case: (0, 0) = (0, 2 · 0) ∈ E

induction step: Suppose (n, m) ∈ E. Then (n, m) = (x, 2x) for some
number x. Then

g(n, m) = (n + 1,m + 2) = (x + 1, 2x + 2) = (x + 1, 2(x + 1)) ∈ E

By Theorem 7.3 we may conclude, for all x ∈ R, x ∈ E. In other words,
R ⊆ E.

Example

Ex 7.7 At the beginning of the previous section a language of simple multipli-
cation expressions was defined as follows. Let V be a set of program constants
and program variables. Let W = V ∪ {*}. The language L ⊆ W+ is defined
inductively according to:

1. V ⊆ L
2. u, v ∈ L⇒ u*v ∈ L
3. n. e.

The following claim was made about elements of L:

Claim: The number of constants and variables contained in any
word w ∈ A is exactly one greater than the number of ‘*’s.

It was observed that the argument proving this claim was “inductive.” We can
now recognize it as a structural induction:

Proof: The proof is by induction on u ∈ L. For the base case, an element
of V has just one constant or variable and no ‘*’s. For the induction case,
assume u, v ∈ L each have this property. That is, u has n ‘*’s and n + 1
symbols from V ; and v has m ‘*’s and m + 1 symbols from V . It follows,
then, that the word u*v has n + m + 1 ‘*’s and (n + 1) + (m + 1) =
(n + m + 1) + 1 symbols from V .

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

120 CHAPTER 7. INDUCTION II

Exercises 7.3

1. Let the set A ⊆ N be inductively defined according to

1. 1 ∈ A
2. k ∈ A⇒ k + k ∈ A
3. n. e.

Define the set E = {2n | n ∈ N}. Prove: A = E.

2. Let V = {(,)} and consider the set L of words in V + that is defined
inductively according to.

1. () ∈ L
2a. u ∈ L⇒ (u) ∈ L
2b. u, v ∈ L⇒ (u v) ∈ L
3. nothing else

Which of the following words are in L?

(a) ((())) (d) (()())
(b) ()() (e) (()()())
(c) ((()())()) (f) ((()()))

3. Let V = {(,)} and consider the set L of words in V + that is defined
inductively according to.

1. () ∈ L
2a. u ∈ L⇒ (u) ∈ L
2b. u, v ∈ L⇒ (u v) ∈ L
3. nothing else

Prove: Every element in L has the same number of (’s and) ’s.

4. Think of another property that you can prove about words in the language
L of Exercise 2.

7.4 Validity of the Induction Principle*

The goal in this section is to establish the truth of Theorem 7.3; that is, to
establish rigorously and in general that inductive arguments like those of the
previous section are valid. We shall do this by showing how structural induction
is simply an encoded form of mathematical induction. Once we have proved the
basic principle, we can safely go on to reason at a higher level.1

1If this were a college Calculus textbook, we would be at the beginning stages of using
“delta-epsilon” arguments to prove the validity of certain laws of derivatives. Once the laws
are proved valid, one safely can go about the real business of integrating functions. Similarly,
we are now looking at why the methods used later on work.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.4. VALIDITY OF THE INDUCTION PRINCIPLE* 121

We characterized the elements of the language L and the relation R as having
“derivations” from base elements. The next definition formalizes the notion of
derivation as a construction sequence. The definition accounts for the general
case in which there are several constructor functions.

Definition 7.4 Let U be a set, B a subset of U , and f1, f2, . . . , fm a collection
of functions on U of various ranks. An element a ∈ U is said to have a con-
struction sequence in U from B under f1, f2, . . . , fm if there exists a sequence
of elements in U ,

〈u1, u2, . . . , un〉, n ≥ 1

with the property that each ui is either:

(a) an element of B, or

(b) ui = fj(a1, . . . , ar), where fj is an r − place function and each argument
ak occurs prior to ui in the sequence.

Example

Ex 7.8 In the language L defined in Example 7.1, we had the following con-
struction sequence for the word width*height*5:

〈width, height, width*height, 5, width*height*5〉

There are many other possible constructions sequences for the same word, for
instance,

〈5, height, height*5, 5, width, 5*width, 5, width*height*5〉

Check that both of these sequences are built according to rules (a) and (b) of
Definition 7.4; so they are constructions sequences for width*height*5.

Example

Ex 7.9 In the relation R of Example 7.2, the pair (5, 10) has a construction
sequence

〈(0, 0), (1, 2), (2, 4), (3, 6), (4, 8), (5, 10)〉

There are many possible construction sequences for (5, 10) but this is the short-
est one.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

122 CHAPTER 7. INDUCTION II

Example

Ex 7.10 Let B = {1, 2, . . . , 8} and let U = B2. Define the following eight
functions on U :

f1(r, c) = (r + 2, c + 1) if r ≤ 6 and c ≤ 7; (r, c) otherwise.
f2(r, c) = (r + 1, c + 2) if r ≤ 7 and c ≤ 6; (r, c) otherwise.
f3(r, c) = (r − 1, c + 2) if r ≥ 1 and c ≤ 6; (r, c) otherwise.
f4(r, c) = (r − 2, c + 1) if r ≥ 2 and c ≤ 7; (r, c) otherwise.
f5(r, c) = (r − 2, c− 1) if r ≥ 2 and c ≥ 1; (r, c) otherwise.
f6(r, c) = (r − 1, c− 2) if r ≥ 1 and c ≥ 2; (r, c) otherwise.
f7(r, c) = (r + 1, c− 2) if r ≤ 7 and c ≥ 2; (r, c) otherwise.
f8(r, c) = (r + 2, c− 1) if r ≤ 6 and c ≥ 1; (r, c) otherwise.

Think of U as a chess board. These functions represent all the possible moves
of a knight:

Now pick a square on the board, say (3, 4). The construction sequences in U
from {(3, 4)} under f1, . . . , f8 generate all the squares that a knight can reach
starting from there.

Theorem 7.4 (Fundamental Theorem on Induction) The set A of all el-
ements of U that have a construction sequence from B under constructors f1,
. . . , fm is inductively defined from B and f1, . . . , fm. That is, A is the smallest
set containing B and closed under each of the constructors.

Proof: The proof has three parts. We must show that A contains B, that A
is closed, and finally, that A is the smallest such set.
Claim I B ⊆ A
If b ∈ B then by Definition 7.4, 〈b〉 is a construction sequence. Hence, b ∈ A
and so we have shown that B ⊆ A. This proves Claim I.
Claim II A is closed with respect to each constructor.
Suppose that a1, . . . , ar ∈ A. Then each ai has a construction sequence, 〈ui1, . . . , ai〉.
But then we can get a construction sequence for f(a1, . . . , ar) by putting all these
sequences together end-to-end in any order:

〈u11, . . . , a1, u21, . . . , a2, . . . , ur1, . . . , ar, f(a1, . . . , ar)〉

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.4. VALIDITY OF THE INDUCTION PRINCIPLE* 123

Therefore, f(a1, . . . , ar) ∈ A and we have shown that A is closed with respect
to f . Since f was arbitrary, A is closed with respect to all the constructors.
This proves Claim II.
Claim III If S ⊆ U contains B and is closed with respect to each f1, . . . , fn,
then A ⊆ S.

To prove the claim, let S be as assumed. We want to show that A ⊆ S. By
Definition 7.2, it suffices to show that any every element with a construction
sequence must be in S. This is proven by induction on k ∈ N with hypothesis

H(k) ≡ Every element with a construction sequence of length k or less
is in S

base case: The base case holds vaccuously because there are no construction
sequences of length 0.
induction step: Assume H(k) and suppose that u has a construction se-
quence

d = 〈v1, v2, . . . , vk, u〉

By Definition 7.4, u is either an element of B or u = f(a1, . . . , ar) with each
ai occurring in d. In the first case, since B ⊆ S, we know that u ∈ S. In the
second case we can, without loss of generality, assume that

d = 〈 . . . , a1, . . . , a2, . . . , ar, . . . , u〉

Then each ai has a construction sequence,

di = 〈 . . . , a1, . . . , a2, . . . , ai〉

By the induction hypothesis, this implies that each ai ∈ S, and since S is closed
with respect to f , f(a1, . . . , ar) = u ∈ S. This concludes the induction step,
the proof of Claim III, and the proof of the theorem.

Theorem 7.4 shows us one way to construct inductively defined sets—and hence
that such sets exist. Proposition 7.1 confirms that they are uniquely defined.
Because of these results, we know that we can specify a set exactly, just by
describing its base set and constructor function(s). We do not have to mention
construction sequences, although it is sometimes useful to remember that they
exist (for example, see Exercise 5 in Section 7.6).

As the exercises at the end of this section suggest, our definition of inductive
sets could be more general than it is. Of particular importance is the idea of
simultaneously defining several sets inductively (see Exercise 5). We will see this
kind of construction many times in later chapters. The methods for determining
the uniqueness of these sets is the same: they are determined by looking at their
constructions sequences, or equivalently, by specifying their closure properties.
It is hard to come up with a most general set definition scheme. On the other

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

124 CHAPTER 7. INDUCTION II

hand, if a novel scheme is needed it is straightforward to prove a version of the
Fundamental Theorem for it.

Construction sequences are one mathematical mechanism for building in-
ductively defined sets, but there are others. Exercise 3 illustrates another way
that is commonly seen, and asks you to prove that the two constructions are
equivalent.

Our goal is to find a way to characterize inductively defined sets that is
independent of the “mechanics” of how they are built. The notation scheme of
Definition 7.3 gives a mechanim-independent way to define sets. The Principle
of Structural Induction gives a mechanism-independent way to ask questions
about them. We now prove the validity of the Principle.

Theorem 7.3 (restated) Let A ⊆ U be inductively defined from base set B
and functions f1, . . . , fm. If P : U → {T, F} has the following properties:

(base case) For all x ∈ B, P (x) holds.

(induction step) For each r-place constructor f ,

P (x1) ∧ · · · ∧ P (xr) ⇒ P (f(x1, . . . , xr))

Then P (x) holds for all x ∈ A,

Proof: A is just the set of elements with construction sequences, so the proof
is by induction on k ∈ N with hypothesis

H(k) ≡ P holds for every x ∈ U with a construction sequence of length
k or less.

base case: H(0) is true vaccuously.
induction step: Assume H(k) and consider an element x with construction
sequence 〈a1, a2, . . . , ak, x〉. According to Definition 7.4, either x ∈ B, in which
case P (x) = T by assumption (a), or x = fi(x1, . . . , xr) and each xi appears
earlier in this construction sequence. But if xi appears in the construction
sequence, then xi has a construction sequence of length k or less, so by the
induction hypothesis, P (ai) = T , for 1 ≤ i ≤ r. Hence, by assumption (b),
P (x) = T . This concludes the induction case and the proof of the theorem.

Just as Theorem 7.4 allows us to define inductive sets without specifically
saying how they might be built, Theorem 7.3 allows us to deduce properties
about inductive sets without mentioning construction sequences. The theorem
makes the underlying induction argument, once and for all.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.4. VALIDITY OF THE INDUCTION PRINCIPLE* 125

Example

Ex 7.11 Recall that in Proposition 7.2 we were to show the relation R, defined
inductively from base set {(, 0, 0)} and function

g(n, m) = (n + 1,m + 2),

is a subset of E = {(x, 2x) | x ∈ N}.

Here is the proof, expressed as a structural induction.

Claim. For E and R as defined in Proposition 7.2, R ⊆ E.

Proof: The proof is by structural induction on x ∈ R with hypothesis

H(x) ≡ x ∈ E

base case: (0, 0) = (0, 2 · 0) ∈ E

induction step: Suppose (n, m) ∈ E. Then (n, m) = (x, 2x) for some
number x. Then

g(n, m) = (n + 1,m + 2) = (x + 1, 2x + 2) = (x + 1, 2(x + 1)) ∈ E

Example

Ex 7.12 To see what work is saved by the Principle of Structural Induction, let
us “translate” the preceding argument into its underlying mathematical induc-
tion.

Proof: We prove R ⊆ E by induction on k ∈ N with hypothesis,

H(k) ≡ if (n, m) has a construction of length k or less, (n, m) ∈ E.

base case: The only construction sequence of length one is 〈(0, 0)〉 and (0, 0) ∈
E as has already been explained.
induction step: Assume H(k), and suppose that (n, m) has a construction
sequence of length k + 1,

〈(r1, s1), (r2, s2), . . . , (rk, sk), (n, m)〉

According to Definition 7.4, either (n, m) = (0, 0), in which case we already
know that (n, m) ∈ E, or (n, m) = g(ri, si) = (ri + 1, si + 2) for some i ≤ k. By
the induction hypothesis, (ri, si) ∈ E, so si = 2ri. But then

(n, m) = (ri + 1, 2ri + 2) = (ri + 1, 2(ri + 1)) ∈ E

This concludes the induction.
Since R is just the set of all pairs with construction sequences, it follows

that R ⊆ E.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

126 CHAPTER 7. INDUCTION II

Exercises 7.4

1. If the word “function” is replaced by the phrase “partial function” in
Definition 7.4, does it change the validity of Theorem 7.4?

2. If the word “function” is replaced by the word “relation” in Definition 7.4,
does it change the validity of Theorem 7.4?

3. Let f : U → V and A ⊆ U . Recall (Definition 6.4 that the image of A
under f is defined to be

fA = {f(x) | x ∈ A}

The following is an alternative definition for inductively defined set, for a
single constructor function (it can be generalized to many constructors).

Definition. Let U be a set, B ⊆ U , and f : U → U . The set
A is said to be inductively defined by stages from B and f if
A =

⋃
k∈N Ak, where

A0 = B

A1 = A0 ∪ fA0

...
Ak+1 = Ak ∪ fAk

...

Prove: A is inductively defined from B and f if and only if A is inductively
defined by stages from B and f .

4. Given a relation R ⊆ A×A, define the set R? =
⋃

k∈N Rk, where

R0 = R

...
Rk+1 = Rk ∪ {(x, z) | ∃y ∈ A : (x, y) ∈ Rk and (y, z) ∈ Rk}

...

Prove that R? is the smallest transitive relation that contains R. R? is
called the transitive closure of R.

5. Let U1 and U2 be sets, let B1 ⊆ U1 and B2 ⊆ U2; and let f1 : U1×U−2→
U1 and f2 : U1 × U2 → U2. Let

A1 be the set of all elements of U1 which have a construction sequence
from B1 ∪B1 under f1 and f2

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.5. DEFINING FUNCTIONS WITH RECURSION 127

A2 be the set of all elements of U2 which have a construction sequence
from B1 ∪B1 under f1 and f2

A1 and A2 are said to be simultaneously inductively defined Prove that A1

and A2 are the smallest of all sets S and T such that:

(a) B1 ⊆ S and B2 ⊆ T

(b) For all x ∈ S and y ∈ T , f1(x, y) ∈ S and f2(x, y) ∈ T .

6. (tedious) Generalize the previous exercise to an arbitrary number of simul-
taneously defined sets under an arbitrary number of constructor functions
(or relations).

7.5 Defining Functions with Recursion

Let U = N× N and define the relation F ⊆ U2 inductively as follows.

1. (0, 1) ∈ F
2. (n, m) ∈ F implies (n + 1, m(n + 1)) ∈ F
3. nothing else is in F

Let us build some construction sequences for F .

d0 = 〈(0, 1)〉
d1 = 〈(0, 1), (1, 1)〉
d2 = 〈(0, 1), (1, 1), (2, 2)〉
d3 = 〈(0, 1), (1, 1), (2, 2), (3, 6)〉
d4 = 〈(0, 1), (1, 1), (2, 2), (3, 6), (4, 24)〉

...
dk = 〈(0, 1), (1, 1), . . . , (k, ?)〉

Apparently, F is the factorial function. Let G = {(n, n!) | n ∈ N}. Since
G contains F ’s base element, (0, 1) = (0, 0!); and since G is closed under F ’s
constructor because

(n, n!) 7→ (n + 1, n!(n + 1)) = (n + 1, (n + 1)!)

we know by Theorem 7.4 that F ⊆ G. To prove that G ⊆ F , use induction on
k ∈ N with hypothesis, H(k) ≡ (k, k!) ∈ F . The details are left as an exercise.

Thus, we know that F is a function, and it is customary to write “F (x) = y”
instead of “(x, y) ∈ F .” If we express F ’s inductive definition in this way, we
get:

1. F (0) = 1
2. F (n) = m implies F (n + 1) = m(n + 1)
3. nothing else

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

128 CHAPTER 7. INDUCTION II

In part 2 the variable ‘m’ has become just a name for F (n). By using F (n) in
place of m, we can further abbreviate the definition to

1. F (0) = 1
2. F (n + 1) = F (n) · (n + 1)
3. nothing else

This is a recursive definition—F is defined “in terms of itself.” It is not a
circular definition because F ’s value for any number execpt 0 is in terms of
values for a previous number.

Let us do another example, first in relational form, and then again in func-
tional form.

Example

Ex 7.13 Consider the relation G ⊆ N× N defined inductively as follows:

1. (0, 0) ∈ G
2. (x, y) ∈ G implies (x + 1, y + 2x + 1) ∈ G
3. nothing else

Claim: (x, y) ∈ G implies y = x2.

Proof: The proof is by induction on k ∈ N with hypothesis, (k, k2) ∈ G.
base case: (0, 02) = (0, 0) ∈ G by rule 1.
induction step: Assume that (k, k2) ∈ G. Then by rule 2,

(k + 1, x2 + 2x + 1) = (x + 1, (x + 1)2) ∈ G

Example

Ex 7.14 The relation G in the previous exercise is a function, so let us repeat
the previous argument, replacing “(x, y) ∈ G” by “y = G(x).” It is conventional
in recursive definitions to leave out the nothing-else clause.

Consider the function G : N→ N defined recusively as follows:

1. G(0) = 0
2. G(x + 1) = G(x) + 2x + 1

Claim: For all n ∈ N, G(n) = n2.

Proof: The proof is by induction on k ∈ N with hypothesis, G(k) = k2.
base case: By the definition of G, part 1,

G(0) = 0 = 02

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.6. EVALUATION OF RECURSIVE FUNCTIONS 129

induction step:

G(k + 1) = G(k) + 2k + 1 (G.2)

= k2 + 2k + 1 (Induction Hypothesis)

= (k + 1)2 (factoring)

7.6 Evaluation of Recursive Functions

Consider the relation F ⊆ N2 × N, defined inductively according to:

1. ((0, 0), 0) ∈ F
2a. ((n, m), k) ∈ F implies ((n + 1,m), k + 1) ∈ F
2b. ((n, m), k) ∈ F implies ((n, m + 1), k + 2) ∈ F
3. n. e.

Now suppose we want to find a value ` for which ((2, 3), `) ∈ F . In relational
form, we can build a “bottom-up” derivation: starting from the base rule:

(rule)
〈 ((0, 0), 0) (1)

((0, 1), 2) (2b)
((1, 1), 3) (2a)
((2, 1), 4) (2a)
((2, 2), 6) (2b)
((2, 3), 8)〉 (2b)

This is not the only way to build the result, and you may wish to convince
yourself that ((2, 3), 8) is the only possible value.

F is a function and the functional form of its definition is:

1. F (0, 0) = 0
2a. F (n + 1,m) = F (n, m) + 1
2b. F (n, m + 1) = F (n, m) + 2

In this form, a derivation of F ’s value at (2, 3) proceeds “top down,” for instance,

F (2, 3) = F (2, 2) + 2 (F.2b)

= (F (2, 1) + 2) + 2 (F.2b)

= ((F (1, 1) + 1) + 2) + 2 (F.2a)

= (((F (0, 1) + 1) + 1) + 2) + 2 (F.2a)

= ((((F (0, 0) + 2) + 1) + 1) + 2) + 2 (F.2b)

= ((((0 + 2) + 1) + 1) + 2) + 2 (F.1)

= 8 (arithmetic)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

130 CHAPTER 7. INDUCTION II

In the relational form, the computation strictly follows the inductive definition
of F . The functional form, on the other hand, appears as a set of algebraic
identities that describe F ; and to evaluate F on an argument, we apply whatever
identities we can until we reach an answer. This form may seem more natural—
it is closer to our idea of a computation—but this intuition it can sometimes
lead us into difficulty, as we shall see in the next chapter.

There is a third alternative available to us for this example. It is to observe,
perhaps by experimenting with examples, that F (n, m) = n+2m. This is easily
proved by structural induction on F . In the base case, F (0, 0) = 0 = 0 + 2 · 0.
There are two induction cases,

F (n + 1,m) 2a= F (n, m) + 1 IH= (n + 2m) + 1 = (n + 1) + 2m

and
F (n, m + 1) 2b= F (n, m) + 2 IH= (n + 2m) + 2 = n + 2(m + 1)

Exercises 7.6

1. Covert the following definiton of relation F ⊆ N2×N into functional form:

1. for all y, ((0, y), 0) ∈ F
2. ((x, y), k) ∈ F ⇒ ((x + 1, y), k + y) ∈ F
3. nothing else

2. Covert the following definiton of relation F ⊆ N2×N into functional form:

1. for all x, ((x, 0), x) ∈ G
2a. for all y, ((0, y), 0) ∈ G
2b. ((x, y), k) ∈ F ⇒ ((x + 1, y + 1, k) ∈ G
3. nothing else

3. For F and G defined above, compute in relational form

(a) F (2, 3)

(b) G(5, 2)

(c) G(2, 4)

4. Repeat Exercise 3 using the functional forms from Exercises 1 and 2.

5. Consider the following functional definition for F : N→ N:

1. if x > 100, then F (x) = x− 10
2. if x ≤ 100, then F (x) = F (F (x + 11))

Compute F (97) using functional form.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.6. EVALUATION OF RECURSIVE FUNCTIONS 131

6. Consider the set Num ⊆ {0, 1}+ defined as follows:

1. 1 ∈ Num
2a. if x ∈ Num, then x0 ∈ Num
2b. if x ∈ Num, then x1 ∈ Num
3. nothing else

Num is clearly the set of binary numerals with a leading 1. In either
functional or relational form, define a function B : Num → N that sends
each numeral to the integer it represents.

7. n your favorite programming language, write a program that reads a se-
quence of 0s and 1s and translates the sequence into an integer.

8. Let F ⊆ N× N be defined as follows:

1. (0, 2) ∈ F
2. (x, y) ∈ F ⇒ (x + 1, y + 3) ∈ F
3. nothing else

Prove that f = {(x, 3x + 2) | x ∈ N}.

9. (Hard) Consider the function F defined in Exercise 5. Prove that if
x ≤ 100, then F (x) = 91. (Hint: Translate into relational form and
use induction on construction sequences with the indcution hypothesis:
“If (x, y) has a construction sequence with length j ≤ k, then”)

10. Define the lexicographic ordering of N × N, denoted by ‘�’, as follows:
(n, m) � (k, `) iff (n < k) or both (n ≤ k) and (m ≤ `)). A Principle of
Lexicographic Induction for predicate H on N2 is:

If you can prove that

base case P (0, 0) holds.

induction case If H(i, j) holds for all (j, j) � (k, `)
then H(k, `) also holds.

Then you can conclude that H holds for all for all (n, m) ∈ N2

Prove that this induction principle is valid.

11. At the end of this section the function F : N2 → N was recursively defined
according to:

1. F (0, 0) = 0
2a. F (n + 1,m) = F (n, m) + 1
2b. F (n, m + 1) = F (n, m) + 2

It was proved by structural induction on F (considered as a set) that for
all pairs (n, m) in the domain of F , F (n, m) = n + 2m. Use lexicographic
induction (see Exercise 10 to prove that for all (n, m) ∈ N2, F (n, m) =
n + 2m.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

132 CHAPTER 7. INDUCTION II

7.7 Reasoning about Recursive Functions

The primary method for reasoning about recursive functions is structural induc-
tion. We look at a number of examples dealing with the words of the following
simple language.

For alphabet V = {a, b, •}, define the language L ⊆ V + inductively, accord-
ing to

1. • ∈ L
2a. u ∈ L⇒ au ∈ L
2b. u ∈ L⇒ bu ∈ L
3. nothing else

L consists of words over {a, b} to which the symbol ‘•’ has been appended on
the right:

L = {•, a•, b•, aa•, ab•, ba•, bb•, aaa•, . . .}

Let P be any predicate on L. Since it has a single-element base set and two
constructor functions, a proof by structural induction on L has the following
form.

Theorem. For all w ∈ L, H(w).

Proof: The proof is by induction on u ∈ L with hypothesis H(u)

base case: A direct proof of P (•).

induction step: Proofs that

P (u)⇒ P (au)

and
P (u)⇒ P (bu)

Often, the two arguments are so similar that only one is shown.

We shall define three functions on the language L.

Invert The function I : L → L changes all ‘a’s in a word to ‘b’s and all ‘b’s
to ‘a’s. I is defined recursively according to

1. I(•) = •
2a. I(au) = bI(u)
2b. I(bu) = aI(u)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.7. REASONING ABOUT RECURSIVE FUNCTIONS 133

For example I(baab•) = abba• because:

I(baab•)
= aI(aab•) (I.2b)
= abI(ab•) (I.2a)
= abbI(b•) (I.2a)
= abbaI(•) (I.2b)
= abba• (I.1)

Append The function A : L× L → L joins two words together. A is defined
recursively according to

1. A(•, u) = u
2a. A(au, v) = aA(u, v)
2b. A(bu, v) = bA(u, v)

A is like a concatenation operation, but it throws away the ‘•’ symbol between
the words. For example,

A(aa•, bba•) 2a= aA(a•, bba•) 2a= aaA(•, bba•) 1= aabba•

Reverse The function R : L→ L reverses the order of ‘a’s and ‘b’s in a word.
Reverse uses Append. R is defined recursively according to

1. R(•) = •
2a. R(au) = A(R(u), a•)
2b. R(bu) = A(R(u), b•)

We shall now prove a series of facts about the three functions just defined.

Proposition 7.5 For all u ∈ L, I(I(u)) = u.

Proof: The proof is by induction on u ∈ L In the base case, by the defintion
of I, rule 1,

I(I(•)) = I(•) = •

For the induction step,

I(I(au)) = I(bI(u)) (I.2a)

= aI(I(u)) (I.2b)

= au (I.H.)

Similarly,
I(I(bu)) 2b= I(aI(u)) 2a= bI(I(u)) IH= bu

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

134 CHAPTER 7. INDUCTION II

From now on, the second proof of the induction case will not be shown unless
it differs significantly from the first.

Proposition 7.6 I distributes over A, that is, for all u, v ∈ L, I(A(u, v)) =
A(I(u), I(v)).

Proof: The proof is by induction on u ∈ L. In the base case,

I(A(•, v)) A.1= I(v) A.1= A(•, I(v)) I.1= A(I(•), I(v))

For the induction step,

I(A(au, v)) = I(aA(u, v)) (A.2a)

= bI(A(u, v)) (I.2a)

= bA(I(u), I(v)) (I. H.)

= A(bI(u), I(v)) (A.2b)

= A(I(bu), I(v)) (I.2b)

The proof that I(A(bu, v)) = A(I(bu), I(v)) is similar.

In this proposition there is a choice of two variables on which to perform the
induction. The phrase “by induction on u,” signals the choice. The induction
hypothesis becomes,

H(u) ≡ for all v ∈ L, I(A(u, v)) = A(I(u), I(v))

That is, the for-all quantifier on v is retrained. In this case, u is the appropriate
choice because only the first argument varies in the definiiton of A. In the next
proposition, we have three variables to choose from.

Proposition 7.7 A is associative, that is, for all u, v, and w in L

A(u, A(v, w)) = A(A(u, v), w)

Proof: The proof is by induction on u ∈ L.
base case:

A(•, A(v, w)) A.1= A(v, w) A.1= A(A(•, v), w)

induction step:
A(au, A(v, w)) = aA(u, A(v, w)) (A.2a)

= aA(A(u, v), w) (I. H.)

= A(aA(u, v), w) (A.2a)

= A(A(au, v), w) (A.2a)

The proof that A(bu, A(v, w)) = A(A(bu, v), w) is similar.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.7. REASONING ABOUT RECURSIVE FUNCTIONS 135

Proposition 7.8 • is a right identity for A, that is, for all u ∈ L A(u, •) = u.

Proof: Exercise 3.

Proposition 7.9 R and A obey the following distributive law: for all u, v ∈ L,

R(A(u, v)) = A(R(v), R(u))

[Note how the positions of u and v are switched.]

Proof: Exercise 4.

Proposition 7.10 R is self cancelling, that is, for all u ∈ L R(R(u)) = u.

Proof: The proof is by induction on u.
base case: by the definition of R,

R(R(•)) = R(•) = •

induction step:

R(R(au)) = R(A(R(u), a•)) (A.2a)

= A(R(a•), R(R(u))) (Proposition 7.9)

= A(R(a•), u) (I. H.)

= A(A(R(•), a•), u) (R(2a)

= A(A(•, a•), u) (R.1)

= A(a•, u) (A.1)

= aA(•, u) (A.2a)

= au (A.1)

The proof that R(R(bu)) = bu is similar.

Perhaps you have noticed that in each of the proofs of this section, the necessary
facts had conveniently been established by previous propositions. Proposition
7.10 uses the result of Proposition 7.9, which in turn needs the results of Propo-
sitions 7.7 and 7.8. The process of conceiving a proof typically works in the
other direction. It is a goal directed activity just like programming.

In attempting to prove Proposition 7.10, one gets stuck at the second line
of the induction step, discovering there that some kind of distributive law is
needed. Notice, however, that the distributive law proved in Proposition 7.9 is
more general than what is needed for Proposition 7.10. It is usually a good idea
to prove a more general fact if you can; most cases it is easier, and the result
you have proven may also be applicable to other problems.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

136 CHAPTER 7. INDUCTION II

Let us define a new function, T : L2 → L, according to

1. T (•, v) = v
2a. T (au, v) = T (u, av)
2b. T (bu, v) = T (u, bv)

If you evaluate a few examples (Exercise 5) you may discover that T is related
to both A and R. In particular, T is equivalent to R when its second argument
is •:

Proposition 7.11 For all u ∈ L, T (u, •) = R(u).

Proof: Exercise 7.

The function R might be considered a more natural description of “reversing a
word.” The function T might be considered a better description of the reversing
computation. It is easier to prove, for example, that R is self-cancelling and
distributes over A than it is to prove these facts about T . On the other hand,
there is a definite sense in which T seems more efficient—to see this, evaluate
R(aab•) and T (aab•, •), according to their definitions, each time counting the
number of concatenations performed. T is a degenerate form of recursion called
iteration. It translates to the looping construct of a programming language.
Consider the program shown in Figure 7.7 Can you guess the invariant of this
loop (recall Theorem 4.2)? In Chapter 10 we will take a closer and more formal
look at this relationship between recursive functions and programs.

Exercises 7.7

1. Use the definitions of A and R to compute the values of

(a) R(abb•)

(b) R(A(a•, b•))

2. Use the definitions of A, R, and T to compute the values of

(a) R(aab•)

(b) T (aab•, •)

(c) A(R(a•), b•)

(d) T (a•, b•)

3. Prove Proposition 7.8.

4. Prove Proposition 7.9.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

7.7. REASONING ABOUT RECURSIVE FUNCTIONS 137

5. Evaluate the following, using the definitions of I, A, R, and T in this
section.

(a) I(abbab•) (b) I(I(abb•))
(c) A(aa•, ba•) (d) A(I(ab•), I(•))
(e) R(abb•) (f) R(I(ab•))
(g) T (baa•, ab•) (h) T (babb•, •)

6. Without referring to the proof in text book, try to prove Proposition 7.9,
developing auxiliary propositions as the need arises.

7. Prove Proposition 7.11. [Hint: You will need to prove a more general fact.]

8. For the following problems, consider the language N ⊆ {S, •}, defined
inductively as follows:

1. • ∈ N
2. u ∈ N implies Su ∈ N
3. nothing else

Define the function P : N2 → N recursively, according to:

1. P (•, v) = v
2. P (Su, v) = SP (u, v)

Define the function M : N2 → N recursively, according to:

1. M(•, v) = •
2. M(Su, v) = P (v,M(u, v))

[Hint: It may be helpful to express these results using infix notation. It
will be helpful to have an idea in mind of what these functions represent.]

(a) Prove that M distributes over P ; that is, for all u, v, w ∈ N , M(u, P (v, w)) =
P (M(u, v),M(u, w)).

(b) Prove that P is commutative; that is, For all u, v ∈ N , P (u, v) =
P (v, u).

(c) Prove: For all u, v ∈ N , M(u, Sv) = P (u, M(u, v)).

(d) Prove: For all u, v ∈ N , P (Su, v) = P (u, Sv).

(e) Prove: For all u ∈ N , P (u, •) = u.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

138 CHAPTER 7. INDUCTION II

T : begin
u := W;
v := •;
while u 6= • do { what goes here? }

begin
if FirstLetter(u) = a

then begin
v := av;
u := AllButFirstLetter(u)
end

else begin
v := bv;
u := AllButFirstLetter(u)
end

end
{v = R(W)}

Figure 7.2: A program to compute function R

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 8

Languages and Meanings

In this chapter we look at how programming languages are defined. There are
two aspects to consider. We must develop a method to specify exactly what
words are valid as program expressions. And we must develop a method to
say precisely what computation a valid program expresses. We now have the
basic mathematical tools to make these specifications: programming languages
are specified by inductive set definitions and their meanings by recursive func-
tion definitions. However, we still must develop techniques to use these tools
effectively.

8.1 Language Definitions

We shall start with a seemingly simple language of expressions. The idea is to
put the language together by showing how to build more complicated expressions
from simpler ones. This is the way almost all computer languages are defined.

Let the set A = N∪{$, #} be our alphabet of symbols. Define the language
L ⊆ A+ inductively, according to

1. N ⊆ L
2a. u, v ∈ L⇒ u $ v ∈ L
2b. u, v ∈ L⇒ u # v ∈ L
3. nothing else

The first kind of question that might be asked is whether a particular word in
A+ is in (i.e. an element of) the language L. To answer such a question, we
must analyze the given word to see whether it could be built using the rules of
L’s definition.

Example

Ex 8.1 Is the word 5 # 3 $ 2 # 6 in L?

139

140 CHAPTER 8. LANGUAGES AND MEANINGS

The answer is “yes,” because there is a construction sequence:

1. 3 ∈ L by rule 1

2. 2 ∈ L by rule 1

3. 3 $ 2 ∈ L by rule 2b, 1 and 2

4. 5 ∈ L by rule 1

5. 5 # 3 $ 2 ∈ L by rule 2a, 4 and 3

6. 6 ∈ L by rule 1

7. 5 # 3 $ 2 # 6 ∈ L by rule 2a, 5 and 6

The analysis showing that a word is in a language is called parsing . There are
two ways to diagram derivations like this. A parsing diagram uses nested boxes
to show how the word decomposes:

5 3 2 # 6
1 1 1 1

2b2a

2a

$

The second way is to draw a A parse tree, whose interior nodes are labeled by
rules and whose leaves are symbols of the alphabet:

�� QQ

�
�
��

aaaa

 L
L
L
L
LLn n n n

n
n

n

1 1 1 1

2b

2a

1

5 3 2 6## $

Each of the diagrams above reflects the same parse. Here is a different parse
showing that 5 # 3 $ 2 # 6 is in L:

2a

2
1

6
1

5
1

3
1

$# #

2b 2a

That there are several ways to prove that a given word is in L is a problem, as
we shall see next.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.2. DEFINING HOW LANGUAGES ARE INTERPRETED 141

8.2 Defining How Languages are Interpreted

The interpretation of a language associates a value with each word. The word
is said to express the value. If the language is inductively defined, then the
interpretation can be defined recursively.

Using the language L of the previous section, let us define a function V : L→
N, which gives a natural-number interpretation where symbols # and $ express
addition and multiplication, respectively.

1. for k ∈ N, V[k] = k

2a. for words of the form w = u # v, V[w] = V[u] + V[v]

2b. for words of the form w = u $ v, V[w] = V[u]× V[v]

Based on this definition and the first parsing analysis, we can determine an
interpretation of 5 # 3 $ 2 # 6:

1. 3 ∈ N ⇒ V[3] = 3
2. 2 ∈ N ⇒ V[2] = 2

3.
u = 3 ∈ L
v = 2 ∈ L

}
⇒ V[u $ v] = V[u]× V[v] = 3× 2 = 6

4. 5 ∈ N ⇒ V[5] = 5

5.
u = 5 ∈ L
v = 3 $ 2 ∈ L

}
⇒ V[u # v] = V[u] + V[v] = 5 + 6 = 11

6. 6 ∈ N ⇒ V[6] = 6

7.
u = 5 # 3 $ 2 ∈ L
v = 6 ∈ L

}
⇒ V[u # v] = V[u] + V[v] = 11 + 6 = 17

That is, V[5 # 3 $ 2 # 6] = 17. However, a different parse leads to a different
interpretation. The derivation that follows is “top-down” in the sense that
the interpreted expression is decomposed as the interpretation is applied. At
each step, you should verify that the word is broken down in a manner that is
consistent with L’s definition.

V[5 # 3 $ 2 # 6]

= V[5] + V[3 $ 2 # 6] defn. V, case 2a

= 5 + V[3 $ 2 # 6] V(1)

= 5 +
(
V[3]× V[2 # 6]

)
V(2b)

= 5 +
(
3× V[2 # 6]

)
V(1)

= 5 +
(
3×

(
V[2] + V[6]

))
V(2a)

= 5 +
(
3×

(
2 + 6

))
V(1), twice

= 29 arithmetic

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

142 CHAPTER 8. LANGUAGES AND MEANINGS

That is, V[5 # 3 $ 2 # 6] = 17 = 29 (?!). The apparent contradiction is due
to the assumption that V is a function; use of the ‘=’ symbol, in defining V
and in deriving a value, is simply wrong. Both interpretations are correct: V
is a relation associating the values 17, 29, and several others, with the word
5 # 3 $ 2 # 6.

When computer languages are defined, it is usually intended that each word
have a unique interpretation—we want V to be a function. When multiple
interpretations exist, it is said that the language is ambiguous. As we shall
see later, ambiguity is not necessarily the fault of the language, but even so,
languages can be designed to be unambiguous. In the following two examples,
variations of L are defined, by which the problems just encountered are avoided.

Example

Ex 8.2 We can remove the ambiguity in L by introducing parenthesis symbols.
Take V = N ∪ {# , $, (,)}. The language L2 and its interpretation relation V2

are defined simultaneously below:

L2 ⊆ V + V2 : L2 → N

1. N ⊆ L2 V2[k] = k, for k ∈ N

2a. u, v ∈ L2 ⇒ (u # v) ∈ L2 V2[(u # v)] = V2[u] + V2[v]

2b. u, v ∈ L2 ⇒ (u $ v) ∈ L2 V2[(u $ v)] = V2[u]× V2[v]

3. nothing else

In this language,
V2[((5 # (3 $ 2)) # 6)/] = 17

and
V2[(5 # (3 $ (2 # 6)))] = 29.

This version of L2 forces every expression to be fully parenthesized, but the
interpretation is unambiguous. V2 is a function because there is only one way
to parse any word in L2.

Example

Ex 8.3 In the version of L shown below, there are no parentheses but the
operator symbols have been moved from an infix position to a prefix position:

L3 ⊆ V + V3 : L3 → N

1. N ⊆ L3 V3[k] = k, for k ∈ N

2a. u, v ∈ L3 ⇒ # u v ∈ L3 V3[# u v] = V3[u] + V3[v]

2b. u, v ∈ L3 ⇒ $ u v ∈ L3 V3[$ u v] = V3[u]× V3[v]

3. nothing else

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.2. DEFINING HOW LANGUAGES ARE INTERPRETED 143

To express 17, one would write:

2
1

3
1

$

2b

5
1

2a

6
1

#

2a

This is the only way to parse # # 5 $ 3 2 6 because its decomposition under
the definition of L3 is determined by the initial symbol of the word. Only one
symbol can be the initial symbol, so there can only be one parse. Consequently,
the only possible interpretation is:

V3[# # 5 $ 3 2 6]

= V3[# 5 $ 3 2] + V3[6] V3(2a)

=
(
[V3[5] + V3[$ 3 2]

)
+ V3[6] V3(2a)

=
(
[V3[5] +

(
[V3[3]× V3[2]

))
+ V3[6] V3(2b)

= (5 + (3× 2)) + 6 V3[1], four times

= 17 arithmetic

Exercises 8.2

1. For the language L and interpretation relation V defined at the beginning
of this section, list all the values that are associated with the expression
V[5 # 3 $ 2 # 6].

2. Draw the tree corresponding to the second parse of 5 # 3 $ 2 # 6. with
respect to the language L.

3. Using the definition of V3, check that the expression shown in Example 3
evaluates to 17. Then evaluate the following words of L3:

(a) # $ 3 # 8 9 $ 2 5

(b) # # # $ 3 4 5 6 7

(c) # 3 # 4 # 5 $ 6 7

4. Give an expression in the language L3 of Example 8.3 which evaluates to
29.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

144 CHAPTER 8. LANGUAGES AND MEANINGS

5. Consider the following language, L4 ⊆ V +, for V = N ∪ { # , $ }.

L4 ⊆ V +

1. N ⊆ L4

2a. u, v ∈ L4 ⇒ # u v ∈ L4

2b. u, v ∈ L4 ⇒ u v $ ∈ L4

3. nothing else

Define an interpretation function for L4 under which ‘ # ’ stands for
addition and ‘ $ ’ for multiplication.

6. For each of the expressions (a)–(c) in Exercise 3, give the corresponding
expression in L4.

7. Determine whether the following words are in L4, and if so evaluate them:

(a) # # 2 3 4 $ 4

(b) # 2 3 $ 4 5 $

(c) 2 # 3 # 5 $ 6

(d) 2 # 3 # 5 $ 6

(e) 2 3 # 4 # 5 6 $ 7 $ $

(f) 1 # # 2 3 4 5 6 $ 7 8 $ $ 9 $

8.3 Specifying Precedence

We have seen in Examples 8.2 and 8.3 that one can control the way opera-
tions are applied by using disambiguating syntax, like parentheses, or otherwise
changing the grammar of the language. One can also deal with the problem
mathematically by introducing more structure to the language definition. Let
V = N∪{$, #}, as before. First, define a language F and interpretation function
VF : F → N, involving only the ‘$ ’ operation symbol:

F ⊆ V + VF : F → N

1. N ⊆ F VF [k] = k, for k ∈ N

2. u ∈ N, v ∈ F ⇒ u $ v ∈ F VF [u $ v] = u× VF [v]

3. nothing else

If you study these definitions carefully, you will see a subtle difference from the
earlier definition of L (aside from the fact that part 2a is missing!). Part 2 of
the definition, builds and interprets words in such a way that multiplications
are carried out from right to left. It is said that ‘$ ’ associates to the right. To

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.3. SPECIFYING PRECEDENCE 145

illustrate why this must be, let us consider the word w = 3 $ 4 $ 5 $ 6. There
is exactly one way to parse w:

6543 $$$

Hence, there is exactly one interpretation:

VF [3 $ 4 $ 5 $ 6]

= 3× VF [4 $ 5 $ 6] VF (2)

= 3×
(
4× VF [5 $ 6]

)
VF (2)

= 3×
(
4×

(
5× VF [6]

))
VF (2)

= 3×
(
4×

(
5× 6

))
VF (1)

= 360 arithmetic

In this case, the order of evaluating multiplications doesn’t matter; but it would
matter if ‘$ ’ were to denote, say, subtraction (or real computer multiplication
with overflow).

Building from the sublanguage F , we can now create a language T by intro-
ducing the addition symbol.

T ⊆
(
F ∪ {$}

)+ VF : F → N

1. F ⊆ T VT [u] = VF [u], for u ∈ F

2. u ∈ F, v ∈ T ⇒ u # v ∈ F VT [u # v] = VF [u] + VT [v]

3. nothing else

The language T is exactly the same as the language L that we originally defined.
However, the interpretation, VT , is constrained to perform both additions and
multiplications from right to left. In addition, multiplications are performed
before additions. It is said that ‘$ ’ takes precedence over ‘# ’. Let us check this
with the original problem expression.

VT [5 # 3 $ 2 # 6]

= VT [5 # 3 $ 2] + VT [6] T (2)

=
(
VT [5] + VT [3 $ 2]

)
+ VT [6] T (2)

=
(
VT [5] + VT [3 $ 2]

)
+ VT [6] T (1)

=
(
VT [5] +

(
3× VT [2]

))
+ VT [6] T (2)

=
(
5 +

(
3× 2

))
+ 6 T (1), three times

= 17 arithmetic

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

146 CHAPTER 8. LANGUAGES AND MEANINGS

Since this is the only way to evaluate the word, we are correct in regarding VT

and VF as functions.

8.4 Environments

The languages we have seen so far have contained only constants and operations.
Computer languages also contain program variables; this is what gives them
much of their power. In most languages, a program variable designates some
computer-memory location which contains the value. The language compiler
translates the symbolic variable name into an address, which is used by the
computer to retrieve the designated value.

For our purposes, it is all right to think of the computer’s memory as a
device that maps the symbolic variable directly to a value; we shall not concern
ourselves with the hidden translation from identifier to address. Thus, a memory
can be modeled as a function from the domain of program variables to the range
of interpreted values. We call such a mapping an environment.

As a program executes, its environment changes. The value associated with a
program variable is altered by assignment statements, the binding of procedure
parameters, and so forth. Our language specifications must reflect this fact and
this is done by including the environment in the definition of the interpretation.

Example

Ex 8.4 Let ide be a set of program variables (such as x , alpha , I5 , etc.).
Let env be the set of all environments,

env = {σ | σ : ide→ N}

Finally, take V to be the alphabet

V = N ∪ ide ∪ {#}

and define a prefix (hence unambiguous) language L6 ⊆ V + and interpretation
function V : L6 × env→ N according to:

L6 ⊆ V + V6 : L6 × env→ N

1a. N ⊆ L6 V6[k](σ) = k, for k ∈ N

1b. ide ⊆ L6 V6[v](σ) = σ(v), for v ∈ ide

2. u, v ∈ L6 ⇒ # u v ∈ L6 V6[# u v](σ) = V6[u](σ) + V6[v](σ)

3. nothing else

We write V6[u](σ) rather than V6[u, σ] or V(u, σ) because it is a little clearer.
Since the environment variable is always a single letter, we will later drop the
surrounding parentheses.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.4. ENVIRONMENTS 147

Clause 1(b) is new; it specifies the interpretation of a program variable,
v ∈ ide, whose value is provided by the environment σ.

Figure 8.4 defines a language of infix arithmetic expressions involving op-
erations of addition, subtraction, multiplication, and negation. Among these
operations, negation has the highest precedence, then multiplication, and ad-
dition and subtraction have lower, but equal, precedence. Precedence may be
superseded by parentheses. All operations are performed from left to right. This
example shows that by building the mathematical structures in the right way,
we can be precise about the meaning of “ambiguous” languages.

Example

Ex 8.5 If environment σ = {(row , 5), (col , 8)}, then

VE [5 * (row + 2) * - col)]σ

= VT [5 * (row + 2) * - col)]σ VE(1)

= VF [5]σ × VT [(row + 2) * - col)]σ VT (2)

= 5× VT [(row + 2) * - col)]σ VF (1)

= 5×
(
VF [(row + 2)]σ × VT [- col)]σ

)
VF (1)

= 5×
(
VF [(row + 2)]σ × VF [- col)]σ

)
VT (1)

= 5×
(
VF [(row + 2)]σ × (−VE [col)]σ

)
VF (2b)

= 5×
(
VF [(row + 2)]σ × (−VT [col)]σ

)
VE(1)

= 5×
(
VF [(row + 2)]σ × (−VF [col)]σ

)
VT (1)

= 5×
(
VF [(row + 2)]σ × (−σ(col))

)
VF (1b)

= 5×
(
VF [(row + 2)]σ × (−8)

)
(col , 8) ∈ σ

= 5×
(
VE [row + 2]σ × (−8)

)
VF (2a)

= 5×
(
VT [row]σ + VE [2]σ × (−8)

)
VE(2a)

= 5×
(
VF [row]σ + VT [2]σ × (−8)

)
VT (1), VE(1)

= 5×
(
σ(row) + VF [2]σ)× (−8)

)
VF (1b), VT (1)

= 5× ((5 + 2)× (−8)) (row , 5) ∈ σ, VF (1a)

= −280 arithmetic

Exercises 8.4

1. Add a division operation symbol ‘/ ’ to the language E in Figure 8.4
in such a way that ‘T/’ and ‘* ’ have equal precedence but there is no
ambiguity.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

148 CHAPTER 8. LANGUAGES AND MEANINGS

Let V = N∪ide∪{(,) , + , - , *}. Simultaneously define (see Exercise
5, Section 4) the languages F, T,E and interpretations VF ,VT ,VE as
follows:

F ⊆ V + VF : F × env→ N

1a. N ⊆ F VF [k]σ = k, for k ∈ N

1b. ide ⊆ F VF [v]σ = σ(v), for v ∈ ide

2a. e ∈ E ⇒ (e) ∈ F VF [(e)]σ = VE [e]σ

2b. e ∈ E ⇒ - e ∈ F VF [- e]σ = −VE [e]σ

3. nothing else

T ⊆ V + VT : T × env→ N

1. F ⊆ T VT [f]σ = VF [f]σ for f ∈ F

2. f ∈ F, t ∈ T ⇒ f * t ∈ T VT [f * t]σ = VF [f]σ × VT [t]σ

3. nothing else

E ⊆ V + VE : E × env→ N

1. T ⊆ E VE [t]σ = VT [t]σ for t ∈ T

2a. t ∈ T, e ∈ E ⇒ t + e ∈ E VE [t + e]σ = VT [t]σ + VE [e]σ

2b. t ∈ T, e ∈ E ⇒ t - e ∈ E VE [t - e]σ = VT [t]σ − VE [e]σ

3. nothing else

Figure 8.1: A language of infix arithmetic expressions and its interpretation

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.5. BACKUS-NAUR FORM 149

2. Add a division operation symbol ‘/ ’ to the language E in Figure 8.4 in such
a way that division operations are performed from right to left. Can right-
to-left division and left-to-right multiplication have equal precedence?

3. Let environment σ = {(a , 3), (b ,−2), (c , 5)}. Evaluate one of the follow-
ing words from the language E of Figure ?.

(a) a + 6 - 3 * 5 (c) b * 4 + - - y
(b) ((b * 2) * c) * 3 (d) a * - (b + 5)

8.5 Backus-Naur Form

Languages defined in the manner of the previous sections are called context free
languages. There is a standard notation in computer science for context free
grammars. It is called Backus-Naur form or BNF, after John Backus and Peter
Naur, who used it to specify the syntax of the algol 60 programming language.
A BNF description of the language E in Figure 8.1 looks like this:

〈F〉 ::= 〈natural number〉

〈F〉 ::= 〈program variable〉

〈F〉 ::= - 〈E〉

〈F〉 ::= (〈E〉)

〈T〉 ::= 〈F〉

〈T〉 ::= 〈F〉 * 〈T〉

〈E〉 ::= 〈T〉

〈E〉 ::= 〈T〉 + 〈E〉

〈E〉 ::= 〈T〉 - 〈E〉

The names of inductively defined sets are surrounded by angle brackets 〈· · · 〉
and “〈L〉 ::= rule” replaces “rule ∈ L. BNF allows us to describe languages
concisely, without introducing variables for sub-phrases (e.g. f , t, and e in
Figure 8.1).

Exercises 8.5

1. Give the BNF forms for the languages defined in Exercises 1 and 2.

2. Give the BNF form for the language of statements from Section 1.3. As-
sume that sets 〈assignmentexpression〉 and 〈testexpression〉 are already
defined.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

150 CHAPTER 8. LANGUAGES AND MEANINGS

3. If you were going to define an interpretation function for the language of
statements, what would its domain and range be?

8.6 Propositional Formulas

In this section we shall explore applications of the language definition style
just introduced. For concreteness, the language of propositional logic is used.
However, bear in mind that, except for the syntax, the results at the end of this
section are valid for other languages, such as arithmetic expressions.

Figure 8.2 defines a language, Prop, of propositional formulas. It follows
the style of Figure 8.1 in an abbreviated form:

(a) The language prop is defined using BNF.

(b) Rather than building the language in stages, as was done with arithmetic
terms, 8.2 simply specifies the operator precedence.

(c) The interpretation function P implicitly assumes that the language has
been disambiguated.

It is supposed that the Reader can fill in the necessary details when needed.
In Figure 8.2, props’ meanings are given in terms of environments.

env = {σ | σ : IVS→ {T, F}}

A given environment σ ∈ env corresponds to one row of a truth table. Accord-
ingly, let us redefine tautology, contradiction, and logical equivalence in terms of
environments.

Definition 8.1 A prop Q is a tautology iff for every σ ∈ env, Pσ [Q] = T .
A prop Q is a contradition iff for every σ ∈ env, Pσ [Q] = F .

Definition 8.2 Two props P and Q are logically equivalent, written P eq Q,
iff for every σ ∈ env, Pσ [P] = Pσ [Q].

As a first exercise, let us validate the intuitive correspondence between logical
equivalence (eq) and bi-implication (⇔). Proposition 9.1 confirms a fact that
we have already used. Conversely, its proof helps validate that our new defini-
tions are sensible. For the purpose of this proposition, suppose an implication
operator, =>, is included in prop.

Proposition 8.1 If P and Q are props, then for all σ ∈ env

P eq Q iff (P => Q) & (Q => P) is a tautology.

Proof: The proof is a straightforward application of the definition of P;
induction is not required, although we do need to know that P is a function
(not a relation or partial function).

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.6. PROPOSITIONAL FORMULAS 151

Let Pvar be a set of propositional variables, and the alphabet A =
Pvar ∪ {(,) , 0 1 , - , | , & >}. The language prop ⊆ A+ of
propositional formulas and its interpretation

env : Pvar→ {true, false}
P : env× prop→ {true, false}

are defined as follows:

〈prop〉 ::= 0 Pσ[0] = false

1 Pσ[1] = true

〈Pvar〉 Pσ[v] = σ(v), for v ∈Pvar

- 〈prop〉 Pσ[-f] = ¬ Pσ[f]

(〈prop〉) Pσ[(f)] = Pσ[f]

〈prop〉 & 〈prop〉 Pσ[f1 & f2] = Pσ[f1] ∧ Pσ[f2]

〈prop〉 | 〈prop〉 Pσ[f1 | f2] = Pσ[f1] ∨ Pσ[f2]

with precedence − � & � | .

Figure 8.2: A language of propositional formulas and its interpretation

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

152 CHAPTER 8. LANGUAGES AND MEANINGS

if part: Let σ ∈ env and assume that P eq Q, that is, by Definition 9.3,
Pσ [P] = Pσ [Q]. Then

(P T=> Q) & (Q => P)

= (Pσ [P]⇒ Pσ [Q]) ∧ (Pσ [Q]⇒ Pσ [P]) (Defn. of P)

= (Pσ [P]⇒ Pσ [P]) ∧ (Pσ [P]⇒ Pσ [P]) (Assumption that Pσ [P] = Pσ [Q])

= T (meanings of ⇒, ∧)

Thus, by Defintion 9.2, (P => Q) & (Q => P) is a tautology.

only-if part: Assume that (P => Q) & (Q => P) is a tautology, and let
σ ∈ env be any environment.

T = Pσ [(P => Q) & (Q => P)]

= (Pσ [P]⇒ Pσ [Q]) ∧ (Pσ [Q]⇒ Pσ [P]) (defn. P)

This equality can hold only if Pσ [P] = Pσ [Q]. Therefore, by Definition 9.3,
P eq Q.

Example

Ex 8.6 A function that translates sentences from one language to another (pos-
sibly the same) language called a transliteration. We are often interested in
whether and how transliterations change the meaning of the original sentence.
This example applies this idea to define a generalization of DeMorgan’s identity
for boolean algebras.

The DeMorgan Dual of f ∈ Prop is obtained by switching all 0’s and 1’s,
+’s and *’s, and inserting a - just before every variable symbol.

For instance, the DeMorgan dual of (a & b) | ((c | 0) & (-b | a))
is (-a | -b) & ((-c & 1) | (--b & -a))

Inspecting the DNFs of these formulas:
{

a b c + a b c + a b c + a b c

a b c + a b c + a b c + a b c.

}
reveals

that they are negations of each other—they have no clauses in common and
together contain all eight possible clauses.

(a) Define a recursive function D : prop → prop that gives the DeMorgan
dual of any F ∈ prop.

D[0] = 1
D[1] = 0
D[v] = -̂ v for v ∈ IVS

D[- P] = -̂ D[P]
D[P | Q] = D[P]̂ &̂ D[Q]
D[P & Q] = D[P]̂ |ˆD[Q]

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.7. SUBSTITUTION 153

(b) Prove that the DeMorgan dual of a propositional formula is its logical
negation: For all σ ∈ env and F ∈ prop, Pσ[D[F]] = ¬Pσ[F].

The proof is a straightforward induction on words in prop. The crux of
the argument is in the base case for variables, where for any v ∈ IVS we
have

Pσ[D[v]] = Pσ[- v̂] = ¬Pσ[v]

All steps above are justfied by the definitions of P or D. An example of
the inductive cases, for formulas of the form P + Q, is

Pσ

[
D[P | Q]

]
= Pσ

[
D[P]̂ &̂ D[Q]]

]
(defn. D)

= Pσ

[
D[P]

]
∧ Pσ

[
D[Q]]

]
(defn. P)

H= ¬Pσ[P] ∧ ¬Pσ[Q] (I.H. used twice)

= ¬ (Pσ[P] ∨ Pσ[Q]) (DeMorgan’s Identity)

= ¬Pσ[Pˆ|ˆQ] (defn. P)

Exercises 8.6

1. Add an implication operator, ‘=>’ to Prop.

2. Use transliteration to add an implication “macro” to Prop. That is,
define a language prop⇒ that includes ‘=>’ and a translation function
F : prop⇒ → prop that correctly re-interprets f1 => f2 as (- f1 + f2) .

8.7 Substitution

A substitution is the simultanesous replacement of formulas for variables in an
expression.

Definition 8.3 Let F, P1, . . . , Pk ∈ prop and v1, . . . , vk ∈ Pvar. The substi-
tution

F
[P1, . . . , Pk

v1, . . . , vk

]
denotes the result, S[F], of a substitution function S : prop → prop defined

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

154 CHAPTER 8. LANGUAGES AND MEANINGS

as follows:
S[0] = 0
S[1] = 1

S[x] =

{
Pj if x = vj

x otherwise

S[- Q] = -̂ S[P]
S[Q | Q′] = S[Q]̂ |ˆS[Q′]
S[Q & Q′] = S[Q]̂ &̂ S[Q′]

According to the definition, we often consider the substitution function

S as specified by
[P1, . . . , Pk

v1, . . . , vk

]
which may be applied to any formula F ∈ prop, writing write S[P] to denote
the result.

Example

Ex 8.7
p * (-q + r)

[q (s+t) p

p q r

]
≡ q * ((s+t) + p)

In performing substitutions, one must take care to preserve operator precedence.
Above, this is done by parenthesizing (s + t) .

The three theorems that follow verify the fundamental rules for logical manip-
ulations involving substitution. Since we have been using these results all our
lives, another way to look at these theorems is that they validate the definitions
given so far.

Lemma 8.2 (Substitution Lemma) Let S be a substitution and σ an envi-
ronment. Define an new environment σ′ as follows:

σ′(v) = Pσ [S(v)] for v ∈ IVS

Then for all props P ,
Pσ′ [P] = Pσ [S [P]]

Proof: The proof is a straightforward structural induction on prop. The
inductive cases hold because the operations are functions. The interesting base
case is the one for a variable v ∈ IVS. In that case, we have

Pσ′ [v] = Pσ [S [p]]

which is exactly what we need to make the Theorem true.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.7. SUBSTITUTION 155

The Substitution Lemma states that for the language of propositions, a call-by-
value style evaluation—in which variables are bound to expressions’ values—
is equivalent to a call-by-name style evaluation. This is an exact equivalence
because there is no form of looping in the language.

More significantly, the lemma says that our notion of substitution interacts
well with our notion of evaluation. For example,

Theorem 8.3 (Tautology Theorem) Let P be a prop and S a substitution,
If P is a tautology, then so is S [P].

Proof: Apply the definition of tautology and the Substitution Lemma. The
details are left as Exercise 2.

For example, the formula

Q ≡ (p | q & (p => r)) | -(p | q & (p => r))

is a tautology because p | -p is a tautology and there is a subsitition,

S[p] = (p | q & (p => r))

under which
Q ≡ S [p | -p]

Theorem 9.3 gives us one way to abbreviate the analysis of props. The next
theorem states that we can analyze prop schemes as well as individual props.

Theorem 8.4 (Substitution Theorem) If P eq Q then for any substitution
S, S [P] eqS [Q]

Proof: Use the Substitution Lemma.

Thus, not only is formula

p | (q | r) eq (p | q) | r

but the two formula schemes,

P | (Q | R) and (P | Q) |R

are equivalent for arbitray sub-props P , Q, and R. In fact, we reason about
prop schemes far more often than we reason about prop individuals.

The following result is very important to the way we do proofs. It says you
can “replace equals with equals” and still preserve equivalence.

Theorem 8.5 (Replacement Theorem) Let S1 and S2 be substitutions such
that, for all v ∈ IVS, S1(v) eq S2(v). Then for any prop P,

S1 [P] eq S2 [P]

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

156 CHAPTER 8. LANGUAGES AND MEANINGS

Proof: Let σ be any environment and define σ′ to be

σ′(v) = Pσ [S1[v]]

Since S1(v) eq S2(v), it is also the case that σ′(v) = Pσ [S2[v]] for all v ∈ IVS.
Using the Substitution Lemma twice, we have

Pσ [S1[P]] = Pσ′ [P] = Pσ [S2[P]]

as desired.

For example, p⇒q eq ¬q ⇒ ¬p so

(q ⇒ p) ∧ (p ⇒ q) eq (q ⇒ p) ∧ (¬q ⇒ ¬p)

under the substitutions

v S1[v] S2[v]

p p p

q q q

r p ⇒ q ¬q ⇒ ¬p

These results about substitution and replacement do not depend in any funda-
mental way on the syntax of formulas in prop. Exercise 3 asks you to define
substitution for arithmetic expressions. Exercise 3 asks you to consider a more
general definition of substitution, applicable to any language defined in the style
developed in this chapter.

The question of interpretation is more important. Is it the case that all recur-
sively defined interpretations allow substitution? One answer is that substitu-
tion is so important that only those interpretations that make the Substitution
Lemma (Lemma 9.2) true are allowed.

Exercises 8.7

1. Let F ≡ p ∧ (q ∨ r). Perform the following substitutions

(a) F
[r, q, p

p, q, r

]
(b) F

[p ∨ r

p

]
(c) F

[p ∨ r, q ⇒ r

p, r

]
(d)

(
F
[p ∨ r

p

]) [q
p

]
(e)

(
F
[q
p

]) [p ∨ r

p

]
Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.8. THE PROGRAMMING LANGUAGE OF STATEMENTS 157

2. Define substitution for arithmetic terms as defined in Figure 8.1. Show
that the Substitution Lemma (Lemma 9.2) holds for their interpretation.

3. Describe in general terms the process of defining substitution for any lan-
guage that contains variables. Try to write down the appropriate gener-
alized definitions and theorems.

8.8 The Programming Language of Statements

The stmt programming language was first introduced in Chapter 1 and has been
referred to often throughout this textbook. In this section we shall apply the
definitional style developed in this chapter to write a more rigorous specification
of program syntax and meaning. These specifications appear in Definitions 8.4
and 10.3.

Sentences in stmt—programs—are built from a set of keywords,

{begin , end , if , then , else , while , do , := , ;}

and phrases coming from:

(a) The language of arithmetic terms used in assignment statements. This
language and its interpretation are essentially the same as that of Figure
8.1.

(b) Test expressions used in if and while statements. Test expressions are
logical combinations of arithmetic comparisons. Their interpretation is
straightforward to define and is left as an exercise.

Discussion Points The clauses in Definition 10.3 are subtle. They must be
studied carefully.

• Programs express computation in terms of assignment: recording infor-
mation in a memory. The interpretation of statements reflects this model.
A program starts with an initial memory, runs for a while, and then stops,
leaving its results in an updated memory. We model memories abstractly
with environments mapping program variables to values. Thus, the inter-
pretation function maps from environments to environments.

M : env× stmt
p→ env

M is a partial function. For non-terminating programs it does not give a
value, as discussed below.

• The interpretation of assignment says to take the environment function σ,
remove the ordered pair for program variable V , and replace it with one
that binds V to the value of T .

[σ \ {(V, σ(V)}] ∪ {(v, Tσ[T]}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

158 CHAPTER 8. LANGUAGES AND MEANINGS

• The compound-statement interpretations says, execute statement S1, and
then execute S2 using this resulting memory, σ′. It might have been
written even more mysteriously as

M(Mσ [S1]) [S2]

• Unlike all other rules, the rule for while-statements does not reduce in-
terpretation to a proper sub-sentence. The interpretation of certain state-
ments is undefined. For instance,

Mσ[while x = x dox := x]

Pσ[x = x] = · · · = true
(d)
== M

σ′ [while x = x dox := x]

where σ′(x) =Mσ[x := x] = · · · = σ

= Mσ[while x = x dox := x]
...

Of course, this is just what we want our model to describe: a non-
terminating program does not produce a “final” memory.

Let us use Definition 10.3 prove an interesting fact about compound statements.

Proposition 8.6 The compound operator, ‘;’ is associative in the sense that
for all σ ∈ env and statements S1, S2, and S3,

Mσ[begin begin S1 ; S2 end ; S3 end]
= Mσ[begin S1 ; begin S2 ; S3 end end]

Proof: Apply Definition 10.3.

Thus, it is not ambiguous to write begin S1 ; S2 ; S3 end because it doesn’t
matter how begin-ends are associated.

The next relatively simple fact is the first step in reducing program correct-
ness statements to purely logical conditions. Recall that the notation {P} S {Q}
says, “If statement S starts with a memory in which property P holds (and if it
terminates), property Q holds in the final memory. In more precise terms, for
all σ ∈ env,

Pσ[P] implies Pσ′ [Q] where σ′ =Mσ[S]

Proposition 8.7 {P} V := T {Q} iff P ⇒ Q
T

V .

Proof: (⇒) Let σ ∈ env, and assume {P} V := T {Q} is true. Then
Pσ[P] ⇒ Pσ′ [Q] where σ′ =Mσ[V :=T]. By Definition 10.3, σ′(V) = Tσ[T].
Hence, by the Substitution Lemma (Lemma 9.2, suitably generalized), Pσ′ [Q]
is logically equivalent to Pσ[QT

V]. Therefore, Pσ[P ⇒ QT
V] is true.

(⇒) By the same argument as above.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.8. THE PROGRAMMING LANGUAGE OF STATEMENTS 159

Definition 8.4 The languages of arithmetic terms (term), comparisons
(comp), tests (test) and program statements (stmt) are defined according
to the grammar below. All operators associate to the right with precedence
−1 � ∗ � + = −2 and

〈term〉 ::= 〈numeral〉
::= 〈identifier〉
::= -1 〈term〉
::= (〈term〉)
::= 〈term〉 * 〈term〉
::= 〈term〉 + 〈term〉
::= 〈term〉 - 2 〈term〉

〈comp〉 ::= 〈term〉 = 〈term〉
::= 〈term〉 < 〈term〉

〈test〉 ::= 〈comp〉
::= -3 〈comp〉
::= (〈comp〉)
::= 〈comp〉 & 〈comp〉
::= 〈comp〉 | 〈comp〉

〈stmt〉 ::= 〈identifier〉 := 〈term〉 (assignment)

::= begin 〈stmt〉 ; 〈stmt〉 end (compound)

::= if 〈test〉 then 〈stmt〉 else 〈stmt〉 (conditional)

::= while 〈test〉 do 〈stmt〉 (repetition)

Definition 8.5 Given interpretations T : env × term → N and P : env ×
test→ {true, false}, the operational meaning of programs in stmt (Definition
8.4) is given by the partial functionM : env× stmt→ env defined as follows:

(a) Mσ[V := T] = [σ \ {(V, σ(V)}] ∪ {(V, Tσ[T]}

(b) Mσ[begin S1 ; S2 end] =Mσ′ [S2] where σ′ =Mσ[S1]

(c) Mσ[if Q then S1 else S2] =

{
Mσ[S1] if Pσ[Q] = true
Mσ[S2] if Pσ[Q] = false

(d) Mσ[while Q doS] =


σ, if Pσ[Q] = false
Mσ′ [while Q do S]

where σ′ =Mσ[S],
if Pσ[Q] = true

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

160 CHAPTER 8. LANGUAGES AND MEANINGS

Example

Ex 8.8 In Proposition 4.1 (p. ??) it was shown that

{z + xy = AB}
while x 6= 0 do

begin
x := x− 1;
z := z + y
end;

end {z = AB}

The proof of invariance involved reasoning about the values of identifiers before
(x, y and z) and after (x′, y′ and z′) executing the loop body. Proposition 8.7
says that this kind of temporal reasoning may be reduced to “pure logic”:

{z + xy = AB ∧ x 6= 0}begin x:=x− 1; z :=z + 1 end{z + xy = AB}

eq (by Prop. 8.7)

{z + xy = AB ∧ x 6= 0} x:=x− 1
{(

z + xy = AB
)[z + 1

z

]}
eq (by Prop. 8.7)(

z + xy = AB ∧ x 6= 0
)
⇒

((
z + xy = AB

)[z + y

z

]) [x − 1

x

]
Performing these substitutions, we get(

z + xy = AB ∧ x 6= 0
)
⇒

((
z + xy = AB

)[z + y

z

]) [x − 1

x

]
eq(

z + xy = AB ∧ x 6= 0
)
⇒

(
(z + y) + xy = AB

)[x − 1

x

]
eq(

z + xy = AB ∧ x 6= 0
)
⇒

[
(z + y) + (x− 1)y = AB

]
eq (simplifying (x + y) + (x− 1)y)(

z + xy = AB ∧ x 6= 0
)
⇒

(
z + xy = AB

)
Which is tautologically true.

Exercises 8.8

1. Define interpretations for arithmetic and test expressions. T : env ×
term→ N P : env× test→ {true, false}.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.8. THE PROGRAMMING LANGUAGE OF STATEMENTS 161

2. In Example 8.8 the subformula((
z + xy = AB

)[z + y

z

]) [x − 1

x

]
is derived. Is this the same as(

z + xy = AB
)[z + y, x − 1

z, x

]
3. Suppose that, for all σ ∈ env, T ∈ term and C ∈ comp, Tσ[T] = 42 and
Pσ[C] = true. Describe how programs in stmt behave.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

162 CHAPTER 8. LANGUAGES AND MEANINGS

8.9 *Discussions

8.9.1 Parenthesized Expressions

In Example 8.2 it is claimed that fully parenthesized expressions are unam-
biguous. This fact seems intuitively obvious but proving it rigourously requires
delving into that intuition. The essential property of this language is that its
parentheses are “balanced.”

As in the example, Let alphabet A = N ∪ {# , $, (,)}. For w ∈ A+, define
∆[w] to be the number of left parentheses in w minus the number of right
parentheses. For example, ∆[((5 $ 2()] = 2 and ∆[)3()7(] = 0.

The language L2 of 8.2 was defined

L2 ⊆ A+ V : L2 → N

1. 〈L2〉 ::= N V[n] = n for n ∈ N

2a. (〈L2〉 # 〈L2〉) V[(u # v)] = V[u] + V[v]

2b. (〈L2〉 $ 〈L2〉) V[(u $ v)] = V[u]× V[v]

Proposition 8.8 Let L2 be the language defined in Example 8.2. Then for all
w ∈ L2, ∆[w] = 0.

Proof: The proof is by structural induction on L2. In the base case, if k ∈ N
then k contains no parentheses, so ∆[k] = 0. For the induction case, assume
∆[u] = ∆[v] = 0. Then

∆[(u*v)] = 1 + ∆[u] + ∆[v]− 1 = 0

And similarly for ∆[(u+v)].

Proposition 8.8 captures only part of the quality of being balanced. How can
we capture the notion of being properly balanced? The answer is not obvious,
but a little experimentation will convince you that the next proposition is what
we need:

Proposition 8.9 Let L2 be the language defined in Example 8.2, and let w ∈
L2. If w = r # s (or r $ s) for any two words r, s ∈ V +, then ∆[r] > 0 and
∆[s] < 0.

Proof: The proof is by structural induction on L2 and the base case holds
vacuously. For the induction case, assume w = (u # v) and that the induction
hypothesis holds for u and v. Now suppose that w also equals r $ s, so that we
have the following:

←− u −→ ←−−−−−− v −−−−−−→
(# y $ z)

←−−−−−− r −−−−−−→ ←−− s −−→

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

8.9. *DISCUSSIONS 163

By Proposition 8.8 ∆[u] = 0, and by the induction hypothesis, ∆[y] > 0. Hence,

∆[r] = ∆[(u # y] = 1 + ∆[y] > 0

Again by Proposition 8.8, ∆[w] = 0, so it must be the case that

∆[s] = ∆[z)] = −∆[r] < 0

A similar argument holds if the ‘$ ’ occurs to the right of the ‘# ’.

We are now in a position to prove that each word in L2 has a unique parse.

Proposition 8.10 Let L2 be the language defined in Example 8.2, and let w ∈
L2, w 6∈ N. Then there is exactly one pair of words, u, v ∈ L2 such that
w = (u # v) (or (u $ v)).

Proof: We will assume that there are two such pairs and reach a contradiction.
Without loss in generality, assume that w = (u # v) and w = (r $ s) and
u, v, r, s ∈ L2, so that we have the following:

←−−−−−− v −−−−−−→
(u # z $ s)

←−−−−−− r −−−−−−→

By Proposition 8.8, r ∈ L2 implies ∆[z] < 0 while u ∈ L2 implies ∆[z] > 0.
This is a contradiction, so either u and v or r and s do not exist.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

164 CHAPTER 8. LANGUAGES AND MEANINGS

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 9

Formal Logic

In this Chapter we shall apply the techniques of Chapter 8 to the language of
logic. One purpose is to verify, in a mathematically rigorous manner, that the
rules of reasoning we are taught, use, and believe are valid. It should come as
no surprise that they are, but it is worthwhile to contemplate how much of the
mathematics (or anything else) we learn without looking very deeply into what
it means.

The propositions, lemmas, and theorems in Sec. 9.1 all have to do validating
the basic formula manipulations—their syntax—used in mathematical reason-
ing in terms of a precisely defined notion of what these formulae mean—their
semantics.

A calculus is a system for reasoning symbolically in semantically valid ways.
“The Calculus” (of continuous functions on R) is a deeply developed and elegant
example. A first course in The Calculus spends some time on semantics, what
differentiation and integration mean and how they are related, and some time
on symbolic manipulation rules, such as partial differentiation and integration
by parts. When you apply The Calculus, you are performing symbolic manip-
ulations without thinking about what they mean (unless they don’t work).

This chapter builds a calculus for logical reasoning, which is extended in
Chapter 10 to a reasoning system for programs. The emphasis is validity, prov-
ing that the symbolic rules are correct with respect to the underlying semantics.
Toward the end of Chapter 10, we will begin to explore applications to program
refinement.

9.1 Propositional Logic

Definition 9.1 A well formed formula, or WFF, is a term (Definition ??) in
the data type of logical operations, B = 〈{T, F}; ∧, ∨, ⇒, ¬; ; T, F 〉

A WFF represents a possible combination of elementary propositions. For this

165

166 CHAPTER 9. FORMAL LOGIC

reason the individual variable symbols are often called propositional variables.

IVS = {p, q, r, . . . },

We will use capital letters P , Q, R, . . . , to refer to WFF s. We will also use a
parenthesized infix notation to make WFF s easier to read. Following Section
8.3, we define the precedence of operations to bexy

(highest)
¬ (rank= 1)
∧ (rank= 2, associative)
∨ (rank= 2, associative)
⇒ (rank= 2, right-associative)

(lowest)
(lowest)

For example,

p ∨ q ∧ r means p ∨ (q ∧ r)
p ⇒ q ⇒ r means p ⇒ (q ⇒ r)
¬ p ∨ q ⇒ r means ((¬ p) ∨ q) ⇒ r

Our informal description of WFF in Section 2 can now be replaced by a rigorous
one. Although we can certainly still use truth tables to evaluate propositions,
our definition of WFF s’ meanings is of environments. A given environment
σ : VAR → {T, F} corresponds to one row of a truth table.

env = {σ | σ : IVS→ {T, F}}

Definition 9.2 A WFF Q is a tautology iff for every σ ∈ env, T σ [Q] = T .
A WFF Q is a contradition iff for every σ ∈ env, T σ [Q] = F .

Definition 9.3 Two WFFs P and Q are logically equivalent, written P eq Q,
iff for every σ ∈ env, T σ [P] = T σ [Q].

As a first exercise, let us validate the intuitive correspondence between logical
equivalence (eq) and bi-implication (⇔). The correspondence is “intuitive” be-
cause we learned it at an early age and have been using it ever since. Proposition
9.1 merely confirms what is believed. Conversely, the proof of Prop. 9.1 helps
confirm that our definitions are sensible.

Proposition 9.1 If P and Q are WFFs, then for all σ ∈ env

P eq Q iff (P⇒Q)∧(Q⇒P) is a tautology.

Proof: The proof is a straightforward application of the definition of T ;
induction is not required, although we do need to know that T is a function
(not a relation or partial function).

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.1. PROPOSITIONAL LOGIC 167

if part: Let σ ∈ env and assume that P eq Q, that is, by Definition 9.3,
T σ [P] = T σ [Q]. Then

(P ⇒ Q)∧(Q⇒P)

= (T σ [P]⇒ T σ [Q]) ∧ (T σ [Q]⇒ T σ [P]) (Defn. of T)

= (T σ [P]⇒ T σ [P]) ∧ (T σ [P]⇒ T σ [P]) (Assumption that T σ [P] = T σ [Q])

= T (Meanings of ⇒, ∧ in B)

Thus, by Defintion 9.2, (P⇒Q)∧(Q⇒P) is a tautology.

only-if part: Let σ ∈ env and assume that (P ⇒ Q)∧(Q⇒P) is a tautology.
Hence

T = T σ [(P ⇒ Q)∧(Q⇒P)]

= (T σ [P]⇒ T σ [Q]) ∧ (T σ [Q]⇒ T σ [P]) (Defn. of T)

For operations ⇒ and ∧ in B, this equality can hold only if T σ [P] = T σ [Q].
Therefore, by Definition 9.3, P eq Q.

Recall (Definition ??) that a substitution,

W
[p, q, . . .

P, Q . . .

]
denotes a recursively defined function S : WFF →WFF simultaneously replac-
ing propositional variables p, q, etc. with WFF s P , Q, etc., respectively. For
simplicity, let us restrict ourselves to single-variable substitutions, and write

W p
Q instead of W

[p

Q

]
and use S [P] for the result of a substitution.

The following three results verify the fundamental rules for logical manipu-
lations involving substitution.

Lemma 9.2 (Substitution Lemma) Let S be a substitution and σ an envi-
ronment. Define an new environment σ′ as follows:

σ′(v) = T σ [S(v)] for v ∈ IVS

Then for all WFFs P ,
T σ′ [P] = T σ [S [P]]

Proof: The proof is a straightforward structural induction on WFF . The
inductive cases hold because the operations are functions. The interesting base
case is the one for a variable v ∈ IVS. In that case, we have

T σ′ [v] = T σ [S [p]]

which is exactly what we need to make the Theorem true.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

168 CHAPTER 9. FORMAL LOGIC

The Substitution Lemma states that for the language of propositions, a call-by-
value style evaluation—in which variables are bound to expressions’ values—
is equivalent to a call-by-name style evaluation. This is an exact equivalence
because there is no form of looping in the language.

More significantly, the lemma says that our notion of substitution interacts
well with our notion of evaluation. For example,

Theorem 9.3 (Tautology Theorem) Let P be a WFF and S a substitution,
If P is a tautology, then so is S [P].

Proof: Apply the definition of tautology and the Substitution Lemma. The
details are left as Exercise 2.

For example, the formula

Q ≡ (p ∨ q ∧ (p ⇒ r)) ∨ ¬(p ∨ q ∧ (p ⇒ r))

is a tautology because p ∨ ¬p is a tautology there is a subsitition,

S[p] = (p ∨ q ∧ (p ⇒ r))

under which
Q ≡ S [p ∨ ¬p]

From this point on, we will again use the triple-equals symbol ‘≡’, as above, to
refer to the equality of words.

Theorem 9.3 gives us one way to abbreviate the analysis of WFF s. The next
theorem states that we can analyze WFF schemes as well as individual WFF s.

Theorem 9.4 (Substitution Theorem) If P eq Q then for any substitution
S, S [P] eqS [Q]

Proof: Use the Substitution Lemma.

Thus, not only is
p ∨ (q ∨ r) eq (p ∨ q) ∨ r

but the two schemes, P ∨ (Q ∨ R) and (P ∨ Q) ∨ R, are equivalent for
arbitray sub-WFF s P , Q, and R. In fact, we reason about WFF schemes far
more often than we reason about WFF individuals.

The following result is very important to the way we do proofs. It says you
can “replace equals with equals” and still preserve equivalence.

Theorem 9.5 (Replacement Theorem) Let S1 and S2 be substitutions such
that, for all v ∈ IVS, S1(v) eq S2(v). Then for any WFF P,

S1 [P] eq S2 [P]

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.1. PROPOSITIONAL LOGIC 169

Proof: Let σ be any environment and define σ′ to be

σ′(v) = T σ [S1[v]]

Since S1(v) eq S2(v), it is also the case that σ′(v) = T σ [S2[v]] for all v ∈ IVS.
Using the Substitution Lemma twice, we have

T σ [S1[P]] = T σ′ [P] = T σ [S2[P]]

as desired.

For example, p⇒q eq ¬q ⇒ ¬p so

(q ⇒ p) ∧ (p ⇒ q) eq (q ⇒ p) ∧ (¬q ⇒ ¬p)

under the substitutions

v S1[v] S2[v]

p p p

q q q

r p ⇒ q ¬q ⇒ ¬p

These results about substitution and replacement do not depend in any funda-
mental way on the data type B. Exercise 3 asks you to generalize the theorems
in this section to an arbitrary data type.

Exercises 9.1

1. The proof of Lemma 9.2 does not show any of the inductive cases, claiming
that they are “straightforward.” Give the details of the cases for:

(a) If P,Q ∈WFF then so is P∧Q.
(b) If P,Q ∈WFF then so is P∨Q.
(c) If P,Q ∈WFF then so is P⇒Q.
(d) If P ∈WFF then so is ¬P .

2. Prove the Tautology Theorem, Theorem 9.3.

3. Let term be the language of terms over data type

A = 〈A; f1, . . . , fn; p1, . . . , pm; c1, . . . , cr〉

and define the notion of term equivalence to be:

For terms N, M ∈ term, N is equivalent to M , written N eq M ,
means that for all σ ∈ env, T σ[N] = T σ[M].

(a) Prove a version of the Substitution Lemma (Lemma 9.2) for term.
(b) Prove a version of the Substitution Theorem (Theorem 9.4) for term.
(c) Prove a version of the Replacement Theorem (Theorem 9.5) for term.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

170 CHAPTER 9. FORMAL LOGIC

9.2 Formal Proofs

Theorems 9.2, 9.4 and 9.5 lay the foundation for logical reasoning at a purely
syntactic level.

Definition 9.4 (Terminology) Let P ∈ WFF and S a substitution. The
term

S [P] ≡ P
[Q1, · · · , Qn

p1, · · · , pn

]
is called an S-instance of P .

If S is determined by the discussion context, we simply say instance rather than
S-instance.

We have used lower-case variables, p, q, r, etc., for individual variable sym-
bols and upper-case variables P , Q, R, etc., for WFF s. The expression

P ∧ (P ⇒ Q))⇒ Q

denotes an instance of
p ∧ (p⇒ q))⇒ q

substituting P for p and Q for q.
Observe also that an instance of a substitution is an instance, for example,

P
[R

p

]
∧ (P

[R
p

]
⇒ Q

[W
r

]
)⇒ Q

[W
r

]
is also an instance of p ∧ (p⇒ q))⇒ q

Let Γ ⊆WFF be a set of propositional formulas In the definition below, formulas
in Γ are the starting assumptions of a logical argument1

Definition 9.5 Given a set of assumptions, Γ ⊂WFF, and a set of inference
rules, IR : WFF k p→WFF, A formal proof is a sequence

D = 〈P1, P2, . . . , Pn〉

In which each Pj is either

(a) An instance of A ∈ Γ, or

(b) The an instance IR(Q1, . . . , Qk) of some inference rule and each Q1, . . . , Qk

is occurs prior to Pj in D.

Definition 9.6 If a formal proof 〈P1, P2, . . . , Pn〉 from assumptions Γ exists,
we say that the last formula, Pn, is deducible from Γ. A deducible formula is
called a theorem in formal system 〈Γ, IR〉.

The proof-sequence D = 〈P1, P2, . . . , Pn, Q〉 can be thought of as a construction
sequence (in the sense of Section 7.4) for Q from the base set Γ. Note however,
that the IR’s are typically partial functions. This generalization has no impact
on the basic relationships among inductively defined sets, structural induction
principles and recursive definitions developed in Chapter 4.

1It is traditional to use capital Greek letters in this context. Later the variable ∆ will be
introduced for the same purpose.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.2. FORMAL PROOFS 171

Example

Ex 9.1 2 There are just three assumptions and one inference rule:

Γ = {P ⇒ (Q⇒ P), (A1)
(P ⇒ (Q⇒ R))⇒ ((P ⇒ Q)⇒ (P ⇒ R)), (A2)
(¬Q⇒ ¬P)⇒ ((¬Q⇒ P)⇒ Q) (A3)
}

MP : p, p⇒ q 7→ q (MP)

Show that p⇒ p is deducible from Γ and MP.

(1) (p⇒ ((p⇒ p)⇒ p))⇒ ((p⇒ (p⇒ p))⇒ (p⇒ p)) A2
[p, p, p

P, Q, R

]
(2) p⇒ ((p⇒ p)⇒ p) A1

[p, p

P, Q

]
(3) (p⇒ (p⇒ p))⇒ (p⇒ p) MP

[
(2), (1)

]]
(4) p⇒ (p⇒ p) A1

[p, p

P, Q

]
(5) p⇒ p MP

[
(4), (3)

]]
As may be evident from Example 9.1, finding a formal proof is essentially a goal-
directed activity; starting with the conclusion and applies MP “backwards” to
find an applicable assumption. The justification of each step explicity gives the
substitution from which each instance is is derived. Since this information is
determined from the instance Pi and the assumption A ∈ Γ, it is usually omitted
in the justification, which simply specifies which assumption is being used.

Example

Ex 9.2 Using the same Γ and MP as in Example 9.1, show that (¬p⇒ p)⇒ p
is deducible.

(1)
(¬p⇒ ((¬p⇒ ¬p)⇒ ¬p))
⇒ ((¬p⇒ (¬p⇒ ¬p))⇒ (¬p⇒ ¬p)) (A2)

(2) ¬p⇒ ((¬p⇒ ¬p)⇒ ¬p) (A1)

(3) (¬p⇒ (¬p⇒ ¬p))⇒ (¬p⇒ ¬p) MP
[

(2), (1)
]

(4) ¬p⇒ (¬p⇒ ¬p) (A1)

(5) ¬p⇒ ¬p MP
[

(4), (3)
]

(6) (¬p⇒ ¬p)⇒ ((¬p⇒ ¬p)⇒ p) (A3)

(7) (¬p⇒ p)⇒ p MP
[

(5), (6)
]

2This example is taken from the book A First Course in Formal Logic and its Applications
in Computer Science, by R.D. Dowsing, V.J. Rayward-Smith and C.C. Walter, Blackwell
Scientific Publications, Oxford, 1986, pp.26–29.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

172 CHAPTER 9. FORMAL LOGIC

Verify that Steps 1, 2, 4 and 6 properly instantiate the assumptions used in each
step, for example,

(1) ≡ A2
[[¬p], [¬p ⇒ ¬p], [¬p]

P, Q, R

]
Steps 1–5 in Example 9.1 are the same as in the proof in Example 9.2, except
that they are applied to different substitution instances. We would like for
existing proofs to be “reusable,” so let us add We should add to Definition 9.5
a provision for using already-proven results:

(a) Any instance of assumption A ∈ Γ.

(b) Any instance IR(Q1, . . . , Qk) of some inference rule provided each Q1, . . . , Qk

is occurs prior to Pj in D.

(c) Any instance of a theorem T ∈WFF that is deducible from Γ and IR.

9.2.1 Deducability and Validity

Definition 9.7 Suppose Γ is any set of assumptions, R any set of inference
rules, and Q ∈ WFF any formula. If Q is deducible from Γ and R, we say Q
is provable, written

Γ `R Q

If the set of inference rules is fixed by the context of the discussion, the subscript
R is omitted. If Γ = ∅, it too is dropped and we just write ` Q.

Definition 9.8 Q is a consequence of Γ = {a1, . . . , an}, if, for all σ ∈ env,(
T σ [a1] ∧ · · · ∧ T σ [an]

)
⇒ T σ [Q]

The notation for consequence is

Γ |= Q

’|=’ gives us a semantic notion of consequence; ‘`’ is a syntactic notion of prov-
ability. Naturally, we would want our formal proofs to be valid, that is, if one
can prove a formula P , it should be the case that the assumptions imply the
truth of P . We might also want our proof system to powerful, that is, if P is a
tautology, there should exist a formal proof of P . These two qualities specified
in the next two definitions.

Definition 9.9 A proof system 〈Γ, R〉 is sound when Γ `R Q implies Γ |= Q.

Definition 9.10 A proof system 〈Γ, R〉 is complete when Γ |= Q implies Γ `R

Q

The system used in Examples 9.1 and 9.2 is sound and, perhaps surprisingly,
complete.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.2. FORMAL PROOFS 173

Proposition 9.6 The formal logic

Γ = {P ⇒ (Q⇒ P), (A1)
(P ⇒ (Q⇒ R))⇒ ((P ⇒ Q)⇒ (P ⇒ R)), (A2)
(¬Q⇒ ¬P)⇒ ((¬Q⇒ P)⇒ Q) (A3)
}

MP : p, p⇒ q 7→ q (MP)

Is both sound and complete with respect to propositional logic.

Proof: We shall not delve into the details of proving either soundness or
completeness, except to note:

(a) In this instance and in general, proving soundness is a relatively straight-
forward structural induction involving applications of the Substitution and
Replacement Theorems, 9.4 and 9.5.

(b) Completeness is harder to prove because the argument must consider all
interpretations, T : WFF → {0, 1}.

(c) Of course we need to know that all the usual logical operators are ac-
counted for; that is, they can be expressed with ‘¬’ and ‘⇒’:

P ∧Q eq ¬(P ⇒ ¬Q)

P ∨Q eq ¬P ⇒ Q

P ⇔ Q eq (P ⇒ Q) ∧ (Q⇒ P)

etc.

Proving has to do with implication, and the ”provability” relation ‘`’ differen-
tiates the formal notion of proof from the operation ‘⇒’. The next theorem
establishes the semantic connection.

Theorem 9.7 (Deduction Theorem) If Γ = {A1, . . . , An} and inference
rules R form a sound logic, then

Γ `R Q implies that (A1 ∧ · · · ∧ An)⇒Q is a tautology.

Theorem 9.7 does say that the assumptions are tautologies, only the implication.
Γ typically contains formulas of three kinds:

(a) Axioms are the basis of reasoning. These should be valid tautologies, true
for any instance. Assumptions A1, A2 and A3 in Examples 9.1 and 9.2 of
this kind.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

174 CHAPTER 9. FORMAL LOGIC

(b) Premises are assumptions to a specific theorem. to prove a theorem of
the form Γ ` (P ∧Q)⇒ R, Theorem 9.7 says you can take a shortcut by
adding P and Q as assumptions.

Γ ∪ {P,Q} ` R

(c) Results. As noted earlier, if Γ ` R, it is valid to add R to Γ.

9.2.2 A More Useful Propositional Calculus

The examples in the previous section use a minimal set of axioms and a single
inference rule, claimed to be a sound and complete Propositional Calculus. It
is the kind of system one would use to for in-depth studies of logic itself, but
it is not useful for doing logic. This section specifies a more useful calculus for
the latter purpose. We begin by introducing a compact notation for specifying
inference rules.

Inference Rule Notation.

As motivation, consider this description of the inference rule MP :

Γ ` (P ⇒ Q) ; Γ ` P

Γ ` Q
MP

It could be read in two ways:

(i) “If P ⇒ Q and P are provable, then Q is provable,” or

(ii) “If you want to prove Q, it suffices to prove P and P ⇒ Q.”

The capitalized variables P and Q refer to substitution instances of MP
[
(p⇒ q), p

]
.

The formula below the line is a proof goal that decomposes into two proof sub-
goals. A generalization of the provablility notation ‘Γ `R Q’ replaces the single
conclusion Q with a a set of WFF s, ∆:

Γ `R ∆ meaning At least one γ ∈ ∆ is deducible from Γ.

Our inference rules will have the form

Γ′ ` ∆′ · · ·
Γ ` ∆

name

In which the proof-goal below the line decomposes to one or more subgoals
above the line, in which formulas may be added or deleted from Γ or ∆. As a
further abbreviation, we write

Γ, P ` Q, ∆ rather than Γ ∪ {P} ` {Q} ∪∆

A set of rules called System G is shown in Figure 9.1. It has several interesting
features:

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.2. FORMAL PROOFS 175

(a) The Axiom says that if Γ∩∆ 6= ∅ then Γ ` ∆. In other words any instance
of p⇒ p is a theorem.

(b) There are two inference rules for each logical operator, one for operators
appearing as assumptions, the other dealing with operators appearing in
conclusions.

(c) In every rule, the subgoals above the line are “simpler” than the goals
below, in the sense that they remove an operator from every subgoal.

(d) The rules are “reversible;” they can be applied in either direction.

Let us use these rules to prove ((p⇒ q) ∧ p⇒ q. The proof on the left starts
with the goal at the bottom and applies inference rules until the subgoals are
axioms. The same proof is shown on the right in the form of a deduction.

Ax:
p, q ` q

(1) Ax:
p ` p, q

(2)

⇒` :
(p⇒ q), p ` q

(3)

∧ ` :
(p⇒ q) ∧ p ` q

(4)

`⇒ : ` ((p⇒ q) ∧ p)⇒ q
(5)

1. p, q ` q Ax.
2. p ` p, q Ax.
3. (p⇒ q), p ` q ⇒`
4. (p⇒ q) ∧ p ` q ∧ `
5. ` ((p⇒ q) ∧ p)⇒ q `⇒

The fact that each inference rule of System G consumes an operator symbol
implies that, eventually, there will be no operators left and hence no more
applicable rules. The subgoals ultimately reduce to the form {p1, . . . , pk} `
{q1, . . . , qm}. If any pi = qj we have reached an axiom; otherwise, there is
nothing left to do.

If there are no applicable rules to apply, let us say that deduction succeeds if
all leaves of the resulting proof tree are axioms. Otherwise it fails, and we write
Γ 6` ∆.

It is a pleasant fact that, no matter the order that the rules may be applied,
either all deductions succeed or they all fail. In other words, there is no risk of
choosing the wrong rule.

Theorem 9.8 System G is sound. If a deduction on Γ ` ∆ succeeds then∧
P∈Γ

⇒
∨

Q∈∆

is a tautology. That is, if Γ ` ∆ then Γ |= ∆.

Proof: The proof is a structural induction on WFF and reduces to showing
that the Axioms of System G are tautologies and the inference rules are sound.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

176 CHAPTER 9. FORMAL LOGIC

System G

Axioms Γ, P ` P , ∆ (Ax.)

assumption simplifcation conclusion simplification

¬ rules ¬ ` :
Γ ` P , ∆

Γ, [¬P] ` ∆
` ¬ :

Γ, P ` ∆

Γ ` [¬P], ∆

∨ rules ∨ ` :)
Γ, P ` ∆ Γ, Q ` ∆

Γ, [P ∨Q] ` ∆
` ∨ :

Γ ` P ,Q, ∆

Γ ` [P ∨Q], ∆

∧ rules ∧ ` :
Γ, P ,Q ` ∆

Γ, [P ∧Q] ` ∆
` ∧ :

Γ ` P , ∆ Γ ` Q, ∆

Γ ` [P ∧Q], ∆

⇒ rules ⇒` :
Γ ` P , ∆ Γ, Q ` ∆

Γ, [P ⇒ Q] ` ∆
`⇒ :

Γ, P ` Q, ∆

Γ ` [P ⇒ Q], ∆

Figure 9.1: A Propostional Calculus, System G

Theorem 9.9 If a deduction for Γ ` ∆ fails, then Γ 6|= ∆.

Proof: Such a deduction contains a leaf {p1, . . . , pk} ` {q1, . . . , qm} for which
no pi = qj . Define an environment σ in which, for all 1 ≤ i ≤ k, σ(pi) = true
and all 1 ≤ j ≤ m, σ(qi) = false. Under σ, the original formula is false and
therefore not a tautology.

It follows from these results that System G is both sound and complete.

Theorem 9.10 Γ ` ∆ iff Γ |= ∆.

Exercises 9.2

1. Using the formal system defined for Examples 9.1 and 9.2, give proofs for
the following theorems:

(a) ¬¬P ⇒ P

(b) ¬P ⇒ (P ⇒ Q)

(c) (¬Q⇒ ¬P)⇒ (P ⇒ Q)

(d) (Q⇒ P)⇒ (¬P ⇒ ¬Q)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.3. FIRST-ORDER PREDICATES 177

2. Using System G, give proofs for the following theorems:

(a) ¬¬P ⇒ P

(b) ¬P ⇒ (P ⇒ Q)

(c) (¬Q⇒ ¬P)⇒ (P ⇒ Q)

(d) (Q⇒ P)⇒ (¬P ⇒ ¬Q)

9.3 First-order Predicates

The propositional logic gives us a way to reason about pure statements of fact.
However, the truth of some sentences depends on the context in which they are
made. For example, consider the statement

(n 6= 0) ⇒ x

n
· n = x

This is a true sentence in the domain of real or rational numbers. If, however,
we are thinking about integers (as we do in computer arithmetic) the law may
no longer hold because of round-off errors. Thus, for our purposes, the notion
of “context” will be represented by a data type

A = 〈A; f1, . . . , fn; p1, . . . , pm; c1, . . . , cr〉

We are going to define a language of first-order formulas over A, in which we
can make assertions about elements of A.

Definition 9.11 The language FOF of first-order formulas over A is defined
inductively as follows.

1. if p̂ is an n-place predicate symbol and t1, . . . , tn are terms,
then

p̂(t1, . . ., tn)

is a formula.
2a. if G and H are formulas, then so are

(i) ¬ G
(ii) G ∧ H (iv) G ⇒ H
(iii) G ∨ H (v) G ⇔ H

2b. if G is a formula and v is an individual variable symbol, then
the following are formulas:

(i) ∀ v : G
(ii) ∃ v : G

3. n .e.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

178 CHAPTER 9. FORMAL LOGIC

Implication associates to the right (all other operators may associate in any
way), and the precedence in parsing is

(highest)
(∃
∀

)
, ¬, ∧, ∨, ⇒, ⇔, (lowest)

Before defining what these formulas mean, let us discuss what they ought to
mean. In the base case, each term in the formula p̂(t1, ..., tn) represents a
particular element of the set of values, A, in the data type. So we will need the
term evaluator of Chapter 4 to assign a meaning to these formulas.

The rules in 2a are pretty easy. They are just the standard logical combina-
tions of subformulas that we have seen before.

Rule 2b is new and different. How should we interpret the formula ∀x : G?
You might have said, “this formula is true if G is true for any possible value
of x.” We have used environments to give values to variables, so we want to
phrase this definition in terms of environment.3 We might say, “formula ∀x : G
is true in environment σ if G is true no matter what σ(x) is.” Let us introduce
some notation for this idea.

Definition 9.12 If σ and σ′ are environments and v is an individual variable
symbol, then σ and σ′ are said to be equivalent modulo v, written σ

v' σ′, if
they agree everywhere except perhaps at v. In other words,

w 6= v implies σ(w) = σ′(w)

With this bit of notation, we can assign a meaning to first-order formulas.

Definition 9.13 The function F : env× FOF→ A is defined over FOF (Def-
inition 9.11 as follows:

1. Fσ [p̂(t1, . . ., tn)] = p
(
T σ[t1], . . . , T σ[tn]

)
2a. (i) Fσ [¬G] = ¬Fσ [G]

(ii) Fσ [G ∧H] = Fσ [G] ∧ Fσ [H]
(iii) Fσ [G ∨H] = Fσ [G] ∨ Fσ [H]
(iv) Fσ [G⇒ H] = Fσ [G] ⇒ Fσ [H]
(v) Fσ [G⇔ H] = Fσ [G] ⇔ Fσ [H]

2b. Fσ [∃v : G] = T iff for some σ′
v' σ, Fσ′ [G] = T

Fσ [∀v : G] = T iff for every σ′
v' σ, Fσ′ [G] = T

Consider the formula
∃q : a = bq

3Textbooks in logic often use the term “interpretation” rather than “environment” in this
context.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.3. FIRST-ORDER PREDICATES 179

It says, “b divides a evenly.” In other words, it is a statement about a and b
but not about the quantified variable q. Let us give this formula a name and
acknowledge that it depends on two parameters:

Divides(A,B) ≡ ∃q : A = Bq

The triple-equal symbol ‘≡’ says that we are defining a formula called Divides
in terms of two sub-formulas A and B. There is, of course, a corresponding
predicate,

divides(x, y) =
{

T if x = yq for some positive integer q
F otherwise

giving the meaning of Divides.
As we have just seen, first-order formulas denote predicates on their unquan-

tified variables. A variable that occurs unquantified in a formula G is said to
be free in G. A variable that occurs quantified in G is said to be bound in G.
It is possible for different occurances of a variable to be both free and bound in
the same formula.

Definition 9.14 If P is a first-order formula, the free variables of P is the
subset FREE [P] ⊆ IVS defined as follows.

1. for a term t, FREE [t] = {v ∈ IV S | v occurs in t}
2a. FREE [¬G] = FREE [G]

FREE [G ∧ H] = FREE [G] ∪ FREE [H]
and similarly for the other logical connectives

2b. FREE [∀v : G] = FREE [G] \ {v}
FREE [∃v : G] = FREE [G] \ {v}

Of course, we want and expect the laws of substitutivity to hold for first-order
formulas. However we must redefine what substitution means for quantified
formulas.

First, substitution should not affect quantified variables or their bound oc-
curances. Second, we must take care to avoid “capturing” a free variable in the
process of substitution. For example, if we try to subsititute 5q for A in the
formula Divides(A,B), we get

∃q : 5q = Bq

Whether or not this formula is true, it does not mean “B divides 5q evenly.
What we want is something like

∃x : 5q = Bx

Thus, to assure that free variable capture does not occur, we can systematically
replace the quantified variable symbols of our formula with variables that are
unused anywhere else.

∃v : P 7→ ∃v′.P
[v′

v

]
In the following definition, it is assumed that this has already been done.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

180 CHAPTER 9. FORMAL LOGIC

Definition 9.15 The substitution mapping S : IVS→ FOF extends to a substi-
tution function S∗ : P (IVS)× FOF∗ → FOF, on the subset FOF∗ of first-order
formulas whose bound variables are not free in any S(v). S∗ is defined as fol-
lows:

1. For terms,

(i) for constant symbols, S∗B[ĉ] = ĉ

(ii) for variable symbols, S∗B[v] =
{

v if v ∈ B
S∗(v) if v 6∈ B

(iii) S∗B[f̂(t1, . . . , tn)]
= f̂(S∗B[t1], . . . ,S∗B[t1])

2a. if G and H are formulas,

(i) S∗B[¬G] = ¬ S∗B[G]
(ii) S∗B[G ∧ H] = S∗B[G] ∧ S∗B[H]

(iii–v) similarly for ∨, ⇒, and ⇔

2b. if G is a formula and v is an individual variable symbol, then

(i) S∗B[∀ v : G] = ∀ v : S∗B′[G]
(ii) S∗B[∃ v : G] = ∃ v : S∗B′[G]

where B′ = B \ {v}.

Thus, in the “body” of a quantified formula, substitution S is applied to every
variable except the one bound by the quantifier.

Recall that
Divides(A,B) ≡ ∃q : A = Bq

We ran into a substitution problem in the formula Divides(5q,B). To solve
this problem, the quantified variable q is first changed to an unused variable
symbol; then 5q is substituted for A:

∃q : A = Bq
[5q

A

]
7→ ∃z : A = Bz

[5q

A

]
7→ ∃z : 5q = Bz

With this modification to substitution, the Substitution Lemma (9.2), Tautology
Theorem (9.3), Substitution Theorem (9.4) and Replacement Theorem (9.5)
extend to FOF.

9.4 Predicate Calculus

The previous section lays the groundwork for a formal system for reasoning in
FOF, which adds quantified formulas to WFF . Inference rules of two kinds are
needed:

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

9.4. PREDICATE CALCULUS 181

(a) Rules for equality, so that one can reason about objects in the abstract
type A. Figure 9.2 introduces equalities that are valid for the type A.
Typically, these equalities are specified as identities for the type (e.g. the
Boolean Identities). The inference rule says, in essence, that if N = M is
valid for data type A (A |= N = M , then replacement of N by M is valid
in a proof.

(b) Quantifier rules, both for “getting inside” quantified formulas and for
introducing quantified formulas in the conclusions. In Figure 9.3, ∃-
elimination and ∀-introduction involve introducing a new variable, unused
anywhere else, to serve as a “dummy constant.”

(i) If ∃v : P [v] is an assumption, then a name v′ is introduced to represent
one of the values for which P is true. Conversely, if P [v′] is deducible
for an arbitrary v′ ∈ A, the one may conclude ∀v : P (v).

(ii) If ∀v : P (v) is an assumption, then P (t) may be concluded for any
term, t. And if P (t) is deducible, so is (∃v : P [v].

Exercises 9.4

1. Let P (x) be and assertion about x. Write a First-Order Formula that
says, “There is a unique x such that P (x).”

2. Write a First-Order Formula stating the Principla of Induction for Nat.

3. Let P (x) and Q(x) be an assertions about x. Prove the following in System
G.

(a) ∀x : P (x)⇒ P (a)

(b) (∀x : P (x)⇒ Q(x) ∧ P (a)⇒ Q(a)

(c) ∀x : P (x)⇒ ∃y : P (y)

(d) ∀x : P (x) ∨ ∃y : ¬P (y)

(e) ¬∀x : P (x)⇔ ∃x : ¬P (x)

(f) ¬∃x : P (x)⇔ ∀x : ¬P (x)

(g) ∀x : P (x) ∧ ∀x : Q(x)⇔ ∀x : P (x) ∧Q(x)

(h) ∃x : P (x) ∨ ∃x : Q(x)⇔ ∃x : P (x) ∨Q(x)

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

182 CHAPTER 9. FORMAL LOGIC

System G

Axioms ` N = N

equality rules
Γ, [N = M], PN

v ` QN
v , ∆

Γ, [N = M], PM
v ` QM

v , ∆

Figure 9.2: Equality rules for System G

System G

quantifier elimination quantifier introduction

∃rules ∃` :
Γ, P [v′] ` ∆

Γ,∃v : P [v] ` ∆
v′ 6∈ free(Γ ∪∆) ` ∃ :

Γ ` P (t), ∆

Γ ` ∃v : P (v), ∆
t ∈ term

∀rules ∀ ` :
Γ, P [t] ` ∆

Γ,∀v : P [v] ` ∆
t ∈ term ` ∀ :

Γ ` P (v′), ∆

Γ ` ∀v : P (v)∆
v′ 6∈ free(Γ ∪∆)

Figure 9.3: Quantifier rules for System G

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Chapter 10

Proving Programs

In Chapter 8 we studied a simple programming language of recursive expressions.
In this chapter we apply the same techniques to the sequential language stmt
introduced in Chapter 1.3. stmt is a language of assignments and commands
represents a family of languages that also contains Java, C, C#, and many
others. The reason becomes apparent as one learns about computer architecture.
Sequential languages reflect the way computer processors operate.

Our goal in this chapter is to take advantage of our language-specification
techniques in devising a system not just for modeling a language, but also for
reasoning about programs, specifically for proving them correct. We will do this
by showing that programs and assertions interact in ways that can be precisely
described by extending the logical formalism System G developed in Chapter 9.
In this way we can always reduce an assertion about program correctness to a
purely logical formula. If this formula it true, the program is correct.

10.1 The Language of Statements

Our programming language uses predicate formulas to express tests in condi-
tionals and loops. However, we shall restrict these to be simple predicates,
involving logical combinations of primitive tests, but no quantifiers. A test like

if there exists an x such that P [x]
then Command A
else Command B

would, in general, involve some kind of loop. We don’t want our language to
have such hidden loops.

Definition 10.1 The set QFF of quantifier free first-order formulas is that sub-
set of FOF whose formulas do not contain the quantifier symbols ‘∀’ and ‘∃.’

Our definition of the Language of Statements uses Backus-Naur form (Section
8.5).

183

184 CHAPTER 10. PROVING PROGRAMS

Definition 10.2 The language of statements over data type A is defined in-
ductively as follows:

〈STMT〉 ::= 〈IVS〉 := 〈TERM〉 (assignment)

begin 〈STMT〉 ; 〈STMT〉 end (compound)

if 〈QFF〉 then 〈STMT〉 else 〈STMT〉 (conditional)

while 〈QFF〉 do 〈STMT〉 (repetition)

10.1.1 Operational Interpretation of Statements

In our earlier language of expressions, programs reflected the notion of a func-
tion, taking values in the form of actual parameters and producing values. Recall
that the interpretation function,

Eδ : env×E→ A

The language of statements, in contrast, is more reflective of the architecture of
a computer. It expresses computation in terms of assignment: the recording of
information in a memory. Or mathematical interpretation of statements should
bear this out. A program starts with an initial memory, runs for a while, and
then stops, leaving its results in an updated memory. Thus, the interpretation
function maps from environments to environments.

Definition 10.3 The interpretation of statements is given by the partial func-
tion

M : env× stmt→ env

which is defined as follows:

(a) Mσ [v := t] = σ \ {(v, σ(v)} ∪ {(v, Eσ[t]}

(b) Mσ [begin S1 ; S2 end] =Mσ′ [S2] where σ′ =Mσ [S1]

(c) Mσ [if Q then S1 elseS2] =

{
Mσ [S1] if Iσ[Q] = true
Mσ [S2] if Iσ[Q] = false

(d) Mσ [while Q do S] =


σ, if Iσ[Q] = false
Mσ′ [while Q do S]
where σ′ =Mσ [S] ,

if Iσ[Q] = true

The interpretation of assignment says to take the function σ, and replace the
ordered pair for program variable v with one that binds v to the value of t.

The compound-statement interpretations says, execute statement S1, and
then execute S2 using this resulting memory, σ′.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

10.1. THE LANGUAGE OF STATEMENTS 185

The rule for while-statements, unlike all the other rules, does not reduce
interpretation to some proper sub-statement. We can infer from this that inter-
pretation of certain programs does not terminate.

We will not use this operational interpretation very much, but now that it
has been defined, let us prove an interesting fact about compound statements.

Proposition 10.1 The compound operator, ‘;’ is associative in the sense that
for all environments σ and statements S1, S2, and S3,

Mσ [begin S1 ; begin S2 ; S3 end end]
=Mσ [begin begin S1 ; S2 end ; S3 end]

Proof: Apply Definition 10.3.

Thus, it is not ambiguous to write

begin S1; S2; S3 end

because it doesn’t matter how begin-ends are associated.

10.1.2 Axiomatic Interpretation of Statements

The operational interpretations of statements tells us what programs do, but
as programmers we are perhaps more interested in knowing just what we can
say a particular program. Our goal in this section is to develop an alternative
formalism for this purpose.

Definition 10.4 Let P and Q be first order formulas and let S be a word in
the language of statements. The program correctness assertion

{P} S {Q}

Is a predicate which is true iff for all σ ∈ env,

Iσ[P] implies Iσ′[Q] where σ′ =Mσ [S]

We call formula P a precondition of statement S; and we call formula Q a
postcondition.

In words, if property P holds for the initial memory, then after S executes,
property Q holds for the final memory. It is important to notice the implicit
assumption that S terminates.

10.1.3 Reasoning Rules for Statements

Here is a fundamentally important result.

Proposition 10.2 For all environments σ, the partial correctness assertion

{P} v := t {Q}

holds iff
P ⇒ Qt

v

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

186 CHAPTER 10. PROVING PROGRAMS

Proof: Since substitution is performed on just one variable, we will write Qt
v

instead of Q
[t
v

]
. According to Definition 10.4, {P} v := t {Q} holds iff

Iσ[P] implies Iσ′[Q]

where σ′ =Mσ[v := t]. By Definition 10.3, σ′ can be defined as

σ′(w) =
{
Eσ[t] if w = v
σw if w 6= v

By the (version of the) Substitution Lemma (for first-order formulas), Iσ′[Q] =
Iσ[Qt

v] so the implication above holds whenever

P ⇒ Qt
v

is a tautology.

We will express facts like this as inference rules, just as we did with logic
in the previous chapter. In fact, these rules simply extend System G from that
chapter with rules to reason about programs.

P ⇒ Qt
v

{P} v := t {Q}
Assignment Rule

One should read such a rule like this:

If you want to prove {P} v := t {Q}, then it suffices to show that
P ⇒ Qt

v.

In general, there may be more than one statement above the line. What lies
below the line represents a goal hat we are trying to prove. What lies above the
line tell us what fact, or set of facts in general, that we must show in order to
establish the goal.

Example

Ex 10.1 Prove: {z + xy − y = AB} x := x− 1 {z + xy = AB}

Performing the substitution we get

z + zy − y = AB ⇒ z + (x− 1)y = AB

But this is clearly true, since z + (x− 1)y = z + xy − y.
There is a reasoning rule for each phrase-type of the language of statements.

These are shown in Figure 10.1 and discussed individually below. The assign-
ment rule has already been discussed.

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

10.1. THE LANGUAGE OF STATEMENTS 187

10.1.4 The Compound Rule

The rule

{P} S1 {Q} {Q} S2 {R}

{P} begin S1 ; S2 end {R}
Compound Rule

says that you can break down the proof of a compound statement by finding
an intermediate assertion to place between them. As we shall see in the next
section it is never a problem to determine what this assertion should be.

Example

Ex 10.2 Prove: {z + xy = A ∧ y > 0}
begin x := x− 1 ; z := z + y end
{z + xy = A}

Let intermediate assertion Q ≡ (z + y) + xy = A. You may be able to see shy
this Q was chosen, but if not, it will become clear in a moment. The compound
rule says that to prove the desired program correctness assertion, it suffices to
prove the following two assertions:

{z + xy = A ∧ y > 0} x := x− 1Q {

} and
{Q} GETSzz + y {z + xy = A}

The second of these is trivial. By the assignment rule, it reduces to

Q IMP
(
z + xy = A

)z+y

z

After performing the substitution we get the tautology

(z + y) + xy = A ⇒ (z + y) + xy = A

To prove the first correctness assertion, we again use the assignment rule. We
are to assume that z + xy = A and y > 0 and prove Qx−1

x . After performing
the substitution we can derive

(z + y) + (x− 1)y = z + y + xy − y = z + zy = A

by our assumption of the precondition.

10.1.5 The Conditional Rule

The rule

{P ∧B} S1 {Q} {P ∧ ¬B} S2 {Q}

{P} if B then S1 else S2 {Q}
Conditional Rule

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

188 CHAPTER 10. PROVING PROGRAMS

says that you can argue separately about the two branches, while using the fact
that the test B succeeded, in the case of the then-part, or failed, in the case of
the else part.

10.1.6 The Repetition Rule

The rule

{P ∧B} S {I}

{I} while B do S {I ∧ ¬B}
Repetition Rule

Is a formal statement of Theorem 4.2 from Chapter 4.

10.1.7 The Relaxation Rule

The specific assertions within programs do not always match exactly with the
subgoals generated by the rules. The relaxation rule says that once we have
proven a program correctness assertion, we can replace the precondition by a
stronger statement and we can replace the postcondition by a weaker statement:

P ′ ⇒ P {P} S {Q} Q⇒ Q′

{P ′} S {Q′}
Relaxation rule

An instance of this rule is the invariant rule for while statements:

P ⇒ I {I ∧B} S {I} (I ∧ ¬B)⇒ Q

{P} while B do S {Q}
Invariant Rule

10.2 Using the Rules

Given an assertion {P} S {Q}, how do we go about determining whether it is
true? The only thing to do is look for a rule that applies. Since there is just one
rule for each kind of phrase in the language, there always just one choice. Since
each inference rule reduces an argument about a statement to sub-arguments
about its parts, we will eventually reduce the program correctness assertion to a
collection of purely logical formulas. These are called the program’s verification
conditions. If the verification conditions are all true, so is the original correctness
assertion. In other words, the program is correct.

Unfortunately, knowing which rule to apply is not always enough. consider
the assertion

{x = 2} begin S1 ; S2 end {y = 4}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

10.2. USING THE RULES 189

Obviously, we need to use the compound rule, but in order to use it, we must
come up with an intermediate assertion Q such that

{x = 2} S1 {Q} {Q} S2 {x = 4}

{x = 2} begin S1 ; S2 end {y = 4}
compound

We cannot choose Q at random, but we can almost always find the right formula.
Just two of the four rules, repetition and compound, require us to invent an
assertion in this way.

For while statements, we must find an invariant formula. In general, this is
hard to do all but one person: the person who wrote the loop. In fact, a loop’s
invariant reveals the essence of what the loop is doing. Let us, therefore, require
the program to contain an invariant for every loop. This is not unreasonable,
since, as we have just claimed, with practice you can write down invariant the
instant you conceive of the loop. Furthermore, there are often ways to derive
the invariant from the surrounding program specification.

From now on, a while statement must have the form

while B {inv:I} do S

and our reasoning rule becomes

P ⇒ I {I ∧B} S {I} (I ∧ ¬B)⇒ Q

{P} while B {inv:I} do S {Q}
While rule

The situation for compound statements isn’t nearly so bad. For any compound
statement we can determine the intermediate assertion by analyzing the com-
ponent statements.

Technique 10.3 To prove {P} begin S1 ; v := t end {R}, choose Q to be
Rt

v.

If we do this we get the following proof structure:

{P} S1 {Rt
v}

Rt
v ⇒ Rt

v

{Rt
v} v := t {R}

{P} begin S1 ; v := t end {R}

Thus, the right-hand verification condition reduces to a trivial tautology.

Technique 10.4 To prove {P} begin v := t ; S2 end {R} when P and t do
not contain the variable v, choose Q to be P ∧ (v = t).

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

190 CHAPTER 10. PROVING PROGRAMS

In this case the choice of Q trivializes the left-hand verification condition to
P ⇒ (P ∧ t = t):

P ⇒ (P ∧ v = t)t
v

{P} v := t {P ∧ v = t}
{P ∧ v = t} S1 {R}

{P} begin v := t ; S2 end {R}

If the precondition P or term t do contain the program variable v, this tactic
fails miserably. For example, consider the assertion

{x = 2} begin x := 3 ; S2 end {R}

The intermediate assertion would be (x = 2) ∧ (x = 3), which is contradictory.

Technique 10.5 To prove

{P} begin S1 ; while B {inv:I} do S2 end {R}

choose intermediate assertion Q to be I.

See if you can develop a technique for dealing with conditional statements.

Example

Ex 10.3 Consider the program correctness assertion

{x = A ∧ y = B ∧A ≥ B}
while y 6= 0 do {(x− y = A−B) ∧ (x ≥ y)}
begin
x := x− 1;
y := y − 1
end

{x = A−B}
Figure 10.3 develops a proof showing the structure of the proof tree, re-
ducing the assertion to purely logical verification conditions, whose proofs
are sketched.

Exercises 10.2

1. {x = A ∧ y = B ∧A ≥ B}
while y 6= 0 do {(x− y = A−B) ∧ (x ≥ y)}
begin
x := x− 1;
y := y − 1
end

{x = A−B}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

10.2. USING THE RULES 191

2. {x = A ∧ y = B}
begin
z := 1;
while y 6= 0 do {z · xy = AB}
begin
z := z ∗ x;
y := y − 1
end

end
{z = AB}

3. {x = A ∧ y = B}
begin
q := 0;
r := x;
while r ≥ y do {q · y + r = A}
begin
q := q + 1;
r := r − y
end

end
{(q · y + r = A) ∧ (r < y)}

4. {x = A}
begin
z := 1;
while x 6= 1 do {z · x! = A!}
begin
z := z ∗ x;
x := x− 1
end

end
{z = A!} [z is “A factorial.”]

5. Assume even? is a primitive test for even numbers.

{x = A ∧ y = B}
begin
z := 1;
while y 6= 0 do {z · xy = AB}
if even?(y)
then begin y := y/2; x := x ∗ x end
else begin y := y − 1; z := z ∗ x end

end
{z = AB}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

192 CHAPTER 10. PROVING PROGRAMS

6. {x = A ∧ y = B}
begin
z := 1;
while y 6= 0 do {z · xy = AB}
begin
while even?(y) do {z · xy = AB ∧ y 6= 0}
begin
y := y/2
x := x ∗ x
end;

z := z ∗ x;
y := y − 1
end

end
{z = AB}

7. note: GCD(x, y) stands for the greatest common divisor of x and y.

{x = A ∧ y = B}
begin
while x 6= y do
{GCD(x, y) = GCD(A,B)}
if x < y
then y := y − x
else x := x− y

end
{x = GCD(A,B)}

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

10.2. USING THE RULES 193

P ⇒ Qt
v

{P} v := t {Q}
Assigment Rule

{P} S1 {Q} {Q} S2 {R}

{P} begin S1 ; S2 end {R}
Compound Rule

{P ∧B} S1 {Q} {P ∧ ¬B} S2 {Q}

{P} if B then S1 else S2 {Q}
Conditional Rule

{I ∧B} S {I}

{I} while B do S {I ∧ ¬B}
Repetition Rule

Figure 10.1: Basic reasoning rules for the language of statements

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

194 CHAPTER 10. PROVING PROGRAMS

P ′ ⇒ P {P} S {Q} Q⇒ Q′

{P ′} S {Q′}
Relaxation rule

{P} S {Qt
v}

{P} begin S ; v := t end {Q}
Assignment-right

{P ∧ (v = t)} S {Q}

{P} begin v := t ; S end {Q}
Assignment-left
—If v does not
occur in P or t

{P ∧B} S1 {Q} {P ∧ ¬B} S2 {Q}

{P} if B then S1 else S2 {Q}
Conditional Rule

{P} S1 {I} {I} while B {inv:I} do S2 {Q}

{P} begin S1 ; while B {inv:I} do S2 end {Q}
initialization rule

P ⇒ I {I ∧B} S {I} (I ∧ ¬B)⇒ Q

{P} while B {inv:I} do S {Q}
While Rule

Figure 10.2: Derived reasoning rules for the language of statements

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

10.2. USING THE RULES 195

Pre is x = A ∧ y = B ∧A ≥ B
Post is x = A−B

Inv is x− y = A−B ∧ x ≥ y
Test is y 6= 0
Body is begin x := x− 1 ; y := y − 1 end

1

2 4

5

6

3

While Rule

Assignment Elim.

Assignment Rule

(1) {Pre} while Test do {Inv} Body {Post}
(2) Pre ⇒ Inv
(3) {Inv ∧ Test} Body {Inv}
(4) Inv ∧ ¬Test ⇒ Post

(5) {Inv ∧ Test} x := x− 1 {Inv
[y − 1

y

]
}

(6) Inv ∧ Test ⇒ Inv
[y − 1

y

][
x− 1

x

]
Verification Conditions

• (2) x = A ∧ y = B ⇒ x− y = A−B

• This is true by substitution of equals.

• (4) (x− y = A−B) ∧ (x ≥ y) ∧ ¬ (y 6= 0) ⇒ x = A−B

• The “not” of Test means that y = 0. If Inv also holds, we have

A−B = x− y = x− 0 = x

Thus, Post follows from Inv and Test.

• (6) (x−y = A−B) ∧ (x ≥ y)∧y 6= 0⇒ (x−1)−(y−1) = A−B ∧ (x−1) ≥ (y−1).

• Assume that x− y = A−B and that y 6= 0. Then

(x− 1)− (y − 1) = x− 1− y + 1 = x− y = A−B

Also, if x ≥ y then by subtracting one from both sides, (x− 1) ≥ (y − 1).

Figure 10.3: Proof of Example 10.3

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

Index

,, 9

,̂ 11
acyclic, 88
algebra, 26
alphabet, 10, 11
antecedent, 21
antisymmetric, 87
assertion, 15
assignment rule, 186, 193
assignment statement, 14
associates, 144
asymmetric, 87

Backus-Naur form, 149
Backus-Naur notation, 15, 114
balanced parentheses, 162
base case, 48, 53
base set, 114
binomial coefficient, 41
bipartite graph, 78
bit, 25
BNF, 15, 149

calculus, 165
cardinality, 37
characteristic function, 84
Choice

Principle of, 40
choose number, 41
composition

of relations, 82
compound rule, 189, 193
compound statement, 15
concatenation, 11
conditional rule, 187, 193
conditional statement, 14

consequent, 21
construction sequence, 121
constructive argument, 89
constructive proof, 93
constructor function, 114, 116
contains, 6
context free languages, 149
contingency, 24
contradiction, 24
cycle, 88
cyclic, 88

DAG, 98
decidable, 70
decision tree, 38
derivation, 26, 121
diagonalization, 66
difference

of sets, 7
directed acyclic graph, 98
directed graph, 78
disjoint, 6
disjunctive normal form, 29
DNF, 29
domain, 5
dual, 27
duality, 27

ε, 12
element

of a set, 3
ellipses, 4
empty word, 12
envelope, 68
environment, 146, 178
equality

of sets, 6

196

INDEX 197

equivalence class, 100
equivalence relation, 99
exponential function, 70

function, 78
2-place, 84
well defined, 83

functional form, 128

Gauss, Karl Friedrich, 49
graph

bipartite, 78
directed, 78
of a relation, 77

homomorphism, 98

identifier, 14
image, 126

of a function, 81
induction

leicographic, 131
mathematical, 47
principle of, 47

induction hypothesis, 48
induction step, 48, 53
inductive set

definition scheme, 116
inductive set definition

definition by stages, 126
inductively set definition

simultaneous, 127
infeasible, 72
infix notation, 84
injection, 84
integers, 4
intermediate assertion, 187
interpretation, 141
intersection

of sets, 7
invariant, 60, 136
iteration, 136

labeling a relation, 90
language, 10, 12

of statements, 14
length

of a path, 88
lexicographic induction, 131
lexicographic ordering, 131
logically equivalent, 24
lower bound, 68

member
(of a set), 3
of a set, 3

N, 4
∅, 6
n-tuple, 8
natural numbers, 4, 117
negative logic, 27
numeral, 10, 13
numerical induction, 47

onto, 83
ordered pair, 7
orders of infinity, 72

P (A), 7
parse tree, 140
parsing, 140
parsing diagram, 140
partial function, 81
partial order, 102
partition, 101
path, 88
Pigeon-Hole Principle, 63
positive logic, 27
postcondition, 185
power set, 7
precedence, 145, 166
precondition, 185
predicate, 84
prefix notation, 84
preimage, 81
preorder, 102
product (of sets), 7
program variable, 14
proof

by contradiction, 66
proportionality

constant, 68

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

198 INDEX

factor, 68
proposition, 19
propositional formula, 19
propositional formulas, 150
propositional variable, 166

Q, 6
quantification, 5
quotient set, 101

R, 6
rank (of a function), 84
rational numbers, 6
real numbers, 6
reflexive, 87
relational form, 128
relaxation rule, 188
repetition rule, 193
repetition statement, 15
ROBDD, 107
Rule of Products, 40

scheme, 155, 168
formula, 155

self reference, 15, 113
set, 3
set builder notation, 5
size

of a set, 37
spanning tree, 94
statements

reasoning rules for, 193
statements, language of, 14
structure, 89
subsidiary derivation, 34
substitution, 153, 167
substitution function, 153
surjection, 83
symbol, 10
symmetric, 87
syntax, 5

concrete, 10

tautologically valid, 21
tautology, 24
threshold, 68

total order, 103
transitive, 87
transitive closure, 126
transliteration, 152
tree, 62

binary, 62
trivial argument, 22
truth table, 22

undecidable, 70
undefined, 81
union

of sets, 7
universe of discourse, 5
upper bound, 68

vacuous argument, 21
variable

propositional, 166
Venn diagram, 58

W, 4
well defined function, 83
well formed formula, 165
WFF, 165
whole numbers, 4
“without loss of generality”, 54
witness, 68
word, 11

Z, 4
Zn, 6

Copyright©c 2008 Steven D. Johnson Draft Material (v08r0) January 26, 2009

	Sets
	Set Operations
	Words and Languages
	A Simple Algorithmic Language

	Propositional Logic and Boolean Algebra
	Propositions and Truth Tables
	Implication*

	Truth Tables
	Boolean Algebra
	Duality

	Normal Forms
	Application of Boolean Algebra to Hardware Synthesis*

	Counting
	Cardinality
	Permutations and Combinations

	Induction
	Numerical Induction
	More Examples of Induction

	Countability and Order
	Cardinality and Countability
	Order Notation and Order Arithmetic
	Complexity
	The Halting Problem
	Infeasible Problems.
	Orders of Infinity.

	Additional Problems

	Relations
	Functions
	Infix Notation

	Relations on a Single Set
	Attaching Information to Graphs

	Trees
	DAGs
	Equivalence Relations
	Partial Orders*
	Decision Diagrams*

	Induction II
	Introduction
	The Problem of Self Reference

	Inductively Defined Sets
	The Principle of Structural Induction.
	Validity of the Induction Principle*
	Defining Functions with Recursion
	Evaluation of Recursive Functions
	Reasoning about Recursive Functions

	Languages and Meanings
	Language Definitions
	Defining How Languages are Interpreted
	Specifying Precedence
	Environments
	Backus-Naur Form
	Propositional Formulas
	Substitution
	The Programming Language of Statements
	*Discussions
	Parenthesized Expressions

	Formal Logic
	Propositional Logic
	Formal Proofs
	Deducability and Validity
	A More Useful Propositional Calculus

	First-order Predicates
	Predicate Calculus

	Proving Programs
	The Language of Statements
	Operational Interpretation of Statements
	Axiomatic Interpretation of Statements
	Reasoning Rules for Statements
	The Compound Rule
	The Conditional Rule
	The Repetition Rule
	The Relaxation Rule

	Using the Rules

