
Complexity of verification

Every computation can ultimately be formulated as a boolean system. Let us
begin, therefore, by asking how hard it is to verify a boolean expression.

Suppose our design problem is to design a device that adds two 2-bit binary
numbers.

A0

A1

B0

B1

S2

S0

S1
2−BIT

ADDER

Here is a design to implement the adder, consisting of one equation for each bit
of output, plus one additional equation defining a local subterm, the carry-bit
from the 1s’ place. (⊕ stands for the exclusive-or function, ∧ for “and” and ∨
for “or”):

s0 = a0 ⊕ b0

c0 = a0 ∧ b0

s1 = c0 ⊕ a1 ⊕ a2

s2 = a1 ∧ b1

Maybe you can see that this implementation is incorrect, but let’s pretend we
don’t.

To verify the implementation of the adder, we can evaluate it for a selected
set of inputs, checking to see if it’s three outputs are what they should be. To
know what they should be, we need to know what numbers the inputs represent
and whether the outputs represent the sum of those numbers. In this case we
are asking whether

4s2 + 2s1 + s0 = (2a1 + a0) + (2b1 + b0)

Here the binary (or truth) values ai, bj and sk are re-interpteted as numbers, 1
for true and 0 for false.

Suppose we select the following inputs to check:

a b s verify

A1 A0 B1 B0 C0 S2 S1 S0 a + b
?= s

0 0 0 1 0 0 0 1 0 + 1 ?= 1
0 1 0 1 1 0 1 0 1 + 1 ?= 2
0 1 1 0 0 0 1 1 1 + 2 ?= 3
1 0 0 0 0 0 1 1 2 + 0 ?= 2
1 1 0 1 1 1 0 0 3 + 1 ?= 4

In each case, the outputs satisfy the specification of addition. However, we
have not looked at all the possible inputs. Were we were to look at the case

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012



a = 2, b = 3 the outputs we would see that the outputs are inconsistent with
addition, because the correct implementation of s2 should be:

s2 = (a1 ∧ b1) ∨ (c0 ∧ (a1 ∨ b1))

In the worse case we might need to evaluate all possible inputs, that is all 16
values for a1a0b1b0. It’s not that bad for this particular problem, though:

(i) We might observe that the defining equations for each sk is symetric with
respect to a0 and b0 and to a1 and b1, because all the boolean operations
are commutative. On that basis, the tests a1a0b1b0 = 1000 and a1a0b1b0 =
0010 must produce the same outputs and are, therefore, redundant.

Question: How many tests would this eliminate?

(ii) We can decompose the verification into two phases, the first using a0 and
b0 to show that that s0 and c0 are correct; and the second using c0, a1,
and b1 to show that s1 and s2 are correct. The first phase has at most 4
cases and the second at most 8, for a total of 12 tests in the worst case.

Both of these improvements require insight into the design, and perhaps a
time-consuming analysis of the verification task; and worse, raise the spectre
of over-simplifying the problem. In both theory and practice, it is desirable to
perform “black box” verification, where no details are available about how the
implementation is done.

Unfortunately, this verification problem is inherently exponential:

Working Fact: A combinational boolean system with N inputs and M out-
puts requires O(M ·2N ) computational effort, in the worst case, to exhaustively
verify.

This is not simply a theoretical bound. There is no algorithm that can
improve on this performance in all cases. Furthermore, common practical func-
tions consume worst-case time to verify. To get some sense of what the numbers
mean, here is a table showing the approximate time it would take to exhaus-
tively verify an N -input combinational function, assuming one could perform

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012



one million tests every second.

N time
0 ∗
5 ∗

10 ∗
15 ∗
20 1 sec.
25 34 sec.
30 18 min.
35 10 hr.
40 13 day
45 1 yr.

N time
50 36 yr.
55 1, 142 yr.
60 36, 559 yr.
65 1, 169, 885 yr.
70 3.7× 107 yr.
75 1.2× 109 yr.
80 3.8× 1010 yr.
85 1.2× 1012 yr.
90 3.9× 1013 yr.
95 1.2× 1015 yr.

100 4.0× 1016 yr.

Integrated circuits have hundreds of I/O pins. As we shall see later, The situa-
tion is even worse for sequential systems, which contain memories.

These numbers do not say that simulation is hopeless, but that it must
be applied judiciously. They do say that brute-force black-box simulation is
vulnerable to explosive performance costs and so must be used judiciously.

Review of terminology

Let us pause here to review some terminology, drawing from the example of the
2-bit adder. The verification task involved relating two levels of description:

• A specification, describing the intended function of the design. In this
case, the specification was given in several ways, the most explicit being
the arithmetic equation

4s2 + 2s1 + s0 = (2a1 + a0) + (2b1 + b0)

• An implementation describing how the specification would be attained.
The implementation in this case is the system of boolean system

s0 = a0 ⊕ b0

c0 = a0 ∧ b0

s1 = c0 ⊕ a1 ⊕ a2

s2 = (a1 ∧ b1) ∨ (c0 ∧ (a1 ∨ b1))

Both the specification and implementation are expressions and the task of ver-
ification is to compare them.

There can be many levels of description, and it is often the case that a
given expression serves both as an implementation of the next higher (or more
abstract) level and a specification for the next lower (or more concrete) level.

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012



• An implementation satisfies a specification when a particular consistency
relationship holds between the two. In our example, this relationship was
mathematical equality between binary interpretations of the bits. Later,
we will see circumstances where other relationships, such as logical imple-
mentation or behavioral equivalence, meet our needs.

• When we say “verification” we are referring to the equivalent of exhaustive
simulation. In the case of the adder, this means doing all 16 trials, effec-
tively. Automation of some kind is implied. Computer support usually
performs the evaluations, keeps track of which trials have been done and
which have not, and performs symbolic reasoning.

• The term realization refers to the design artifact, the physical product of
design.

• We use the term “testing” to describe the execution of the realization on
a sequence of inputs. Often, the purpose of testing is not to confirm that
the device performs its logical function correctly but rather to determine
if it contains any defects. In the fabrication process, some percentage of
the circuits produced will malfunction, and these must be culled out of
the product line.

In software this distinction between verification and testing is often blurred.
Testing for defects is no a significant activity since a software object is a
digital copy. In hardware, it is easy to distinquish between the description
of a design object and the circuit that realizes that description.

• We use terms like “requirement,” “problem statement,” “concept,” “idea,”
to refer to the antecedent of a specification. The example began with
the idea to “build a device that adds two 2-bit binary numbers.” Since
this English sentence is a written expression, one can argue that it is
the original design specification. In practice, it is almost always the the
case the first document describing design intent is written in a natural
language.

People often say that the difference between requirements and specifica-
tions is that the former describe what the design object is intended to do
and the latter describes how that behavior is implemented (in successively
greater detail). The fact is that almost all design descriptions do some of
both.

Verification of sequential systems

A sequential system contains memory in addition to combinational functions.
It’s behavior is not just a function of its inputs, but the current content of its
memory, its state. In order to explore the complexity of sequential verification,
we need a mathematical model of what these systems are. Sequential systems

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012



can be architecturally characterized as finite state machines (FSMs) having the
structure:

M

f
m n

kk

CLK RESET

SNS

IN OUT

The diagram contains two boxes, one representing the function of the machine
and the other representing its memory. The combinational part, f is an n + k
input, m + k output boolean function. The memory, M holds k bits. There are
two special inputs, a synchronizing signal CLK and a RESET signal. The FSM
works in time like this:

• At the moment that CLK’s value changes from 0 to 1, M captures all k bits
present on NS. It holds these bits on S until the next time CLK “ticks.”

• The combinational part f computes its k + m bit value from the values
present on S and external inputs on IN. m of the result bits make up
output, OUT, and the rest are fed back to M as NS.

• In a physical circuit, f needs some time to reach electrical equilibium and
stabalize its values. The purpose of M is to hold the internal data steady
until this happens. After sufficient time has elapsed for f to perform its
computation, CLK ticks again and the new values on NS are captured.

• A provision is needed to initialize the content of M . Regardless of what
else is happening, when the RESET signal is asserted, a predetermined set
of k values is placed in M .

An mathematical model for digital behavior is a finite-state automaton:

RESET

a

b

c

d

e

f

g

h
i/o i/o

i/o

i/o

i/o

i/o

i/o

i/o i/o
i/o

Each state of this structure represents one of the 2k values that could be con-
tained in memory M , above. Each edge is labeled by an expression specifying

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012



an input, i, that causes that transition to be taken and an output, o that is
issued as it is taken. In this context an automata must statisfy the following
properties:

• There are no “terminal” states or conditions. Each state must exactly
one transition for every possible input. Unlike some other applications of
automata, execution is non-terminating.

• There is a state for every possible M . As with states f , g and h above, it
may be that some states cannot be reached from the reset state.

• There is one reset, or “start” state.

• We can allow for multiple transitions from some states for a given input.
In such cases, we say the automaton is nondeterministic.

Verifying sequential systems

Suppose you are given a device and told it is a combination lock. It looks like
this:

OPEN

RESET
E

TRY

0

1

C

Inputs:

• A RESET button. Whenever RESET is pushed, the device always
goes to a predetermined state.

• A single toggle switch labeled C (COMBINAITON) for entering the
bits of the combination.

• A pusbutton E (ENTER) telling the device when it to to read the
next combination bit.

• A pushbutton TRY to be pushed when trying to open the lock.

Outputs: An OPEN signal that releases the physical lock. Think of it as a
light that is on when the lock is open.

Specification: Here are the steps one must take to open the lock. Assume
that the combination bits are: c1, c2, c3.

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012



1. Push RESET
2a. Set C to c1

2b. Push Enter
3a. Set C to c2

3b. Push Enter
4a. Set C to c3

4b. Push Enter
5. Push Try

The OPEN signal remains on un-
til you hit RESET again.

Other: The device contains no more than 5 bits of memory.

Demonstration by simulation

You are given a finite-state machine—or a black-box simulation model. Consider
the problem of demonstrating that it correctly implements a 3-bit combination
lock with combination 010.

It is reasonable to assume that the RESET button works properly and that
the device is a proper sequential system (or finite state machine).

Questions:

1. What properties must be demonstrated to establish that the device works
correctly?

2. In the worst case, how many such steps will it take to verify all the nec-
essary properties, assuming it contains exactly five bits of memory?

3. Are there features of the design behavior that you can exploit to improve
on the worst case?

More specifically, assume your simulation procedure is a sequence of 3-part
steps in which

• (a) you present the inputs;

• (b) the system takes a step; and

• (c) you observe the outputs, perhaps comparing them to an expected list
of values or the outputs of a “specification model.”

How many such steps would it take to demonstrate the correctness of the
lock?

Complexity of sequential verification

In the preceding combination-lock example is a pathological verification prob-
lem, because it involves verifying correctness for both valid and invalid opening
sequences. The lock should open if and only if the operator enters a correct
opening protocol. Furthermore, there is no bound on the duration between op-
erator actions. It would be possible, for example, to include a “back door” for

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012



opening the lock, for instance, if the operator hits TRY 57,001 times; or worse,
by hitting TRY once, then again after exactly 57,001 clock cycles.

Thus, in the absence of additional information, verification by simulation is
impossible. However, with knowledge of the number of state-bits and the effect
of RESET, we can bound the number of steps needed.

(a) Given that the implementation has five state-bits, there are at most 25 =
32 distinct states. Any execution path longer than 32 must contain a
cycle, so we can limit each test to 32 steps.

(b) The “width” of the FSA is at most 24 = 16 because there are just 4 bits of
input. In fact, since one of the inputs is RESET the bound can be reduced
to 23 = 8.

(c) Thus the FSA has at most 328 = 1, 099, 511, 627, 776 distinct, non-cyclic
paths, so this is the number of 32-step sequences needed to exhaustively
test the lock. For each sequence, we can use the specification to determine
whether and when the OPEN output should be asserted.

(d) Of course, not all sequences would need to go all 32 steps, but this is an
upper bound.

In general, then, exhaustive analysis of a finite-state machine with n state bits
and m inputs requires at most

2n × (2n)2
m

∈ O
[
(2n)(2

m)
]

simulation steps

to exhaustively analyze. This hyper-exponential complexity is clearly infeasible
for “large” FSMs.

In practice, however, sequential circuits with scores, even hundreds, of in-
put & output bits can be (exhausively) verified, although not by simulation.
By imposing a bound on the number of execution steps—typically just a few
cycles—the verification problem can be reduced to a combinational satisfiability
problem by “unrolling” the FSM, which can sometimes be solved using a SAT
procedure.

Copyright©c 2003 Steven D. Johnson P415/P515 Lecture Notes April 9, 2012


