
Lecture Notes—Introduction to Verification 1

Modeling the Observer-Reporter Problem in SMV

This problem is often used in operating systems textbooks to introduce con-
cepts of atomicity. An Observer process is monitoring asynchronous events.
When it senses that an event has occurred it increments a counter variable. In
pseudocode:

Observer: while true do
begin
await EVENT;
COUNT := COUNT + 1;
end;

A Reporter process periodically prints the event count and clears the counter.

Reporter: while true do
begin
wait INTERVAL seconds;
print(TIME, COUNT);
COUNT := 0;
end;

These higher level instructions must be compiled into a ”machine-level” model
whose atomic instructions can only:

• MOV source, destination copies a unit (word or byte) of data to/from mem-
ory from/to a processor register. The MOV instruction does not alter the
data.

• OP opnd1, opnd2, result performs an arithmetic operation on processor
registers, leaving the result in a register.

• JMP program-label transfers control to another point in the program.

Using SMV models, let us explore whether the more finely grained machine-
level implementation might miss events or count them more than once. Possible
partial implementations of Observer and Reporter are shown below, in pseudo-
assembly code:

OBSERVER: {wait for EVENT to occur, then}
MOV count, r1 -- retrieve the value of COUNT
ADD 1, r1, r1 -- increment it
MOV r1, count -- store the result
JMP OBSERVER

REPORTER: {wait for an INTERVAL of time}
MOV count, r1 -- retrieve the value of COUNT
MOV 0, count -- clear the global value
Print r1 -- log the value
JMP REPORTER

c© 2009 Steven D. Johnson March 11, 2009

Lecture Notes—Introduction to Verification 2

PC := PC+R

C:= 0

{interval expires}

{"print R"}

C:= R1

R1++
EC++

R := C

{event}

R1 := C

r0

r1r3

r2

Reporter

o0

o3

o2

o1

Observer

Figure 1: A model for the Observer-Reporter processes

This is what we want to model; now we need to express that model in SMV.
The FSAs in Figure 1 suggest one way to do it.

The purpose of the model is to determine whether each of the events is re-
ported exactly once. With that in mind, introduce and initialize three variables
to represent the shared count variable, to tally the number of events seen by
the Observer, and to record the number of events printed by the Reporter :

VAR
count : 0..7; -- Count shared between Rep and Obs
print : 0..7; -- Number of events reported
event : 0..7; -- Number of events that actually occur

ASSIGN
init(event) := 0;
init(print) := 0;
init(count) := 0;

We have restricted the model substantially by limiting the range of the counters
to 7. Since SMV models are finite, we must impose some limit, but we are
guessing that whether 7 is large enough to expose the properties of interest,
namely the relationship between print, the total number of events reported,

c© 2009 Steven D. Johnson March 11, 2009

Lecture Notes—Introduction to Verification 3

and event, the total number of events that have occurred. The system composes
two processes, Obs and Rep:

VAR
Obs : process observer(count, event);
Rep : process reporter(count, print);

If the system is correct, these totals should agree. But the specification

SPEC AG(print = event)

that says, “print always equals event,” is false because it is too strong: these
values change during the execution of the two loops. We want to compare them
only when the processes are at the “top” of their loops. Furthermore, those
events tallied in the count variable haven’t been reported yet. Define ready to
express this condition.

DEFINE
ready := Obs.ready & Rep.ready & (count = 0);

Conditions Obs.ready and Rep.ready are DEFINEd later in the respective MODULES
instatantiated by Obs and Rep. The correctness property, then, is

SPEC -- 1. Whenever the system is ready, the event count is correct.
AG(ready -> (print = event))

The model checker (GUI) will show this specification to be false.

Modules

Note: The modules are discussed in greater detail in lecture
The Observer-Reporter system consists of three modules. The main module
composes one instance each of the observer (Obs) and reporter (Rep) modules
defined later in the file. Modules may have parameters and local variables.

The observer module is Figure 4. has two local variables: Variable pc
represents the four states of the observer FSA in Figure 1: O0, O1, O2, and O3.
Variable r represents the single register used in its “assembly” program.

These values are globally accessable as Obs.pc and Obs.r, respectively, as
is the local ready condition Obs.ready, used earlier, and defined as

DEFINE ready := pc = O0;

As the diagrams depict, r is “loaded” with the value c (bound to the global
count in instance Obs) in state O1, incremented in state O2.
Similarly r’s value is moved to c state O3.
In state O2 the event tally is incrememented.
In Obs, taking a step means that all of the next(x) := y assignments are
performed simultaneously.

The reporter module in Figure 5 is similar.

c© 2009 Steven D. Johnson March 11, 2009

Lecture Notes—Introduction to Verification 4

Figure 2: Default (left) and restricted-view VW screenshots

Interpreting Counter-Scenarios

When a SPEC statement is false, SMV gives counterexample, demonstrating a
scenario in which the specification property fails. These scenarios give a step-
by-step execution trace, often containing a great deal of irrelevant information.

To explain the results, one should reduce the verbose counter-scenario to
show as clearly as possible those steps and relevant variables that lead to the
“failure.” For example, the sequence diagram in Figure 31 shows just those steps
and actions that cause count to differ from print when the ready condition
holds.

The man page for vw describes commands for organizing and filtering traces
in the GUI.

1The scenario in Figure 3 may not be the same counterexample generated by smv when
you run it.

c© 2009 Steven D. Johnson March 11, 2009

Lecture Notes—Introduction to Verification 5

event 1

event 2

event lost ?!

o0 r00

r1

o1

o2

o3

o0 1

r2

r3

o1

o2

o3

o0

r0

2

0

Observer Reporter

Mcount

"1"

Figure 3: A counter-scenario refuting AG(ready -> (count = print)).

c© 2009 Steven D. Johnson March 11, 2009

Lecture Notes—Introduction to Verification 6

MODULE observer(c, e)

VAR
pc : {O0,O1,O2,O3};
r : 0..7; -- local register

DEFINE
ready := pc = O0;

ASSIGN
init(pc) := O0;
next(pc) :=
case
pc = O0 : O1;
pc = O1 : O2;
pc = O2 : O3;
pc = O3 : O0;
1 : pc;

esac;

init(r) := 0;
next(r) :=
case
pc = O1 : c;
pc = O2 : r + 1;
1 : r;
esac;

next(c) :=
case
pc = O3 : r;
1 : c;
esac;

next(e) :=
case
pc = O2 : e+1;
1 : e;
esac;

FAIRNESS running

Figure 4: SMV description of the Observer FSM in Figure 1

c© 2009 Steven D. Johnson March 11, 2009

Lecture Notes—Introduction to Verification 7

MODULE reporter(c, p)

VAR
pc : {R0, R1, R2, R3};
r: 0..7;

DEFINE
ready := pc = R0;

ASSIGN
init(pc) := R0;
next(pc) :=
case
pc = R0: R1;
pc = R1: R2;
pc = R2: R3;
pc = R3: R0;
1 : pc;

esac;

next(r) :=
case
pc = R1: c;
1 : r;

esac;

next(c):=
case
pc = R2: 0;
1 : c;

esac;

next(p):=
case
pc = R3 : p + r;
1 : p;

esac;

FAIRNESS running

Figure 5: SMV description of the Reporter FSM in Figure 1

c© 2009 Steven D. Johnson March 11, 2009

