
M. Methodology

M.1 Implementing Addition

The PVS source file K.pvs illustrates basic concepts of implementation verifi-
cation using binary addition as an example.

M.1.1 Review of Binary Addition

You might never have learned, or may not recall, how binary addition works.
Section 2.5 of Induction, Recursion and Programming describes this in detail.
More briefly, binary addition is done in the same way as decimal addition,
column by column. The only difference is that the base is 2 rather than 10.
Each column is summed and if the column-sum exceeds a single digit the leading
1 is carried to the next column.

1 1 1 0 0 1

0101

1

01

0011 (0)

100

01

0101 1

1

a

b+ +
sum

carry

Implementing Binary Addition The goal is to describe implemention of this
algorithm in boolean logic, using operators ‘·’ for logical and. ‘+’ for logical or,
and x for not. Such an implementation would have identical components for
each column.

cico

ba

s

bnan

s n

cn
cico

ba

s

b1a1

s 2

c1
cico

ba

s

b0a0

s 0

c0c2

s n+1

cn+1
0

The carry bit ci+1 is 1 whenever two or more of the inputs are 1s, that is,

ci+1 = majority(ai, bi, ci)
def= ai · bi + ai · ci + bi · ci

The sum bit si is 1 when an odd number of inputs are 1s, that is,

si = parity(ai, bi, ci)
def= ai ⊕ bi ⊕ ci

where ‘⊕’ stands for exclusive-or,

x⊕ y
def= x · y + x · y

1



M.1.2 Implementation Verification

Recall from the Terminology notes, that verification is described as the process
of determining whether an implementation satisfies specification. In this exam-
ple, the specification is, “add two natural numbers,” and the implementation
is to perform binary addition on two stings of binary digits, or numerals. So
the key detail added in this implementation is the representation of numbers by
binary numerals.

number2 +−−−−→ number

ρ

y
xα ρ

y
xα

numeral2 −−−−→
adder

numeral

The functions ρ and α relate numbers and numerals. Given an number n and a
numeral N = dk · · · d1 d0, the abstraction function α in the diagram is defined

α[[d0 d1 · · · dk]] =
k∑

i=0

2id̃i

On the right-hand side, digit di has been decorated d̃i because it is being in-
terpreted as a number rather than a symbol: 0̃ ↔ 0 and 1̃ ↔ 1. We do not
need to define a representation function (ρ, see Note 1) because the form of our
correctness statement is

For all X,Y ∈ numeral, α[[adder(X,Y )]] = α[[X]] + α[[Y ]]

In words, “All representable numbers are added correctly.”

α(X), α(Y ) −−−−→ α(X) + α(Y )x
x

X, Y −−−−→ adder(X,Y )

M.1.3 Formulation in PVS

Numerals are modeled as inductively defined boolean lists.

boolist: DATATYPE

BEGIN

null: null?

cons (first: bool, rest:boolist):cons?

END boolist

The primitive bool type is used to model binary digits (bits) so that PVS’s
logical operations AND, OR, NOT, XOR, etc. may be used to formulate the majority
and parity functions defined earlier. A boolist represents a binary numeral

2



whose leading digit is the least significant bit. For example, the binary numeral
1011 is expressed as

cons(true, cons(true, cons(false, cons(true, null))))

The abstraction function α can then be easily defined recursively as

VAL(l:boolist): RECURSIVE nat =

CASES l OF

null: 0,

cons(b, tl): (IF b THEN 1 ELSE 0 ENDIF) + 2 * VAL(tl)

ENDCASES

MEASURE l by <<

M.1.4 Notes

1. Let ‘÷’ stand for integer quotient. The representation function ρ would
be

ρ(n) = dk · · · d1 d0 where k ≥ (log2 n) and di =

{
0 if (n÷ 2i) is even
1 if (n÷ 2i) is odd

2. The INC example recursively traverses a boolist.

INC(l:boolist): RECURSIVE boolist =

CASES l OF

null: cons(true, null),

cons(b, tl): IF b

THEN cons(false, INC(tl))

ELSE cons(true, tl)

ENDIF

ENDCASES

MEASURE l by <<

Whether this suggest temporal (“bit-serial”) or geometric (“bit-parallel”)
iteration open to interpretation. It depends on what the recursion is in-
tended to model.

3. The suggested ADD function,

ADD(l1, l2: boolist, c:bool): RECURSIVE boolist = ...

does not require the boolist arguments to be the same length. This is a
bit simpler to deal with, but one would ordinarily expect to see an N -bit
adder, for some fixed constant N .

3


