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An interesting application of logic programming is the type-inference problem.

We start by considering integers and booleans. Next, we include some familiar

primitives. When we are comfortable with those features we include conditionals,

followed by lexical variables, then lambda, application, and fix expressions. Finally,

we include polymorphic let. Type inference allows for the system to determine a

unique type if the expression has one. Similarly, using the same program we can

determine an expression that has a given type. This last application is called type

habitation.

The language for which we infer a type is basically a lambda-calculus variant

of Scheme. We have chosen, however, to parse this variant into a language where

every expression has a tag as in parse below.

(define parse

(lambda (e)

(cond

[(symbol? e) ‘(var ,e)]

[(number? e) ‘(intc ,e)]

[(boolean? e) ‘(boolc ,e)]

[else

(case (car e)

[(zero?) ‘(zero? ,(parse (cadr e)))]

[(sub1) ‘(sub1 ,(parse (cadr e)))]

[(+) ‘(+ ,(parse (cadr e)) ,(parse (caddr e)))]

[(*) ‘(* ,(parse (cadr e)) ,(parse (caddr e)))]

[(if) ‘(if ,(parse (cadr e)) ,(parse (caddr e)) ,(parse (cadddr e)))]

[(fix) ‘(fix ,(parse (cadr e)))]

[(lambda) ‘(lambda ,(cadr e) ,(parse (caddr e)))]

[(let) ‘(let ([,(car (car (cadr e))) ,(parse (cadr (car (cadr e))))])

,(parse (caddr e)))]

[else ‘(app ,(parse (car e)) ,(parse (cadr e)))])])))

While you are reading the definitions for the type system, !-, it is important to

keep in mind that although we are presenting a type inferencing algorithm, it is

just a relatively simple logic program.



2 Friedman, Byrd, Mack, Kiselyov

!- corresponds to the mathematical symbol ` (turnstile) and reads “we can

infer.” That is, from looking at the relation intc-rel and the definition of !-

below, we can read it as, “From g we can infer that x is of type int provided that

x is an intc.” For now, we leave g unspecified.

In the expressions below, we use int, bool, and --> for our type constructors.

(define intc-rel

(fact (g x) g ‘(intc ,x) ’int))

(define !- intc-rel)

> (answer (?)

(eigen (g)

(!- g (parse 17) ?)))

? :: int

> (answer ()

(eigen (g)

(!- g (parse #t) ’int)))

#f

In the first example, we verify that 17 is of type int. In this case, ? is instantiated

to int. The second one does not display the trace-vars, so this one does not hold:

The type of #t is not int. Even more interesting, is to try

> (answer (?)

(eigen (g)

(!- g (parse #t) ?)))

#f

which also displays nothing, so #t does not have a type according to the current

definition of !-. Why? Because we have not yet extended the definition of !- to

include a rule for boolean constants. So, we include boolc-rel below in !-.

(define boolc-rel

(fact (g x) g ‘(boolc ,x) ’bool))

(define !- (extend-relation (a1 a2 a3) !- boolc-rel))

> (answer (?)

(eigen (g)

(!- g (parse #t) ?)))

? :: bool

Before we include relations for the arithmetic primitives, we observe that we need

to use all!!. We do this because our type inferencer is deterministic. There cannot

be any backtracking. That is, once a decision is made, it cannot be reconsidered!

Now we can extend !- below with the relations zero?-rel sub1-rel, +-rel,

and *-rel, which correspond to the primitves zero?, sub1, +, and *, respectively.
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(define zero?-rel

(relation (g x)

(to-show g ‘(zero? ,x) ’bool)

(all!! (!- g x ’int))))

(define sub1-rel

(relation (g x)

(to-show g ‘(sub1 ,x) ’int)

(all!! (!- g x ’int))))

(define +-rel

(relation (g x y)

(to-show g ‘(+ ,x ,y) ’int)

(all!! (!- g x ’int) (!- g y ’int))))

(define *-rel

(relation (g x y)

(to-show g ‘(* ,x ,y) ’int)

(all!! (!- g x ’int) (!- g y ’int))))

(define !- (extend-relation (a1 a2 a3) !- zero?-rel sub1-rel +-rel *-rel))

> (answer (?)

(eigen (g)

(!- g (parse ’(zero? 24)) ?)))

? :: bool

> (answer (?)

(eigen (g)

(!- g (parse ’(zero? (+ 24 50))) ?)))

? :: bool

The type system can infer that (zero? 24) is of type bool, because it can infer

that 24 is of type int. It can infer that (+ 24 50) is of type int, so the answer in

the second example must be of type bool. We can, of course, make more complicated

examples using zero?, sub1, +, and *, but if they have a type, it is int or bool.

For example,

> (answer (?)

(eigen (g)

(!- g (parse ’(zero? (sub1 (+ 18 (+ 24 50))))) ?)))

? :: bool

Although our parser expects a larger language, at each stage of defining !-, we

are writing a type inferencer for a larger and larger language. When we have defined

!- for let, then we have a type inferencer for the full language. To reiterate, the

language starts out very small! It only contains integers. Then, as we progress, it

gets larger. But, the beauty of type inferencing, is that these little relations grow
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naturally. Of course, we cannot test the relation for zero? until we have a relation

for numbers and booleans, so there is a natural ordering to some extent.

In this type system, we must preserve the property that Every well-typed expres-

sion has one type. So, what do we do about conditionals? Easy. We require that not

only must the test be of type bool, but the true branch and the false branch must

have the same type. In a language without variables, lambda expressions, applica-

tions, fix expressions, and let expressions, that means that they must both be of

type int or they must both be of type bool. By extending !-, we can now handle

if expressions.

(define if-rel

(relation (g t test conseq alt)

(to-show g ‘(if ,test ,conseq ,alt) t)

(all!! (!- g test ’bool) (!- g conseq t) (!- g alt t))))

(define !- (extend-relation (a1 a2 a3) !- if-rel))

> (answer (?)

(eigen (g)

(!- g (parse ’(if (zero? 24) 3 4)) ?)))

? :: int

And we discover the test has type bool and the entire expression has type int.

Next, we include lexical variables, which are represented using symbols. What is

the type of (zero? a)? If the type of a is int, then we know that the type of the

entire expression is bool, but if the type of a is bool, then the expression does not

have a type. How do we determine the type of a? We look in g, which is a type

environment that associates lexical (both generic and non-generic) variables with

types. So far we have ignored g, but now we consider its content using non-generic

(a tag) variables. We extend !- to include a relation for variables.

(define var-rel

(relation (g v t)

(to-show g ‘(var ,v) t)

(all!! (env g v t))))

(define !- (extend-relation (a1 a2 a3) !- var-rel))

Now we must define the env relation.

(define non-generic-base-env

(fact (g v t) ‘(non-generic ,v ,t ,g) v t))

(define non-generic-recursive-env

(relation (g v t)

(to-show ‘(non-generic ,_ ,_ ,g) v t)

(all!! (instantiated g) (env g v t))))
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(define env (extend-relation (a1 a2 a3)

non-generic-base-env

non-generic-recursive-env))

> (answer (?)

(eigen (g)

(env ‘(non-generic b int (non-generic a bool ,g)) ’a ?)))

? :: bool

> (answer (?)

(eigen (g)

(!- ‘(non-generic a int ,g) (parse ’(zero? a)) ?)))

? :: bool

> (answer (?)

(eigen (g)

(!- ‘(non-generic b bool (non-generic a int ,g)) (parse ’(zero? a)) ?)))

? :: bool

The first example tests env. The environment starts out with int bound to b and

bool bound to a. The non-generic-recursive-env relation succeeds, since we are

looking up a, and then non-generic-base-env succeeds, since we find a. In the sec-

ond answer, we have one item in the type environment and the non-generic-base-env

relation is followed. In the third example, we have two items in the type envi-

ronment, so we take non-generic-recursive-env, then non-generic-base-env

succeeds, since we have stripped off b and bool, leaving a and its associated type.

Now that we can deal with lexical (non-generic) variables, we can consider the

relation for lambda expressions by extending !-.

(define lambda-rel

(relation (g v t body type-v)

(to-show g ‘(lambda (,v) ,body) ‘(--> ,type-v ,t))

(all!! (!- ‘(non-generic ,v ,type-v ,g) body t))))

(define !- (extend-relation (a1 a2 a3) !- lambda-rel))

> (answer (?)

(eigen (g)

(!- ‘(non-generic b bool (non-generic a int ,g))

(parse ’(lambda (x) (+ x 5)))

?)))

> (answer (?)

(eigen (g)

(!- ‘(non-generic b bool (non-generic a int ,g))

(parse ’(lambda (x) (+ x 5)))

?)))

? :: (--> int int)
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> (answer (?)

(eigen (g)

(!- ‘(non-generic b bool (non-generic a int ,g))

(parse ’(lambda (x) (+ x a)))

?)))

? :: (--> int int)

> (answer (?)

(eigen (g)

(!- g (parse ’(lambda (a) (lambda (x) (+ x a)))) ?)))

? :: (--> int (--> int int))

In the first answer, we see that we have an arrow (-->) type. The left argument

of the arrow type is the type of argument coming into the function, and the right

argument of the arrow type is the type of the result going out of the function. So,

the inferred type is a function whose argument is an integer and whose result is

an integer. The second answer states that the argument is an integer, but consults

the type environment to make sure that the argument going out is an integer. In

the third example, we forget about the first environment, because there are no free

variables in the expression. We see that the argument coming in is an integer, but

the result is an arrow type, which takes in an integer and returns an integer. Close

inspection of the type (directly aligned below the item it is typing) shows that for

each lambda there is an arrow and for each formal parameter there is a type. Also,

there is a type for the body of each lambda. If we think about the type from the

inside out, we see that (+ x a) is an integer only if x and a are integers. That

determines the type of the inner lambda and then the type of the outer lambda. It

is important that we can infer the type of lambda expressions, even though we do

not yet have application in our language. This should be a bit of a surprise.

We come next to application.

(define app-rel

(relation (g rator rand t)

(to-show g ‘(app ,rator ,rand) t)

(exists (t-rand)

(all!!

(!- g rator ‘(--> ,t-rand ,t))

(!- g rand t-rand)))))

(define !- (extend-relation (a1 a2 a3) !- app-rel))

In determining the type of an application, we know that the operator in an appli-

cation should be some arrow type. Furthermore, once we know that type, we know

that the type going out of that type is the same as the type of the entire application

and we know that the operand of the application must be the type going into that

type.
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> (answer (?)

(eigen (g)

(!- g (parse ’(lambda (f) (lambda (x) ((f x) x)))) ?)))

? :: (--> (--> t.0 (--> t.0 t.1)) (--> t.0 t.1))

Here, the type of f is (--> t.0 (--> t.0 t.1)), so the type of x must be t.0,

and the type of (lambda (x) ((f x) x)) must be (--> t.0 t.1). As should be

evident, once we add a relation for application, things start to get a bit tricky.

We can no longer rely on aligning the lambdas with the arrows. Here we have two

lambdas and four arrows. Yet another surprise. Our inferencer is starting to be

clever.

We may be tempted to use our language to write (and test) recursive functions.

To test the expression, we use the call-by-value fix primitive:

(define fix-rel

(relation (g rand t)

(to-show g ‘(fix ,rand) t)

(all!! (!- g rand ‘(--> ,t ,t)))))

(define !- (extend-relation (a1 a2 a3) !- fix-rel))

> (answer (?)

(eigen (g)

(!- g

(parse

’((fix (lambda (sum)

(lambda (n)

(if (zero? n)

0

(+ n (sum (sub1 n)))))))

10))

?)))

? :: int

In Scheme, we define fix below. Although fix can be defined using simple lambda

terms as in the Y combinator, our type system cannot determine Y’s type. Thus,

fix must be primitive and the associated primitive call’s type can be inferred as

above.

(define fix

(lambda (e)

(e (lambda (z) ((fix e) z)))))
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Let’s consider the following expression

> ((fix (lambda (sum)

(lambda (n)

(+ n (sum (sub1 n))))))

10)

It fails to terminate. But, can we infer its type? Yes, an expression may have a

type, even if evaluating it would lead to nontermination. This is a confusing aspect

of type inference. We know from the “Halting Problem” that we cannot tell in

advance whether evaluating an arbitrary expression will terminate, but this type

inferencing system is guaranteed to terminate. Thus, we can infer the type before

we run it. As a result, information that the run-time system can learn from the

type (or the process of inferring the type) can be put to good use. Here is its type.

> (answer (?)

(eigen (g)

(!- g

(parse

’((fix (lambda (sum)

(lambda (n)

(+ n (sum (sub1 n))))))

10))

?)))

? :: int

The let-expression is a bit more subtle. Let’s take a look at an expression that

should type check, but won’t in the absence of let.

> (answer (?)

(eigen (g)

(!- g

(parse

’((lambda (f)

(if (f (zero? 5))

(+ (f 4) 8)

(+ (f 3) 7)))

(lambda (x) x)))

?)))

#f

Because f becomes the non-generic identity, once a type for f is determined, it

must stay the same. Obviously, we would expect that the evaluation of “((lambda

(f) ...) ...) to be 10, but it has no type. If, however, we change the expression

to use let
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(let ([f (lambda (x) x)])

(if (f (zero? 5))

(+ (f 4) 8)

(+ (f 3) 7)))

and think about β-substituting for f throughout,

(if ((lambda (x) x) (zero? 5))

(+ ((lambda (x) x) 4) 8)

(+ ((lambda (x) x) 3) 7))

then we can see that this expression should have a type, int. Instead of doing the

substitution, we mark certain variables generic as they are placed in the environ-

ment.

Below is the polymorphic let, since the variable is tagged with generic in the

environment. If the variable were tagged with non-generic, then this would be the

familiar let. We have only to determine what happens in environment lookup when

a variable with a generic tag is an arrow type. (Those who wish to include a more

general let expression, one whose binding variable is bound to a non-generic,

feel free to do so, but for our purposes, we assume that all right-hand sides of let

expressions are lambda expressions.)

(define polylet-rel

(relation (g v rand body t)

(to-show g ‘(let ([,v ,rand]) ,body) t)

(exists (t-rand)

(all!!

(!- g rand t-rand)

(!- ‘(generic ,v ,t-rand ,g) body t)))))

(define !- (extend-relation (a1 a2 a3) !- polylet-rel))

The relation logical-copy-term takes a term with variables within it and cre-

ates a new term with new, but corresponding variables in it. Thus if the same

variable occurs in several positions in the input term, then a new variable will

occur in the same positions in the output term.

In logical-copy-term below, we pass input-term, and output-term, along

with an empty table and a table varmap, with no bindings, which associates each

input term variable with an output term variable.

(define logical-copy-term

(relation (input-term output-term)

(to-show input-term output-term)

(exists (varmap)

(logical-copy-term-raw input-term output-term ’() varmap))))

In logical-copy-term-raw, if the ef/only test succeeds, then car is bound to

the car of the input term and cdr is bound to the cdr of the input term. The
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two recursive calls feed the variable map generated from the first call to the seocnd

call. When the second call binds varmap, it contains an association list which binds

each input variable to each output variable. of the first call as the input list of the

second call. Then output-term is constructed from new-car and new-cdr. If the

input is not instantiated, it is a free variable, and we lookup its value in the variable

map. So, for the invocation of logical-assq, input-term is a logic variable and

output-term is a logic variable.

(define logical-copy-term-raw

(relation (input-term output-term lst varmap)

(to-show input-term output-term lst varmap)

(exists (car cdr)

(ef/only (all!! (instantiated input-term) (== input-term ‘(,car . ,cdr)))

(exists (new-car new-cdr varmap-car)

(all!!

(logical-copy-term-raw car new-car lst varmap-car)

(logical-copy-term-raw cdr new-cdr varmap-car varmap)

(== output-term ‘(,new-car . ,new-cdr))))

(logical-assq input-term lst output-term varmap)))))

In the first relation of logical-assq, we make no changes, since input-var is

bound, and we are only replacing free variables. In the second relation, we bind

var and output-var from the first element of varmap provided that input-var

and var are the same variable. In the third relation, we do the natural recursion

on the cdr of varmap looking for a match. In the final relation, which is a fact, if

the varmap is empty, we add one association to it.

(define logical-assq

(extend-relation (a1 a2 a3 a4)

(relation (input-var varmap)

(to-show input-var varmap input-var varmap)

(instantiated input-var))

(relation (input-var varmap output-var)

(to-show input-var varmap output-var varmap)

(exists (var)

(all!!

(== varmap ‘((,var . ,output-var) . ,_))

(predicate (*equal? var input-var)))))

(relation (input-var h varmap output-var varmap1)

(to-show input-var ‘(,h . ,varmap) output-var ‘(,h . ,varmap1))

(logical-assq input-var varmap output-var varmap1))

(fact (input-var output-var) input-var ’() output-var ‘((,input-var . ,output-var)))))
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(define *equal?

(lambda (x y)

(cond

[(and (var? x) (var? y)) (eq? x y)]

[(var? x) #f]

[(var? y) #f]

[else (equal? x y)])))

We can now implement generic variables using the logical-copy-term relation.

(define generic-base-env

(relation (g v targ tresult t)

(to-show ‘(generic ,v (--> ,targ ,tresult) ,g) v t)

(logical-copy-term ‘(--> ,targ ,tresult) t)))

(define generic-recursive-env

(relation (g v t)

(to-show ‘(generic ,_ ,_ ,g) v t)

(all! (env g v t))))

(define generic-env

(extend-relation (a1 a2 a3) generic-base-env generic-recursive-env))

(define env (extend-relation (a1 a2 a3) env generic-env))

Now that we have extended our environments to handle generic as well as non-

generic variables, we can infer the right type.

> (answer (?)

(eigen (g)

(!- g

(parse

’(let ([f (lambda (x) x)])

(if (f (zero? 5))

(+ (f 4) 8)

(+ (f 3) 7))))

?)))

? :: int

Finally we consider type habitation. We are going to do an experiment and in

order to get the results we want, we need to respecify the order of the relations.

Thus we redefine !-.

(define !-

(extend-relation (a1 a2 a3)

var-rel intc-rel boolc-rel zero?-rel sub1-rel +-rel

if-rel lambda-rel app-rel fix-rel polylet-rel))

Here are three, perhaps unexpected, examples.
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> (answer (g ?)

(!- g ? ’(--> int int)))

g :: (non-generic v.0 (--> int int) g.0)

? :: (var v.0)

> (answer (la f b)

(eigen (g)

(!- g ‘(,la (,f) ,b) ’(--> int int))))

la :: lambda

f :: v.0

b :: (var v.0)

> (answer* 1 (h r q z y t)

(eigen (g)

(!- g ‘(,h ,r (,q ,z ,y)) t)))

h :: +

r :: (intc x.0)

q :: +

z :: (intc x.1)

y :: (intc x.2)

t :: int

h :: lambda

r :: (v.0)

q :: +

z :: (var v.0)

y :: (var v.0)

t :: (--> int int)

#f

The first example attempts to find an expression whose type is (--> int int),

but instead finds a type environment that binds that type to the variable v.0, and

then the expression is trivially v.0. The second example produces an expression

given the type. This is answering the question, “What expression inhabits that

type?” In our case, the identity function inhabits that type. But, to make these

first two examples work, we had to place var-rel first in the most recent definition

of !-. The last example yields two answers. First, it infers that t must be of int

type. Then since there is only one binary operation that returns an int (i.e., +), it

determines q and h. Next, we can infer that r, z, and y must be of int type, and

what is easier than making them all values of type integer. Second, it infers that

t is of type (-> int int). That forces h to be the symbol lambda. Then we need

an expression whose value is of type int. Thus, r becomes (v.0), and q becomes

+, the first binary operator on integers. Finally, z and y become (var v.0).

Exercise 1: Take the results of these four test programs and reconstruct what

the terms are by substituting for each variable. 3


