
1

Relation-Oriented Programming (5/11/2004)

Daniel P. Friedman, William E. Byrd, David W. Mack

Computer Science Department, Indiana University

Bloomington, IN 47405, USA

Oleg Kiselyov

Fleet Numerical Meteorology and Oceanography Center,

Monterey, CA 93943, USA

This is a presentation of Relation-Oriented Programming. In order to appreciate

Logic-Oriented Programming, we must first understand relations. We use the term

relation in the following way. A function is a mapping from a value to another value,

which can be modelled by a set of pairs where no two pairs have the same first value.

Consider the square function defined over integral values. We can represent this

function as the following infinite set of pairs,

{. . . (-3 9) (-2 4) (-1 1) (0 0) (1 1) (2 4) (3 9) ...}
The left-hand-side of a pair denotes the input to the square function, while the

right-hand-side of the pair represents the value returned by the function. A relation

can be modelled by a set of pairs without this restriction. For example, we can

represent the square-root relation over the domain of positive integers as follows,

{(1 1) (1 -1) (2
√

2) (2 -
√

2)) (3
√

3) (3 -
√

3) (4 2) (4 -2) ...}
So square-root is a relation but not a function, since each input value (e.g., 1)

is associated with more than one output value (1 and -1, in this case there are

two output values). We introduce more of the Kanren logic system, which we first

encountered while examining Outcome-Oriented Programming (OOP).

We address the notion of relation in two separate ways. First, we show how using

lambda and outcomes is powerful enough to express Relation-Oriented Program-

ming in its entirety. Then, we show that by a careful crafting of some macros, we

can make Relation-Oriented Programming seem more natural.

We will use the following family-oriented relations throughout: father, mother,

child, grandparent, ancestor, common-ancestor, younger-common-ancestor,

and youngest-common-ancestor. If we are going to have a program that responds

to these relations, we need some real data: Jon is the father of Sam and Hal; Sam

is the father of Rob, Jay, and Roz; Hal is the father of Ted; and Rob is the father

of Sal and Pat. Figure 1 shows two different representations of this paternal family

tree.



2 Friedman, Byrd, Mack, Kiselyov

Fig. 1. Two different representations of our paternal family tree.
� � �

� � � � � �

� � 	 � � 
 � � � � 
 �

� � � � � �

� � �

� � �� � �

� � 	� � 
 � � �� 
 �

� � � � � �

We can represent this paternal relationship with the following father procedure.

(define father

(lambda (dad child)

(any

(all!! (== dad ’jon) (== child ’sam))

(all!! (== dad ’jon) (== child ’hal))

(all!! (== dad ’sam) (== child ’rob))

(all!! (== dad ’sam) (== child ’jay))

(all!! (== dad ’sam) (== child ’roz))

(all!! (== dad ’hal) (== child ’ted))

(all!! (== dad ’rob) (== child ’sal))

(all!! (== dad ’rob) (== child ’pat)))))

There are eight (all!! ...) expressions in the father procedure, which we can

reorder in any of 8! different ways. Regardless of the order we choose for the (all!!

...) expressions, our father procedure will impose that same ordering upon the

children occupying a given level of the family tree. In the father procedure given

above, Sam comes “before” Hal, even though both Sam and Hal are children of

Jon. This ordering forces us to choose the left-hand tree in Figure 1 as our pre-

ferred graphical representation of the family tree, since a breadth-first left-to-right

traversal of this tree will yield Jon’s descendants in the order specified in the father

procedure.

If we were to switch the order of the (all!! ...) expressions in the father

procedure, the order of the answers produced by our Relation-Oriented programs

might change as well, along with the amount of computational resources consumed

by those programs.



Tutorial 3

Each time trace-vars is invoked in the code below, it displays the content of a

portion (it may be all of it) of a substitution. After each trace-vars completes, it

passes the current substitution to fail. That causes the computation to back up

through the trace-vars and then through the father. Backing into it will cause

the logic variables f and c to get rebound and then that substitution is sent to

trace-vars, etc. Since the final outcome is failure, we know that the result will be

the #f, indicating failure.

> (run (f c)

(all

(father f c)

(trace-vars "::" (f c))

(fail))

fk subst #t #f)

f :: jon

c :: sam

f :: jon

c :: hal

f :: sam

c :: rob

f :: sam

c :: jay

f :: sam

c :: roz

f :: hal

c :: ted

f :: rob

c :: sal

f :: rob

c :: pat

#f

If the number of answers is relatively small, then a simple macro like the one

below meets our needs. As is evident, the only things that we abstracted over were

the list of variables (f c) and the antecedent expression, (father f c). Why must

this be a macro? Because the id ... in the run expression below introduce lexical

scope.



4 Friedman, Byrd, Mack, Kiselyov

(def-syntax (answers (id ...) ant)

(run (id ...) (all ant (trace-vars "::" (id ...))) fk subst (fk) #f))

> (answers (f c) (father f c))

We should not always use the answers macro, of course, since it is possible to give

an antecedent that produces an unbounded number of answers. In Logic-Oriented-

Programming, we see one way to control that.

We can take projections of this relation with examples like this:

> (answers (c) (father ’sam c))

c :: rob

c :: jay

c :: roz

#f

> (answers (f) (father f ’rob))

f :: sam

#f

The first example yields three substitutions, each of which gives a child of Sam.

The second example yields a single substitution, since Rob has only one father.

An alternative is to build a list of answers like this.

> (run (c) (father ’sam c) fk subst (cons c (fk)) ’())

(rob roz jay)

The run-list macro makes creating lists of answers more convenient.

(def-syntax (run-list (id ...) ant succeed-item-expr)

(run (id ...) ant fk subst (cons succeed-item-expr (fk)) ’()))

> (run-list (c) (father ’sam c) c)

We can define child by simply claiming that in our world,

(define child

(lambda (child dad)

(father dad child)))



Tutorial 5

> (run-list (c f) (child c f) (list c f))

((sam jon)

(hal jon)

(rob sam)

(jay sam)

(roz sam)

(ted hal)

(sal rob)

(pat rob))

Thus, to show that c is the child of f, we need only show that f is the father of c.

Of course, this assumes that in our population, no woman has a child. If that were

not the case, then we would likely define child this way.

(define child

(lambda (child parent)

(any

(father parent child)

(mother parent child))))

Exercise 1: Create a new relation mother and verify that this revised definition

of child makes sense. What happens when the same child is in both father and

mother? 3

We next define the grandparent relation, keeping in mind that a parent is the

child of a grandparent and a grandchild is the child of the parent.

(define grandparent

(lambda (gr-parent gr-child)

(exists (parent)

(child parent gr-parent)

(child gr-child parent))))

> (run-list (gp gc) (grandparent gp gc) (list gp gc))

((jon rob)

(jon jay)

(jon roz)

(jon ted)

(sam sal)

(sam pat))

The relation ancestor determines if a person is a parent, grandparent, greatgrand-

parent, greatgreatgrandparent, etc. of someone.



6 Friedman, Byrd, Mack, Kiselyov

(define ancestor

(lambda (anc desc)

(any

(child desc anc)

(exists (parent)

(child desc parent)

(ancestor anc parent)))))

> (run (a d) (ancestor a d) (list a d))

((jon sam)

(jon hal)

(sam rob)

(sam jay)

(sam roz)

(hal ted)

(rob sal)

(rob pat)

(jon rob)

(jon jay)

(jon roz)

(jon ted)

(sam sal)

(jon sal)

(sam pat)

(jon pat))

If we look at the output of this example, we can see that a person might have

multiple ancestors. For example, Pat has three ancestors. We might also want a

relation that determines if two people share a common ancestor. For example, Jon

is the common ancestor of everyone but himself.

(define common-ancestor

(lambda (anc desc1 desc2)

(all

(ancestor anc desc1)

(ancestor anc desc2)

(project (desc1 desc2)

(predicate (not (eqv? desc1 desc2)))))))

> (answers (a) (common-ancestor a ’sal ’jay))

a :: sam

a :: jon

#f



Tutorial 7

Exercise 2: How many answers would there be if the test had been (answers

(a d1 d2) (common-ancestor a d1 d2))? If we removed the last antecedent in

the definition of common-ancestor, how many answers would we get? 3

We might want to know of any two common ancestors, which one is younger. For

example, Jon is clearly the older of Sam and Jon.

(define younger-common-ancestor

(lambda (young-anc old-anc desc1 desc2)

(all

(common-ancestor young-anc desc1 desc2)

(common-ancestor old-anc desc1 desc2)

(ancestor old-anc young-anc))))

> (answers (y o d2) (younger-common-ancestor y o ’jay d2))

y :: sam

o :: jon

d2 :: rob

y :: sam

o :: jon

d2 :: roz

y :: sam

o :: jon

d2 :: sal

y :: sam

o :: jon

d2 :: pat

#f

We might want to know given two people, who their youngest common ancestor

is. For example, let us determine the youngest common ancestor of Jay and Pat.

(define youngest-common-ancestor

(lambda (young-anc desc1 desc2)

(all

(common-ancestor young-anc desc1 desc2)

(fails

(exists (y)

(younger-common-ancestor y young-anc desc1 desc2))))))

> (answers (y) (youngest-common-ancestor y ’jay ’pat))

y :: sam

#f



8 Friedman, Byrd, Mack, Kiselyov

We discover that Sam, who is Jay’s father and Pat’s grandfather, is the youngest

common ancestor of Jay and Pat.

What we have just demonstrated is that conventional logic programming can be

managed at the level of writing Scheme functions and using outcomes. Next, we

show how we can change the perspective just a little and yield equivalent programs.

To do this, we add the following rule to the grammar introduced in Outcome-

Oriented Programming.

R :: (relation (Id*) (to-show Term*) A)

| (fact (Id*) Term*)

| (extend-relation Arity R*)

| (intersect-relation Arity R*)

Arity :: (Id*)

The length of the Arity list must match the number of terms in the relation or

relations being extended or intersected. For example, the father relation expresses

the relationship between two terms, the father and the child. When extending the

father relation, the Arity list must therefore contain exactly two identifiers. Only

the length of the Arity list is significant, and the actual identifiers appearing in the

list may be chosen arbitrarily, but they must be different. The following expressions

are therefore equivalent, since each expression’s Arity list is of length two:

(extend-relation (a1 a2) father)

(extend-relation (dad child) father)

The relation macro is similar to lambda in that it introduces lexical scope. Here

is a relation, ancestor-of-both, that uses the relation macro.

(define ancestor-of-both

(relation (a d1 d2)

(to-show a ‘(,d1 ,d2))

(all

(ancestor a d1)

(ancestor a d2)

(project (d1 d2)

(predicate (not (eq? d1 d2)))))))

> (answers (a) (ancestor-of-both a ’(pat jay)))

a :: sam

a :: jon

#f



Tutorial 9

> (run-list (d1 d2) (ancestor-of-both ’sam ‘(,d1 ,d2)) ‘(,d1 ,d2))

((rob jay)

(rob roz)

(rob sal)

(rob pat)

(jay rob)

(jay roz)

(jay sal)

(jay pat)

(roz rob)

(roz jay)

(roz sal)

(roz pat)

(sal rob)

(sal jay)

(sal roz)

(sal pat)

(pat rob)

(pat jay)

(pat roz)

(pat sal))

Below we show how ancestor-of-both would have been written if we did not

have relation. First, the number of arguments after the to-show keyword is two,

so we have two lambda formals, with arbitrary names: g1 and g2. Second, we have a

list of variables wrapped in an exists expression. This corresponds to the number

of distinct variables in the to-show. We can see that there are three variables, a,

d1, and d2. Then, each of the introduced variables is placed in an == expression, one

for each of the arguments of the to-show. Finally, the inner (all ...) expression

is the same as the one antecedent that follows the to-show expression.

(define ancestor-of-both

(lambda (g1 g2)

(exists (a d1 d2)

(ef/only (all!!

(== g1 a)

(== g2 ‘(,d1 ,d2)))

(all

(ancestor a d1)

(ancestor a d2)

(project (d1 d2)

(predicate (not (eq? d1 d2)))))

(fail)))))

There is a special case of relation where there is no antecedent. For example,

we might have the fact that Jon is the father of Sam.



10 Friedman, Byrd, Mack, Kiselyov

(define father-sam

(fact () ’jon ’sam))

or

(define father-sam

(relation ()

(to-show ’jon ’sam)

(succeed)))

The list that follows the symbol fact is the list of all the variables used in the

fact. Of course, here there are none. Then we could define father using a bunch of

facts and a new feature: extend-relation.

(define father

(extend-relation (f c)

(fact () ’jon ’sam)

(fact () ’jon ’hal)

(fact () ’sam ’rob)

(fact () ’sam ’jay)

(fact () ’sam ’roz)

(fact () ’hal ’ted)

(fact () ’rob ’sal)

(fact () ’rob ’pat)))

The first list (f c) is required and it tells extend-relation how many argu-

ments each relation takes. extend-relation acts like a call-by-value function, but

since the list of variables (f c) is not evaluated, it is implemented using a macro.

The reason extend-relation evaluates all but its first argument is to allow for

incremental-relation building.

(define father

(extend-relation (f c)

father

(fact () ’jon ’hal)

(fact () ’sam ’rob)))

which would otherwise loop indefinitely when it is called.

Exercise 3: Implement ancestors-of-all, a variation of ancestor-of-both,

that works with an arbitrarily long list. That would mean that we might want to

use ‘(,d . ,d*), where d would be the first descendant and d* would be all the

other descendants. Solve the problem with and without relation. 3



Tutorial 11

We could have built our father relation in another way.

(define father

(let loop ([facts (list

(fact () ’jon ’sam)

(fact () ’jon ’hal)

(fact () ’sam ’rob)

(fact () ’sam ’jay)

(fact () ’sam ’roz)

(fact () ’hal ’ted)

(fact () ’rob ’sal)

(fact () ’rob ’pat))])

(cond

[(null? facts) (relation () (to-show _ _) (fail))]

[else (extend-relation (f c) (car facts) (loop (cdr facts)))])))

This follows, since relations, including facts, are first-class values.

We can redefine parent using extend-relation, and then we can use it to

redefine child.

(define parent

(extend-relation (p c)

father

mother))

(define child

(relation (child ther1)

(to-show child ther)

(parent ther child)))

Revising grandparent to use relation yields

(define grandparent

(relation (gr-parent gr-child)

(to-show gr-parent gr-child)

(exists (parent)

(child parent gr-parent)

(child gr-child parent))))

1 We use the variable ther to represent a parent (either a father or a mother).



12 Friedman, Byrd, Mack, Kiselyov

Revising ancestor gives us

(define ancestor

(relation (anc desc)

(to-show anc desc)

(any

(child desc anc)

(exists (parent)

(child desc parent)

(ancestor anc parent)))))

Exercise 4: Implement youngest-common-ancestor using relation. 3

We next introduce intersect-relation, which acts like extend-relation, but

instead of using any, it uses all to build up the relation. Consider the following

situation.

(define scouts

(extend-relation (s)

(fact () ’rob)

(fact () ’sue)

(fact () ’sal)))

(define athletes

(extend-relation (a)

(fact () ’roz)

(fact () ’sue)

(fact () ’sal)))

(define busy-children

(intersect-relation (c)

scouts

athletes))

(define social-children

(extend-relation (c)

scouts

athletes))

> (answers (c) (busy-children c))

c :: sue

c :: sal

#f



Tutorial 13

> (answers (c) (social-children c))

c :: rob

c :: sue

c :: sal

c :: roz

c :: sue

c :: sal

#f

When we evaluate (answers (c) (social-children c)), sue and sal appear

twice. A different implementation of extend-relation could filter out these dupli-

cate answers. (See kanren.ss.)

The advantages of (relation Id* (to-show Term*) A) can hardly be observed

using these simple programs. In Logic-Oriented-Programming, we shall see how

relation improves the readability of our definitions.


