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Abstract

We explore a simple rewriting system1 equivalent with the linear alge-
bra normally associated with quantum gates with the goal of communi-
cating an intuition to the beginner student of quantum computation. We
start by building the axioms of this system through examples and even-
tually work out the proof of a simple theorem for which a beginner has
no other resort than brute force (namely blind matrix multiplication).

1 Introduction

From the outset we want to state the theorem we want to prove:

The behavior of this gate is (at first) a bit counterintuitive: the control qubit
changes while the target stays the same. By simple matrix multiplication one
can verify the truth of this diagram.

2 Rules of Engagement

We start by defining |0⟩ as follows:

|0⟩ =
(
1
0

)
=

1The system presented here has been introduced by Terry Rudolph in 2017.
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Likewise we define

|1⟩ =
(
0
1

)
=

Now we introduce the X gate defined by: σ( ) = and σ( ) = . The
reader can easily verify that this definition is a special case of the traditional
definition (for adequately chosen values of α and β):

σ(α|0⟩+ β|1⟩) =
(
0 1
1 0

)(
α
β

)
=

(
β
α

)
The X gate (denoted by σ here) is also known as the quantum NOT gate. It is
a one-qubit gate. It is easy to check that σ(σ( )) = and σ(σ( )) = in
other words σ2 = I2 (the unit matrix of size 2). Here’s another one-qubit gate,
the Hadamard gate:

Ξ =
1√
2

(
1 1
1 −1

)
The Hadamard gate acts as follows:

Ξ|0⟩ = |0⟩+ |1⟩√
2

= |+⟩

We write this as follows in our notation:

Ξ( ) =
{

,
}

For the other input the behavior is:

Ξ|1⟩ = |0⟩ − |1⟩√
2

= |−⟩

In our notation this is:
Ξ( ) =

{
,

}
Now since Ξ(Ξ( )) = and Ξ(Ξ( )) = (the Hadamard gate does share

this property2 with the X gate) the question then becomes:

• what should the axioms of behavior be for the new
{
,
}

operator?

We start by asking for the operator to be linear:

Ξ(Ξ( )) = Ξ(
{

,
}
) =

{
Ξ( ),Ξ( )

}
=

{{
,

}
,
{

,
}}

From this we conclude that{{
,

}
,
{

,
}}

=
{

, , ,
}
=

2The reader can readily check this via matrix multiplication.
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Likewise the following must hold:

Ξ(Ξ( )) = Ξ(
{

,
}
) =

{
Ξ( ),Ξ( )

}
=

{{
,

}
,Ξ( )

}
Now to further pin down the behavior of this new operator we must further
propagate the constraints from the most recent equality into its axiomatic rules
of engagement. Thus,{{

,
}
,Ξ( )

}}
=

{{
,

}
,
{

,
}}

=

For that to happen we need to have:{
,

}
=

{
,

}
=

{
,

}
Then: {{

,
}
,
{

,
}}

=
{

, , ,
}
=

{
, , ,

}
=

3 Rules of Entanglement

Now to study entanglement3 we need two-qubit gates.
With two qubits the order matters:

|01⟩ = |0⟩ ⊗ |1⟩ =


0
1
0
0

 = ̸=

It is traditional to introduce the SWAP (↶) gate first, for example:

↶ |10⟩ =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1



0
0
1
0

 =


0
1
0
0

 = |01⟩

In our notation we have:
↶ ( ) =

We now introduce the C-NOT (↫) gate, through an example:

↫ |10⟩ =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



0
0
1
0

 =


0
0
0
1

 = |11⟩

3Note, however, that studying (or representing) entanglement is not our main goal here.
Likewise, while this paper is not a tutorial, it does outline the how (and the why) of a tutorial.
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In our notation that becomes:

↫ ( ) =

C-NOT distinguishes between its two arguments as follows: it first requires the
control qubit, and then the target qubit. Let’s look at a simple circuit now:

This is the circuit that creates the Bell states, as a function of its two inputs.
For example:

↫ (Ξ( ) ) = |Φ+⟩ =
{

,
}

Let’s work this out:

↫ (Ξ( ) ) =↫ (
{

,
}

) =
{
↫ ( ),↫ ( )

}
=

{
,

}
Now, as an exercise, let’s try to answer each of the following two questions:

1. Is this quantum state an entangled state?

Ψ =

√
1

4


1
1
1
1


Answer: no, because

{
, , ,

}
=
{

,
}{

,
}

2. Is this quantum state an entangled state?

Ψ =
|00⟩+ |01⟩√

2

Answer: no, because
{

,
}
=
{ }{

,
}
=

{
,

}
In both cases we invoke distributivity.
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4 Conclusion

It’s time to prove our theorem:

↫ (|+−⟩) = |−−⟩

We start by reminding ourselves that |+⟩ =
{

,
}

and |−⟩ =
{

,
}

So now we need to calculate:

↫ (|+−⟩) = ↫ (
{

,
}{

,
}
)

= ↫ (
{

, , ,
}
)

=
{
↫ ( ),↫ ( ),↫ ( ),↫ ( )

}
=
{

, , ,
}

=
{

, , ,
}

=
{

, , ,
}

=
{ {

,
}
,

{
,

}}
=
{

,
}{

,
}

=|−−⟩

This concludes our tutorial example. We have demonstrated all aspects of
the rewriting system and have shown its applicability. In future work we will
take a more formal approach and better describe why a beginner might find this
algebraic approach more accessible than the traditional approach.
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