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Chapter 1

We Start Here

This book is a story about linear algebra, the main character
of which is the star of this discipline, the vector. We will start by
defining this concept, that prides itself on its simplicity. But don’t
mistake simplicity for lack of power; from an uncomplicated vector
we will arrive at complex methods like the single value decomposi-
tion and the principal component analysis.

My journey began when I was only four years old, and my father
gave me my first book on equations. Since then, I have never looked
back. Mathematics flowed in my mind, and calculations came out
as naturally as a delicate butterfly landing on a ravishing red petal
of this miracle of nature that we so often call a flower. . . don’t
be scared already! We are just at the second paragraph, and this
is not true. I am just a regular guy who was most likely kicking
a ball around when he was four. But, being a typical fellow, my
struggle with mathematics was real during a specific time in my
life, my first couple of years at university. This was because of a
combination of a bad attitude and a need for content to be structured
more like a story than a manual. I was scared of equations and
blamed everything I could, except myself, for my lack of success in
understanding mathematics. When I look back now, I can see that
it is impossible to understand anything with that attitude.

Symbols and Greek letters are the alphabets of mathematics,
whereas equations are the words that represent abstract concepts.
One needs to try to understand how to read this syntax, as it will
bring significant benefits in the future. Unfortunately, mathematics
has no sound, so I don’t think you can expect good results by using



Chapter 1. We Start Here

a hands-on approach where you learn by ignoring the syntax, as
you might do with a musical instrument. Still, as a mathematician,
I can’t say that this way is not possible. After all, the realm of
uncertainty is where we do our best work. Once I overcame this
first hurdle and I started to be able to read equations, another issue
arose. I knew concepts in isolation, but relating them to one another
seemed impossible. Different books have distinct structures and
expose the same ideas in varying sequences, which became another
obstacle for me. Now I say that I was lucky, but at the time, I
considered myself the unluckiest person in the world. I could not
have been more wrong.

The itinerary whereby I began putting concepts together and
understanding mathematics started on the day I missed the meeting
where we, the students, were due to meet the professors who would
be supervising our university theses. I can’t provide a good reason
for missing this meeting that won’t make you think I am an idiot,
but hey, sometimes things have a funny way of resolving themselves.

When I finally returned to the mathematics department, my col-
leagues came to me with a concerned look, enquired where I had
been, and told me that I was in trouble as I had landed the worst
supervisor ever. This lady was famous for being extremely demand-
ing and challenging to get along with. On that same day, the path
of my life changed completely. Indeed, she was demanding, and she
presented me with a project I knew very little about, but had to
master. She made me study, and did not give anything back to me
unless she saw that I had made an effort. I had to go back to basics,
but this time I decided to start with the most elementary concept of
each subject, then I studied it in such a way that everything moving
forward would have to be the result of knowledge I had previously
acquired. This way, I could put everything into context.

I am still a data scientist. Well, in reality, I am a mathematician.
I don’t like that job title, but I also need to pay the bills. It helps
me. The point is that my Master’s thesis was the hardest thing I
have ever done, and the conclusion is that if you make a significant
effort to learn the basics, what comes afterwards will be a smoother
ride. There is a lot of talk these days about the wealth gap, but
I feel that another gap is emerging, one in knowledge. We like to
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press buttons and obsess about whatever is the next exciting thing.
Modern entertainment and social media have given us all attention
deficit disorder. When this is associated with a right-now mentality,
it significantly contributes to this problem.

If I go back to my first experience with a mathematics book, I
can understand why this might happen. With so much information
out there, the minimal hurdle presented to somebody trying to learn
something new is enough to make them try something else. There
are a lot of us pressing buttons. Still, only a few of us are building
them. If you want to succeed as a data scientist, it would be better
to take a button-builder path. What this means is that you will
have to learn mathematics.

I wrote this book aiming to help the reader to start and never
have to look or go anywhere else for further information. There will
be no need for notebooks, pens, laptops, or pencils: just the safe
blueprint, a mask, and the machine gun. Oh sorry, those last items
might have come from the “bank project” list. . . actually, you won’t
need much more than the Pythagorean theorem: my mistake.
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Chapter 2

Why Linear Algebra?

Linear algebra is essential to forming a complete understanding
of machine learning. The applications are countless, and the tech-
niques from this discipline belong to a shared collection of algorithms
widely used in artificial intelligence. Its properties and methods al-
low for faster computation of complex systems and the extraction of
hidden relationships in sets of data.

All of this is very relevant, and it justifies the need to master
this domain of mathematics. However, I think that the true power
of linear algebra comes from something else. I first heard the term
“beautiful” associated with mathematics while attending a lecture
at university, and the word “lame” instantly sparked in my brain. I
was not in love with mathematics, and I am still not.

The reality is that this science shaped my personality so much
that I now understand what that professor meant when he called
an equation “beautiful”. That is the ability to define something
complex that has consistently been proven to be true into dimensions
that we can’t possibly visualize, using a combination of Greek letters.
Yeah, fucking crazy.

With this comes abstraction, the most potent tool of linear al-
gebra. It is a concept that will fuel creativity and the possibility
of combining several ideas and techniques that can come from any
part of knowledge acquired throughout your life, mathematical or
not. Like any other ability worth learning, you have to train yourself
to use it. And what better way to do so other than starting with
the simplest element of linear algebra, the vector?



Chapter 3

What Is a Vector?

You can think of a vector in simple terms as a list of numbers
where the position of each item in this structure matters. In machine
learning, this will often be the case. For example, if you are analysing
the height and weight of a class of students, in this domain, a two-
dimensional vector will represent each student:

−→v =

(
v1

v2

)
=

(
1.64
64

)
Here v1 represents the height of a student, and v2 represents the

weight of the same individual. Conventionally, if you were to define
another vector for a different student, the position of the magni-
tudes should be the same. So the first element is height, followed
by weight. This way of looking at vectors is often called the “com-
puter science definition”. I am not sure if that is accurate, but it is
certainly a way to utilise a vector. Another way to interpret these
elements that is more relevant to linear algebra is to think of a vec-
tor as an arrow with a direction dictated by its coordinates. It will
have its starting point at the origin: the point (0, 0) in a coordinate
system, such as the x, y plane. Then the numbers in the parentheses
will be the vector coordinates, indicating where the arrow lands.
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x

y

−1 1 2 3
−1

1

2

3

−→v

Figure 3.1: An example of a vector.

Figure 3.1 represents a visual interpretation of the vector −→v .

−→v =

(
2
3

)
As you can see, we moved from the base, point (0, 0), by two

units to the right on the x axis and then by three units to the top
on the y axis. Every pair of numbers gives you one and only one
vector. We use the word pair here as we are only working with two
dimensions, and the reason for using this number of coordinates is
to create visual representations. However, vectors can have as many
coordinates as needed. For example, if we wish to have a vector−→
t within a three-dimensional space, we could represent it using a

triplet. There is no limitation to the dimensions a vector can have.

−→
t =

2
3
5


In my opinion, the best way to understand linear algebra is by

visualising concepts that, although simple but powerful, are often
not well-understood. It is also essential to embrace abstraction, and
let ourselves dive into definitions by bearing this concept in mind,
as mathematics is a science of such notions. The more you try to
understand abstract concepts, the better you will get at using them.
It is like everything else in life. So bear with me as I introduce the
first abstract definition of the book: a vector is an object that has
both a direction and a magnitude.
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Figure 3.2: The components of a vector.

Alright, let’s try and break this concept down, starting with di-
rection. We know that a vector has a starting point, which we call
the base or origin. This orientation is dependent on a set of coordi-
nates that in itself is essential for defining this element. For example,
look at the figure above. The landing point defines the direction of
the vector −→v . Magnitude is the size of the vector, and it is also a
function of where it lands. Therefore, for two vectors to be the same,
their directions and magnitudes must be equal. Now that we have
a visual interpretation and an abstract definition, the only thing
missing when it comes to fully understanding vectors is a context, a
real-life situation where they are applicable. Providing context will
indicate where this can be utilised and make the understanding of
such notions more accessible.

For example, say that you need to describe the wind. How many
information points do you need to understand the wind if you want
to sail? Well, I believe that two points of information will gener-
ally be sufficient. You will certainly need the wind direction and
the speed, and one vector can represent this well. If directions and
magnitudes define vectors, it would be advantageous to apply math-
ematical operations to them; one example could be to describe paths.
If we break down one course into two vectors, perhaps we could rep-
resent it as a sum of such elements.

Vectors alone are instrumental mathematical elements. However,
because we define them with magnitude and directions, they can
represent many things, such as gravity, velocity, acceleration, and
paths. So let’s hold hands and carefully make an assumption. We
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know nothing more about linear algebra yet, but there is a need to
move on, well at least for me there is, before you call me a thief,
as so far I have charged you money just for a drawing of an arrow.
If we only know how to define vectors, one way to carry on moving
forward will maybe be to try to combine them. We are dealing with
mathematics, so fuck it, let’s try to add them up. But, will this
make sense? Let’s check.

3.1 Is That a Newborn? Vector
Addition

Given two vectors −→v and −→w we can define their sum, −→v + −→w as
a translation from the edge of −→v with the magnitude and direction
of −→w . Did you shit yourself with all the mathematical terms? Well,
there’s nothing to worry about. There are two positives about that
accident:

1. You can go to a party and try to impress someone with the
phrase ”translation from the edge of where one vector finishes
of the magnitude and direction of the other one”; however, I
will warn you that if somebody really is impressed by that. . .
well take your own conclusions.

2. This is another step into the world of abstraction, and a visual
explanation will follow.

Let’s see what is happening here. First, let’s consider two vec-
tors: −→v and −→w , which will be defined by the following pairs of
coordinates:

−→v =

(
2
3

)
, −→w =

(
2
1

)
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3.1. Is That a Newborn? Vector Addition

If we make use of the Cartesian plane and plot these vectors, we
will have something like this:

x

y

−1 1 2 3

−1

1

2

3

−→v

−→w

Figure 3.3: The representation of two vectors.

We want to understand geometrically what happens when we
add two vectors:

−→v +−→w

Considering that directions and magnitudes define vectors, what
would you say if you had to take a naive guess at the result of
adding two vectors together? In theory, it should be another vector,
but with what direction and magnitude? If I travel in the direction
of −→v to its full extent and then turn to the direction that −→w points
and go as far as its magnitude, I will arrive at a new location. The
line from the origin to the new location where I landed, is the new
vector −→v +−→w .

Let’s take a pause here and analyse what just happened. Math-
ematics is a science developed by people, so do not become dis-
couraged by a formula. Don’t just read it, think that you can’t
understand it, or pretend that you did and move on. Question it!

Analytically this is how you would do this operation:

−→z = −→v +−→w

−→z =

(
2
3

)
+

(
2
1

)
13
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The vector −→z is the result of adding the elements with the same
positions in vectors −→v and −→w :

−→z =

(
2 + 2
3 + 1

)
=

(
4
4

)
We can explore a visualization to understand these so-called

translations better and solidify this concept of vector addition:

x

y

−1 1 2 3 4
−1

1

2

3

4

−→v

−→w

−→v
+
−→w

Figure 3.4: The addition of two vectors.

One can utilize vector addition in many real-life scenarios. For
example, my cousin has a kid with these long arms who can throw
a golf ball at 60 km/h.

Figure 3.5: My cousin’s kid

One day we were driving a car north at 60 km/h. From the
back seat, he threw this golf ball through the window directly to the
east. If we want to comprehend the direction and velocity of the
ball relative to the ground, we can use vector addition. From vector
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3.2. Wait, Is That Vector on Steroids? Scalar Multiplication

addition, we can understand that the ball will be moving north-east,
and, if you wished to calculate the velocity, you could do so by using
the Pythagoras theorem,

√
602 + 602. It is an elementary example,

and the wind resistance was ignored.

60

60

√ 60
2 +

60
2

Figure 3.6: My cousin’s kid rock throw.

Well, if you can add vectors, it will also be possible to subtract
them. It will be the same as if you were to find the sum of two
vectors, but instead of going outward in the direction of the second
vector, you will go the other way. There is another thing that one
can do with a vector. We can change its magnitude and direction.
To do so, we can multiply it by a scalar, a number that will stretch
or shrink it.

3.2 Wait, Is That Vector on Steroids?
Scalar Multiplication

A scalar can be any real number. If you don’t recall the definition
of a real number, I can refresh your memory, but what happened
along the way? A real number is any number you can think of. Are
you thinking about a number that seems mind blowing complicated
, like π? Yeah, that is a real number. Analytically we can define a
real number thus:

λ ∈ R

The λ is a variable or a scalar that can accommodate any real
number. The other new symbol, ∈, means to belong to something;
that something here is the set of real numbers, which we symbolise
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Chapter 3. What Is a Vector?

as R. As λ is a real number, there are four different outcomes when
multiplying a vector by a scalar. First, we can maintain or reverse
the vector’s direction depending on this scalar’s sign. Another thing
that will be altered is the length of the vector. If λ is between 0 and
1, the vectors will shrink, whereas if the value of λ is greater than 1
or -1, the vector will stretch.

• If λ > 1 the vector will keep the same direction but
stretch.

• If 1 > λ > 0 the vector will keep the same direction but
shrink.

A couple more cases:

• If λ < −1 the vector will change direction and stretch.

• If 0 > λ > −1 the vector will change direction and shrink.

Symbolically, multiplying a vector −→v by a scalar λ can be defined
by:

λ−→v
If we define a new vector −→g such that:

−→g = λ−→v and λ = −2

It follows:
−→g = −2.

(
2
3

)
Finally:

−→g =

(
−4
−6

)
Because we defined λ to be -2, the result of multiplying the vector

−→v by this scalar will be a stretched version of the same −→v but
pointing to a different direction.

In figure 3.7, we can see a visual representation of this operation.

16



3.3. Where Are You Looking, Vector? The Dot Product

x

y

−6−5−4−3−2−1 1 2 3 4 5 6

−6

−5

−4

−3

−2

1

2

3

4

5

6

−→v

−→g

Figure 3.7: The multiplication of a vector by a scalar.

We are now at a stage where we know how to operate vectors
with additions and subtractions, plus we are also capable of scaling
them via multiplication with a real number. What we still haven’t
covered is vector multiplication.

3.3 Where Are You Looking, Vector?
The Dot Product

One way that we can multiply vectors is called the dot product,
which we will cover now. The other is called the cross product,
which won’t be covered in this book. The main difference between
the dot product and the cross product is the result: the dot product
result is a scalar, and what comes from the cross product is another
vector. So, suppose you have two vectors of the same dimension.
Then, taking the dot product between them means you will pair
up the element entries from both vectors by their position, multiply
them together, and add up the result of these multiplications.
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So, for example, consider the vectors:

−→v =

(
2
3

)
,−→w =

(
2
1

)
We can then calculate the dot product between −→v and −→w as

such:
−→v .−→w =

(
2
3

)
·
(

2
1

)
= 2.2 + 3.1 = 7

A definition for this same concept given any two vectors, −→v and
−→w where each of them have n elements, which is the same as saying
that the vectors are of size n is:

−→v .−→w =
n∑
i=1

viwi (3.1)

One of the goals of this series of books is for you to become
comfortable with notation. I believe it will be of great value; there-
fore, I will describe each symbol introduced throughout the series.
For example, the symbol

∑
is the capital Greek letter sigma; in

mathematics, we use it to describe a summation, so:

n∑
i=1

vi.wi = v1.w1 + v2.w2 + ...+ vnwn

In essence, we have an argument with an index, viwi, representing
what we are going to sum. Now the numbers above and below
the sigma will be the controlling factors for this same index that is
represented by the letter i. The number below indicates where it
starts, whereas the number above is where it needs to end. In the
example above, we have two components per vector and need them
all for the dot product, so we have to start at one and end at two,
meaning that i = 1 and n = 2.

I learned the dot product just like that. I knew I had to perform
some multiplications and additions, but I couldn’t understand what
was happening. It was simple, and because I thought that comput-
ing it was enough, this led me to deceive myself into thinking that I
fully understood it. I paid the price later, when I needed to imple-
ment these concepts to develop algorithms. The lack of context and
visualisation were a killer for me.
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3.3. Where Are You Looking, Vector? The Dot Product

A true understanding of linear algebra becomes more accessible
with visualisations, and the dot product has a tremendous geomet-
rical interpretation. It can be calculated by projecting the vector
−→w into −→v and multiplying the magnitude of this projection with
the length of −→v , or vice versa. In other words, the dot product will
represent how much of −→w points in the same direction as −→v . Let’s
verify this; so, given the vectors −→w and −→v , a projection of −→w into
−→v can be represented this way:

x

y

−1 1 2 3
−1

1

2

3

θ

−→v

−→w

Figure 3.8: The angle between two vectors.

Projections are an essential concept in machine learning, and
they can be better understood if we associate them with angles and
movement. For example, if we have an angle θ that measures the
space between two vectors that share the same base, but are defined
by different coordinates, moving one of these vectors by θ degrees
will result in it ending up on top of the other vector.

x

y

−1 1 2 3
−1

1

2

3
−→v

−→w proj

Figure 3.9: The projection of −→w into −→v .
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Chapter 3. What Is a Vector?

If we are after a number representing how much a vector points
in the direction of another, it makes sense for us to use their lengths.
Therefore, we need to calculate two measures: the length of −→v and
the length of the projection of −→w into −→v . We already know how to
calculate the length of −→v , and the norm of the projection of −→w into
−→v can be derived using the Pythagorean theorem. Given a vector’s
elements (the coordinates), we can quickly draw a triangle. Let’s
take −→v , the vector for which we need the magnitude.

−→v

−→wθ

Figure 3.10: Square triangle.

So, we know that the square of the hypotenuse is equal to the
sum of the squares of the cathetus (we should, right?). Generically,
we can represent the vector −→v as −→v = (v1, v2)

T , where v1 and v2 can
take for values any real number. The vector −→v has been working for
a long time. It is an active presence throughout math books. But,
like all of us, −→v is ageing, and its knees are not like they used to
be. So the T means that −→v can lie down for a moment, or in other
words, it becomes transposed. Therefore T stands for a transposed
version of the element in question, where columns become rows and
rows become columns. We have been talking about lengths so it is
about time we come up with a way of calculating such thing.

−→v

(0, 0)

(2, 3)

Figure 3.11: The length of a vector.

When we defined vectors, we established that the landing point
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3.3. Where Are You Looking, Vector? The Dot Product

was essential to describe the magnitude of such elements. If we have
two points, the basis of the vector and the point on which the vector
lands, we can use the formula to calculate the distance between two
points to derive the length of this mathematical concept. It comes
that we can calculate this distance with the following equation:√

(x1 − x2)2 + (y1 − y2)2

Where the x’s and the y’s represent the point’s coordinates, if we
now use the coordinates of the landing point and the origin to calcu-
late the distance between these two points, we will have something
like this: √

(2− 0)2 + (3− 0)2

Which in turn: √
(2)2 + (3)2

Because all vectors have the same origin, the point (0, 0), the
length of −→v is then equal to:

‖−→v ‖ =
√

(v1 − 0)2 + (v2 − 0)2

Where v1 and v2 are generic coordinates for a landing point.

‖−→v ‖ =
√
v2

1 + v2
2

Which gives us:

‖−→v ‖ =
√

22 + 32 =
√

13

This metric can also be called the “norm” of a vector; to be
rigorous, as we should be, this norm is called the Euclidean norm.
The fact that there is a name for a specific norm suggests that there
are more of them in mathematics, which is exactly right. There are
several definitions for norms, and each of these is calculated with a
different formula. We will use the Euclidean norm for most of this
book.

What if we are in a higher dimensional space, will this norm
scale? The answer is yes, and we can get to the formula by using
the same equation for the distance between points. So, let’s try and
calculate it for three dimensions, then see if we can extrapolate for
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Chapter 3. What Is a Vector?

n dimensions. The problem is that we are stuck with a formula that
takes only two components. There are paradoxes in mathematics.
Some are problems that are yet to be proven, and some are just
curiosities. This one is spectacular; mathematicians do not like to
do the same thing several times, so the ideal situation is to work
for one case and then generalize for all. The goal is to save time so
that, at the next juncture, when a similar problem arises, we have a
formula that can solve it, which is an astonishing idea on paper. The
funny bit is that sometimes it takes a lifetime to find the equation
for the general case.

So for the next 200 pages, we will be. . . calm down, this one will
be quite simple. So, (v1, v2, v3)

T can represent any vector with three
coordinates. Let’s use it and try to derive a generic equation for the
norm formula. As it stands now, if we only consider what we have
learned in this book, we can’t say that we are at Einstein’s level of
intellect, YET! Gladly for this particular case we can get ourselves
out of trouble easily:

‖−→v ‖ =
√

(v1 − 0)2 + (v2 − 0)2 + (v3 − 0)2

So it comes that:

‖−→v ‖ =
√
v2

1 + v2
2 + v2

3

Generically the norm of a vector with n components can be cal-
culated with the following equation:

‖−→v ‖ =

√√√√ n∑
i=1

v2
i

I know this is a simple concept with a rudimentary formula, but
formulas can be deceiving. Sometimes, we see them, assume that
they are true, move on, and think that it is understood. The problem
here is that while you can just choose to trust religion, don’t just
trust science. Criticise it. The more you do this, the more you will
learn. Blindly relying on everything that you are shown will appeal
to the lazy brain as it removes the necessity to think about things.
We can’t forget why we did all that: the dot product! Yet another
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3.3. Where Are You Looking, Vector? The Dot Product

magnitude has to be calculated, but this time it is of the projection
of −→w into −→v . For this, we will again use trigonometry. Yes, that
word that everybody was afraid of in High School. Someone must
have placed a negative connotation on that word, and I suspect it
was similar to the way they handled potatoes. All of a sudden, two
or three fitness blogs claim that potatoes are evil, and there you
go, you can only eat sweet potatoes, or better, sweet potato fries,
which are certainly much better for you than regular boiled potatoes.
Figure 3.10 has a representation of a squared triangle with an angle
of size θ. With the Pythagorean theorem, we can express the length
of the projection of −→w as a function of the length −→w and the angle
θ:

−→v

−→w

−−
−→

w
p
r
o
j

θ‖−→w
‖.

co
s(
θ)

Figure 3.12: The length of the projection of −→w into −→v .

Okay, so after all of this, we have a geometrical approach to the
derivation of the dot product for two vectors −→v and −→w which is:

−→v .−→w = ‖−→v ‖.‖−→w ‖. cos θ

We know from previous calculations that −→v .−→w = 7. We did this
when we introduced the dot product; let’s verify if we get the same
result with this new formula. For that, we need θ, but don’t worry,
I calculated it already, and it comes to around 29.4 degrees. Let’s
compute this bastard then:

‖−→v ‖ =
√

13

The norm of −→w has the same value:

‖−→w ‖ =
√

5

Consequently:

‖−→v ‖.‖−→w ‖. cos θ =
√

13.
√

5. cos(29.4) = 7
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The dot product tells you what amount of one vector goes in the
direction of another (thus, it’s a scalar ) and hence does not have
any direction. We can have three different cases:

1. The dot product is positive, ‖−→v ‖.‖−→w ‖ > 0, which means
that the two vectors point in the same direction.

2. The dot product is 0, ‖−→v ‖.‖−→w ‖ = 0 , which means that
the two vectors are perpendicular, the angle is 90 degrees.

3. The dot product is negative ‖−→v ‖.‖−→w ‖ < 0 , which means
that the vectors point in different directions.

This may still be a bit abstract - norms, vectors, and how much
they point into each other’s directions. My cousin actually has two
kids, the one with the strong arms Fischer and his brother Bayes.
Bayes has a little wooden horse with wheels that he loves to ”ride”.
Well, riding here means that somebody has to pull on the rope
attached to it. Bayes is a very curious kid, and while I pull his
horse, he wants to know how much work I´m doing.

Let’s say I pulled him for two meters and kept the rope’s tension
at a

√
2 units of force. For the measurement of force, we can use

the scale of Newtons. Look, I love this hypothetical kid, but some-
times he tries to play smart with me, which is why I throw random
measures like

√
2.

−−−
−−→

ten
sio
n

−−−−−−→
distance

−−−−−−−−→
tensionprojθ

Figure 3.13: Bayes on his little wooden horse.

Now the angle between the vector representing tension and the
one of distance is given by θ, and it has for value, θ = 45 degrees.
I will pull him for two meters. This way, my workload can be cal-
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culated by multiplying the length of the projection of the tension
vector into the distance vector, by the distance vector. We know
how to do this!

My workload = ‖−−−−−→tension‖.‖
−−−−−→
distance‖. cos(θ)

Which comes to:

My workload =
√

2.2. cos(45)

That results in:

My workload = 2N.m

We have to get to the same workload value if we utilize the
equation with the summation, as shown in equation 3.1. For that, we
need two vectors: one that captures my hand’s position concerning
both the floor and the horse. We can represent this by the vector
−→v = (1, 1)T , meaning that my hand is one meter from the floor
and one meter from the horse. The second vector represents the
destination point, and as we walk 2 meters, the vector −→w = (2, 0)T

reflects this. Computing the dot product comes as:

−→v .−→w =

(
1
1

)
.

(
2
0

)
= 1.2 + 1.0 = 2

I will now tell you that, given what we have learned so far, we
can make a simple algorithm that can be used as a recommendation
system. You will find that you can develop vector representations for
anything, for example, pictures and documents. If you calculate the
dot product between two vectors representing documents, you will
determine how similar these vectors are. This accuracy correlates
with how well your vectors represent the subject in question. So, we
now have a few ways to manipulate vectors. With this comes power
and consequently, responsibility, because we need to keep these bad
boys within certain limits.
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3.4 A Simpler Version of the Universe
- The Vector Space

So far, we have introduced vectors and vector operations like
addition, multiplication by a scalar, and the dot product. Unfortu-
nately, just as in real life where we have borders, we will have to
submit to some boundaries here too. We need to make sure that we
have rules and axioms to compute and derive more complex subjects
that will help with machine learning.

Vector spaces define borders in linear algebra. This is an ab-
stract concept but think of it this way: Consider a country. In most
countries, you are automatically a citizen if you are born there. You
have that country’s nationality, which comes with laws. Now, these
laws are not like mathematical laws. They are usually written by
the powerful for the rich. Here, we can be more relaxed about such
notions. If any two people are citizens of the same country and they
have a baby within the country’s borders, this baby also has this
country’s nationality.

Now, bear with me for a moment as we take a small detour. I
don’t know if you remember these movies (or if you are even aware
of their existence), but in the 90’s, they made two movies where this
loco scientist created a machine that could shrink people or make
them bigger. Say that we have that machine, and we decide to
stretch this newborn baby. The baby will still be a citizen of that
country. The same will happen if we shrink the baby.

So, if we think of the nation in question as the vector space,
then it makes sense that the people of this country are vectors,
vector addition is sex, newborn babies are the resultant vectors from
adding two vectors, and the machine created by the loco scientist is
a scalar.

In linear algebra, two conditions can define a vector space pre-
cisely: if you add two vectors, the resultant will still belong to the
same space, and the same goes for multiplying a vector by a scalar.
More equations and Greek letters will follow, you can either hate
me or learn how to read them. Let’s hope for the latter. So, we say
that O is a vector space if and only if:
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• if −→v and −→w are two vectors ∈ O then −→v +−→w must be in
O.

• λ ∈ R and −→v ∈ O then λ−→v also needs to be in O.

Let’s not refer to what follows as laws, let’s call them axioms
and they also have to verify:

• Commutative property of addition:

−→v +−→w = −→w +−→v

• Associative property of addition:

−→v + (−→w +
−→
t ) = (−→v +−→w ) +

−→
t

Don’t worry there are a few more.

• A zero vector exists:

−→v + 0 = −→v

• An inverse element exists:

−→v + (
−→−v) =

−→
0

Take two more to add to the collection, and these ones are for
free!

• Scalars can be distributed across the members of an ad-
dition:

c(−→v +−→w ) = c−→v + c−→w

• Just as an element can be distributed to an addition of
two scalars:

(c+ d)−→v = c−→v + d−→v

The last two!
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• The product of two scalars and an element is equivalent
to one of the scalars being multiplied by the product of
the other scalar and the element:

(cd)−→v = c(d−→v )

• Multiplying an element by 1 just returns the same ele-
ment:

1.−→v = −→v

Do you need to know these axioms to apply machine learning?
Well, not really. We all take them for granted. The reason that I
have included them is to try and spark some curiosity in your mind.
We all take things for granted and fail to appreciate and understand
the things that surround us. Have you ever stopped to think about
what happens when you press a switch to turn a light bulb on? Years
of development and studying had to take place for that object to be
transformed into a color that illuminates your surroundings.

Vector spaces are abstract concepts and, in reality, they have a
symbiotic relationship with vectors because we need vectors to have
a vector space, and a vector space to have vectors. I feel that this is
the right moment for an example, so let’s check out one of a vector
space and another of a non-vector space. For a vector space, let’s
consider R2. This is the space formed by all of the vectors with two
dimensions, whose elements are real numbers. Firstly, we need to
verify whether we will still end up with two-dimensional vectors with
real entries after adding any two vectors. Then, we want to check
that we obtain a new stretched or shrunk version of a vector that is
still is in R2 after we multiply the vector by a scalar. As there is a
need to generalize, let’s define two vectors −→v and −→w as being in R2.
Let’s also define a scalar λ ∈ R. If we multiply −→v by λ we have:

λ.−→v =

(
λ.v1

λ.v2

)
So, λ.−→v has size two and both λ.v1, λ.v2 are real numbers because

multiplying a real number by a real number results in a new real
number. The only bit we are missing is the verification of what
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happens when we add −→v with −→w :

−→v +−→w =

(
v1 + w1

v2 + w2

)
We have a vector of size two, and its elements belong to R, as

the addition of real numbers produces a real number, therefore R2

is a valid vector space. For the example of a non-valid vector space,
consider the following, R2

6=(0,0). This is the set of vectors with two

dimensions excluding (0, 0)T . This time we have:

−→v =

(
1
1

)
and −→w =

(
−1
−1

)
Adding these vectors results in (0, 0)T , which is not part of

R2
6=(0,0).

Since we have spoken so much about R2, what would be really
helpful is if there was a way to represent all of the vectors belonging
to such a space. And, as luck would have it, there is such a concept
in linear algebra called linear combination; this mechanism allows
the derivation of new vectors via a combination of others. The term
linear suggests that there are no curves, just lines, planes, or hyper-
planes, depending on the dimensions that we are working in. Here
we are working with two dimensions, and a linear combination can
be, for example:

α.

(
1
0

)
+ β.

(
0
1

)
where α, β ∈ R

Say that we name (1, 0)T as
−→
i and the vector with coordinates

(0, 1)T as
−→
j . Let’s plot these vectors alongside the vector, −→v :

The vector −→v has for coordinates (2, 3)T , which means that if we

stretch
−→
i by two units and then sum it to a three units stretched

version of
−→
j , the result will be equal to −→v . Let’s call

−→
i∗ to the

stretched version of
−→
i and

−→
j∗ to the stretched version of

−→
j .

Algebraically we can represent −→v as:

−→v = 2.

(
1
0

)
+ 3.

(
0
1

)
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x

y

−1 1 2 3
−1

1

2

3

−→
i

−→
j

−→v

Figure 3.14: A vector as a linear combination.

Which is the same as:

−→v = 2.
−→
i + 3.

−→
j

x

y

−1 2 3 4
−1

2

3

4

−→i∗
+
−→j∗

−→
i∗

−→
j∗

Figure 3.15: A new representation of −→v as a linear combination.

If we now replace the scalars two and three with two variables,
which we’ll call α and β, where both of them are in R, we get:

α.
−→
i + β.

−→
j (3.2)

We can display all the vectors of the vector space R2 using equa-
tion 3.2. Let’s think about this affirmation for a second and see if
it makes sense. If I have the entire set of real numbers assigned to
the scalars α and β, it means that if I add up the scaled version of−→
i and

−→
j , I can get any vector within R2.
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The vectors
−→
i and

−→
j have a particular property that is impor-

tant to mention; they are linear independent. What this means is

that you can’t get to
−→
j via

−→
i and vice versa. Mathematically this

is defined by the following equation.

c1.
−→v1 + c2.

−→v3 + ...+ cn.
−→vn = 0 (3.3)

In the equation 3.3, the factors c1, c2, ..., cn are scalars or real
numbers. The v′s are a set of vectors that belong to the space and
are linearly independent if, and only if, the values for the c′s that
satisfy that equality are 0. Let’s verify if 3.2 satisfies this property.

α.

(
1
0

)
+ β.

(
0
1

)
= 0

The only way for the equality to be true is if both α and β are

equal to zero. Therefore,
−→
i and

−→
j are linearly independent. So,

if the condition for linear independence is that the scalar values
represented by the c′s have to be zero, then the opposite, meaning
that at least one of them is not equal to zero, must mean that the
vectors are linearly dependent, for example:

c1.
−→v1 = −c2.

−→v2

Now, say that instead of (1, 0)T and (0, 1)T we have −→w = (1, 1)T

and −→z = (2, 2)T :

x

y

−1 1 2 3 4
−1

1

2

3

4

−→z
−→w

Figure 3.16: The showcase of linearly dependent vectors.

If we define a linear combination of these two vectors, this is
what it will look like:

α.

(
1
1

)
+ β

(
2
2

)
(3.4)
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For any values of α and β, all of the resultant vectors from this
linear combination 3.4 will land on the same line. This happens
because −→w and −→z are not linearly independent. So, we can get to
−→w by −→z and vice versa.

−→z = 2.−→w (3.5)

What we can observe from equation 3.4 is that we are not able
to represent all of the vectors in the space using the two vectors, −→z
and −→w .

x

y

−1 1 2 3 4
−1

1

2

3

4

−→z
−→w

Figure 3.17: A line formed by the linearly dependent vectors.

Another thing we can learn from this experiment is the concept
of span; the continuing black line is an example of a span. All of
the vectors that result from a linear combination define the span.

For instance, in the case of
−→
i and

−→
j , the span is the entire vector

space because we can get all the vectors within the vector space with
a linear combination of these vectors, whereas with −→z and −→w , the
span is a line. With this, we have arrived at the definition of a basis;
for a set of vectors to be considered a basis of a vector space, these
vectors need to be linearly independent, and their span has to be

equal to the entire vector space, therefore
−→
i and

−→
j form a basis

of R2. A vector space can have more than one basis, and R2 is one
example of a space that contains many basis.

When I first read this in a book, I was more confused than a
horse riding a human. Why is there a need for more than one basis?
I always felt tall. When frequenting bars, my shoulders were usually
above the same pieces of anatomy of most people in my surround-
ings. One day, I went to the Netherlands, and fuck me, I felt short. I
could see shoulders everywhere! My height had not changed, but my
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perspective had. You can think of a basis in the same way, perspec-
tives from which we observe the same vector in different ways. Let’s

define three vectors, two to form a basis, which will be
−→
i = (1, 0)T

and
−→
j = (0, 1)T , the standard basis. And let’s consider another

vector so we can understand what happens to it when the basis is
changed, so let’s put the vector −→v = (2, 3)T back to work.

−→
i

−→
j

−→v

Figure 3.18: The vector −→v from the perspective of the standard basis.

The grids represent our perspective or the basis, which is the

way we observe −→v on the basis formed by
−→
i and

−→
j . If we wish to

write −→v via a linear combination, we can stretch the coordinate x
by two units and the second coordinate, y, will be scaled by three
units.

−→v = 2.
−→
i + 3.

−→
j

Cool, more of the same stuff, a vector on an x,y axes where
x is perpendicular to y. Say that we derive a new basis, a set of
two linearly independent vectors whose span is the vector space,
for example, −→w = (1, 0)T and −→z = (1, 1)T . These vectors are no
longer perpendicular. The grid in the previous plot will change, and,
consequently, so will the perspective from which we observe −→v :
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−→w

−→z−→v

Figure 3.19: The vector −→v from a perspective of a different basis.

If we wish to calculate the new coordinates of −→v using this new
basis, we can once again make use of a linear combination :

−→v = v∗1.
−→w + v∗2.

−→z

Where, v∗1 and v∗2 are the coordinates of −→v in the new basis.
That expression becomes:(

2
3

)
= v∗1.

(
1
0

)
+ v∗2.

(
1
1

)
This will result in two equations:

2 = v∗1 + v∗2

v∗2 = 3

By replacing the value of v∗2 in the first equation we get that the
coordinates of −→v in the new basis formed by −→w and −→z are (−1, 3)T .

Understanding both the concept of a basis and the result of
changing it is fundamental. As we advance, these manipulations
will be a recurrent theme, and not only will we change the basis in-
side the same space, but we will also change spaces. Techniques like
this will be useful because you can find properties of vectors or data
using a different basis or spaces, which allows for faster computation
or even better results when dealing with machine learning models.

For example, say that we wish to predict the price of a house, and
our dataset consists of two measurements: the number of bedrooms
and the number of bathrooms. In this context, the vector

−→
i =

(1, 0)T will point in the directions where the number of bedrooms
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increases, whereas the number of bathrooms follows the orientation

of the vector
−→
j = (0, 1)T . Suppose now that, after looking into

the data, we noticed that houses with more rooms in total tend to
have higher prices. Another trend we might have captured was that
when the number of bathrooms is the same or close to the number
of bedrooms, the higher price phenomenon is also present.

Given this scenario, we can use a new basis to get a different
perspective on the data, one that will allow us to understand those

trends better. I have an idea, what if we defined
−→
i∗ = (1, 1)T and

−→
j∗ = (1,−1)T as the new basis? Let’s think about this one for a

second. The vector
−→
i∗ will represent the total number of rooms.

On the other hand,
−→
j∗ displays the difference in number between

bedrooms and bathrooms.

So, in this new basis, the house’s features are expressed not in
terms of the absolute numbers of bedrooms and bathrooms but in
terms of its total number of rooms (the first basis vector) and how
balanced the number of bedrooms and bathrooms are (the second
basis vector).

Should we change something? What about a basis? Sure thing!
Say that we have the vector −→w defined as such:

−→w =

(
3
2

)
This vector represents a house that is somewhat balanced in

terms of rooms. It has three bedrooms and two bathrooms. Let’s
check it from a new perspective, the one described by the new basis,−→
i∗ and

−→
j∗ : (

3
2

)
= w∗1.

(
1
1

)
+ w∗2.

(
1
−1

)
OK, so we know that 3 = w∗1 + w∗2 and 2 = w∗1 − w∗2 meaning

that:

w∗2 = 3− w∗1

Therefore:

2 = w∗1 − (3− w∗1)⇒ w∗1 =
5

2
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So:

w∗2 =
1

2

The vector
−→
w∗ = (5

2 ,
1
2)T represents the same house but in dif-

ferent terms. The first component is associated with the vector−→
i∗ = (1, 1)T , representing a direction in which the number of bed-
rooms and bathrooms increases equally. So, a value of 5

2 in this direc-
tion suggests that the house has a somewhat balanced distribution
of bedrooms and bathrooms. The second component is associated

with the other vector that constitutes the new basis,
−→
j∗ = (1,−1)T .

Here, 1
2 suggests that the house has more bedrooms than bathrooms

by half a room’s worth.

This change in basis transformed the house’s representation that
focused on the raw number of bedrooms and bathrooms, to the new
basis, where attention defers to the balance and imbalance of the
number of rooms. As a result, it’s a valuable technique for revealing
different aspects of the data or preparing it for further analysis or
manipulation. For example, it might be easier to analyse or predict
house prices regarding the balance and imbalance of rooms rather
than the raw numbers of bedrooms and bathrooms. A great example
of an algorithm that uses such a technique is the principal component
analysis, which we will cover in the last chapter.

Needless to say, there is another mathematical way to perform
these transformations. For this purpose, we will be making use of
something that is probably familiar to you, matrices.
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Chapter 4

But What About a Matrix?

A matrix is a rectangular arrangement of numbers, symbols, or
functions organized in rows and columns. In various contexts, a
matrix may denote a mathematical object or an attribute of such
an object. A key feature of these elements is their order or size,
defined by the number of rows and columns. Matrices are commonly
denoted by capital letters, and can be represented using the following
notation:

Am×n

In this representation, m is the number of rows and n is the
number of columns. An example of a 3× 3 matrix is:

A3×3 =

1 4 12
9 5 1
8 2 7


If we wish to generalise a representation for all matrices, we can

rewrite the one above in a form that will accommodate any case:

Am×n =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


The a′s are referred to as an entry, with each of these being

defined by their index. For instance, a11 is the element in the first
row and the first column of the matrix. In machine learning, the
use of matrices mainly accommodates three different cases. Let me
explain.
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4.1 When a Table Isn’t Furniture

There is one element without which we would be unable to do
any work with machine learning algorithms; features. Features are
what characterise your data. They are a set of metrics per element
of granularity, from which your algorithm will try to learn signals.
This same set can be represented as a vector, and, if you combine
all the vectors into a single structure, you end up with a matrix.
For example, say that we wish to predict whether a student will
make it onto the basketball team based on their weight, height,
and an average of their grades (assuming that their grades are a
real number). Here the granularity, a word that reflects the level
of detail present in the data, is the students, and the metrics are
height, weight, and the average grade. Students can be represented
by vectors:

Student1 = (1.65, 64, 5)

Student2 = (1.54, 67, 4)
...

Studentn = (1.61, 55, 2)

Combining these vectors will produce a feature space matrix that
can be placed alongside a target variable. An example of such a vari-
able is a Boolean indicator; that’s just a fancy name for a variable
that can only take two values, for example, yes or no. This variable
will then exhibit whether or not a student made it onto the bas-
ketball team. This enriched data set can then be used to perform
predictions. 

1.65 64 5 yes
1.54 67 4 yes

...
...

...
...

1.61 55 2 no


4.2 Yoga for Vectors - Linear

Transformations

The second representation of a matrix is a linear transformation.
Bear with me; this is a concept that has the potential to change
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your learning experience of linear algebra. As this notion is related
to movement in space, we can showcase it using visualisations. This
will help to solidify a deep understanding of an idea that, although
simple, is essential when it comes to understanding everything else
in this book. It is an excellent tool to have in your arsenal, and it
includes most of the techniques already studied.

Breaking down the term will give a pretty good indication of
what we are dealing with. In fact, this is good practice in math-
ematics. After all, the names have to make some kind of sense.
Actually, for a long time these names did not make sense to me be-
cause I always associated them with a formula, and never stopped
to think about what the names truly meant. This cost me time,
but for some reason, one random day, it clicked. I remember with
which one it was, the standard deviation. I was walking along, and
all of a sudden, almost like an epiphany, everything was clear in
my mind. Standard deviation is how much data deviates from the
standard. But what is the standard? Probably the mean. Following
the happiness of this moment, one of the best sequences of letters
(that works like a charm in the right situation) came to me out loud;
Motherfucker!

Now, we have covered the meaning of the word linear: no curves
please, so all lines will remain lines. Transformation is another word
for mapping or function. Also, is it important to mention that,
despite the tasks in hand, the origin of the vectors must remain
intact in transformations. So we will be transforming vectors into
vectors or scalars via matrices. Analytically, a linear transformation
L between two spaces Z and R can be represented as:

Z
L→ R

The vector is going from Z to R via L. More rigorously, a linear
transformation L is defined as:

L : Z → R

Since we are not gonna be considering any complex numbers in
this book, we can even be a bit more particular and define the linear
transformations as:

L : Rn → Rm
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This means we will move a vector from a space with n dimensions
into a space with m dimensions. For the purpose of demonstration,
let’s consider n = m = 2. I can give you an ego booster here; when
n = m, the linear transformation is called an endomorphism. Don’t
say I am not your friend, dropping all these fancy names.

We are defining a way to move a vector in space via patterns that
allow it to keep its origin, but also to rotate and/or stretch. The
transformation defined by L will map every vector in the same way.
In the following example, L is a 180 degree rotation of any vector
from the vector space R2.

x

y

−4 −3 2 3 4

−4

−3

−2

1

2

3

4

Input vect
or

Output vect
or

L

Figure 4.1: An example of a linear transformation.

The plot bellow, is to showcase the fact that a linear transfor-
mation will do the same thing to every vector that we decide to
map.
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x
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−→w
−→
w∗

−→z

−→
z∗

−→y

−→
y∗

−→x

−→
x∗

Figure 4.2: Some mappings via the same linear transformation.

This transformation is defined by:

L : R2 → R2

(l1, l2)→ (−l1,−l2)
The letters, l1, l2 represent generic coordinates of a given vector,

for example, given any vector −→v ∈ R2, with coordinates (v1, v2) the
linear transformation L will transform the coordinates of this vector
into their negations, (−v1,−v2). Negation is not a depreciative term.
It means the negative version of a positive number, or vice versa,
and numbers do not have feelings, well, so far. Analytically, we
have defined linear transformations, but we have yet to understand
why we need matrices for these functions. To do so, let’s start by

considering one basis of R2, the one defined by
−→
i and

−→
j where:

−→
i =

(
1
0

)
and

−→
j =

(
0
1

)
So any vector that belongs to R2 can be represented as:

α.
−→
i + β.

−→
j

Which is the same as having:

α.

(
1
0

)
+ β.

(
0
1

)
(4.1)
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Where α, β ∈ R. If you don’t believe me, I will dare you to find
a vector that belongs to R2 that can’t be obtained by equation 4.1.
Let’s make this interesting, I will buy a car for the person that finds
out about such a vector. Subscribe to the mailing list to participate
in this context. Press Here! (Note: This is a marketing trick, don’t
forget to erase this note before printing the book). Now, let’s grab a

vector −→v ∈ R2 and write it down as a linear combination of
−→
i and−→

j . If we select the values (2, 3)T as the coordinates of −→v , it follows
that:

−→v = 2.
−→
i + 3.

−→
j (4.2)

We defined L on the fact it will rotate any vector in R2 by 180

degrees. If we apply this transformation to the basis
−→
i ,
−→
j and call

the resultant vectors as
−→
i∗ ,
−→
j∗ we have:

−→
i∗ =

(
−1
0

)
and

−→
j∗ =

(
0
−1

)
Alright, let’s grab equation 4.2 and replace

−→
i and

−→
j by

−→
i∗ and−→

j∗ respectively: −→
v∗ = 2.

−→
i∗ + 3.

−→
j∗

Here,
−→
v∗ represents a new version of −→v which is defined as a

linear combination of the transformed base. It follows that:

−→
v∗ = 2.

(
−1
0

)
+ 3.

(
0
−1

)
=

(
−2
−3

)
Well,

−→
v∗ is the same as

−→−v, meaning that
−→
v∗ is the negated form

of−→v , exactly like we defined L. As a result, it is possible to represent
a linear transformation by adding two scaled vectors.
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x

y

−4 −3 −2 −1 2 3 4

−4

−3

2

3

4

2
−→
i

2
−→
i∗

3
−→
j

3
−→
j∗

−→v

−→
v∗

Figure 4.3: The transformation of both −→v and its basis.

Generically, if −→v = (v1, v2) is any vector of R2, a linear transfor-
mation can have the form:

−→
v∗ = v1.

−→
i∗ + v2.

−→
j∗

To transform a given vector from R2, we can start by mapping
the standard basis. Then, suppose we add the result of multiplying
each of the elements of the original vector by the vectors of this
transformed version of the basis, respectively. In that case, we will
obtain the desired transformed vector. Let’s consider another exam-
ple to solidify this important concept. Say that we now have G, a

linear transformation where
−→
i and

−→
j are transformed into (2, 1)T

and (1, 2)T . A vector that results from applying G can be described

as
−→
g∗ :

−→
g∗ = g1.

(
2
1

)
+ g2.

(
1
2

)
(4.3)

We are missing the vector from which we desire to obtain a trans-
formed version, the vector −→g . Let’s say that g1 and g2, the elements
of −→g , are equal to 1. Consequently, we have:

−→g =

(
g1

g2

)
=

(
1
1

)
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So, it follows that:

−→
g∗ = 1.

(
2
1

)
+ 1.

(
1
2

)
=

(
3
3

)
If you are curious, this is the analytic representation of G:

G : R2 → R2

(g1, g2)→ (2.g1 + g2, g1 + 2.g2)

And, visually, this is how we can represent this transformation:

x

y

−4 −3 −2 −1 1 2 3 4

−4

−3

−2

−1

1

2

3

4

−→
i

−→
i∗

−→
j

−→
j∗

−→
g∗

−→g

Figure 4.4: The transformation of −→g .

Before moving onto a matrix representation of linear transforma-
tions, there is something else to cover. We’ve spoken about changing
basis, linear transformations, and changing basis with linear trans-
formations. A change of basis is not a linear transformation. You
can do a change of basis via an isomorphism, which is a linear trans-
formation between the same spaces. Remember that changing the
basis just changes the perspective of the same vector, whereas a lin-
ear transformation, as the name suggests, can change the vector; it
is a transformation. For example, consider an arbitrary mapping
from R2 to R3:
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H : R2 → R3 (4.4)

(h1, h2)→ (7.h1, 2.h2 + h1, h1 + h2)

The equation 4.4 can’t represent a change of basis, but a linear
transformation sure can. It is true that we did not define the con-
ditions that a mapping has to obey in order for it to be considered
linear. But it is Sunday, and I was hoping that you would let this
one slide... no? Forward we move then. A linear transformation
L : Rn → Rm must satisfy two conditions:

1. L(−→v +−→u ) = L(−→v ) + L(−→u )

2. L(c.−→v ) = c.L(−→v )

For all vectors −→v ,−→u ∈ Rn and all scalars c ∈ R.

Alright, let’s verify if H satisfies the two conditions above. On
H we go from R2 to R3 so we can define −→v and −→u as (v1, v2) and
(u1, u2). The plan of attack will be to get the left side of the item’s
one equation and develop to see if we arrive at the equation on the
right of the same item’s number. We need (−→v + −→u ) which is the
same as (v1 + u1, v2 + u2). Now this specimen will go for a ride via
H:

H(v1 + u1, v2 + u2) = (7.(v1 + u1), 2.(v2 + u2)

+(v1 + u1), (v1 + u1) + (v2 + u2))

I know that stuff is so ugly that if it could look at a mirror its
reflection would walk away, but it is what we have to work with.
Now for the second part we need H(−→v ) and H(−→u ) to calculate
H(−→v ) +H(−→u ). So:

H(−→v ) = (7.v1, 2.v2 + v1, v1 + v2)

On the other hand:

H(−→u ) = (7.u1, 2.u2 + u1, u1 + u2)

Adding them up results in :

H(−→u ) +H(−→v ) = (7.(v1 + v2), 2.(v2 +u2) + v1 +u1, v1 + v2 +u1 +u2)
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Which is exactly what we are looking for. Now for item number
two, let’s start with H(c.−→v ):

H(c.v1, c.v2) = (7.c.v1, 2.c.v2 + c.v1, c.v1 + c.v2)

= (7.c.v1, c.(2.v2 + v1), c.(v1 + v2))

= c.(7.v1, 2.v2 + v1, v1 + v2)

= c.H(v1, v2)

And that proves point number two! This means that we are
assured that H is a linear transformation, and there is the opportu-
nity to learn two more fancy names: for item one we have additivity
whereas item two is homogeneity.

I want for us to go back to equation 4.3, where we defined the

vector
−→
g∗ via a linear combination.

−→
g∗ = g1.

(
2
1

)
+ g2.

(
1
2

)
There is another way of representing such a transformation; we

could do so via a matrix.

G =

(
2 1
1 2

)
To go from one notation to the other, from analytical to a matrix,

is very simple. Each row of the matrix will have the coefficients of the
variables of each element of the linear equation above. So, the first
row of matrix G is 2, 1 because the coefficients of the first element
(2.g1 + g2) are two and one. The second line of the matrix follows
the same logic. The conclusion is that a linear transformation can
also be characterised by a matrix.

We now know about vectors and matrices, but we don’t have a
way of operating between these two concepts, and in fact, this is
what we are missing. To transform any vector with that matrix G,
we need to multiply a vector by a matrix.
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4.2.1 Could It Be Love? Matrix and Vector

Multiplication

Matrix and vector multiplication can be summarised by a set
of rules. A method that is appealing to some people for reasons
that I will leave to your imagination. On the other hand, I have
a very hard time with such things, so instead of just providing a
formula to compute these multiplications, we will deduce it. We are
not cooking; we are learning mathematics. You shouldn’t be happy
because you have a set of instructions to follow. Save that for your
bad-tasting vegan dessert. I am just joking. I know you are all
foodies that know more than people that spent half of their lives
cooking.

Let’s consider any vector, which we’ll call −→x (we need a x in a
mathematics book, so it was about time!), and a matrix A. There
is one consideration to bear in mind when defining matrix-vector
products, their dimensions. We can only compute this multiplication
when the number of columns in A is equal to the number of rows in
−→x or the number of columns in −→x is equal to the number of rows
in A. So for any matrix Am×n we can only compute multiplication
with vectors of the order −→x n×1. We can then represent, A.−→x as:

a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn

 .


x1

x2
...
xn

 (4.5)

Time for a confession. The term role model would not have ap-
plied to me as a student. Under my name on the attendance report,
things were not pretty. This lack of showing up is not something
that I am proud of these days. I could have learned way more in uni-
versity, but everything has its positives and its negatives. I missed
a lot of classes, but I never flunked. This is because I developed a
strategy. Where and when I took my degree, it was not mandatory
to go to class; you could just show up on the exam date, and if you
scored more than 50%, the job was done. You can’t fully understand
a whole semester of classes a week before the exam. That was an
easily reachable conclusion. So now I was seriously debating, how
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could I pass this exam by not attending classes all the time? In the
discipline of mathematics, you tend to encounter a dependence on
prior knowledge to understand what will come next. You could see
it as a problem, but I chose to see it as an advantage. The things
you learned in the first weeks of classes will likely be a basis for
more complex deductions, concepts, and theorems. So, if you have
a solid foundation but need to get to more complex themes, then
with some creativity, inspiration, and maybe a little bit of lady luck
on your side, you could... wing it. So my strategy, as time was of
the essence when studying for an exam, was to just focus on the
basics: everything I needed that allowed me to deduce a concept if
required.

I am not advocating for people to do this. The fact that I did not
attend classes as often as I should have is the sole reason behind my
average grades during my degree. Gladly, this changed during my
Master’s. I worked harder. The positive from this is that I always
ensure that I understand the basics well, which has also helped me
immensely in my career as a mathematician that has the job title
of data scientist. Now in this book, is there anything that we can
use to do something to a big ass matrix and a vector? Well, what
about the dot product? Let’s try it. If we compute the dot product
row by row on equation 4.5, we will end up with:

a11.x1 + a12.x2 + · · ·+ a1n.xn
a21.x1 + a22.x2 + · · ·+ a2n.xn

...
am1.x1 + am2.x2 + · · ·+ amn.xn


Let’s go back to where we finished the exposition of linear trans-

formations with matrix G:

G2×2 =

(
2 1
1 2

)
And we need a 2× 1 vector, so let’s put −→g to work again:

−→g =

(
1
1

)
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If we were to multiply G and −→g :(
2 1
1 2

)
.

(
1
1

)
=

(
2.1 + 1.1
1.1 + 2.1

)
=

(
3
3

)
Given that we used G and −→g on the example above is not a

surprise that if we wish to transform a vector by making use of a
linear transformation, we just need to multiply this vector by the
matrix. Now, let’s define the matrix for the linear transformation
H:

H =

7 0
2 1
1 1


Alright, let’s do some verifications with −→g :7 0

2 1
1 1

 .

(
1
1

)
= (7, 3, 2)

The linear transformation H is defined such that the new vector
is given by (7.h1 + 0.h2, 2.h2 + h1, h1 + h2) so if we replace h1 with
1 and h2 with 1 we end up with the same result (7, 3, 2). Cool
stuff! This is another use case for a matrix, the representation of
a linear transformation. And on the way to understanding it, we
introduced matrix-vector multiplications. If a matrix is a set of
vectors and we can multiply a vector by a matrix, what is stopping
us from multiplying two matrices? Surely not me. Given two generic
matrices An×m and Bm×p, actually throw one more into the mix, it
is happy hour, let’s say that Cn×p is the result of A.B, so if:

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
am1 am2 · · · amn


And:

B =


b11 · · · b1p

b21 · · · b2p
... . . . ...
bm1 · · · bmp

 =



b11

b21
...
bm1

 . . .


b1p

b2p
...
bmp
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Then each column of C is the matrix-vector product of A with
the respective column in B. In other words, the component in the
ith row and jth column of C is the dot product between the ith row
of A and the jth column of B such that:

cij = ai1.b1j + ai2.b2j + . . .+ ain.bnj

Visually this is what we will have:

a1,1

a2,1

a3,1

a4,1

a1,2

a2,2

a3,2

a4,2

b1,1

b2,1

b1,2

b2,2

b1,3

b2,3

Figure 4.5: Coloured squares to help us with matrix multiplication.

Let’s check a numerical example. Say that A4×2 is such that:

A =


2 4
1 1
3 2
1 1


And let’s define B2×3:

B =

(
1 2 1
3 1 2

)
Then:

C = A.B =


2 4
1 1
3 2
1 1

 .

(
1 2 1
3 1 2

)
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=


2.1 + 4.3 2.2 + 4.1 2.1 + 4.2
1.1 + 1.3 1.2 + 1.1 1.1 + 1.2
3.1 + 2.3 3.2 + 2.1 3.1 + 2.2
1.1 + 1.3 1.2 + 1.1 1.1 + 1.2

 =


14 8 10
4 3 3
9 8 7
4 3 3


It is simply not enough. We are manipulating vectors with dot

products and dealing with linear transformations. Something is hap-
pening in the vector space, and it shouldn’t go to the Vatican to be
kept a secret. Consider:

Z : R2 → R2

(z1, z2)→ (−z1 + z2, 2.z1 + z2)

The matrix that represents the linear transformation Z is:(
−1 1
2 1

)
Transforming the vector −→g with the linear transformation Z

results in: (
−1 1
2 1

)
.

(
1
1

)
= (0, 3) =

−→
g∗Z

x

y

−1 1 2 3 4
−1

1

2

3

4

−→g

−→
g∗Z

Z

Figure 4.6: A transformation of −→g by Z.

Now I will define another linear transformation. We will get
somewhere, don’t worry, I haven’t lost my mind. I don’t know how
to convince you of this, as I think that everybody that loses their
mind will state that same sentence, nevertheless, give me a chance.
Let’s say that W is defined such that:
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W : R2 → R2

(w1, w2)→ (w2, w1 + w2)

It would be interesting to see what happens to vector
−→
g∗Z if we

transform it with W . In other words, we are exploring the idea
of composing transformations. We are looking at transforming one
vector via a matrix and mapping the resultant element with another
matrix.

So, we will transform the vector that results from changing −→g
with Z via the matrix W .(

0 1
1 1

)
.

(
0
3

)
= (3, 3) =

−→
g∗W

x

y

−1 1 2 3 4
−1

1

2

3

4

−→
g∗Z −→

g∗W

W

Figure 4.7: A transformation of
−→
g∗Z by W .

The vector
−→
g∗W is no strange to us. It is the same as the vector

−→
g∗

we obtained when we introduced the subject of linear transforma-
tions and used the mapping G as an example. This did not happen
by accident, I fabricated this example to showcase a composition, so
let’s multiply the two matrices W and Z:(

0 1
1 1

)
.

(
−1 1
2 1

)
=

(
2 1
1 2

)
This is the matrix that defines the linear transformationG, which

means that when we are multiplying matrices, we are composing a
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transformation. We are transforming a vector in one step instead
of two. While two applies to this particular case, you can have as
many steps as there are matrices that you wish to multiply. This
is a good way of looking at matrix multiplication rather than just
thinking of a formula. Now you can see that you are just taking a
vector for a ride. Either you do it in steps if you wish to multiply
the vector by one of the matrices in the multiplication, and then
multiply the result of this by the next matrix and so on. Or you can
do it in one go and multiply the vector by the resultant matrix of
the multiplication.

Never forget that order matters, oops I forgot to mention it, so
let’s introduce some matrix multiplication concepts. Contrary to
multiplication with real numbers, multiplying two matrices is not
commutative, meaning that if A and B are two matrices:

A.B 6= B.A

The dimensions of the matrices are also critical, you can’t just
multiply any two matrices, just like the case of matrix-vector multi-
plication. The number of columns in the first matrix must be equal
to the number of rows in the second matrix. The resultant matrix
will then have the number of rows of the first matrix and the number
of columns of the second matrix.

Am×n

.

Bn×m

=

Cm×m

Figure 4.8: Brown, orange and red so the dimensionality isn’t a pain in the head.

There are several ways to multiply matrices, but as we are dealing
with linear mappings (we will also introduce linear systems later),
we need to pay attention to the dimensions. Finally, the product
of matrices is both distributive and associative when dealing with
matrix addition:
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• A(B + C) = AB + AC

• (B + C)D = BD + CD

I feel that we are on a roll here with these concepts of multi-
plication, so I will take the opportunity to present a new way of
representing the multiplication of two matrices, if I may. Let’s con-
sider two generic matrices, A and B:

A =

(
a b
c d

)
and B =

(
e f
g h

)
If we multiply A and B it follows that:

A.B =

(
ae+ bg af + bh
ce+ dg cf + dh

)
We can split this into the sum of two matrices:

A.B =

(
ae af
ce cf

)
+

(
bg bh
dg dh

)
(4.6)

Right, let’s take a look at matrix

(
ae af
ce cf

)
, there are a´s, e’s,

c’s, and f ’s. Don’t worry; we will not be singing songs about the
alphabet. Those letters are in the first column of A and the first
row of B, and it seems that I just have to multiply each entry of one
with each entry of the other:(

a
c

)
.
(
e f

)
=

(
ae af
ce cf

)
This technique is called the outer product and it is represented

by the symbol ⊗. For some reason, for a while, I would have an
anxiety attack every time I saw that symbol on a blackboard at
university, and now I understand why I feared the notation. There is
no reason to fear an equation. They are the syntax of mathematics,
the same way that music has symbols and shapes which form notes
and tempos. So in terms of notation, if we have vector −→v with
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dimensions n × 1 and vector −→w with dimensions m × 1, and their
outer product is computed as:

−→v ⊗−→w =


v1.w1 v1.w2 . . . v1.wn
v2.w1 v2.w2 . . . v2.wn

...
... . . . ...

vn.w1 vn.w2 . . . vn.wm


This is an operation between two vectors. But, the reason I chose

to introduce it while we are dealing with matrices is: well, the first
reason is that the result is a matrix. As for the second reason, we
can put this operation into context. Going back to equation 4.6, we
divided the multiplication of A and B into a sum of two matrices,
and followed this with a new way of computing a matrix via the outer
product of two vectors. This technique allows us to represent matrix
multiplication as a sum of outer products. The outer product of the
vectors (b, d) and (g, h) provides the right side of the summation on
equation 4.6, so we can generalise the formula for multiplication of
matrices as a sum of dots products:

A.B =

#columnsA∑
i=1

ColumniA⊗ RowiB

Where ColumniA is the ith column of A and RowiB is ith row
of B. There are several applications for representing matrix mul-
tiplication as the sum of outer products. For example, if you have
a sparse matrix (a matrix in which most entries are zero) you can
speed up the computation taken to multiply two matrices by this
representation. Another example is the derivation of an approxima-
tion of matrices via matrix decomposition, such as a single value
decomposition, which we will cover in this book, so bear with me.

By looking at linear transformations, we had the need to un-
derstand several other concepts that while not complicated, were of
extreme importance. We went on a ride there with the linear trans-
formations (just like the vectors), and I can tell you that by now,
you are most likely capable of understanding any concept in linear
algebra. Just think about what we’ve covered so far: vectors, dot
products, matrices, linear transformations, outer products, the mul-
tiplication of vectors by matrices, as well as matrices by matrices.
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One cool thing you can do with linear transformations is to trans-
form shapes. For example, you can shrink or extend a square into
a rectangle, and with this comes a useful concept in linear algebra,
the determinant.

4.2.2 When It’s Not Rude to Ask About Size -

The Determinant

Linear transformations are a fundamental concept in linear alge-
bra; they allow the rotation and scaling of vectors in the same space
or even into new ones. We can also use this mathematical concept to
transform geometric figures, like a square or a parallelogram. If we
take a two-dimensional space, such formations can be represented
by a pair of vectors and their corresponding projections. Let’s use

the standard basis
−→
i = (1, 0)T and

−→
j = (0, 1)T and form a square.

x

y

−1 1 2 3
−1

1

2

3

−→
i

−→
j

Figure 4.9: First example of the determinant saga.

Following on from this, we can define a linear transformation
represented by the matrix:

L =

(
2 0
0 2

)
Applying the mapping L to

−→
i and

−→
j will result into two new

vectors,
−→
i∗ and

−→
j∗ , with values (2, 0)T and (0, 2)T respectively. If we

plot them alongside their projections, this is what it will look like:
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x

y

−1 2 3
−1

2

3

−→
i

−→
j

Figure 4.10: Second example of the determinant saga.

Visually, the area of the square formed by the basis vectors
quadruples in size when transformed by L. So, every shape that
L modifies will be scaled by a factor of four. Now, consider the
following linear transformation H defined by:

H =

(
1
2 0
0 1

2

)
If we apply H to the vectors

−→
i and

−→
j we will end up with

−→
i∗∗

and
−→
j∗∗ with values (1

2 , 0)T and (0, 1
2)T .

x

y

−1 1 2
−1

1

2

−→
i

−→
j

Figure 4.11: Third example of the determinant saga.

In this instance, the area of the parallelogram shrunk by a factor
of four. The scalar that represents the change in area size due to
the transformation is called the determinant. In the first example,
we have a determinant equal to four and the second example has a
determinant of one quarter. The determinant is then a function that
receives a square matrix and outputs a scalar that does not need to
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be strictly positive. It can take negative values or even zero. For
example, consider the transformation Z such that:

Z =

(
−1 0
0 1

)
To spice things up a little, and I mean it when I say a little bit.

Once upon a time in Mexico, I decided to play macho and asked for
a very spicy dish. So let’s say that I and the Mexican sewer system
had some rough next few days. Let’s consider two new vectors:

−→g =

(
3
2

)
,
−→
l =

(
1
2

)

x

y

−5 −4 −3 −2 −1 1 2 3 4 5

−2

−1

2

3

4

−→g

−→
l

−→
g∗

−→
l∗

Figure 4.12: Fourth example of the determinant saga.

The image above represents a determinant with a negative value.
It might seem strange as the determinant represents a scaling factor.
But, the negative sign indicates that the orientation of the vectors

has changed. The vector −→g was to the right of
−→
l and after the

transformation, −→g is to the left of
−→
l . Due to this property, the

determinant can also be called the signed area. What we are missing
is a formula to compute this bad boy, so let’s consider a generic
matrix M :

M =

(
a b
c d

)
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The notation for the determinant is det(M) or | M |, and the
formula for its computation is:

det

(
a b
c d

)
=

∣∣∣∣a b
c d

∣∣∣∣ = ad− bc (4.7)

Why? It is a fair question. Let’s bring up a plot to understand
what is going on. We have been speaking about areas, so a visual
should indicate why the formula is as shown above.

ac/2

ac/2

bd
2

bc

bc

bd
2

a b

b a

c

d

d

c

x

y

Figure 4.13: The geometry of a 2× 2 determinant.

The quest now is for the area of the blue parallelogram. At first
glance, it does not seem like a straightforward thing to compute, but
we can find a workaround. We can start by calculating the area of
the big rectangle, formed by (a + b) and (c + d), this can be found
by (a+ b)(c+d). We don’t know the area of the blue parallelogram,
but we know that of the shapes around it: four triangles and two
squares. So, if we subtract the sum of these from the big rectangle,
we end up with the area value of the blue parallelogram. The two
brown triangles each have an area of bd

2 , which when summed is bd,
so we need to remove bd from the big parallelogram. The two pink
squares are each of size bc, which when summed equates to a value
of 2bc. And finally, the green triangles are each of size ac

2 , adding
them will result in a magnitude of ac. If we sum each of these areas,
we arrive at an expression for the value that we need to subtract
from the big rectangle area:∣∣∣∣a b

c d

∣∣∣∣ = (a+ b)(c+ d)− ac− bd− 2bc = ad− bc
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Alright, let’s check what happens if we apply equation 4.7 to the
linear transformation Z:

∣∣∣∣−1 0
0 1

∣∣∣∣ = −1.1− 0.0 = −1

This means that the resultant area of a shape transformed by Z
will remain the same, but the orientation of the vectors will change,
just as we saw in the plot above. If we have a higher dimension-
ality than two, we will be scaling volumes instead of scaling areas.
Consider a generic 3× 3 matrix, N such that:

N =

a b c
d e f
g h i



Graphically, the determinant will reflect the change in volume of
a transformed parallelepiped.

x

y

−→
i

−→
j

−→
k

N

x

y

−→
i∗

−→
j∗ −→

k∗

Figure 4.14: The geometry of a 3× 3 determinant.

Before jumping into the derivation of the formula to compute a
3× 3 determinant, I would like to introduce three properties of this
algebraic concept:
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• If we have pair of vectors that are equal, its follows that

det(
−→
i ,
−→
j ,
−→
k ) = 0. Graphically we can prove this. For

example, if we collapse
−→
j into

−→
i , we understand that

the parallelepiped will also collapse and become flat.

• If we scale the length of any side of the parallelepiped,

we will also scale the determinant, det(a.
−→
i ,
−→
j ,
−→
k ) =

a.det(
−→
i ,
−→
j ,
−→
k ), where a ∈ R.

• The determinant is a linear operation, det(
−→
i +−→w ,−→j ,

−→
k )

= det(
−→
i ,
−→
j ,
−→
k ) + det(−→w ,−→j ,

−→
k ).

These properties are valid for any dimensionality of a geometric
shape that we wish to calculate a determinant for, but for now, I
would like to do an experiment and use one of these properties to
produce the same formula that we have for a matrix of size 2 × 2.
For this, let’s formulate the calculation of a determinant such that:

det(M) = det

((
a
c

)
,

(
b
d

))
We can represent these vectors as a linear combination of the

standard basis vectors
−→
i ,
−→
j :

det(a.
−→
i + c.

−→
j , b.
−→
i + d.

−→
j ) (4.8)

I feel that there are a shit ton of letters and no numbers, and I
don’t want to scare you off, so let’s do a verification:

a.

(
1
0

)
+ c.

(
0
1

)
=

(
a
c

)
There! Some numbers to ease us into what’s about to happen.

We can make equation 4.8 look more friendly by leveraging property
numero tres:

det(a.
−→
i , b.
−→
i + d.

−→
j ) + det(c.

−→
j , b.
−→
i + d.

−→
j )
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This can also be made a bit simpler:

det(a.
−→
i , b.
−→
j ) + det(a.

−→
i , d.
−→
j )

+det(c.
−→
j , b.
−→
i ) + det(c.

−→
j , d.
−→
i )

Now, by property two we can take those scalars out:

ab.det(
−→
i ,
−→
i ) + ad.det(

−→
i ,
−→
j ) (4.9)

+cb.det(
−→
j ,
−→
i ) + cd.det(

−→
j ,
−→
j )

OK, we can do something with this. If a matrix has identical
vectors for columns, it follows that the determinant value is 0. So,

ab.det(
−→
i ,
−→
i ) = 0 and cd.det(

−→
j ,
−→
j ) = 0. The only two things that

are missing are the values of det(
−→
i ,
−→
j ) and det(

−→
j ,
−→
i ). This will be

the same matrix, but with switched rows. Let’s see what happens
to the determinant when we do such a thing:∣∣∣∣1 0

0 1

∣∣∣∣ = 1.1− 0.0 = 1

And: ∣∣∣∣0 1
1 0

∣∣∣∣ = 0.0− 1.1 = −1

So, equation 4.9 is equal to:

ad− cb

Which is what we found when we made the geometric deduction.
I included this because we can do the same kind of exercise for a
matrix with dimension 3× 3, for example, the matrix N . This time
I will save you from all the intermediate steps (as they are very
similar to those for two dimensions) and I’ll provide you with the
final result:

det(N) = aei+ bfg + cdh− ceg − bdi− afh (4.10)

We can reorganise the equation 4.10 to:

det(N) = a(ei− fh)− b(di− fg) + c(dh− eg) (4.11)
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And we can also produce a less condensed version of equation
4.11:

det(N) = a

∣∣∣∣e f
h i

∣∣∣∣− b ∣∣∣∣d f
g i

∣∣∣∣+ c

∣∣∣∣d e
g h

∣∣∣∣ (4.12)

Which has the following graphical representation:

- +

Figure 4.15: Green and yellow for the calculations to be mellow.

For any matrix with a dimensionality lower than four, we are
sorted. The only matrix sizes we are missing are four, five, six, and
seven . . . shit there is still a lot to cover! It is formula time. For
that, let’s introduce a new bit of notation. I chose not to do this
earlier as I felt it would have become a bit intense too soon, but for
what we have to understand now, it will be of extreme utility. Let’s
redefine the entries of N as:

N =

n11 n12 n13

n21 n22 n23

n31 n32 n33


So if we write equation 4.10 following this new notation, it comes

that:

det(N) = n11.n22.n33 + n12.n23.n31 + n13.n21.n32 (4.13)

−n13.n22.n31 − n12.n21.n33 − n11.n23.n32

As before, we have to work with what we have. Equation 4.13
is made up of sums and subtractions of the different iterations of
multiplications of the elements of N (that’s a mouthful, I know!).
The suggestion is that we could probably use the Greek letter Σ
(used for summations) to represent what we are trying to deduce,
that being a general formula for the determinant. It sounds like a
good idea, but if we add elements, how will we take care of those
negative signs in equation 4.13? We have six terms when calculating
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the determinant of a three-dimensional matrix, and two when work-
ing with a matrix in two dimensions. It follows that the number of
terms in the determinant equation is equal to the factorial of the
matrix dimensions.

Skip this paragraph if you already know this bit, but a factorial
is represented by !, and it refers to the combinations one can con-
struct by using elements described by n. For example, in the case
that n = 3, we have six ways of combining three components, as
reflected in equation 4.13. The formula for the factorial is then the
multiplication of each positive integer less than or equal to n, so
3! = 3.2.1 = 6.

Alright, so I now know the number of elements for the determi-
nant of a given matrix size, but how the fuck will this help with the
plus and minus signs? This is where we have to introduce the no-
tion of a permutation, which is a way to order a set of numbers, and
in the case of three dimensions, we have six different permutations.
For example consider the numbers (1, 2, 3): we can have six forms
of representing this set (1, 2, 3), (1, 3, 2), (2, 1, 3), (2, 3, 1), (3, 1, 2) and
(3, 2, 1). We can define a permutation function π that represents
these iterations, for example:

π : {1, 2, 3} → {3, 2, 1} (4.14)

Equation 4.14 represents the changes to the original set in order
to produce the permutated set. One goes to three, two stays the
same, and three goes to one. So π(1) = 3. These functions come
with a definition that we can leverage. It is called the parity of a
permutation, and it tells us the sign of such a mathematical concept.
Specifically, it states that the number of inversions defines the sign
of a permutation. So, it will be +1 if we have an even number of
inversions and −1 if the value is odd.

Curiosity has struck me more than once on why non-even num-
bers are called odd; if you want my honest answer after spending
many hours researching this, my conclusion is that I wish I could
have that time back! On my journey, I went all the way from shapes
defined by the ancient Greeks, to bathroom philosophy on world
views and representations, all to no avail.

Anyhow to calculate the number of inversions, we need to check
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it for pairs. It then follows that we will have an inversion for a pair
(x, y), if we have x < y, and π(x) > π(y). Let’s go back to the
example in equation 4.14, but this time for the pairs when x < y:
(1, 2), (1, 3) and (2, 3). Now π(1) = 3, π(2) = 2 and π(3) = 1 so:

• 1 < 2 and π(1) > π(2) it is an inversion.

• 1 < 3 and π(1) > π(3) it is an inversion.

• 2 < 3 and π(2) > π(3) it is an inversion.

We arrive at a result where the sign of (3, 2, 1) is negative. If we
look into the monomials of equation 4.13 we could define permuta-
tions and, consequently, functions from the indices of the elements
that are part of them. If you are wondering, 4.13 is a polynomial
made up of monomials. Monomial is just a lame name for product of
variables and/or constants, where each variable has a non-negative
integer exponent. A polynomial is a set of monomials, which make
it super lame? I leave this one for you to decide. For example
n11.n22.n33 is one of these. Since we are speaking about this par-
ticular guy, let’s try to understand what exactly I’m talking about.
We have three pairs (1, 1), (2, 2), and (3, 3), which means that the
function π that represents this is:

π : {1, 2, 3} → {1, 2, 3}

This case is just like an election; nothing changes! So, the number
of inversions is equal to zero, and therefore the sign is positive. This
means that if we do this exercise for the five remaining monomials
and if the parity sign is the same as that in the equation, we may
have found what we were looking for: a way to control the minus or
plus sign in a formula to calculate a determinant via a summation.
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Let’s check:

det(N) =
π:123

n11.n22.n33︸ ︷︷ ︸
even→sign is +

− π:132
n11.n23.n32︸ ︷︷ ︸
odd→sign is -

− π:213
n12.n21.n33︸ ︷︷ ︸
even→odd is -

+
π:231

n12.n23.n31︸ ︷︷ ︸
even→sign is +

+
π:312

n13.n21.n32︸ ︷︷ ︸
even→sign is +

− π:321
n13.n22.n31︸ ︷︷ ︸
even→sign is -

(4.15)

A quick way to detect inversions is to check which pairs appear
in the wrong order, for example in the function π : 312, the pairs
(1, 3) and (2, 3) are inverted; therefore, the sign must be positive. It
is true that with just this, we can create a formula for the calculation
of the determinant. Now, it will be ugly as hell, but it will work:

det(A) =
∑

π permutation of n

sign(π)a1π(1).a2π(2)...anπ(n) (4.16)

A is a square matrix and n is the total number of permutations.
We can test this formula with a 2 × 2 matrix M . So, in the case
of a matrix of size two, we have the same number of permutations
as for the size, 2! = 2.1 = 2. They will be (1, 2) and (2, 1), so we
will sum two terms. The first is related to the permutation (1, 2),
and we need to define π for this case: π : {1, 2} → {1, 2}. It follows
that π(1) = 1 and π(2) = 2, so the first term of the equation is
sign(π).m11.m22. The sign(π) is positive because nothing changes:
there is no inversion. If we apply the same logic to the second term,
we will have sign(π).m12.m21 as π(1) = 2 and π(1) = 2. In this case,
we have one inversion, so the sign of π is negative. It then follows
that:

det(M) = m11.m22 −m12.m21

Which is exactly the same as equation 4.7. It is true that equa-
tion 4.16 is enough to calculate any determinant, but we can do
better than that. I mean, come on, that will be a nightmare for
dimensions higher than three! Something curious happens in equa-
tion 4.12; we have three pivots and three lower dimensioned deter-
minants. Let’s start with the determinants to write equation 4.12
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as:
det(N) = a.M11 − b.M12 + c.M13 (4.17)

There are new individuals in equation 4.17, the determinants
represented by the letter M . Allow me to introduce you to the
minors. A minor is the determinant of a square matrix that results
from removing some rows and columns from the original matrix.
The clue on which row and column to remove is in its index, so, for
example, M11 suggests that we should remove the first row and the
first column from the original matrix.

M11 =

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣ =

∣∣∣∣e f
h i

∣∣∣∣
The only elements we haven’t spoken about from equation 4.12

are the pivots, another name I know, but these are just the fellows a,
b and c. They happen to all be on the same row. We can generate a
new formula for the determinant with all of this information. I have
a suggestion, what if we fix a row or a column? Let’s start with a
column, and we can define the determinant such that:

det(A) =
3∑
j=1

(−1)i+jaijMij (4.18)

If we set i = 1, we obtain equation 4.17. The question now, is
whether equation 4.18 works for n dimensions? And the answer is
yes, it does. But, there’s more we can say, as this theorem has a
special name, the Laplace expansion:

det(A) =
n∑
j=1

(−1)i+jaijMij

The Laplace expansion works for any row with a fixed column,
or for any column if we fix the row. The determinant formula has
been broken down, but there is another linear algebra concept we
can learn from this, the cofactors. Don’t worry. You have enough
knowledge to compute these as they are a part of the formula for the
determinant. So, if you multiply (−1)i+j by the minor Mij, you will
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then be computing the cofactor Cij. The result of this will be a real
number because we are multiplying the resultant of a determinant
by 1 or -1. In the example above, where we derived the minor M11,
the cofactor C11 is equal to:

C11 = (−1)1+1.M11 = (−1)2.

∣∣∣∣e f
h i

∣∣∣∣
Meaning that each entry of a square matrix will have a cofactor,

and therefore we can define a matrix of cofactors as:

Cn×n =


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

... . . . ...
C1n C1n · · · Cnn


Ending this with an example will be the best way I feel. So, say

that we have G, a 3× 3 matrix defined as:

G =

1 4 5
9 2 4
3 5 10


Let’s use the Laplace expansion to compute the determinant. I

will select the first row, so j = 1. For my pivots I will have positions
g11, g21 and g31 and the signals are +,-,+ respectively. For minors
with j = 1 we have M11, M21 and M31. Okay, we have everything
we need for this calculation, so let’s get it done:

det(G) = g11.M11 − g21.M21 + g31.M31

Which is the same as:

det(G) = 1.

∣∣∣∣2 4
5 10

∣∣∣∣− 4.

∣∣∣∣9 4
3 10

∣∣∣∣+ 5.

∣∣∣∣9 2
3 15

∣∣∣∣
The result is

det(G) = −117

While I don’t imagine that anyone will be doing a lot of manual
computation of the determinant, understanding it is crucial. And
if you think that the only use for it is to understand the scale and
direction of transformation, you have got another thing coming, as
determinants can also be used to invert matrices.
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4.2.3 Let’s Go The Other Way Around -

Inverse of a Matrix

Would you send a friend from your house to another location
without telling this person how to get back? Then why the hell
would you do this to a vector? We now know that matrices can
represent linear transformations and we also know that this mathe-
matical concept transforms vectors in space. If A is a linear trans-
formation, then, its inverse is also a linear transformation. The
difference is that the inverse of A returns the vector back to its ini-
tial state. Just as any real number has an inverse, a matrix will
also have an inverse, well. . . OK, I admit not all of them do. In
reality, there is a condition that the determinant of such a matrix
must meet. If the inverse matrix depends on the determinant, then
this same matrix must consequently be a square matrix. There is a
particular case for a determinant value that is worth taking a closer
look at, namely when the value is 0. If the determinant is a scaling
factor, what will it mean if we change the shape by a value of 0? It
means that we have lost at least one of the dimensions. In the case
of a parallelogram, the result will be a line or a point. An example
would be:

G =

(
1 1
1 1

)
with det(G) = 1.1− 1.1 = 0

Consider two vectors −→g = (3, 1)T and
−→
t = (1, 2)T such that:

x

y

−1 1 2 3
−1

1

2

3

−→
t

−→g

Figure 4.16: The representation of two vectors to aid with the inverse concept
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Now let’s calculate the coordinates of the new vectors
−→
g∗ and

−→
t∗

which are the vectors that result from transforming −→g and
−→
t by G.

This means that
−→
g∗ = (4, 4)T and

−→
t∗ = (3, 3)T .

x

y

−1 1 2 3 4
−1

1

2

3

4

−→
t

−→g

−→
g∗

−→
t∗

Figure 4.17: Showcase of the mappings of −→g and
−→
t via G.

As expected, the two transformed vectors landed on the same
line, and therefore the area of the blue transformed parallelogram is
0.

There is no way to return to the original parallelogram once
we arrive on a point or a line, at least with linear transformations.
Hence, the second condition for a matrix to have an inverse is that
the determinant must not be 0. The last condition is similar to what
with real numbers. Consider the inverse of 5. It is defined by x ∈ R
such that 5.x = 1, meaning that x = 1

5 . The concept is the same
in the case of matrices, but multiplying two matrices won’t result
in a scalar. It will result in a special matrix called the identity,
represented by In. The identity is a matrix in which all elements on
the diagonal have a value of 1 and all of the non diagonal elements
are 0. The matrix diagonal is formed by all the elements aij = 1
where i = j.

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... . . . ...
an1 an2 · · · ann
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The identity matrix can then be defined as:

I =


1 0 · · · 0
0 1 · · · 0

0 0 . . . 0
0 0 · · · 1


To arrive at a glorious finish with the hope of prosperity, we still

need two more things: a visual way to compute the inverse of a
matrix, and a numerical example. Moving on to the visualisations:

x

y

−2 −1 1 2
−1

1

2

−→
j

−→
j∗

Figure 4.18: A rotation of
−→
j .

In the plot,
−→
j is (0, 1)T and its transformation

−→
j∗ takes values

(−1, 0)T . So, the linear transformation responsible for this (respon-
sibility is terrifying when it’s said out loud, every time somebody
asks ‘who’s responsible’ for something, you know some shit is com-
ing) can be defined as:

M =

(
0 −1
1 0

)
What we wish to do now is derive M−1 such that M.M−1 = I,

right? Yes, this is what we defined previously. As this is a simple
example, we know that, in order to calculate M−1 we need to define a
linear transformation that also does a 90 degree rotation, but in the
other direction. So, let’s do it in two steps. Firstly, to rotate a vector
90 degrees clockwise, one needs to place the original y coordinate
of the vector in the place of the x coordinate and then place the
inverse of the initial x coordinate, −x, in the place of the original y
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coordinate, such that:

M−1 : R2 → R2

(m1,m2)→ (m2,−m1)

Let’s test this out. If we transform
−→
j∗ with the linear transfor-

mation M−1, we should get the vector
−→
j such that:(

0 1
−1 0

)
.

(
−1
0

)
=

(
0
1

)
Which is precisely the vector

−→
j . So, in theory, if we multiply M

by M−1, we need to get I, the identity matrix. Otherwise, something
is not right:

M.M−1 =

(
0 −1
1 0

)
.

(
0 1
−1 0

)
=

(
0.0 + (−1)(−1) 0.1 + 0.0

0.1 + (−1).0 1.1 + 0.0

)
=

(
1 0
0 1

)
So far, we have defined a few properties regarding the inverse of

a matrix, and I feel that it is a good moment to put them in a little
box to produce a summary of where we stand. So, if A is such that
A−1 exists, this means that:

• A is a square matrix.

• A−1 is such that A.A−1 = I.

• The determinant of A is not 0. I will throw another name
your way, generosity is the word of the day. When a
matrix has this property, it is called non-singular.

The question now is how can we compute an inverse of a matrix?
There is a relationship between the determinant of the multiplication
of two matrices. We can show that this is equal to the multiplication
of the matrix determinants:

det(A.B) = det(A).det(B) (4.19)

If we replace B with the inverse of A:

det(A.A−1) = det(I) = 1 (4.20)
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From equation 4.19 we can write 4.20 as:

det(A).det(A−1) = 1

It follows then that:

det(A−1) =
1

det(A)

Finally we have:

A−1 =
1

det(A)
(adj(A))

There is some new information in this formula, I am talking
about adj(A). Thankfully, we have enough knowledge to derive this
very easily. The adjugate is simply the transpose of the cofactors
matrix, C, so we can express this as:

adj(A) = CT

If you do not recognize the T exponent associated with a matrix,
don’t worry, papy is here once more to hold your hand. This means
that we will swap the rows with the columns, implying that a matrix
with dimensions n×m will become a matrix with dimensions m×n,
for example:

A =

1 4
9 5
8 2


The transpose of this matrix will still be a matrix, and the no-

tation for it is AT . The resultant matrix will be:

AT =

(
1 9 8
4 5 2

)
Given that we have computed the transpose of a matrix for a

particular case, let’s derive the general formula, so we can apply it
to any matrix or vector of any dimension. A transposed matrix of
dimensions n×m is a new matrix of size m×n in which the element
in the ith row and jth column becomes the element in the ith column
and jth row: [

AT
]
ij

= [A]ji
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Don’t worry, I did not forget the numerical example! Let’s say
that the matrix A is defined as:

A =

(
1 1
0 1

)
Now we need to compute the determinant and the adjugate:

det(A) =

∣∣∣∣1 1
0 1

∣∣∣∣ = 1 and adj(A) =

(
1 −1
0 1

)
A−1 =

1

1
.

(
1 −1
0 1

)
Finally it follows that that the inverse of A is:

A−1 =

(
1 −1
0 1

)
The matrix A is known to us. We used it when speaking about a

change of basis. The vector that we used at the time was−→v = (2, 3)T

and the coordinates of −→v in the new basis were (5, 3)T . So, we must
obtain (2, 3)T if we multiply (5, 3)T by A−1. We will now be sending
this vector back:(

1 −1
0 1

)
.

(
5
3

)
=

(
1.5− 1.3
0.5 + 3.1

)
=

(
2
3

)
Bullseye! That is precisely the result we were looking for, so 50

points for us!

This all started with a linear transformation, but we ended up
covering a lot of linear algebra concepts that are needed if we are
to fully understand these functions. Mastering mappings that pro-
mote movement amongst vectors was crucial in my machine learning
journey as a data scientist. The graphical component of such a con-
cept allowed me to think about matrices differently, as a vehicle for
movement in space. By doing this, ideas like multiplication of a
vector by a matrix, matrix to matrix multiplication, determinants,
and inverting matrices became explicit, as I had developed a visual
concept of what was happening with these notions when they are
applied. If you are wondering where to use all of this mathematics
in machine learning, well, neural networks are an excellent example
to study. And there is yet another case for matrix representation
that is worth exploring: systems of linear equations.
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4.3. Gatherings in Space - Systems of Linear Equations

4.3 Gatherings in Space - Systems of
Linear Equations

First, let’s define a system; and to do that, we will use a vernacu-
lar that would impress any executive in an interview room. A system
is a collection of components that accepts an input and produces an
output. When these systems are linear, we have robust mathemati-
cal definitions and concepts that allow us to extract such outcomes,
which we can also call solutions. Well, as this book is about linear
algebra, this robustness will be provided through methods that we
can derive with all of the knowledge we’ve acquired so far. For the
components we have linear equations, and for the inputs and out-
puts we have vectors. A linear system will then be a set of linear
equations that receives a vector and produces one, several, or no
solutions. For illustration purposes let’s consider a two dimensional
scenario as a generic system that we can represent with the following
notation: {

ax1 + bx2 = c

dx1 + ex2 = f
(4.21)

In the system 4.21, elements a, b, c, d, e, f are scalars that belong
to R and define the system by characterizing two equations which
are lines. The solution is defined by x1 and x2, which can be unique,
nonexistent, or non-unique.
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y

−1 1 2 3

1
2
3

x

y

−1 1 2 3

1
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3

x

y

−1 1 2 3

1
2
3

Figure 4.19: The three possible cases for the type of solutions of a system.

The plot above provides a graphical interpretation of some pos-
sible type of solutions of a linear system. The blue and yellow lines
have for features the scalars a, b, c, d, e, f . If the values are such that
the lines are parallel (as shown in the left-hand graph), then the
system has no solutions. Conversely, if the lines land on top of each
other (as shown in the middle plot), then the system has an infinite

75



Chapter 4. But What About a Matrix?

number of solutions. Lastly, as seen in the right-hand graph, if the
lines intersect each other, this reflects the case where a system has
a unique solution. Where are the matrices and the vectors? I miss
them too, just like a dolphin misses SeaWorld. But don’t worry, we
can represent the system 4.21 with matrix-vector notation:

A.−→x =
−→
b

The letter A represents a matrix whose elements are the scalars
a, b, c, d. The vector −→x is the solution we are looking for (if it exists).

Finally,
−→
b is another vector. The best way to define this vector is to

look at linear transformations. If A represents a linear transforma-
tion, then what we are saying here is that we want to find a vector
−→x , that when transformed by A, lands on

−→
b . So,

−→
b is where the

solution has to land after being transformed by A. Our system can
be defined by: (

a b
d e

)
.

(
x1

x2

)
=

(
c
f

)
If we perform that multiplication, we will end up with the same

system of equations 4.21, and the symbol { means that we are look-
ing for an interception. However, it is also true that these systems
can have as many equations as we wish with as many variables as
desired. Consequently, finding a solution for some of them can be
portrayed as complicated. Spending a long time doing calculations,
only to conclude that there is no solution, is not ideal. Gladly with
a matrix representation of such systems, we can understand what
is the deal with these so-called solutions, before, doing any calcu-
lations towards finding them. We know that for two vectors to in-
tercept somewhere in space, they need to be linearly independent.
Therefore, the determinant of a matrix that has these same vectors
for columns cannot be zero. From this, it follows that for a sys-
tem to have a unique solution, the determinant of the matrix that
represents the system must be non-zero.

Less talking, more examples, right? Consider a system defined
as: {

−5x1 + 2x2 = −2

−4x1 + x2 = −4
(4.22)
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We now should verify if there is a solution for the system 4.22.
For that, we need a matrix A:

A =

(
−5 2
−4 1

)
The determinant of A is then calculated by:∣∣∣∣−5 2

−4 1

∣∣∣∣ = −5.1− 2.(−4) = −5 + 8 = 3

The coast seems to be clear. We have a non-zero determinant,
meaning that this system will have a unique solution, and we can
proceed to learn how to calculate it. But, before jumping into the de-
duction of a methodology to find solutions for a system, let’s quickly
go over an example where the determinant is zero. Say that B is:

B =

(
3 1
6 2

)
The determinant of B is equal to zero, det(B) = 3.2 − 6.1 = 0,

and visually:

x

y

−1 1 2 3 4 5−1

1

2

3

4

5

6

−→
b1

−→
b2

Figure 4.20: Linearly dependent vectors due to a zero value determinant.

As expected, those vectors are linearly dependent. The angle
formed by them is 0 degrees. Okay, but the system 4.22 has to have
a solution because the determinant of A is not 0. To find it, let’s
get the vector −→x represented by:

−→x =

(
x1

x2

)
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The only thing missing is the vector
−→
b . Now,

−→
b is not as badass

as −→x because, −→x can take any value for coordinates. On the other

hand,
−→
b has fewer options, much like a politician:

−→
b =

(
−2
−4

)
The equation below represents the system in question:

A︷ ︸︸ ︷(
−5 2
−4 1

)
.

−→x︷ ︸︸ ︷(
x1

x2

)
=

−→
b︷ ︸︸ ︷(
−2
−4

)
Let’s pause for a moment to observe the representation above,

that is if you don’t mind. A is a matrix that represents a linear
transformation, and −→x is a vector. We know that A.−→x will map −→x
into a new vector. The restriction now is that the resultant recast
vector of that transformation has to be equal to another vector,

−→
b .
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−6 −5 −4 −3 −2 1 2 3 4 5
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−→
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−→
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−→
j∗

−→
b

−→x

Figure 4.21: The graphical representation of a system of linear equations.

The plot is populated, but let’s take it step-by-step. The vectors−→
i and

−→
j represent the standard basis. A generic vector is repre-
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sented by −→x , so please ignore the coordinates (2, 4). It is just for a

visual representation. Now,
−→
i∗ and

−→
j∗ are the new basis as they are

the result of the transformation of A on
−→
i and

−→
j . The vector

−→
b

is where we need −→x to land.

There are several ways to get the solution for that system, we
will focus our attention on a technique called the Cramer’s rule. As
while it may not be the most efficient approach, it is the method
with the best visual component. In this case, best means efficient
in terms of computation. Our goal is not to learn how to calculate
these solutions by hand. We have computers to do that. Instead, we
just want to understand what is happening so we can better analyse
the results.

Let’s start by grabbing three elements from the plot above: the

basis formed by the vectors
−→
i and

−→
j , and the generic vector −→x .

Consider the following plot:

x

y

−1 1 2 3
−1

1

2

3

−→
i

−→
j

−→x x2

Figure 4.22: The first plot of Cramer’s rule.

The vector −→x represents any vector that verifies a system of
equations; its coordinates are (x1, x2). In this case, the blue paral-
lelogram has an area equal to 1.x2, meaning that the value of this
area is equal to x2. Let’s be rigorous here; it is not the area, but
rather the signed area, because x2 can be negative. We can make a
similar case with the other coordinate in −→x , a parallelogram with
an area of x1 instead of x2:
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x

y

−1 2 3
−1
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2

3

−→
i

−→
j

−→x

x1

Figure 4.23: The second plot of Cramer’s rule.

The signed area of the blue parallelogram will be 1.x1, resulting
in x1. These parallelograms can also be built with the transformed

versions of
−→
i ,
−→
j and −→x . Let’s start with the vector

−→
i∗ that has

coordinates (−5,−4). But instead of −→x , we have
−→
b , which is the

result of transforming −→x with A:

x

y

−7 −6 −5 −4 −3 −2 1

−7

−6

−5

−4

−3

−2

1

−→
i∗
−→
b

Figure 4.24: The solution of the linear system.

In the plots 4.22 and 4.23, we drew two different parallelograms.

One with the vector −→x and
−→
i , and the other formed by −→x and

−→
j .

These have areas values of x2 and x1 respectively. Following this,

we transformed
−→
i and −→x to obtain a new parallelogram which we

don’t yet know the area of (as shown in the figure above). In order
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to derive x2, one must find some relationship between the areas of
the original and transformed parallelograms. Fortunately, we have a
scalar that provides information relating to the magnitudes by which
sizes are scaled via linear functions. So, if the area of the original
parallelogram was x2, this new shape will have an area of det(A).x2:

Area = det(A).x2

x2 =
Area

det(A)

We know the coordinates of vector
−→
b and we know where it

lands, so we can create a new matrix:(
−5 −2
−4 −4

)
The determinant of this matrix will represent the area of the

transformed parallelogram:

x2 =

∣∣∣∣−5 −2
−4 −4

∣∣∣∣∣∣∣∣−5 2
−4 1

∣∣∣∣ =
(−5).(−4)− (−2).(−4)

(−5).1− 2.(−4)
=

12

3
= 4

If we want to derive a formula to compute x1 it is done in the
same way as was shown for x2. The only difference is that we will

transform the vector
−→
j and use its transformed version alongside−→

b to build the new parallelogram:

Area = det(A).x1

x1 =
Area

det(A)

We know the coordinates of vector
−→
b , so:

x1 =

∣∣∣∣−2 2
−4 1

∣∣∣∣∣∣∣∣−5 2
−4 1

∣∣∣∣ =
(−2).1− (−2).(−4)

3
=

6

3
= 2
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We have found that the solution for our system is the vector
−→x = (2, 4)T . Indeed there are computers that can tally all of these
tedious calculations, almost like having slaves without any feelings.
I wonder what will happen if they ever get to the point of sentience.
Will they miraculously channel all of their pain into the creation of
new styles of dance and music that we can enjoy, even after the way
we have treated them? Or will it be judgement day, and someone,
John Connor style, will have to save us? I hope I haven’t lost you
because you’re too young to have seen The Terminator? All the
same, this technique is here to help you visualise what is happening.
And, if you do choose to use a computer to solve a system, you
won’t think that these black boxes are performing magic. Also, this
showcases a situation that often occurs in mathematics, in which
there are several ways to solve the same problem. The task was to
find a new vector that, when transformed, would land on a specific
set of coordinates. The method for finding a solution was derived
based on areas. Another way to solve a linear system is Gaussian
elimination, which won’t be covered here, though if you wish to learn
it, I will say that you will have no problems with it.

There are still two things missing: we need the general formula
for Cramer’s rule, and we should verify what happens when we trans-
form the vector −→x with the linear transformation A. First things
first, Cramer’s rule. Consider a linear system represented as follows:

A−→x =
−→
b

Where A is a squared matrix with size n×n, −→x = (x1, x2, ...xn)
T

and
−→
b = (b1, b2, ..., bn). We can then define the values of the vector

−→x by:

xi =
det(Ai)

det(A)

The value det(Ai) is the matrix formed by replacing the ith col-

umn of A with the column vector
−→
b . Next, for the verification part,

we have to transform (2, 4)T with A and to check if we get
−→
b :(

−5 2
−4 1

)
.

(
2
4

)
=

(
−10 + 8
−8 + 4

)
=

(
−2
−4

)
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Linear systems have many applications, but for now, I would
like to explore four particular types of systems with some important
characteristics. Consider a matrix Am×n that maps vectors from Rn

to vectors in Rm. Let’s also define two vectors, −→x and −→y . The
different systems that are worth paying special attention to are:

1. A.−→x 6= 0 row space of A.

2. A.−→x = 0 nullspace of A.

3. AT .−→y 6= 0 column space of A.

4. AT .−→y = 0 left nullspace of A.

The equations above define important subspaces in the field of
linear algebra. A subspace is a space within another vector space
where all the rules and definitions of vector spaces still apply. In
case one, we are performing row-wise dot products with a vector −→x ,
and our interest lies in the calculations performed between rows that
are not perpendicular, so that the result is not zero. This subspace
is called the row space. On the other hand, in equation number two,
we want a subspace where every vector is transformed to zero. This
is called the nullspace. Finally, cases three and four represent very
similar concepts, but as we are now computing dot products with
the transpose of A, these subspaces are for the columns instead of
the rows. So, case three is the row space, while case four is the left
nullspace.

There must be a relationship between the dimension of the space
spanned by A and the subspaces that are part of A, namely those
defined by the four systems shown above. To understand these re-
lationships, we need to introduce another concept: rank. The rank
of a matrix is the dimension of the vector space generated by its
columns, meaning that it is also the basis of the column’s space.
Let’s consider a matrix A4×3 defined as:

A =


1 2 0
1 2 1
2 4 −1
3 6 0
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To calculate the rank of A, we need to understand how many
linearly independent columns exist in matrix A. This quantity will
also give the number that defines the dimension of the column space.
After a closer look, we can identify that the first column is half of
the second, and there is no way of getting the third column by
combining the first two, or by scaling any of them. So the matrix
has a rank equal to two. There are two linearly independent vectors,
(1, 1, 2, 3) and (0, 1,−1, 0), and they form a basis for the column
space. Now, let’s compute the nullspace of A. This space is such
that {x ∈ R3 : A.−→x =

−→
0 }. We are looking for all of the values of

−→x in R3, when transformed by A, result in the null vector, which is
equivalent to: 

1 2 0
1 2 1
2 4 −1
3 6 0

 .

x1

x2

x3

 =

0
0
0


So it follows that:

x1 + 2x2 = 0

x1 + 2x2 + x3 = 0

2x1 + 4x2 − x3 = 0

3x1 + 6x2 = 0

⇔

{
x1 = −2x2

x3 = 0

I am about to drop some more notation so brace yourselves. The
nullspace is represented by:

nullspace(A) = {(c,−2c, 0) : c ∈ R}

And in this particular case, it can also be represented by:

Span{(1,−2, 0)}

The dimension of the nullspace, which is also called the nullity(A),
is equal to one, meaning that the basis of that space has only one
vector. At this point, we have the dimensions of the column space
and the nullspace: two and one respectively. Coincidentally or not,
the dimension of the column space, which is equivalent to the rank
of A plus the dimension of the nullspace, is equal to the number of
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columns in A. Obviously this is not a coincidence at all; the theorem
of rank-nullity states that:

rank + nullity(A) = n (4.23)

The proof of this theorem is extensive, and I will omit it, but
what we can take from it will be extremely useful. The rank of A
plus its nullity equals n, the number of columns. Apologies, but we
must introduce another simple definition at this time, for the term
full rank. A matrix A of size m × n is said to be of full rank when
the rank is equal to the min(m,n). There are two possibilities to
consider: m ≥ n and m < n. But why would we care about this?
Well, it just so happens that we can understand the dimension of the
nullspace when a matrix is of full rank by just looking at the order
of magnitude of m and n. If A is of full rank and m < n, the rank
of A is equal to m. By equation 4.23, we have m+ nullity(A) = n,
which is the same as:

nullity(A) = n−m when m < n and A is full rank.

On the other hand, if m ≥ n, it follows that the rank of A is equal
to n, so the nullspace has a dimension of 0:

nullity(A) = n− n = 0 when m ≥ n and A is full rank.

If the matrix is square, then n = m, so it makes sense that a
square matrix is of full rank when the rank of A is equal to n. There
are a couple more relationships between the nullity, the rank, and
the determinant that are worth studying. Let A be such that:

A =
(−→v1

−→v2 .. −→vn
)

Where all the vectors −→v are the columns of A. With this, the
equation for nullity can be expressed by:

A.−→x =
−→
0 ⇔

(−→v1
−→v2 .. −→vn

)
.


x1

x2
...
xn

 =


0
0
...
0
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Which is the same as:

x1.
−→v1 + x2.

−→v2 + ...+ xn.
−→vn =

−→
0 (4.24)

If we say that all the vectors are linearly independent, the only
way for equation 4.24 to be verified is for all of the factors represented
by the x’s to be equal to 0. Otherwise, it will be possible to get at
least one term as a function of another; consequently, the assumption
of linear independence won’t be valid. Therefore, if the nullspace is
of dimension zero, it also means that the determinant is non-zero.
As you can see, the rank provides a lot of information about linear
transformations and is an excellent way of exploring some of their
characteristics.

When introducing the rank and deducing its relationships and
properties, we paid a lot of attention to the nullspace of a matrix.
This space is also essential when it comes to introducing one more
notion, the last one before we vault into the concepts that are often
used in machine learning: the principal component analysis and the
single value decomposition.

Even though we are already well-equipped in terms of linear alge-
bra knowledge, the feeling in the air is that everything really starts
here. Let’s initiate this new part of the odyssey by defining a par-
ticular case of a linear system. What if we wish to find a vector −→v
that, when transformed by A, lands on −→v or on a scaled version of
it? Before, we were looking for a vector −→x that, when transformed,

would land on a generic vector
−→
b . We can define a scaling factor

by λ and formulate the system with the following equation:

A−→v = λ−→v (4.25)

4.3.1 Line Up Vectors! The Eigen Stuff

Good people of the sun, allow me to introduce you to the Eigen
”stuff”. These vectors −→v that, when transformed by a matrix, land
on itself or on a scaled version of itself are called the eigenvectors.
They happen to be like the police as they are always with someone
else, so for each eigenvector, you will have a corresponding eigenvalue
λ, the scalar by which the vector stretches or shrinks.
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To put it simply, think of a matrix as a machine that rotates
and/or scales vectors. An eigenvector is a vector that, when put
through this machine, only gets stretched or shrunk by a certain
amount but does not get rotated.
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2

−→
i

−→
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−→
i∗

−→
j∗

−→v

Figure 4.25: A reminder of the representation of a linear system.

In the plot above,
−→
i∗ ,
−→
j∗ represent the transformed version of

the standard basis
−→
i ,
−→
j . We are looking for one or more vectors

that, when modified by A, land on a linear combination of −→v .
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Figure 4.26: A mosh pit of vectors: some possibilities for eigenvectors.
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We have a few examples of eigenvectors in the plot above, and,
as they are all linear combinations of each other, they all land on the
black line that represents that particular vector span. Let’s manip-
ulate equation 4.25 to get it into a format where the computation of
both the eigenvectors and eigenvalues will be more straightforward.
It is hard to find a good use case for manipulation. However, per-
petrating this act to produce an equation still seems to be accepted.
So far, nobody seems to care, and it comes with benefits for the
mathematician. Let’s exploit this:

A−→v = λ−→v

We’ve learned about the identity matrix on our journey into
linear algebra, and so we can say:

A−→v = λI−→v

Multiplying the identity matrix I by a given vector −→v will result
in the vector −→v . That equation is equivalent to:

A−→v − λI−→v =
−→
0

We can then write it as:

(A− λI)−→v =
−→
0 (4.26)

There are two ways for 4.26 to be verified. The first one is not
very interesting (the trivial solution). This is when −→v = 0. That
told us nothing, so we need to find a −→v other then −→v = 0. The
element (A − λI) is a matrix whose diagonal elements are part of
the diagonal of A minus the scalar λ, something like:(

a b
c d

)
−
(
λ 0
0 λ

)
=

(
a− λ b
c d− λ

)
So, equation 4.26 can be depicted as:(

a− λ b
c d− λ

)
︸ ︷︷ ︸

R

.−→v = 0 (4.27)
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Ideally, we would have an equation where we can apply some
technique and calculate the λ′s. If you recall, the determinant is a
function that takes in a matrix and spits out a scalar, and we have a
formula for it, so this might be an excellent path to follow to find an
equation where we can isolate λ. However, the determinant alone
won’t be enough to get us to where we need to be. That zero on the
right side of the equation causes constraints, and we need to consider
them. Thankfully, there is a way to create a relationship between
the determinant and zero. For example, consider the inverse of a
matrix. For a matrix to have an inverse, its determinant has to be
non-zero. In addition, it comes to mind that, if a matrix is invertible,
the multiplication of this given matrix with its inverse results in the
Identity matrix. Maybe we can work with this. Let’s define the
inverse of R by R−1 and replace this notation with 4.27:

R−1.R.−→v = R−1.
−→
0

This results in:

I.−→v =
−→
0

And that is as valuable as an ashtray on a motorbike. We specif-
ically stated that −→v = 0 was not of interest. But everything’s not
lost. What follows is that R must not be invertible, and like that,
we guarantee any non-trivial solution! So, if R has no inverse, the
determinant of that specimen must be zero:

det(A− λI) = 0

Geometrically, this also makes sense. We are transforming a vec-
tor −→v into a linear combination of itself. For that, the determinant
has to be zero, as we saw previously. Let’s follow an example and
use A as the linear transformation:∣∣∣∣(−5 2

−4 1

)
−
(
λ 0
0 λ

)∣∣∣∣ = 0

This is equivalent to:∣∣∣∣−5− λ 2
−4 1− λ

∣∣∣∣ = 0
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(−5− λ)(1− λ)− 2.(−4) = 0

λ2 + 4λ+ 3 = 0

From our fundamental maths knowledge we know that the roots
for that equation can be calculated with the following formula:

x =
−b±

√
b2 − 4ac

2a

Where:
ax2 + bx+ c = 0

Okay, so applying that formula to our equation gives us the fol-
lowing values for λ:

λ = −3 and λ = −1

We now have the scaling values that will stretch or squish the
eigenvectors, but we still do not have the vectors. However, there is
a formula that allows us to get these vectors: 4.26:

(A− λI)−→v =
−→
0

Given that we know the λ values, we can compute the eigenvec-
tors. Let’s try with λ = −3.(

−5− (−3) 2
−4 1− (−3)

)
.

(
v1

v2

)
=
−→
0

(
−2 2
−4 4

)
.

(
v1

v2

)
=
−→
0

Let’s name that guy. Should we go for Francis? Maybe it is too
much, but M should be enough:

M =

(
−2 2
−4 4

)
This represents a linear system, but the determinant of the ma-

trix M is zero. Does this make sense? A determinant of 0? This
means that we either have no solutions, or a lot of them. The latter
is happening here. The coordinate values that verify that the system
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can be represented by vectors that land on the span of the vector
that we are after. There is an implication to this determinant value;
Cramer’s rule will be doing a prophylactic isolation and can’t show
up. The system becomes:{

−2v1 + 2v2 = 0

−4v1 + 4v2 = 0

This is a simple system that is here as a showcase, therefore we
can solve it with a ”maneuver” like this:{

−2v1 + 2v2 = 0

−4v1 + 4v2 = 0
⇔

{
−2v1 = −2v2

−4v1 + 4v2 = 0{
v1 = v2

−4v1 + 4v2 = 0
⇔

{
v1 = 1

v2 = 1

So, the eigenvector corresponding to the eigenvalue λ = −3 is
the vector (1, 1)T , let’s call it

−→
t .

x

y

−2 −1 1 2

−2

−1

1

2

−→
t

Figure 4.27: The first eigenvector of the example.

If we transform
−→
t with A,

−→
t∗ , the transformed version of

−→
t

needs to land on that black line. It has to be the vector (−3,−3)T ;
let’s verify this: (

−5 2
−4 1

)
.

(
−1
−1

)
=

(
−3
−3

)
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x

y

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

−→
t

−→
t∗

Figure 4.28: The transformation of a eigenvector.

Okay, that verifies the calculations. If we do something similar
to that with λ = −3, but now with the other eigenvalue, λ = −1,
we end up with:(

−5− (−1) 2
−4 1− (−1)

)
.

(
v1

v2

)
=
−→
0

(
−4 2
−4 2

)
.

(
v1

v2

)
=
−→
0

I will omit some of the steps of the calculations as they are like
the ones that we did for the other eigenvalue, but this time, the
eigenvector is equal to −→v = (1

2 , 1)T . Similarly, if we transform −→v
into

−→
v∗ making use of the linear transformation A,

−→
v∗ has to land

on the same line as −→v . Let’s verify:(
−5 2
−4 1

)
.

(
1
2

1

)
=

(
−1

2

−1

)
As expected, the resultant vector is a linear combination of the

original vector that we transformed with the matrix A. Let’s visu-
alise this result:
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x

y

−3 −2 1 2 3

−3

−2

1

2

3

−→v
−→
v∗

Figure 4.29: The second transformation of an eigenvector.

In essence, we found a particular group of vectors that, when
transformed, land on its span. If you are doubtful about the utility of
this concept, I empathise with that, but allow me to try to convince
you that this was not an attempt to put a few more pages in this
book so that it gets to at least 100 pages! So, let’s bring back the
90’s! Sorry, I mean matrix A, its eigenvalues, and the respective
eigenvectors:

A =

(
−5 2
−4 1

)
, λ = −3,

−→
t =

(
1
1

)
λ = −1, and −→v =

(
1
2

1

)
As a friendly reminder, this is how we can represent the system

to calculate the eigenvalues:

A−→v = λ−→v

Okay, if we now replace −→v and λ with each eigenvalue and eigen-
vector pair, we can form two different equations:

A

(
1
1

)
= −3

(
1
1

)

A

(
1
2

1

)
= −1

(
1
2

1

) (4.28)
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So, we have two vector equations. By forming one matrix with
the eigenvectors and another with the eigenvalues, we can combine
the two equations in 4.28 into a single equation with matrices:

A

P︷ ︸︸ ︷(
1 1

2

1 1

)
=

P︷ ︸︸ ︷(
1 1

2

1 1

) Λ︷ ︸︸ ︷(
−3 0
0 −1

)
Algebraically we have:

AP = PΛ (4.29)

When we studied the inverse of a matrix, we concluded that for
a matrix A−1 to be the inverse of A, AA−1 = I. So, if we want
to isolate A on the left side of equation 4.29, we can multiply both
sides of the equation by P−1:

APP−1 = PΛP−1

Which becomes:
A = PΛP−1 (4.30)

4.3.2 I’ve Got the Power, to Power - Matrix

Diagonalization

So, we can define A as a product of three other matrices, in-
cluding the eigen base P and its inverse P−1 which represent two
rotations. On the other hand, the matrix Λ is a diagonal matrix
with eigenvalues for elements. On this matrix are the scaling terms
of equation 4.30. So, what’s happening here is that we are represent-
ing a matrix by two rotations and one scaling term. Since we have
a linear transformation that is split into three different matrices, it
is worth taking a look at the properties of these matrices.

One of them stands out: Λ, which is a diagonal matrix. The only
time we dealt with a matrix of this type was when the identity I was
involved in our calculations. It turns out that this class of matrices,
the diagonal ones, has some pretty incredible properties that make
operations much lighter and more manageable. For example, to
calculate the determinant of a matrix with this form, one only needs
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to multiply the elements that form the diagonal. Let’s consider A
to be a diagonal matrix defined as:

A =

(
a 0
0 b

)
By definition, the determinant of A is:∣∣∣∣a 0

0 b

∣∣∣∣ = a.b− 0.0 = a.b

A has two dimensions, and these are always simple cases. How-
ever, if we have matrices of higher dimensionality, the calculations
for the determinant are now more straightforward than the ones for
non-diagonal matrices. Let’s now consider a matrix A with three
dimensions:

A =

a 0 0
0 b 0
0 0 c


We know that we can pick a row or a column and apply the

Laplace expansion that we previously defined to calculate the deter-
minant. If you don’t remember, there is no need to feel bad or even
go look for it. Here it is again:

det(A) =
n∑
i=1

(−1)i+jaijMij

As you can see, in this formula, an element of the matrix is
multiplied by a minor, aij. As this is a diagonal matrix, the only
non-zero elements are those on the diagonal when j = i, so the
determinant will simply be:

det(A) = (−1)2iaiiMii

This is the same as multiplying all of the elements on the diagonal
together. It is fair to assume that if we can simplify the calculation
of the determinant for a diagonal matrix, then the computation of
its inverse will also have a more straightforward formula, and it does!
Previously we specified that:

A−1 =
1

det(a)
(adj(A))
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If we have all the 0 entries excluding the diagonal, the matrix
adj(A), is equal to:

adj(A) =

M11 0 0
0 M22 0
0 0 M33


This is equivalent to:

adj(A) =

bc 0 0
0 ac 0
0 0 ab


And if we divide that adj(A) by the determinant:

A−1 =

bc 0 0
0 ac 0
0 0 ab


abc

This results in:

A−1 =

1
a 0 0
0 1

b 0
0 0 1

c


This simplifies the calculation of an inverse. So, we have to

replace each non-zero element with its inverse. The last thing to
mention about diagonal matrices relates to a scenario in which we
want to compute multiplications. Let’s define a generic 2×2 matrix
X as:

X =

(
x11 x12

x21 x22

)
There are two different scenarios here: The first, matrix multi-

plication, is not commutative; however, if one of the matrices in the
operation is diagonal, we can easily get the results. If X is multiplied
by a diagonal on the left, it will change the matrix row-wise. Oth-
erwise, if we are multiplying X by a diagonal matrix on the right,
then this will have an impact column-wise. This will apply to any
matrix size. (

x11 x12

x21 x22

)
.

(
a 0
0 b

)
=

(
ax11 bx12

ax21 bx22

)
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(
a 0
0 b

)
.

(
x11 x12

x21 x22

)
=

(
ax11 ax12

bx21 bx22

)
Secondly, and this will be the most potent fact about this di-

agonalization technique, we can simplify the multiplication between
matrices. As the non-zero elements are all on the diagonal, powering
these matrices comes with comfort, as it will only be necessary to
power each component of the diagonal. Just to explain, when we
say powering, we’re referring to the process of multiplying a matrix
by itself, which is the same as raising it by a power.

Okay, the reality is that two-by-two matrices are baby talk. They
make clear-cut examples, but when do we have the opportunity to
work with only two dimensions in the real world? If you wish to go
on with machine learning, you will most likely encounter some big
ass matrices, and on top of that, consider the fact that you have to
power them with a large exponent. Diagonalization will then come
in handy to save the day and the computation bill! We know that
A can be represented by:

A = PΛP−1

Say that A is a n×n matrix where n is giant (no joke). Think of
a matrix with information about the weather, like states of observ-
able climate conditions, where the matrix entries are probabilities of
moving from one state to another. You could model this with some
type of sequential model where the states are the weather condi-
tions on a given day. An example of this type of model is a Markov
Chain (which we won’t go into right now, but it will be covered on
a different book). Under these conditions, there is a case for pow-
ering a matrix because it will allow you to understand the system
at a given state. So, powering A to the t (where t is large) can be
computed by multiplying A by itself t times, which is extremely ex-
pensive in terms of computation time . Imagine all the dot products
that we’d have to do. But don’t worry, we can make use of matrix
diagonalization: instead of...

At = A.A.A...A t times

...we could try and do something different. Let’s start by squar-
ing A:

A2 = PΛP−1PΛP−1 (4.31)
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A was replaced by its diagonalization form, and we can simplify
equation 4.31, as we know that P.P−1 is equal to the identity I:

A2 = PΛΛP−1

The matrix Λ is diagonal, so it follows that Λ.Λ is equal to Λ2

and the equation becomes:

A2 = PΛ2P−1

Right, this seems simpler to compute. Let’s check what we can
do if we have A3. Well, A3 = A2.A, which can be written thus:

A3 = PΛ2P−1.PΛP−1

Following the same logic as before:

A3 = PΛ3P−1

Let’s check for A4... I am joking, but you see where this is going.
If you want to power A to t, the formula is:

At = PΛtP−1

Powering matrices is a common practice in machine learning.
You probably won’t have to write code for it. But still, I can assure
you that when you are applying algorithms to data, it is likely that
at some point, it will happen. Suppose we try to interpret the equa-
tion for diagonalization geometrically. In that case, we see that we
can represent a linear transformation as one rotation, followed by a
stretch, and then another rotation. Let’s experiment: For that we’ll
need a volunteer, anyone? Anyone at all? Mr. −→u , welcome back,
sir.

Firstly we will transform it with A. Following this, we will take
a longer route, going from P−1 to Λ, and finally to P . Okay, −→u has
the coordinates (1, 3)T , and when mapped by A it results in:

A.−→u =

(
−5 2
−4 1

)
.

(
1
3

)
=

(
1
−1

)
The plot bellow illustrates the transformation A on −→u , which we

represent with
−→
u∗:
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−3

−2

−1
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−→u

−→
u∗

Figure 4.30: Matrix diagonalization - Where −→v needs to go.

Let’s now check what happens if we rotate, stretch and rotate
again the vector −→u with PΛP−1. The result has to be a vector with
coordinates (1,−1)T . There is one thing missing. Well, it is more like
three; the dam matrices. We have calculated the eigenvectors of A,
so we are good in regards to P . It is a matrix with the eigenvectors of
A for columns. Now Λ is even more accessible. It is a matrix whose
diagonal has for entries the eigenvalues of A, and the remaining
entries are 0. That fellow P−1 is the inverse of P , and we already
know how to invert a matrix, so we are in no danger of being stuck.

With this, we are ready to start, so bring on the first rotation,
please, maestro:

P−1.−→u =

(
2 −1
−2 2

)
.

(
1
3

)
=

(
−1
4

)
=
−→
u∗1

Now, let’s scale it:

Λ.
−→
u∗1 =

(
−3 0
0 −1

)
.

(
−1
4

)
=

(
3
−4

)
=
−→
u∗2

Finally, let’s rotate it again:

P.
−→
u∗2 =

(
1 1

2

1 1

)
.

(
3
−4

)
=

(
1
−1

)
=
−→
u∗3
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When we rotate −→u with P−1 we end up with a transformed

vector
−→
u∗1 that is then stretched by λ into a new vector called

−→
u∗2.

This is then rotated by P to result in
−→
u∗3 which in turn, has the same

coordinates as −→u . There is another name for this diagonalization
technique. It is also known as eigendecomposition, which is a special
case of matrix decomposition.

x

y

−5 −4 −3 −2 −1 2 3 4 5

−5

−4

−3

−2

−1

3

4

5

−→u

−→
u∗
1

−→
u∗
2

−→
u∗
3

Figure 4.31: Matrix diagonalization - The full journey of −→v .

The only catch is that the matrix that we decompose has to
be square. Otherwise, we can’t use this technique. Unfortunately,
square matrices are as standard as tax rebates, which means they
rarely come by, and, if you do come across one, you probably fucked
up somewhere. Don’t worry, it happens. So, if square matrices are
not that common, there’s got to be a way to decompose any matrix
shape. And there is. You can refer to it as the single value decom-
position, or by its street name, SVD. These techniques of splitting a
matrix into a multiplication of newly created matrices with particu-
lar characteristics have great visual interpretations. When it comes

100



4.3. Gatherings in Space - Systems of Linear Equations

to introducing this new form for decomposing a matrix, we will focus
on that.
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Chapter 5

Break Them Down - Matrix
Decomposition

We started simple, with a vector, and from that geometric idea
we made our way through many linear algebra concepts. Some of
them apply directly to real-world scenarios, like the dot product.
Others are somewhat more abstract but still have great applicabil-
ity to helping us deduce different concepts in linear algebra, like the
eigenvectors. With the eigenvectors came a form of matrix decom-
position, the eigendecomposition. We transformed a matrix into a
product of three different matrices, namely two rotations and a scal-
ing term. It is not a rule to decompose a matrix into three matrices.
There are cases where we can decompose a matrix into a product
of two others. However, in this book, we will cover two approaches
to decomposition that happen to split a matrix into three different
matrices: the eigendecomposition, which we just went through, and
the single value decomposition, which will follow.

Before jumping into equations, let’s check with some visuals what
happens when we rotate, stretch and rotate a vector again. Consider

a generic vector
−→
t . Now to transform

−→
t into

−→
t∗ we first perform a

rotation of θ degrees from
−→
t to

−→
t∗ . The result is a vector called

−→
tθ

that will then be scaled σ units into
−→
t∗ :



x

y

−1 1 2 3 4 5 6
−1

1

2

3

4

5

6

−→
t

−→
t∗

−→
tθθ

Figure 5.1: A rotation and a stretch.

In other words, we know where we need to go, we are just break-
ing the path down into different stages. If A is a linear transforma-
tion, we can rewrite A as a product of rotations and stretches. For
example, if you wish to rotate a vector by θ degrees, a matrix like
the following will do the job:(

cos(θ) − sin(θ)
sin(θ) cos(θ)

)
For a scaling operation, a diagonal matrix will be able to help:(

σ1 0
0 σ2

)
The first component of the vector gets scaled by a factor of σ1,

while the second gets treated by σ2. So, a linear transformation will
take any vector from the vector space, rotate it by the same angle,
and then stretch it by some amount. Let’s now focus our attention
on a particular case, a circle.

We can define a pair of vectors to form a set of axes in the circle,
and, as with the Cartesian plane, let’s make them perpendicular.
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−→v1

−→v2 A −→
v∗1

−→v2∗

Figure 5.2: What happened to that circle?

The vectors −→v1 and −→v2 that form this axes are also of the length
of the circle’s radius. Maintaining the perpendicular orientation of
these vectors after transforming them means that we will have a new
axes in the newly transformed space. Therefore, it will probably
be possible to derive the characteristics of these newly transformed
vectors as a function of rotations and stretches.

If we stretch and rotate a circle, we end up with an ellipse, with
−→v1 and −→v2 now constituting the minor and major axes of this newly
mapped elliptical shape. In addition, if we define the norm of the
vectors that compose the original axes to be one, perhaps we could
understand how much they get scaled after a transformation, if we
also introduce some parameters to reflect it. We have set up a good
scenario in which to decompose a matrix into rotations and a stretch
by doing these two things.

What we’re missing is a linear transformation that not only guar-
antees that the angle between the vectors remains the same, but also
preserves the magnitude of their norms. There is a type of matrix
that always allows a transformation with these features to occur,
namely the orthonormal matrix. But what are these orthonormal
matrices? An orthonormal matrix, by definition, is a matrix whose
columns are orthonormal vectors, meaning that the angle between
them is 90 degrees and each of the vectors have a norm or length
equal to one. These types of matrices have some excellent proper-
ties that make computations easier and very intuitive. Consider an
example of a 2 × 2 orthonormal matrix. Let’s call it Q: not Mr Q,
just Q:

Q =

(
0 1
−1 0

)
For the matrix to be orthonormal, each column vector has to
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be of length one and they need to be at 90 degrees to one another,
which is the same as having a dot product equal to zero. Since we’re
still getting to know each other, and if you aren’t confident that my
police record is clean, then there is a case to say that our trust bond
is still under development. So let’s check the norms of those bad
boys:

−→q1 = (0,−1) and −→q2 = (1, 0)

It follows that:

‖−→q1‖ =
√

02 + (−1)2 = 1

‖−→q2‖ =
√

12 + 02 = 1

And the dot product is:

−→q1 .
−→q2 =

(
0
−1

)
.

(
1
0

)
= 0.1 + (−1).0 = 0

Okay, it seems we have an orthonormal basis; now I would like
to do an experiment. The name orthonormal is the perfect setup
for an adolescence defined by bullying. However, not everything is
terrible. There is something else happening with these matrices.
Multiplying QT by Q will create a relationship that we can leverage.
We know that, for matrix multiplication, we use the dot product
of the columns by the rows; if the vectors are orthogonal, some of
those entries will be 0. Let’s transpose Q and see what the deal is
with this:

QT =

(
0 −1
1 0

)
And:

QTQ =

(
0 −1
1 0

)
.

(
0 1
−1 0

)
=

(
1 0
0 1

)
This is a result that is definitely worth paying attention to as

we can build a connection between the inverse and the transpose
matrices. But first, let’s see if this happens for any size of matrix.
For example, say that we have Q, which is an orthonormal matrix,
but this time it has n vectors −→q :

Q =

 −→q1
−→q2 . . . −→qn
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So −→q1 , ...,
−→qn are all orthonormal vectors which form the columns

of Q. The transpose of Q will have this shape:

QT =


−→q1

T

−→q2
T

...
−→qnT


It follows that, multiplying QT with Q:

Q =

 −→q1
−→q2 . . . −→qn

 .


−→q1

T

−→q2
T

...
−→qnT

 =


1 0 . . . 0

0 1 . . . 0
...

... . . . ...

0 0 . . . 1


The columns of Q are orthogonal vectors, so the dot products

among them are 0. Therefore, if QT has the same vectors as Q,
most of the dot products will also have zero value. The exception is
when we take the dot product of the vector by itself, which means
that all of the non-zero elements will be on the diagonal. Adding
to this, we also know that the vectors −→q have a norm equal to one,
so the resultant matrix will be the identity I. Let’s bring back the
transformation of a circle into an ellipse, but this time, let’s define−→
v∗1 and

−→
v∗2 in such a way that we can quantify how much they are

scaled by A. The vectors −→v1 and −→v2 , are scaled and rotated by A.
We know that the angle between them will not change, as we’re
using an orthonormal matrix to perform the mapping, but how the
vectors will scale at this point is still unknown. We can solve that by
defining two unit vectors, −→u1 and −→u2, that will tell us the direction

of the new set of axes formed by
−→
v∗1 and

−→
v∗2 . Because −→u1 and −→u2 were

defined with a norm that requires a length of 1, we can quantify the
change in length that is a consequence of applying A. To do so, we
can multiply them by a scalar, for example, σ1 and σ2. So the new
axes will be: −→

v∗1 = σ1
−→u1 and

−→
v∗2 = σ2

−→u2

We transformed a circle into an ellipse, and consequently, the

vectors −→v ’s into
−→
v∗ ’s. Then we decided to find a new way to repre-

sent the transformed version of these same −→v ’s. This allowed us to
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define these vectors by the multiplication of a scalar σ with a vector
−→u . There are names for all of these new appearing players. The
−→u ’s are the principal axes and the σ’s the single values.

−→
v∗ = σ.−→u

single values principal axes

A transformation of −→v1 by the matrix A can then be represented
as:

A.−→v1 = σ1.
−→u1

The only thing we did was to replace
−→
v∗1 with A.−→v1 . This equation

reflects everything we have been discussing up until this point, a
transformation of −→v1 enabled by A is equal to a scaled rotation of
an orthonormal vector −→u1. The beauty of linear algebra is the ease
with which we can move into higher dimensions. Our example was a
circle, which is in a vector space of size two. We selected this space
so that we could visualise these concepts. In reality, if you apply any
matrix decomposition, there is a significant chance that you will be
working with larger space sizes. One of the applications of matrix
decomposition is to reduce dimensions, so logically these matrices
will have higher dimensionality. An explanation of this concept and
a few others will follow shortly. We just need an equation, and we are
halfway there. If you recall, the manner in which we handled earlier
concepts was to define a starting case and then to accommodate a
generalised solution for n. For all of the vectors, we can have an
equation like:

A.−→vi = σi.ui with i = 1, 2, ..., r (5.1)

With:

σ1 ≥ σ2 ≥ ..σr > 0
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Algebraically, we can express it like:
A


.

 −→v1
−→v2 . . . −→vr

 =

 −→u1
−→u2 . . . −→ur

 .

 σ1 . . . 0
... . . . ...

0 . . . σr



This is simply a different way of writing equation 5.1. Finally,
we can use the following notation:

A.V = U.Σ

Greatness would come if A was by itself in this equation. In
mathematics, loneliness is not necessarily a bad thing. We need to
represent A via a product of three matrices, namely two rotations
and a scaling term. But, we need A to be isolated, which we can
achieve by multiplying each of the sides of the equation by the inverse
of V :

A.V.V −1 = U.Σ.V −1

And because V is orthonormal, the matrix V −1 = V T :

An×m = Um×r.Σr×r.V
T
r×n (5.2)

Where:

• U represents a rotation.

• Σ is the scaling matrix.

• V T is another rotation.

The image below is a representation of the entire transformation
and decomposition process.
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V T

Σ

U

Figure 5.3: The detailed explanation of what went down with the circle - full trans-
formation.

The vector’s basis, or the axes, are rotated into a new set of or-
thonormal vectors via V T . The resulting set of vectors is then scaled
by the matrix Σ before being rotated by U to produce the desired
version of the transformed vectors. Now would be a good moment to
pause and look into the dimensionalities of the matrices in equation
5.2. The matrix U is so named because its columns are all the −→u ’s
and these are all in Rm. Meanwhile V T has rows represented by the
−→v ’s and these fellows are in Rn. We can verify this by looking into,
for example, the equation that we defined previously:

Am×n.
−→v1 = σ1.

−→u1

If A is of size m × n, the only way for that left-hand multipli-
cation, Am×n.

−→v1 to be possible is if −→v1 is a vector with dimensions
n× 1. The result of this will be a matrix of size m× 1:

Am×n.
−→v 1n×1

= σ1.
−→u1

Computing A.−→v1 results in:

(A.−→v1)m×1 = σ1.
−→u1

If σ1 is a scalar, it will have no effect on the dimensions of −→u1

after we multiply the two together. So, if the element on the left
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side of the equation has dimensions of m×1, then −→u1 must also have
dimensions of m × 1, otherwise we can’t verify the equality above.
Cool, so it follows that v1, .., vr ∈ Rn and u1, .., ur ∈ Rm, meaning U
is related to the columns in A and V is related to the rows. If we
now consider the four subspaces that we introduced previously, we
can define the column space and the row space of A as functions of
U and V , such that:

• The set u1, .., ur is a basis, in fact an orthonormal basis
for the column space of A.

• The set v1, .., vr is a orthonormal basis for the row space
of A.

We have gathered some knowledge about all of the vectors −→u ’s
and all of the vectors −→v ’s, but we still don’t know what r can pos-
sibly be. The matrix Σ is a diagonal matrix of size r × r. Each
column has only one non-zero value, and the position of this ele-
ment varies from column to column. The fact that it is never at the
same column index makes all the columns of Σ linearly independent.
Consequently, Σ has a rank value of r. Going back to U , we know
that it forms an orthonormal basis, and if this particular matrix has
r columns, the rank of this matrix is also r. Multiplying U by Σ
results in the matrix UΣ, which will also have rank r as Σ will only
scale U . Therefore, the columns will remain linear and independent.
For simplicity, let’s refer to UΣ as U ∗. We now need to understand
what happens when we multiply U ∗ by V T ; we still don’t know how
to relate the magnitude r to A. Okay, let’s consider a generic column
−→y that belongs to the column space of U ∗V T such that:

−→y ∈ Col(U ∗V T )

So, by considering a column −→y , we can take some vector −→x ∈ Rn

and transform this into −→y via U ∗V T :

−→y = U ∗V T .−→x (5.3)

If we rewrite equation 5.3 to:

−→y = U ∗
(
V T .−→x

)
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This indicates that −→y is also in the columns of U , which means
that:

−→y = U ∗.
−→
x∗ (5.4)

If −→y is in the column space of U , then we must also have a

vector
−→
x∗ such that

−→
x∗ ∈ Rr, which when transformed by U ∗, results

in −→y . If you recall, we have demonstrated that V T .V is equal to the
identity I. We can ”squeeze” this into equation 5.4:

−→y = U ∗.Ir
−→
x∗

We can replace Ir by V T .V :

−→y = U ∗V T
(
V.
−→
x∗
)

Well, this means that this geezer (yes I lived in England and
loved it!) −→y ∈ Col

(
U ∗.V T

)
. Before we got into this crazy sequence

of equations, we had concluded that the rank of U was r, and now
we have just shown that Col (U ∗) = Col

(
U ∗V T

)
so:

rank(U ∗) = rank(U ∗V T )

If we wish to calculate the rank of A, we can do so using the
following expression:

rank(A) = rank
(
UΣV T

)
The conclusion is that the right side of the equation is of rank r,

so we have:
rank(A) = r

Now we are in a state where we can understand the dimensions
of the four subspaces of A. So far, we have defined two: the row
space with size r, and the column space with the same dimension.
The only subspaces that still haven’t shown up to the party are
the nullspace and the left nullspace. And believe me, we do need
to know the sizes of these good fellows. For that, we can use the
rank-nullity theorem. Let’s start with the nullspace. We know that:

Rank(A) +Nullity(A) = n
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So:
Nullity(A) = n− r

The nullspace of A has dimension n− r and the basis for it are
the vectors vr+1, ..., vn. The left nullspace is of size m− r because:

Rank(AT ) +Nullity(A) = m

And its basis is ur+1, ..., um. These are important results, and I
will explain why, but first I would like to box them up so we can
store them all in one place:

• u1, ..., ur is an orthonormal basis for the column space
and has dimensions of r.

• ur+1, ..., um is an orthonormal basis for the left nullspace
and has dimensions of m− r.

• v1, ..., vr is an orthonormal basis for the row space and
has dimensions of r

• vr+1, ..., vm is an orthonormal basis for the nullspace and
has dimensions of n− r

Let’s bring back the equation that reflects the decomposition of
A:

Am×n = Um×rΣr×rV
T
r×n (5.5)

If we take a closer look at the dimensions of each matrix, we can
see that we are missing the vectors for both the nullspace and left
nullspace in matrices V and U . Equation 5.5 represents the reduced
version of the SVD. You may also remember this technique as the
Single Value Decomposition that we spoke about earlier, but all the
cool kids prefer to use its street name.
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5.1 Me, Myself and I - The Single
Value Decomposition (SVD)

The reduced form of this decomposition can be represented by:

A = UrΣrV
T
r

Where r is the rank of matrix A as we proved earlier. A visual
representation of the reduced single value decomposition is always
useful.

Am×n

=

Um×r

.

Σr×r

0

σ1 0

σ2

.

V T
r×n

Figure 5.4: Colourful blocks that although not as cool as legos, are still helpful.

If we wish to have a full version of the singular value decompo-
sition (SVD), we must incorporate the left nullspace in the matrix
Ur and the nullspace in the matrix Vr. As these vectors are all or-
thogonal, we can do this without causing any problems with the
orthonormality of Ur and Vr. In the matrix Σ we will include any
single value that has a value of zero or, if necessary, add a row of
zeros to ensure it’s of size n × n. We know the rank of U and the
dimension of the nullspace, as these are r and m − r respectively.
These dimensions mean that U will be of size m×m. Similarly, V
will be of size n× n because the nullspace has dimensions of n− r.
So, the equation of the full single value decomposition is very similar
to that of the reduced version:

Am×n = Um×mΣm×nV
T
n×n (5.6)
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Graphically, this is what the full SVD looks like:

Am×n

=

Um×m

.

Σm×n

0

0

0

σ1

0

0

σ2

0

0

0

0

0

0

.

V T
n×n

Figure 5.5: Even more colourful blocks! A failed attempt on coolness - Full SVD.

There is no information loss between the complete SVD and the
reduced version of the same algorithm. The difference is that the
reduced version is cheaper to compute. The SVD is probably the
most potent decomposition from linear algebra that you can apply in
machine learning. The algorithm has many applications, including
recommendation systems, dimensionality reduction, creating latent
variables, and computer vision. It is a versatile technique, and that
is why it is crucial that we fully understand it.

The only thing we’re missing, and it’s probably one of the most
essential, is an understanding of how to compute V , U , and Σ. We
already did the visual work, so the central concept of this technique
is covered in the plots. We defined the single value decomposition
in such a way that the rotation matrices must be orthonormal. This
is a constraint that will mean that the matrices from which we want
to obtain a decomposition have to have some kind of properties
that ensure orthogonality after some transformation. There is a
type of matrix that will have something to do with orthogonality,
the symmetrical ones. If a matrix is symmetrical, not only are the
eigenvalues real but also the eigenvectors are orthogonal. Perhaps
this is a good starting point, so let’s explore it.

The definition of a symmetric matrix is straightforward. A sym-
metric matrix is such that A = AT . Visually, it will be a matrix in
which elements at the top of the diagonal will be equal to those at
the bottom of the diagonal. Think of the diagonal as a mirror:

A =

2 3 6

3 4 5

6 5 9


114



5.1. Me, Myself and I - The Single Value Decomposition (SVD)

If you switch the rows with the columns to get the transpose, you
will end up with the same matrix. The only caveat now is that, in
the SVD equation, A does not have to be a square matrix, let alone
symmetrical. So, the conclusion is that the SVD is shit and I am
a liar. . . or. . . or it means that there is a way we a can transform
A into a square symmetrical matrix. Let’s start by thinking about
the dimensions. If A is of size m × n, then the only way to have a
square matrix is if we multiply A by a matrix of size n×m. Okay,
so which matrix can we define to achieve such a thing? Let’s bring
back the SVD equation:

A = U.Σ.V T (5.7)

At this point, we only know A from equation 5.7. So randomly
selecting a matrix of the correct size to multiply by A seems like a
bad idea (right?!). After all the work we’ve invested into defining
orthonormal transformations and scaling factors to keep track of
movement in space, throwing in something random at this stage
won’t work. Like any subject politicians try to convince us about,
we have two options to choose, meaning that if we select one, the
other is automatically wrong.

No need to think about anything! It is either A or AT . Picking
A won’t work because this matrix can be rectangular and therefore
we can’t multiply it by itself. So AT is what remains. Remember
that the multiplication of two matrices is a composition of scaled
rotations achieved by dot products between rows and columns. A
and AT have the same vectors for entries, and the only difference
is that they’re displayed differently. So, we can guarantee that the
matrix will be square, but we are still unsure if it will be symmetrical.
Consider an example of matrix A defined as such, and let’s check
what happens when we perform the dot product between the rows
and columns with the same colour:

A =

2 1 7 4

3 5 2 1

5 −1 4 3


3×4

and AT =


2 3 5

1 5 −1

7 2 4

4 1 3


4×3
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Let’s say B is the resultant matrix from the multiplication of
A by AT . B has dimensions of 3 × 3. The element b1,2 is the dot
product between the vectors highlighted in blue, and the element
b2,1 is the result of the dot product between the orange highlighted
vectors. The result of these dot products is equal. The vectors are
the same in the two operations, therefore b1,2 = b2,1. This result will
occur for every element of these matrices except for the diagonal
since the diagonal comes after the dot product between two equal
vectors. The first step of getting the three components of the SVD
for the equation, A = U.Σ.V T , is done: now we will multiply both
sides by AT :

AT .A = (U.Σ.V T )T .U.Σ.V T

There are a lot of T ′s in that equation, but as we have diagonal
and orthonormal matrices, we can make the equation look a little
better. It follows that (A.B)T = BT .AT , and if we apply this to the
equation, it becomes:

AT .A = V.ΣT .UT .U.Σ.V T

Okay, so I have two pieces of information about these matrices
that will allow some further simplification:

1. That guy, Σ is a scaling matrix and therefore a diagonal
matrix. The only non-zero entries are on the diagonal,
and therefore the transpose is equal to the original ma-
trix, i.e, Σ = ΣT .

2. The matrix U is orthonormal, and it was proved ear-
lier that the transpose of matrices with this property are
equal to the inverse: U−1 = UT .

It follows that:

AT .A = V.ΣT .UT .U.Σ.V T

And the multiplication of UT by U will result in the identity
matrix such that:

AT .A = V.Σ.Σ.V T
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Which is equivalent to:

AT .A = V.Σ2.V T (5.8)

We are getting closer to a way to compute V , which is not bad,
but we still don’t know how to get Σ or U . The problem is that
we are depending on Σ to compute V . Our solution is to fetch
something that we learned earlier and then to apply it to see if we
can make some progress. Looking at 5.8, we know that Σ2 is full
of scalars on its diagonal, and, just to satisfy your curiosity, they
are all positive. The only equation I can recall that we’ve covered
lately with scalars on the diagonal of a matrix is the one we used to
compute eigenvalues. Let’s see if something can be done with this,
but allow me to refresh your memory:

A.−→v = λ.−→v (5.9)

Let’s try to make equation 5.8 look similar to equation 5.9. For
that, we need a vector or another matrix on the right side. We know
that V T = V −1 and we can leverage this by multiplying 5.8 by V on
both sides:

AT .A.V = V.Σ2.V −1.V

And, it follows that:

AT .A.V = V.Σ2 (5.10)

Take a good look at this bad boy. Sometimes mathematics is
almost like an illusion. Let’s say that A is equal to AT .A, then V
takes the place of −→v , and the matrix which just has elements on
its diagonal replaces λ. This means we have created an eigenvalue
problem where Σ is an eigenvalue matrix. Okay, we can work with
this! So, we have found a way to compute Σ and V , but we still need
U . I multiplied A on the left by AT , and all the U ’s went for a walk:
they disappeared from the equation. So perhaps I can multiply A
by AT , but this time on the right. And who will be taking a walk
this time? That’s right; it will be the V ’s. Let’s check:

A.AT = U.Σ.V T (U.Σ.V T )T
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I think you can see where this is going. We do the same as we
did before when we computed the equation by multiplying A by AT

on the right:
A.AT = U.Σ.V −1.V Σ.UT

Then:
A.AT = U.Σ2.UT

And multiplying by U on both sides, it follows that:

A.ATU = U.Σ2 (5.11)

We end up with a similar eigenvalue problem, and Σ happens to
be the same for the two equations. Solving these eigenvalue equa-
tions will give us U and V . And as A.AT is a square symmetric
matrix, its eigenvalues will all be distinct and real; when squared
rooted, they will give us the single values. The eigenvectors that
form U and V will be orthogonal, allowing any vectors transformed
by these matrices to preserve the angles between them. If we recall
the ”requirements” for all those transformations when done graph-
ically, this was exactly it. There is only one more thing, the ma-
trix Σ which contains the single values will be sorted such that,
σ1 ≥ σ2 ≥ ... ≥ σn.

I believe that the computation of such matrices will become solid-
ified for you with a simple numerical example. Consider the matrix
A defined as:

A =

(
1 −2 0

0 −2 1

)
and AT =

 1 0

−2 −2

0 1

 (5.12)

The first step will be to compute A.AT and AT .A:

A.AT =

(
1 −2 0

0 −2 1

)
.

 1 0

−2 −2

0 1

 =

(
5 4

4 5

)

AT .A =

 1 0

−2 −2

0 1

 .

(
1 −2 0

0 −2 1

)
=

 1 −2 0

−2 8 −2

0 −2 1
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To compute the matrix U , we need to solve the eigen problem in
equation 5.11, let’s start:

det(AAT − λ.I) =

∣∣∣∣∣5− λ 4

4 5− λ

∣∣∣∣∣ = λ2 − 10λ+ 9

= (λ− 9)(λ− 1)

This results in λ1 = 9 and λ2 = 1. Now we need the eigenvectors:

A.AT .−→u = λ.−→u

For the value of λ1 = 9 it follows that:(
−4 4

4 −4

)
.

(
u11

u12

)
= 0

That, in turn is equivalent to:{
−4.u11 = −4.u12

4.u11 = 4.u12

⇔
{
u11 = u12

So we have u11 = 1 and u12 = 1 meaning that −→u1 = (1, 1)T .
Remember that U is an orthonormal basis. Its vectors must have
length 1. We need to normalise them. Let’s start by calculating −→u1’s
norm:

‖u1‖ =
√

1 + 1 =
√

2

So u1 is such that:

−→u1 =

 1√
2

1√
2


Doing the same for the eigen value, λ = 1:(

4 4

4 4

)
.

(
u21

u22

)
= 0

With: {
4.u21 = −4.u22

⇔
{
u21 = −u22
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In this case we have found that u211 = −1 and u22 = 1, mean-
ing that −→u2 = (−1, 1)T . The norm of −→u2 is also

√
2, therefore the

normalised form of −→u2 is:

−→u2 =

− 1√
2

1√
2


Perfect, so we have computed the matrix U . It is an orthonormal

matrix because the eigenvectors have been normalized and AT .A is
a symmetrical matrix. Its eigenvectors are therefore orthogonal:

U =

 1√
2
− 1√

2

1√
2

1√
2


Next, we need the eigenvalues of A.AT :

det(AT .A− λ.I) =

∣∣∣∣∣∣∣∣
1− λ −2 0

−2 8− λ −2

0 −2 1− λ

∣∣∣∣∣∣∣∣
= (1− λ) [(8− λ)(1− λ)− 4]− 4(1− λ))

= (1− λ)2(8− λ)− 8(1− λ)

= (1− λ)(8− 9λ+ λ2 − 8)

= λ(1− λ)(λ− 9)

Thus, it follows that, λ1 = 9, λ2 = 1 and λ3 = 0. And to
define V , we are just missing the normalised eigenvector for each
eigenvalue:

For λ1 = 9: −8 −2 0

−2 −1 −2

0 −2 −8

 .

v11

v12

v13

 = 0
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−8.v11 − 2.v12 = 0

−2.v11 − v12 − 2.v13 = 0

−2.v12 − 8.v13 = 0

⇔


−8.v11 = 2.v12

−2.v11 − v12 − 2.v13 = 0

−2.v12 = 8.v13{
−8.v11 = −8.v13

−2.v11 − v12 − 2.v13 = 0
⇔

{
v11 = v13

−2.v11 − v12 − 2.v11 = 0{
v11 = v13

−v12 − 4.v11 = 0
⇔

{
v11 = v13

v12 = 4.v11

For −→v1 we have the vector (1,−4, 1)T , and its norm is given by:

‖v1‖ =
√

12 + (−4)2 + 12 =
√

18

This makes the normalised version of −→v1 equal to:

−→v1 =


1√
18

−4√
18

1√
18


Carrying on with the eigenvalue calculations, for λ2 = 1, we have

the following:  0 −2 0

−2 7 −2

0 −2 0

 .

v21

v22

v23

 = 0


−2.v22 = 0

−2.v21 + 7.v22 − 2.v23 = 0

−2.v22 = 0

⇔

{
v22 = 0

−2.v21 − 2.v23 = 0

{
v22 = 0

v21 = −v23
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For −→v2 we have the vector −→v2 = (−1, 0, 1)T and the norm of −→v2 :

‖v2‖ =
√

(−1)2 + 12 =
√

2

So the normalised version of −→v2 is:

−→v2 =


− 1√

2

0

1√
2


Finally, −→v2 , where λ3 = 0, is: 1 −2 0

−2 8 −2

0 −2 1

 .

v31

v32

v33

 = 0


v31 − 2.v32 = 0

−2.v31 + 8.v32 − 2.v33 = 0

−2.v32 + v33 = 0

⇔

{
v31 = 2.v32

2.v32 = 2.v33{
v31 = 2.v32

v31 = v33

For −→v3 we have the vector (2, 1, 2)T , and its norm is equal to:√
22 + 12 + 22 =

√
9 = 3

Which makes the normalised version of −→v3 :

−→v3 =


2
3

1
3

2
3


The only matrix we’re missing is Σ, but in fact, we have all the

information we need to populate this matrix because the σ´s are the
square root of the eigenvalues, so σi =

√
λi:

Σ =

(
3 0 0

0 1 0

)
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That was quite a bit of work, but thankfully we have computers,
so it’s not necessary to do this every time you wish to apply this
algorithm. All the same, I believe that going over a simple example
is always helpful to solidify your understanding of the algorithm
in full. There’s also the added bonus that these three matrices will
allow you to do several things, so understanding how they are derived
and what constitutes each is a great piece of knowledge to add to
your arsenal. Finally, we can represent A as:

UΣV T =

 1√
2
− 1√

2

1√
2

1√
2


2×2

.

(
3 0 0

0 1 0

)
2×3

.


1√
18
− 4√

18
1√
18

− 1√
2

0 1√
2

2
3

1
3

2
3


3×3

We should check that I’m not just talking nonsense or making
shit up! Every time I use a sauna, I think about something simi-
lar. What if the guy that invented this concept of a room that gets
really warm and steamy was just fucking with us, and now every-
body thinks it’s great? To avoid this kind of train of thought, let’s
multiply those three matrices:

=

 3√
2
−1

2 0

3√
2

1
2 0

 .


1√
18
− 4√

18
1√
18

− 1√
2

0 1√
2

2
3

1
3

2
3



=

(
1 −2 0

0 −2 1

)
= A

In the example we’ve just covered, we computed the full version
of the single value decomposition, which implies that both the null
and left nullspaces are part of the matrices V T and U . Previously,
we concluded that the nullspace would be in the rows of matrix
V T . The equation that allowed us to compute the eigenvector for an
eigenvalue of 0 is the same as the one we defined for calculating the
nullspace: A.−→v = 0. But what about the left nullspace? Well, as
a result of the decomposition, I can tell you that this is (0, 0), but
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let’s verify this. We know that the left null is:

AT .−→x = 0⇔

 1 0

−2 −2

0 1

 .

(
x1

x2

)
=

(
0

0

)

If we solve that system, we end up with:
x1 = 0

−2x1 − 2x2 = 0

x2 = 0

As expected, the left nullspace is the vector (0,0), and its dimen-
sion is zero. Therefore, if we wish to use the reduced decomposition
version, we need to remove the nullspace from the matrix V and
adjust the matrix Σ accordingly:

UrΣrV
T
r =

 1√
2
− 1√

2

1√
2

1√
2


2×2

.

(
3 0

0 1

)
2×2

.

 1√
18
− 4√

18
1√
18

− 1√
2

0 1√
2


2×3

This is a lot of mathematical contortions: rotations, stretches,
and equations. Next, I’ll present a small example of a real-life sce-
nario where the decomposition of matrices is an excellent way to
extract practical, valuable information. But before that, I would
like to point out that the single value decomposition includes nearly
everything we’ve learned so far in this book: it is thus an excellent
way for us to make a self diagnosis on the solidity of our understand-
ing of the linear algebra concepts that have been presented.

On the theme of applicability, I believe that there are three main
areas in which to use SVD. The first one, my favourite, is the cre-
ation of latent variables. These are hidden relationships that exist
within data. An elementary example would be for me to predict if it
was raining or not without information on the weather report. For
instance, I could do so by observing whether your jacket is wet or
not when you arrive home.

I can also discuss an example where I produced great results
when trying to predict outcomes related to human emotions, all by
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analysing hidden variables. It’s hard to have a data set contain-
ing a happiness feature from the get-go, but perhaps these can be
extracted from the data as a latent variable. With SVD, these vari-
ables are present in the matrices U and V . These types of variables
also allow us to reduce the dimensionality of a data set.

Secondly, the singular value decomposition allows us to make
an excellent approximation of a matrix. An approximation can be
helpful for two purposes: we can remove data or information that is
not relevant to what we are trying to do, making a prediction, for
example; and we can condense this approximation to a few vectors
and scalars, which can be extremely useful for storing data more
efficiently.

Lastly, you can build a simple recommendation system. As this
is linear algebra and the focus of this book is to visualise concepts
in order to understand how they work, I will illustrate all of the
applications described above in a real-world example. Let’s consider
a matrix containing item ratings by users. Each user can rate a given
item with an integer score that ranges from 1 to 5. A matrix is an
excellent choice to represent these dynamics. Let’s say we have six
items and we’ll say they are songs. Yep, six different songs that users
have rated according to their preferences, and our sample has eight
users. Now yes, I know, this is a tiny, tiny data sample. And yes,
you are likely to encounter far bigger data sets when the time comes
to apply a single value decomposition, but for illustration purposes,
this is enough. Let’s then construct this matrix:

A =

song0 song1 song2 song3 song4 song5



user0 1 2 3 4 1 5
user1 4 1 0 3 5 1
user2 3 0 1 2 2 4
user3 0 2 1 0 1 5
user4 0 3 1 3 4 1
user5 2 1 1 4 2 3
user6 0 4 1 4 0 3
user7 5 0 3 0 1 5

(5.13)

The matrix A is defined by 5.13. Now we need to decompose
this into UΣV T , but this time I will use a computer to calculate the
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full version of the SVD. A will then be decomposed into:

A8×6 = U8×8.Σ8×6.V
T

6×6

It follows that the matrix U has the following entries:

U =

context1 context2 context3 context4 context5 context6 context7 context8



user0 −0.45 0.03 −0.34 −0.26 −0.13 −0.55 0.02 −0.52
user1 −0.35 0.17 0.70 0.08 0.06 0.26 −0.13 −0.49
user2 −0.35 −0.23 0.14 −0.06 −0.46 0.17 0.71 0.19
user3 −0.27 −0.15 −0.37 0.72 −0.28 0.25 −0.25 −0.10
user4 −0.28 0.51 0.13 0.44 0.21 −0.45 0.18 0.39
user5 −0.36 0.12 0.07 −0.36 −0.37 0.04 −0.57 0.48
user6 −0.32 0.37 −0.42 −0.23 0.42 0.55 0.16 0.02
user7 −0.38 −0.68 0.09 0.00 0.55 −0.10 −0.09 0.19

For a full version of V , we have:

V =

context1 context2 context3 context4 context5 context6


song0 −0.36 −0.28 −0.26 −0.46 −0.35 −0.62
song1 −0.46 0.45 −0.20 0.54 0.28 −0.41
song2 0.55 −0.31 −0.19 0.00 0.61 −0.44
song3 −0.28 0.33 −0.10 −0.66 0.56 0.23
song4 0.40 0.64 0.42 −0.24 −0.20 −0.40
song5 0.34 0.34 −0.82 −0.02 −0.27 0.17

Finally, Σ is equal to:

Σ =



15.72 0 0 0 0 0

0 6.82 0 0 0 0

0 0 6.38 0 0 0

0 0 0 3.13 0 0

0 0 0 0 1.8 0

0 0 0 0 0 1.71

0 0 0 0 0 0

0 0 0 0 0 0


The first thing to notice is that these are three big-ass matrices!

I don’t know if it is the coffee I just drank or the size of these
bad boys, but this is giving me anxiety! While there is a lot of
information to deal with, we’ll take it step by step. We can deduce
the values for Σ via an eigenvalues problem, meaning that if we
multiply U and Σ, we will end up with the projections of all the
vectors −→u ’s into the newly transformed axes; remember that each
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of the −→u vectors are orthonormal. And, if we constructed Σ in a way
such that σ1 ≥ σ2 ≥ ... ≥ σn, then it makes sense to assume that
the highest sigma value will be the furthest point projection. This
will therefore represent the biggest spread and hence the highest
variance. Let’s define a measure of energy as:

n∑
i=1

σi

We can then select how much of it to use. Say for example, that
we need 80% of this energy, it then follows that the total energy for
our system is equal to:

6∑
i=1

σi = 35.57

If we wish to use that percentage value, we can remove the values
of σ4, σ5, and σ6. Well now, this means two things: we can replace
these sigma values with zeroes, which will result in a trio of new U ,
Σ and V T matrices, and consequently a new version of A; and if σ4,
σ5, and σ6 become zero, then the matrix Σ has the following format:

Σ =



15.72 0 0 0 0 0

0 6.82 0 0 0 0

0 0 6.38 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Essentially, we are just keeping the information represented by

the first three singular values, meaning that we will reduce every-
thing to three dimensions, which in machine learning is called di-
mensionality reduction. We get rid of some information to make
our lives easier. In this example, I wish to represent these relation-
ships visually, as the new contexts are very important. These are
the so-called latent variables, which define those cunningly hidden
relationships in data.
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The interpretation of these variables is up to you and it’s usually
linked to the nature of the problem that you are dealing with. In this
case, the context is the music genre. I should point out that there
are other applications for dimensionality reduction. For example,
clustering algorithms tend to work better in lower dimensionality
spaces. Working with a model with all of the available information
does not guarantee good results. But, often, if we remove some noise
we will improve the capacity of the model to learn.

What results from this reduction is a new version of the three
amigos U,Σ ,and V T , which we call the truncated single value de-
composition. This version of the decomposition is represented by:

Ãm×n = Um×t.Σt×t.V
T
t×n

In this case, t is the number of selected singular values, which
for this particular example is:

A8×6 = U8×3.Σ3×3.V
T

3×6

For the truncated version of U , Ut, we can remove the vectors
−→u 4 to −→u 8 because we replaced σ4 to σ6 with zero. The truncated
version of U has the following shape and entries:

Ut =

−→u1
−→u2
−→u3
−→u4
−→u5
−→u6
−→u7
−→u8


We can apply the same logic to the matrix Σ because the columns

will just be zeros after we replace the single values with zeros. We
can therefore remove them:

Σt =



σ1 0 0 0 0 0

0 σ2 0 0 0 0

0 0 σ3 0 0 0

0 0 0 σ4 0 0

0 0 0 0 σ5 0

0 0 0 0 0 σ6
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And V T will follow:

V T
t =



−→v1

−→v2

−→v3

−→v4

−→v5

−→v6


So, Ut is a matrix of users by context:

Ut =

context1 context2 context3



user0 −0.45 0.03 −0.34
user1 −0.35 0.17 0.70
user2 −0.35 −0.23 0.14
user3 −0.27 −0.15 −0.37
user4 −0.28 0.51 0.13
user5 −0.36 0.12 0.07
user6 −0.32 0.37 −0.42
user7 −0.38 −0.68 0.09

In this example, the matrix A contains information about user
ratings for different songs, so perhaps one interpretation of this con-
text’s variables could be the song genre: hip hop, jazz, etc. This
is just one possibility as the interpretation for this particular type
of variable is dependent on the business problem at hand. Now we
have another way of relating users, as we go from song ratings to
song genre, and we also have a smaller matrix, the matrix U . Be-
cause we were able to reduce the dimensions by only selecting the
three highest singular values, we can plot this thus:
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−0.45 −0.4 −0.35 −0.3 −0.5
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Figure 5.6: The secret space of the users.

We can identify some patterns in this plot in terms of similarity
of taste based on music genre. Specifically, user0 and user7 seem to
have similar tastes and the same seems to be evident with the pairs
of user2, user5 and user6, user3. It is true that, in this example, you
could identify these relationships by simply looking at the matrix A.
Still, your matrix will probably have a much higher dimensionality
in a real-world situation, and the number of columns will be much
larger. With this information, we could segment users based on their
music tastes.

An excellent way to do this would be to apply a clustering algo-
rithm to matrix U , as this would return user cohorts who share song
preferences. The reason we only use U is that this a fairly simple ex-
ample and the singular values are not that distinct. In case of higher
dimensionalities with singular values that differ more, it would be
better to use U.Σ. The immediate advantages of this include being
able to work in a smaller space. Certain algorithms will perform
well in these types of space, and it will be computationally cheaper
to train them. I won’t assume that these concepts are familiar to
you, so I will briefly explain. A clustering algorithm has the goal of
grouping data that shares identical features, in this case, users that
are similar to each other. If you were to run it on matrix U , the
outcome would probably be comparable to what I described above.
The result would be five groups:
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Cluster Population

1 user0 and user7

2 user2 and user5

3 user6 and user3

4 user1

5 user4

Now, to train a classifier. Hold on one moment; those are some
seriously fancy words that circulate in every meeting room and blog
on the internet. . . if you are completely new to machine learning,
“training” means to find a configuration for a set number of param-
eters that characterise a model or an equation.

Okay, back to the point, to train this you need a particular
dataset which has labels. These labels are like an outcome that
the features will characterise. So, for example, the metrics of the
data can be a set of measurements of an engine, and the label can
be whether or not the motor was working, a zero for not working
and a one otherwise. An algorithm will then accommodate a set
of parameters so that those two classes can be separated. For sim-
plicity, say that our model is a line. The equation for this shape is
y = mx + b. We want to build our model in a way that separates
our data into two groups. We aim to have as many zeros below the
line as possible, and the maximum number of ones above it. The
only thing we can control with that line are the parameters m and
b.

So, we will try to find a configuration that can separate our data
in the best way possible, and for that, we will be using the provided
data set. For example, we can start by randomly drawing a line in
space. Our goal is to have all of the one labels above the line and
all of the zero labels below the line. As we randomly selected values
for m and b, it’s likely that these values will not be the best right
away but how can we verify this?
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Well, this is why we need the labels. We can count the number
of ones that are above the line and the quantity of zeros that are
below the line. We can then tweak the values of m and b to see
if this result has improved, meaning that we have more ones above
and more zeros below the line respectively.

1

1

1
1

1

1
1

0

0

1
0

0

0

0
0

0

Figure 5.7: An example of separation achieved by a line.

The algorithm I’ve just described will look randomly for solu-
tions; these types of algorithms are generally called “greedy”. It
will not be a good heuristic if we don’t tell it where to look for the
best solutions. But this is just an example; if you are curious, one
way of providing an algorithm with information on where to move
is via derivatives.

Such concepts will be part of volume two, which will be a book
dedicated to calculus. The point here is to understand that, in order
to train a model, we need to get a configuration of parameters for an
equation (or several) that allows us to achieve our goal as well as we
can. So if we have a dataset with labels, there are times when we can
better separate data by using latent variables. As we are reducing
the number of columns going from A to U , the process is called
“dimensionality reduction” in machine learning. This is because we
have moved from a higher dimensional space to a lower one, thus
reducing the complexity of our problem. Going back to the example
of SVD, we haven’t looked into the information in matrix V . This
particular matrix happens to be an interesting one because it will
provide us with the relationship between genre and songs:
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Vt =

context1 context2 context3


song0 −0.35 −0.46 0.54
song1 −0.27 0.45 −0.30
song2 −0.26 −0.19 −0.19
song3 −0.46 0.54 0.00
song4 −0.35 0.27 0.60
song5 −0.62 −0.41 −0.44

Similarly, we can plot this to visually check for closer relation-
ships between songs rather than users:

−0.6 −0.5 −0.4 −0.3

0

0.5
−0.5

0

0.5 song0

song1

song2

song3

song4

song5

Figure 5.8: Another secret space, the one of the songs.

We can see that song0, song3 and song4 seem to be of the same
genre, while song5, is probably from a different genre. Finally, song2

and song1 seem to be from the same or a similar genre.

So, we have identified a use case for the single value decomposi-
tion. By computing U and V T , we found new hidden relationships
in the data, represented by the latent variables. We also learned
that we could leverage these relationships to train algorithms. Just
by itself, this is extremely useful, but we can do more with this
decomposition.

If you recall, a matrix is a linear transformation. When you
multiply a vector by a matrix, you will be moving these vectors,
a movement that can take place within the same space or between
different spaces. In this example, we have two matrices that we
can use to transform vectors. These are the matrices U and V T .
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Let’s look into V T . This matrix has context for columns, which
for us is the same as music genre, whereas the rows are songs. So
we went from users and song ratings, via matrix A, into a new
space, V T which relates songs by genre. We can create a vector
with user ratings and transform it with V T to understand which
genre this particular user is most interested in. Let’s check this with
an example. Say that we have user8 with the following ratings:

user8 = [5, 0, 0, 0, 0, 0]

If we now transform the user8 vector via the matrix V , we will
transform user8 into a space of songs by context:

[5, 0, 0, 0, 0, 0] .



0.35 −0.46 0.54

−0.27 0.45 −0.30

−0.26 −0.19 −0.19

−0.46 0.54 0.00

−0.35 0.27 0.60

−0.62 −0.41 −0.44


This results in the following vector:

[−1.79,−2.30, 2.74]

That new vector shows the new context values or the music gen-
res for user8. With this information, you can, for example, make
recommendations. So, you will show this user music from the context
or genre 3. It will also be possible to make a user-to-user recommen-
dation, which recommends music from a user with a preferred genre
that is similar to user8. For this, we need a measure of similarity.
Let’s refresh our memory and look at one of the formulas we derived
when studying the dot product. If you recall, there was a way to
compute this metric by making use of angles:

−→a .
−→
b = ‖a‖.‖b‖. cos(θ) (5.14)

In this case θ is the angle between the vectors −→a and
−→
b . We

can manipulate equation 5.14 and leave it as:

cos(θ) =
−→a .
−→
b

‖a‖.‖b‖
(5.15)
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Equation 5.15 is the cosine distance, and the intuition here is
that the smaller the angle between the vectors, the closer they are
to each other. So now you can ask me, why do I need all of this
mathematics if I could simply calculate the cosine distance between
the new user8 and the users in matrix A? Trust me, I have a severe
allergy to work, and if this was not useful, I wouldn’t put it here.
Take, for example, users, 3, 4, and 6. If we calculate the dot product
between user8 and these other users in the space of the matrix A
(users by song ratings), we will find that it is equal to 0. They are
therefore not similar at all. And, users who don’t have ratings in
common can represent a problem. To overcome such situations, we
can transform user8 into the space of songs by context. Now, if we
calculate the cosine distance between user8 contexts or genre values
and the vectors in matrix U , we will get the user or users that are
more similar to user8 in terms of context. It then follows that:

user θ

user0 95.80

user1 48.29

user2 29.01

user3 95.10

user4 96.60

user5 67.90

user6 123.50

user7 37.51

We are looking for the smallest angle value, as this dictates the
proximity between vectors (and similarity between users). With this
in mind, we can see that the users who are more similar to user8

are user7 and user2. We could therefore recommend a highly-rated
song from these users to user8 if user8 have not yet rated it. One
more useful thing that comes from the single value decomposition
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equation is that it can represent a matrix as a sum of outer products:

A =
t∑
i=1

σi.
−→ui ⊗−→vi

In this equation t is the number of single values selected for the
approximation. Graphically, this equation has the following shape:

σ1 u1 ⊗ v1 + . . .+ σ6 u6 ⊗ v6

Figure 5.9: A new way to represent a matrix.

This means we can create approximate versions of the matrix A
by selecting different numbers of single values, just like the trun-
cated version of the SVDs. Let’s see what happens if we choose
to approximate A with the first single value. For −→u1, we have the
vector:

−→u1 = (−0.45,−0.35,−0.35,−0.27,−0.28,−0.36,−0.32,−0.38)T

The vector −→v1 is :

−→v1 = (−0.35,−0.27,−0.26,−0.46,−0.35,−0.62)T

Finally, for σ1, we have the scalar 15.72. An approximation of A
with only a single value will be named A∗1; it can be represented by:

A∗1 = σ1.
−→u1 ⊗−→v1
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It follows that:

A∗1 =



2.55 1.98 1.84 3.26 2.48 4.39

1.98 1.54 1.43 2.54 1.93 3.42

1.98 1.54 1.43 2.53 1.92 3.41

1.55 1.21 1.12 1.98 1.51 2.68

1.64 1.27 1.18 2.09 1.59 2.82

2.06 1.60 1.48 2.63 2.00 3.55

1.85 1.44 1.33 2.36 1.80 3.18

2.19 1.70 1.58 2.80 2.13 3.78



This is not a very good approximation as A is:

A =



1 2 3 4 1 5

4 1 0 3 5 1

3 0 1 2 2 4

0 2 1 0 1 5

0 3 1 3 4 1

2 1 1 4 2 3

0 4 1 4 0 3

5 0 3 0 1 5



Let’s see what happens if we consider two singular values instead
of one:

A∗2 = σ1.
−→u1 ⊗−→v1 + σ2.

−→u2 ⊗−→v2

In this particular case, A∗2 seems to be a better approximation
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for A, which makes sense:

A∗2 =



2.44 2.09 1.80 3.39 2.55 4.30

1.43 2.10 1.19 3.20 2.28 2.92

2.71 0.83 1.75 1.67 1.48 4.06

2.06 0.72 1.34 1.40 1.21 3.13

0.04 2.85 0.49 3.98 2.57 1.39

1.68 1.98 1.33 3.08 2.24 3.21

0.69 2.58 0.83 3.74 2.51 2.15

4.35 −0.40 2.52 0.28 0.82 5.71


To verify if this is the case, we will make use of a norm, a measure

of distance, called the “Frobenius norm”, as in the following formula:

‖A‖F =

√√√√ m∑
i=1

n∑
j=1

| aij |2

If we calculate this norm for the differences between the matrix
approximations and matrix A, it will provide a good idea of which
is closer to A:

‖A− A∗1‖F = 10.17 and ‖A− A∗2‖F = 7.54

Why is this useful? Well, one purpose can be to store a vast
matrix. For example, suppose you have a matrix of 1 million rows
by 1 million columns and you choose to approximate it using the
most significant singular value. In that case, it is only necessary to
store two vectors of size ten and one scalar (the single value).

Before wrapping up, I would next like to introduce one more
technique we mentioned at the start of this book that is widely used
in machine learning.
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The Final Stretch - Principal
Component Analysis

The analytical technique that will end this journey toward under-
standing linear algebra is the principal component analysis (PCA).
But don’t worry, as I bring good news! By now, you know every-
thing that is needed to understand this methodology. In essence,
the principal component analysis is a data projection into a new set
of axes, or a change of basis that occurs via a linear transforma-
tion. Mappings are not a problem for us as we are now experts in
manoeuvring vectors through space. So far, we know that when a
linear transformation is involved, a matrix is needed, but we still
need to understand the goal of this new method to define this linear
transformation.

So I will put it out there. The principal component analysis
will create a new set of axes called the principal axes, where we will
project the data and get these so-called principal components. These
are a linear combination of the original features that will be equipped
with outstanding characteristics. Characteristics which are not only
uncorrelated, but the first components also capture most of the vari-
ance in the data, which makes this methodology a good technique
for reducing the dimensions of complex data sets. While often seen
in a dimensionality reduction context, this technique also has other
applications, as these new relationships are latent variables.

Cool, we know what it does and where we can use it, so let’s
define this linear transformation. The word axes was involved in the
explanation, meaning we need orthogonal vectors. We also know
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that by definition, if we have a symmetrical positive matrix, the
eigenvectors are not only orthogonal but they also have positive and
real eigenvalues. Multiplying a matrix by its transpose or the other
way around will result in a symmetrical matrix, and with this, we
can accommodate a matrix of any size.

Let’s pause and check where we are because I am sensing that the
desired result is near. We have defined PCA and we’ve concluded
we need to get a new set of axes onto which we can project data.
The eigenvectors cover this, but there is one piece missing. These so
called components needed to reflect variance. I want to bring to your
attention a specific case of matrix multiplication where we multiply
AT by A. Let’s think about this operation in terms of dot products.
We will end up with a symmetrical matrix where the non-diagonal
entries represent how much the rows relate to the columns.

With this, we are one step away from a covariance matrix. The
numbers in this particular matrix reflect how much variables vary
with each other. The only thing we’re missing is a way to centre the
data around the mean. Given that the covariance matrix is sym-
metric positive, its eigenvalues are positive and the eigenvectors are
perpendicular. Considering that the eigenvalues represent a scal-
ing factor that comes from a covariance matrix, the largest value
will correspond to the highest direction of variance; therefore, the
correspondent eigenvector will be the first principal component.

We can apply this same logic to each of the other vectors and
then order them. The result will be the principal axes on which we
can project the data to obtain the principal components. I know
that’s a lot of words, but no numbers, and no equations! That’s not
our style! So let’s consider an example, a fabricated one, but still,
it will help us comprehend this technique. Say that we have the
following set of data:
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user totalBetsValue totalWon totalDaysPlayed averageBetSize totalSessions

1 3000 0 4 30 4
2 10453 0 1 100 1
3 21500 4230 6 50 7
4 10000 2000 12 10 14
5 340 10 10 1 10
6 5430 2000 4 5 70
7 43200 4320 10 4 32
8 2450 100 8 5 12

The data can represent, for example, the features of users for
some online casino games. Our goal is to transform this data with
principal component analysis, so the first step is to calculate a co-
variance matrix. For that, we need to centre the data. To do this,
we can use the following equation:

x∗ =
x− x−j
σj

(6.1)

This means that, for each element in column j, we will subtract
the mean of the same column and then divide the results by the
standard deviation of this same column. If we do this to each col-
umn, we have standardised the data. So let’s start by computing
each column’s mean and standard deviation:

Metric totalBetsValue totalWon totalDaysPlayed averageBetSize totalSessions

x−j 12046.62 1582.50 6.87 25.62 18.75
σj 13329.42 1751.10 3.51 32.23 21.264

Applying equation 6.1, the table with standardised data is as
follows:

user totalBetsValue∗ totalWon ∗ totalDaysPlayed∗ averageBetSize ∗ totalSessions ∗

1 -0.68 -0.90 -0.82 0.14 -0.69
2 -0.12 -0.90 -1.67 2.31 -0.83
3 0.71 1.51 -0.25 0.76 -0.55
4 -0.15 0.24 1.46 -0.48 -0.22
5 -0.88 -0.90 0.89 -0.76 -0.41
6 -0.50 0.24 -0.82 -0.64 2.41
7 2.34 1.56 0.89 -0.67 0.62
8 -0.72 -0.85 0.32 -0.64 -0.32
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We are now ready for linear algebra, so let’s go from that ugly
table into a more familiar format in which to display data, a matrix.
And that is right, it will be good old matrix A! So let A be such
that:

A =



−0.68 −0.90 −0.82 0.14 −0.69

−0.12 −0.90 −1.67 2.31 −0.83

0.71 1.51 −0.25 0.76 −0.55

−0.15 0.24 1.46 −0.48 −0.22

−0.88 −0.90 0.89 −0.76 −0.41

−0.50 0.24 −0.82 −0.64 2.41

2.34 1.56 0.89 −0.67 0.62

−0.72 −0.85 0.32 −0.64 −0.32


So AT is:

AT =



−0.68 −0.12 0.71 −0.15 −0.88 −0.50 2.34 −0.72

−0.90 −0.90 1.51 0.24 −0.90 0.24 1.56 −0.85

−0.82 −1.67 −0.25 1.46 0.89 −0.82 0.89 0.32

0.14 2.31 0.76 −0.48 −0.76 −0.64 −0.67 −0.64

−0.69 −0.83 −0.55 −0.22 −0.41 2.41 0.62 −0.32


One more step, and we will have the desired covariance matrix.

The only thing we’re missing is financial freedom, oh, oops. . . Sorry,
my mind drifts away sometimes. I meant to say, we need to multiply
AT by A and then divide by the number of entries. Shall we call the
resultant of this operation matrix M?

ATA
8 = M =



1.00 0.84 0.23 0.02 0.13

0.84 1.00 0.29 −0.14 0.33

0.23 0.29 1.00 −0.73 −0.01

0.02 −0.14 −0.73 1.00 −0.47

0.13 0.33 −0.01 −0.47 1.00


So as expected, M is a symmetrical matrix. Where are the eigen-

vectors? There are several ways to get them. One is to use the eigen
decomposition, so let’s start by exploring that. This numerical tech-
nique will return three matrices, two of which will have what we are
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after, the eigenvalues and the eigenvectors. This time I will use
a computer to calculate the eigenvectors and eigenvalues. We are
looking for a representation of M like:

M = PΣP−1

Where P is:

P =



0.45 0.53 0.44 −0.43 0.34

0.53 0.42 −0.38 0.60 −0.13

−0.14 0.01 −0.54 −0.04 0.82

0.69 −0.68 −0.11 −0.19 0.05

0.00 −0.24 0.58 0.64 0.42


And:

Σ =



2.29 0 0 0 0

0 1.48 0 0 0

0 0 1.02 0 0

0 0 0 0.14 0

0 0 0 0 0.08


Right, so P is a matrix with the eigenvectors, and this will be

where we find our principal axes. It happens to be already sorted
by eigenvalue magnitude. On the other hand, in the matrix Σ we
have all the eigenvalues. These represent what can be called the
explainability of the variance, how much of the variance present in
the data is ”captured” by each component. This means we can
derive excellent insights from these magnitudes when we want to
apply principal component analysis as a dimensionality reduction
technique. For example, we could percentage the eigenvalues and
then understand how much variance they each explain:

5∑
i=1

λi = 5 (6.2)

We have five eigenvalues, and we can sum them using 6.2, where
λi represents the eigenvalues. Now, by dividing each of them by
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five, we find the individual percentage of variance that each distinct
eigenvalue explains.
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Figure 6.1: The amount of information captured by each component.

We can see that two components, namely PC1 and PC2 explain
76% of the variability. Considering the case of dimensionality reduc-
tion, let’s pick the two largest eigenvalues and transform our original
data set to create the first two components for each user in the data
set. Choosing the first two components will reduce the columns of
P . We will call this new version Pt, and it has the following format:

Pt =



0.45 0.53

0.53 0.42

−0.14 0.01

0.69 −0.68

0.00 −0.24


The linear combinations that represent the first two components

are described by the following two equations:

PC1 = 0.45.totalBetsValue + 0.53.totalWon− 0.14.totalDaysPlayed

+0.69.averageBetSize + 0.00.totalSessions

(6.3)
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PC2 = 0.53.totalBetsValue + 0.42.totalWon + 0.01.totalDaysPlayed

−0.68.averageBetSize− 0.24.totalSessions

(6.4)

The only thing missing is to project the data into this new space.
We need to transform our versions of the scaled data with the matrix
Pt. For that, we can use the following equation:

Mreduced = M8×5.P
T
5×2 (6.5)

By performing the matrix multiplication in 6.5, we will create
the first and second components for all users in the features set:

user PC1 PC2

1 -1.46 -0.26

2 -2.56 1.69

3 0.51 1.65

4 0.84 -0.81

5 -0.30 -1.60

6 0.63 -0.55

7 2.81 1.10

8 -0.48 -1.22

These components are also called latent or hidden variables; re-
lationships that are hidden in the data and are the result of linear
combinations. It is possible to give these some meaning (a way of
interpretation), and for that, we can use the expressions that define
them, as shown in 6.3 and 6.4 that define them.

I want to point out that this step is dependent on the business
problem and what you think makes most sense. This is probably
one of the only times when mathematics is similar to poetry. Some
will disagree with me and say that equations are pure poetry, and
whilst I may not have reached that level of sensitivity, I do wonder
what it’s like to live with that state of mind. Maybe it is excellent.
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Anyway, back to our example. So, let’s say that principal compo-
nent number one could be intensity. The higher positive coefficients
in equation 6.3 are those that correspond to totalBets, totalWon,
and averageBetSize. The second principal component is harder to
attribute a meaning to, but risk exposure could make sense as these
players have significant losses.

totalBetsValue

totalSessions
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Figure 6.2: A view of the totalSession and the totalBetsValue.

Seeing as we reduced the data from five dimensions to two and
we attributed some meaning to the new components, we can plot
these new coordinates and see if anything interesting comes from it:
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Figure 6.3: A peak into the secret space! First two components.

This is somehow an interesting perspective in the context of gam-
bling. Some players like to risk their balance but play in a less intense
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session. We can also observe a case of a player that enjoys risk and
intensity. These hidden variables are excellent indicators for situa-
tions where human emotion is involved, as they can capture some of
that temperament.

There are other methods that can be leveraged to get to the
principal components. While we have so far explored the eigen de-
composition, it is also possible to calculate these metrics via the
single value decomposition. We defined M as a covariance matrix
while A was the matrix with entries that are a standardised version
of the data in the original features table. So, M can be defined by
the following equation:

M =
AT .A

N
(6.6)

In equation 6.6, N is the number of rows in matrix A. Now, say
that, instead of performing an eigen decomposition on M , we choose
to use the single value decomposition and we do it on matrix A. It
follows that:

A = U.Σ.V T

Substituting this information into equation 6.6 it follows that:

M =
(U.Σ.V T )T (U.Σ.V T )

N

We can manipulate that equation a little bit:

M =
V.ΣT .UT .U.Σ.V T

N

Finally:

M =
V.Σ2.V T

N
(6.7)

From here, we can conclude that the right singular vectors are the
principal directions. Following the same logic, just as we did with
the eigen decomposition, we will obtain the principal components
by:

A.V

And A is equal to U.Σ.V T , so:

A.V = U.Σ.V T .V
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Which means that:
A.V = U.Σ

So the principal components are given by U.Σ where the entries
of Σ are calculated by:

λi =
σ2
i

N

6.1 We Did It!

And for linear algebra, that is it! It was a bit of a journey for me
and the vectors, and hopefully a pleasant one for you. The start was
all about a simple oriented arrow. From there, we deduced a lot of
mathematics to finally arrive at two techniques that have abundant
applications in machine learning: the principal component analysis
and the single value decomposition. To get here, we went over plenty
of notation and equations that equipped us with what we needed to
learn or refine new concepts: these included dot products, linear
transformations, the determinant, and the eigenvectors, to name a
few.

As this book is about linear algebra, it would be gratifying if,
by now, you felt comfortable with this field of mathematics, but
more importantly, my hope is that this book may have made you
think, even if just for a little bit. Thinking can be the stairway to
heaven. Well, perhaps it would be if you added psychedelics to the
experience. But I will leave this to your discretion, stating that I
only encourage the reading of mathematics and that this will be the
only unproven concept in the book, so don’t lawyer up!

What I do know is that thinking is a gate; once you got through
this gate, it will make you join the path of knowledge, and with
this comes freedom. In the past, it was common to state that the
truth would set you free. But, like many things, this has changed.
It seems now that freedom is unfortunately linked to capital, and
the sentence ”I am not money-driven”, that for so long was almost
the standard line you had to use if you wished to be hired by a
corporation, has probably lost its meaning.

These days, the idea of spending money that we don’t have has
been normalised. With this comes a dependency on a system that
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is controlled by people who, on many occasions, have made it clear
that they are only concerned with buying themselves a bigger boat.
Think about it, three presses on a button on some computer that
belongs to an institution that likely has central or federal in its name,
and overnight, you just got fucked. It takes the same amount of time
for you to order a juicy burger on your phone.

The edge is knowledge, and mathematics will help you get there.

Peace

Jorge

Please subscribe to the mailing list if you want to receive an email
when the subsequent volumes are released, and, it would really help
me if you could leave a review!

Subscribe here
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