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Foreword

Many notions of modern science have found their way into school programs
ull over the world. The generations of students going through high school
(hese days are receiving a good overview, and at times much more than an
ovorview, of such exciting topics as the structure of the atom, the incredible
complexity of the cell, the expansion of the universe...

But this is not the case for quantum physics, an unrivaled body of
linowledge, both in the precision of its predictions and in the breadth of its
feope. Since the early decades of the twentieth century, quantum physics
g been shaping modern science, from its deepest foundations to its most
{ochnological applications. Moreover, popular science books and magazines
ention quantum physics regularly, because most of the research in physics
i related to it. In spite of all these, school programs cautiously keep awa.ly
(rom quantum physics. Why is this so?

There is an obstacle in the presentation of quantum physics, and a huge
~ one at that: one cannot make an image of quantum phenomena. An atom
von be drawn and the sketch, though inaccurate, conveys something; the
DNA double helix can be drawn and it conveys even more information
nbout the reality; stars can be seen with the naked eye, images of galaxies
cnn be downloaded. It goes even further. Even if the earth looks flat to
s walking on it, one could mentally have an image of what a round earth
means even before pictures were taken from space. Even if the sun seems
{0 be moving around us, one can imagine the earth rotating around the sun
nnd even create nice animations of the solar system.

Take now some typical quantum facts: a unique particle can be delocal-
iz0d in different regions of space; the position and momentum of a material
object are never sharply defined; even more unthinkable, the fact called
“entanglement”: many objects can lose all their individual properties and

xi
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sl only o common web of propection Those are (e core fnets of gunnbim
prhaden Thero fnno fuge for any of fhese, Lot e aldp Bero the doop im
plicattons of thin et nod concontrnte rathor an the poedagoglenl problom:
low et one fenen quatum physfos?

The last decades of research hove openad n possiblo path around the

ohptnelo, Several experiments have shown the unmistakable signature of

b fets The facts are st impossible (o draw, but the experimental
nehomoen con be drawn, Morcover, their results ave just lists of nmbers
it con be read and analyzed.

Thin very divect contact with quantum facts has already had a momen-
ot consequence, Some decades ago, it was still possible to believe with
Sinstein that quantum theory was weird, but that this was just due to the
Hne of the wrong mathematical tools, to the physicists” lack of fantasy. [
wis sl possible (o hope that, sooner or later, a more “reasonable” pre-
pontation would be found. Nowadays, we know beyond any possible doubt,
(it Chis dream is hopeless: it is nature dtself that is weird, the theory is
Junt adapted to the inescapable reality.

Ho, 1l you want to learn quantum physics, there is no reason to delay
iy longer, For those who choose to make the effort (because effort it will
(nlo), we have tried to make the path as straight as possible: a direct jump
into the “real stufl” supported by some not too difficult mathematics. This
foxt will not make you an expert of quantum physics: it is just meant for
you to have a glimpse of the unexpected and fascinating possibilities that
nbre has in store.

Wao would like to conclude this foreword by each addressing our own
collonpues.

I'om Lynn and Shi Yang to high school students and
other beginners

Quantum physics is indeed one of the most difficult topics to learn and to
understand. In this book, we have tried to present the material such that it
can be easily understood. However for those who may still have problems,
wao offer the following advice.

I"irst, the main trouble you may face is the notations and formalisms
uged in this book. The Dirac notation for vectors, the tensor product etc.
may seem completely unfamiliar to you. However, do not be put off by

-~ Parvwond : il

(e 10 only Gadeon nowlhitlo Go ot usod Go oo notabions, and as you road
furthor thoy iy wtaet hocomibng natuaral (o you, ;

Hocond, ab the high school Tevel, you may still not be familiar with some
ul the concopts proventod hore, such ag (he veetor space, (ransformations,
tlormntion thoory . For these, we have included more information at the
ondd of the respective chapters, under the section “I'he Broader View”. A
note ol caution: some of the information presented under these sections
mny boe difficult for you to grasp. If so, just focus on the main text; these
noctions are actually optional, extra material for the interested reader, and
nre ol erucial to the main content of this book. The same goes for the last
Lwo chapters, under the part “Beyond the Six Pieces”, which are purely for
Itorested readers who would like to explore further.

Third, do take your time to work through most, if not all, of the exercises
i (his book. While we have written the book such that the text can stand
nlone without the exercises, working through them can actually help you
(0 consolidate your understanding. We have also kept their difficulty at an
necoptable level: most of the exercises should be straightforward and do
not require difficult mathematics or problem-solving skills.

IMinally, we hope that you would enjoy reading this book, and that this
hook would succeed in its purpose: to allow beginners to understand the
Linsic concepts of quantum physics. Hopefully it would also compel you to
[urther your explorations in the quantum world!

I'rom Valerio to teachers

I'he challenge of presenting quantum physics in the high school is exactly
{his: a challenge! Exciting, but open to failure. At the moment of writing,
| am not advocating that quantum physics becomes part of the general
pyllabus: this may prove to be too much. But for special classes or some
particularly motivated students, I am convinced it is worth a try.

The pedagogical challenge is the following: to present the students with
something that cannot be fully grasped, i.e., for which no adequate image
can be drawn. Allow me some remarks on this crucial point.

First, there is a misunderstanding to be dispelled. The difficulty of
prasping quantum physics is sometimes attributed to “the lack of mathe-
matical tools”. The argument misses the point completely. It misses it as
{he generic claim that one needs to master the mathematics before speaking
about the world — indeed, as a counterexample, think of the illustration




o curved mpneo-tine obtadned by plactig o hoavy ball onoaplastie shoot
el Tot g no el Hghtor badl move aeaud 1016 na perfoct fimnge of
whnt 10 I supposed to menn, sbudonts oan grasp G monning without ny
lnowlodpo of difforentinl goomaetry, L mdmmon the polnt also g o specific
el Jusb aule sorme undverstty sbudentu i thoy hnve the feeling of having
Sundorstood quantun physics, after having lonrned about operators, Hilhert
upncen nnd path integrals, The difficulty in anderstanding quantum physics
i doopory ot the same time, it is almost unrvelated with the formalism: (he
nthematical tools can fortunately be kept simple.

Hocond, one should avoid conveying the message as “nobody undoer-
phandys quantum physies”. This would be very derogatory for physicists
nnd for physics as o discipline. Actually, some of us understand quantum
pliysies so well, that we end up accepting its serious consequences: namely,
the (el that some questions should not be asked, because nature definitely
doos not have the answer. This is the precise meaning of the statement
“Habure is weird” used ecarlier; this is the main message to be conveyed.
Now, such o level of understanding can be reached only by personal in-
(uiry. When we teach quantum physics, we must leave the students free
[or (rying and finding all possible ways out of the right explanation; then,
we have to reply by showing the experiment that falsifies their view, not
by invoking Heisenberg or Bohr or Feynman.

A final remark concerning this specific text: I am almost certain that
(ho material covered here has little to do with the way you learned quantum
physies during your university days. You may even find the whole approach
dinconcerting, because it does not fit the format that you were expecting.
With this in mind, I have written a special last chapter in order to bridge
tho gap between the usual presentations and this one.

sl but not least, do not hesitate in contacting me with questions,
criticisms, suggestions: the challenge is still ongoing, this text is probably
o st step rather than the ultimate summit.
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A User’s Guide

Main material

The main material is contained in chapters 1-7, excepting the sections
“The Broader View” and “References and Further Reading”, which can
be skipped in a first reading.

This text is a course in quantum physics and should be understood as
such. In particular, the text is definitely dense: notions appear one after
another. Moreover, some of the notions are objectively difficult. Even if
we have made an effort to explain as much as possible, it may take time to
assimilate them.

The best way to assimilate notions is to put them into practice. T1'11§
is why several exercises are proposed and their full solution is given at the
end of each chapter. Even if you have the feeling of not having understood
everything, try to do the exercises, and if you don’t manage to solve an
exercise, read the solution, then come back and try again.

Additional material

The additional material comprises the sections “The Broader View” and
“References and Further Reading” of chapters 1-7 and the whole of chap-
ters 8 and 9.

These texts are normally not self-contained. For beginners, they are
meant to suggest perspectives-for further studies. They are also meant for
teachers and other knowledgeable readers, in order to fill gaps between our
presentation, which is quite original, and more traditional ones.

Specifically about “References and Further Reading”:

xvii
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Chaptor 1

~ Introducing Quantum Physics with
Polarization

1.1 Polarization of a Light Beam

1.1 Definition and basic measurement

Ldpht consists of electric and magnetic fields that can oscillate in any di-
~reckion perpendicular to the direction of propagation. The polarization
tloseribes the direction of the electric field’s oscillation. To measure this,
wo can use a polarizer, which is a material with a preferential axis due to its
molecular or crystalline structure. This preferential axis allows the polar-
{701 (o act as a filter, transmitting only light polarized in certain directions.

We can liken polarized light being transmitted through a polarizer to
(netal bars with different orientations passing through a narrow door, whieh
anly allows vertically-oriented metal bars to pass through. Similarly, only
lipht with certain polarization can be transmitted through a polarizer.

This analogy has limitations however, because only metal bars that
nre parallel to the door can pass through it, while those that are tilted
[rom the vertical cannot. In comparison, polarization can be described as
vectors, and even if the electric field is oriented at an angle to the polarizer’s
nxis, the component parallel to the axis can still be transmitted, while the
perpendicular component is reflected or dissipated as heat.

Imagine a polarizer with its axis oriented in the vertical direction. You
send light through it, with an intensity I and polarization at an angle
«v to the vertical. Let the transmitted component be Ir, and the reflected
component be Ip. It is oriented parallel to the vertical axis of the polarizer,
whereas Ip is horizontal, perpendicular to the axis.

As intensity is a measure of energy, the law of conservation of energy
give us the relation

I=Ip+1g. (1.1)




m 7 __ |

Noxt, tmagine doubling the ntensity 1 of the Tght that enters the po-
Inrtgor. Sineo the fnftial tntenstty 7 s aebiteary, 1000 I doublod, the ratio
ol the transemittod and roflectod tntemmttion should wtill bo the same, Heneo
Lponid Ly nee also doubled, By intaition, the new velation should thon be

25 = 2l 2lp (1.2)

Wa olmoerve that £pooc £, and similavly Ly oc £ Thus we obtain the relations
Iy = k1, :

In= ki, Gy

whoro iy, kg are constants, Substituting Equation (1.3) into Equation (1.1),

wo cnn deduce that
ki+ke=1. (l/l)
T'wo positive numbers such that &y -+ ko = 1 can always be written as
Ky w cos® o and ky = gin? o, so finally
: Ip = 1cos? o, .
i (1.5)
Ip = Isin® .

Thiv result is also known as Malus’ Law in classical electromagnetic theory.

11,2 Series of polarizers

Lol un congider a series of two polarizers, both with horizontal polarization
nvol (Migure 1.1). If the intensity transmitted by the first is Ipy, what
I tho intensity 7o transmitted by the second? The answer is, of course,
Lpa Iy, assuming that there is no energy loss when the light passes
through the second polarizer.

<
Ig1

Im | . Ip

v
N

Fig. 1.1  Two polarizers with same polarization axes.

Iowever, what happens if the second polarizer is tilted such that its po-
larization axis is now vertical (Figure 1.2)7 The intensity Ir2 now becomes
ZOT0,

s s e
TRRITTTATE i )7’ wﬁ,"‘m .

l In | ’!

« - - S
Iy ] Ins

1M, 12 T'wo polarizers with perpendicular polarization axes.

What happens next if a third polarizer is inserted between the two
\ (IMgure 1.3)7 We expect that the intensity transmitted can decrease or
Cpemain the same if we add more polarizers, because more light would be
{iltered out, thus there should never be an increase. The curious thing is
~ {hat, if this middle polarizer is oriented at a different angle from the other
{wo, some light would pass through: the intensity actually increases! For
oxample, if the middle polarizer has an axis oriented § from the horizontal,
(he intensity transmitted by it would be %ITI, and the intensity transmitted
by (he third polarizer would be half that from the second, that is, %LITl.

| I, | Jrg | Irg _
= 2 = e
Ip1 Ipo Ips

1M, 1.3 Three polarizers each with polarization axis oriented % with respect to the
provious.

Hence polarizers are not merely filters that block a certain amount of
light. This is a prediction of the laws and equations derived earlier, and
il can easily be checked in a laboratory. The fact that this phenomenon
has a surprising character when first encountered shows that our intuition
sometimes fails, and we have to rely on observations and confirmed laws.
Now consider a case where we have the second and third polarizers ori-
ented at angles v and 3 respectively from the first. How does the intensity
{ransmitted by the third polarizer depend on « and 87 From Equation
(1.5), we know that the second polarizer will transmit a fraction cos® «
of the intensity I7; transmitted by the first. Since the third polarizer is
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ortonted a2 o from the second, 16 would transmit n fnetion con (4 o)
ol Lpa Here, tho aportant potnt to note w that tho intonsttion dopend only
on tho difference hetwoon the anglos, and that the absolute orfentation of
(he polneizer doos not matter,

Exoreise 1.1, A beam of horizontally-polarized light of intensity
1 implnges on o setup consisting of N polarizers, where N is very
lorge, The fivat polarizer is oriented at an angle ¢ = 5 to the
horizontaly the next one is at an angle ¢ from the previous, and so
o until the final one, which is exactly vertical. What is the intensity
ol light at the output of the lagt polarizer? What is its polarization?
Noter neglect multiple reflections of the reflected beams and study
only the trangmitted beam.

1.1, Polarization in vector notation

I moechanies, it is very convenient to introduce a set of axes (&,7, 2) that
will serve as coordinates; as well-known, the choice of such directions is
commplotely arbitrary. Similarly, when studying polarization, it is customary
(0 fdentify two orthogonal polarization directions as “horizontal” () and
“vortical” (V). Any direction can be chosen for H; then, V' will be the
diroction of polarization that is fully reflected by a polarizer that fully
Lranimits /1.

An usual, a direction can be described by a vector. Let us label the unit
voctors along the vertical and horizontal directions as €y and € respec-
tivoly, Note that polarization is defined by the line along which the electric
flold oscillates, not by the direction along which the field points at a given
(ime, Therefore, —€x describes the same polarization as ¢y, and similarly
for oy,

With this basis of two vectors, one can describe any possible polarization
diroetion: if the electric field is oscillating in a direction that makes an angle
o with #1, its polarization is!

€y = cosaéy +sinacy (L.6)

'Note that for simplicity we shall restrict our discussion to linear polarization through-
oul the main text; circular and elliptic polarization can be treated in a similar way by
nllowing complex numbers.

Introduring Qun_ﬂmm Phymion with Polariantion

The polaetantion arthogonal o ¢, Lo the one that s fully reflocted by w
polnrtzer Chat fully Coanmbts ¢,

Copg ™ Gyu sin o ey o cos ey (1.7)

T'he romark woe mnde on the previous page about the sign, of course, applies
Lo all polarization vectors: — ¢, deseribes the same polarization as €,. Note
however that relative signs do matter: ¢, = cosa ey + sina ey describes a
different polarization as cos ¢y — sinqa ey = e_g.

1.1.4  Polarizing beam-splitters as measurement devices

We presented below the basic measurement of polarization, using a polar-
izer. For what follows, it will be rather convenient to keep in mind another
device that measures polarization, namely the polarizing beam-splitter (Fig-
ure 1.4). Like the polarizer, this device splits light into two beams according
Lo its polarization: for instance, horizontal polarization is transmitted and
vertical polarization is reflected. However, here the reflected beam is not
back-propagating or absorbed, as is the case with polarizers: rather, it is
deflected in a different direction. This makes it easy to monitor both beams.

Fig. 1.4 Polarizing beam-splitter: scheme and implementation of a general measure-
ment.

Note that one cannot rotate the device itsell to measure along an angle
a. In order to measure polarization along any arbitrary axis, polarizing
beam-splitters must be complemented with polarization rotators. These
are basically slabs of suitable materials, that can be chosen in order to
perform the rotation : '

€y — €m,

’(;QJ_ = EE\V 5




The mensieoment setip i now easy to andemtand: before the polarlzng
Bontnenplittor, one tnserts tho saitabilo votator: 1 the oubput Hght e teanne
it bed, Chon 10w polaeized nlong ¢ after the ratntor, which means that
i win polarizod along ¢ ot the tnput, 1 on the contrary the output lght
I rofloctod, thon 16 was polarized along ¢ affor the rotator, which moeans
it 16 waw polartzed along ¢, ot the fnput,

Lol Reconstructing polarization: tomography

W concelude this seetion with an important remark on measurement, We
linver dosertbed moeasurement schemes that only allow one polarization (o
Lo dintinguished from the orthogonal one. One might ask il there exist
onsuremoents that would give more detailed information: for instance, one
(hit would diseriminate perfectly between three or more possible polariza-
fHon divections.

On acsingle heam of light, this is not possible; the measurements that we
doneribed are optimal. However, if the beam of light is intense, a much more
rolined measurement of polarization can be made: one just has to first split
(hio bonm into several beams without affecting the polarization. This can
Lo done with half-transparent mirrors. On each of the beams, polarization
cnn be meagured along a different direction. In particular, if the total
[ntonpity 18 known, two measurements are sufficient to completely determine
i linonr polarization?, as the following exercise shows. Such a measurement,
[t which the polarization direction can be fully reconstructed, is called
tomography.

10

[0]

Fig. 1.5 Tomography of linear polarization.

Y11 (he polarization is not guaranteed to be linear, three measurements would be needed.

ntronustng Quantum Phystes with Polarisation

elwo 1.2, A boam of ntensity 27 I wplit into two beams of
bensity £ ench, On one of these benms, polarization is measured
the horlzontal-vertieal direction: the results are 1y = [ cos*0,
Ty o Tuin 0. From these measurements, one can infer that the
polarization iy either dg = cosféyy -+ sinf ey or ¢.g = cos@ey —
ey, Show that these two alternatives can be diseriminated by
~mensuring the polarization of the other beam in any other direction.
~ HinG: suppose that the polarization is ép: what are I, and I,1, with
Oy Ot dofined as in Equations (1.6), (1.7)? Compare these with
(he results obtained if the polarization is €.

Using tomography, it seems that one can always learn the polarization
divection perfectly. In classical physics, this is indeed the case. But the
tomography process assumes that a light beam can always be split: what
linppens then, if the beam of light consists of the smallest unit, called a
“photon”? This question marks the transition to quantum physics.

1.2 Polarization of One Photon o

1.2.1  Describing one photon

During the development of modern physics, Einstein postulated that light is
nctually comprised of particles called photons, instead of the classical wave
[heory, to explain the photoelectric effect. The development of quantum
physics clarified the notion of the photon. For the sake of this text, we can
assume that light is “made” of photons.

In a polarized beam, each photon must have the same polarization. In-
deed, if a polarizer is suitably oriented, the whole beam can be transmitted,
(hat is each photon is transmitted.

Now, when dealing with a single photon, a different notation is used
than when dealing with the whole beam. Namely, for a beam of polarization
cosaég + sinaéy, the state of polarization of each photon is written as
|e) = cos a|HY) + sin ao|V). This notation is called the Dirac notation, and
we shall carefully study it now as we will be using it throughout the rest of
the text.
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1,22 Computations uaing Divae notation

An mnthomatienl abjects, )" are vectors with vory shmilne propertios
the ¢ e far the feld,
T poetentie, ot us write
|H) = (;‘)) :
(1.8)

Ihon

|ev) = cos ) H) + sina|V) = <C()S”) . (1.9)

sin o
The cooflicient cos avis, as in normal vector algebra, the scalar product
ol |y and [77). We write this scalar product as
(ao| H) = cosav. (1.10)
Shmilarly,
(a|V) =sina. (L1011}
I particular, by construction
(HHy=1, (V|V)=1, (H|V)=0, (1.12)

(hat s, {|H),|V)} is a basis.

1o what we have discussed earlier, we know that for a beam the
innlity cos? o represents the fraction of the beam intensity that is trans-
milbed by a filter. But what does such a quantity mean at the level of
uhnple photons? A photon is an indivisible particle: when arriving at the
{{ltor, it can cither be transmitted or reflected. Given this, cos? ov represents
(he probability that the photon is transmitted. Thus we can state that the
probability of a photon passing through horizontal and vertical polarizers,
plven an initial polarization angle a; is

P(finding H given o) = P(H|a) = cos® o = [(H|a)|?,
P(finding V given ) = P(V|a) = sin® a = |[(V|a)|*.

Indeed these two numbers sum up to 1 as they should for probabilitics. The
pile is valid for two arbitrary polarization states |¢1) and [ths):

P(finding ¢ given 42) = |(v1[1h2)|*. - (1,18)

T'his last equation is called Born’s rule for probabilities.

i 1

Introduing Quantum Physton with Polurt
1

L0 frnpor ot hove to note Chat (o) = conal ) F winalV) does not
monn that wome photons neoe polarizod a [H) and wome as [V, Rather, it
donerihon nonow polactzation state whoreby all the photons are polarized as
[t1), but when they are mensurad o the 7 /V bagis, they have probabilities
con® o and sin® o of belng transmitted,

The nppearance of the notion of probability in physics requires a careful
diseussion, Before that, to consolidate owr understanding, we propose two
OXOrcises.

Exercise 1.8.
(1) Prove that {|a), |a)} is a basis for all o, where
E» |y = cosalH) + sina|V),
|ty = sina|H) — cosa|V).

(2) Let |B) = cos B|H)+sin 8|V). Compute the probabilities P(c|3)
and P(at|f).

(1.14)

As discussed earlier, the probabilities depend only on the difference be-
lween the angles av and 3, and not on their individual values. In general,
when light polarized at an angle a: to the horizontal passes through a polar-
izer with an axis oriented £ to the horizontal, the parameter for determiniﬁg
(he probability of transmission is o — 3, and

P(T) = cos*(a — f8),

1.15
P(R) = sin®*(a— ). 15)

1.2.3 The meaning of probabilities

Let us discuss in greater detail the meaning of probabilities in mea-
surements on single photons. Consider a few photons with polarization
) = cos @|H) + sin | V), moving towards a polarizer oriented in the hori-
zontal direction. Let us first predict the results of this experiment. Based
on the earlier analysis, we can determine the transmitted and reflected
intensities to be

P(T) = cos® a,

P(R) = sin’ . (116}




IMig. 1.6 Dilemma of a photon.

[ other words, we can predict the statistical probability of the behaviour
ol w lnrge number of photons, or a beam of light.

Now, let s consider each individual photon. Each photon is polarized
along o) and s identical to each other. When one photon encounters
the polarizer, what will happen to it? Will it pass through or will it be
rolloctod? What about the next photon?

The answer is: we do not know. Although we know the statistical
Liehnyionr of many photons, we have no way of predicting the behaviour of
oncli individual photon. Unsatisfied with not knowing the answer, we then
nnle, could it be that there is some hidden mechanism within each photon
thnt would determine whether or not it would pass through?

T'he answer is, again, no. It has been experimentally proven that there
1 no such mechanism. In fact, we cannot predict the behaviour of each
dividual photon because the information is really not even there in the
lirut place!

Our next question is, why can’t this be predicted? Does this mean that
nature is random? Does God play dice?

I{ may be surprising, but the answer is yes. The randomness is intrinsic.
To make this point clearer, we can compare this situation to some well-
[inown instances of randommness in our daily lives, such as tossing a coin,
chsling a die or weather patterns. In these cases, it may be hard or even
impossible in practice to predict the results; however, this is not intrinsic
randomness, since the relevant information is actually present.

Introiuving Qumpm Phyaion with Polariaation 1M

e vandommons e quantim phonomenn novery difforont, Wo can men-
e the wpeed, polartzation or nny other parnmetors of a photon, but there
I o way Lo toll whaothor or nob 16 will pres through he polarizer. The infor-
tnblon i rondly not thore, This s what i5 meant by intringie randomness.

1.4 Doseribing T'wo Photons

I'raviously, in the cage of a single photon, we were able to relate the statis-
teal result of their intrinsically random behavior to the intensity of a light
honm transmitted through a polarizer. However, two photons can exhibit
purely quantum properties with no classical analogues.

1.3.1  Classical composite systems

[ order to appreciate what follows, we consider first composite systems
i classical physics. A physical system is composite if it can be seen as
consisting of two or more subsystems. For example, the Barth and Moon.
Neglecting its size, the physical properties of the Earth can be reduced to
its position and speed (a7, vf;); similarly for the Moon (273, v7;). Then the
properties of the composite system can be derived from the set of vectors
(wfs, vz, w3g, vy ). The fact that the Earth and Moon interact means that,
in time, the evolution of each parameter depends on the values of all the
others. However, at any moment, the Earth has a well-defined position and
ipeed; similarly for the Moon. This may seem obvious, and indeed it is in
classical physics. But in quantum physics, this is not always the case: the
properties of each subsystem may not be well-defined.

1.3.2  Four states of two photons

Consider now a composite system of two photons. Both photons could
be horizontally polarized, or both vertically, or the first one horizontally
and the second vertically, or the opposite. These situations are written as
[H) ® |H), [V)®|V), |H)® |V), and |V) ® |H) respectively. The symbol
9 is a multiplication between Vectors known as the tensor product defined

as follows: let
1 0
m=(g). m=(9). (117)




then

|EL) & |F) w ((l)) oo((l]) -

Cand by using the same technique,

() ()

| () ()
wevi=|, | mem=|1], mewm=|g|. 0w

() () 1

Take note that this multiplication is not commutative, i.c |[H) ¢ [V) /
[V)eal ). T'his is obvious if you recall the physical meaning of this notation:
Sihe first photon is H and the second is V7 is definitely not the same as
She first photon is V- and the second is H”. Apart from this, the tensor
product has all the usual properties of multiplication.

Ior simplicity, we shall write |H)®|H) as [H, H) or [HH), a convention
(hat we will be using throughout this book.

1.4.3  All the states of two photons

Proviously, we saw that the general expression for the linear polarization
glnle of a single photon is |a) = cosa|H) + sina|V), and any « defines a
valid state. Similarly, in the case of two photons, the most general state
(akes the form

|9y = a|IIH) +b|HV) + c|VH) +d[VV). (1.20)
To keep the interpretation of |a|?, |b|?, |c|? and |d|? as probabilities, we also
impose the normalization condition |a|? + |b|®> + |c|* +|d|* = 1. Conversely,
any choice of {a, b, ¢,d} satisfying the normalization condition represents a
valid state.

Let us now study some examples. We start with

c|HH) + s|IV) = |H)(c|H) + s]V}), (L21)
where ¢ = cosa and s = sin . This state represents the situation in which
the first photon has a polarization of [H) while the second photon has a
polarization of |o) = ¢|H) + s|V).
Let us take a look at another state: %(|H H)-+|VV)). Intuitively, this
should also correspond to each photon having a well-defined polarization:

%(IHH} +VV)) = (cal H) + 5alV)) ® (calH) +551V)),  (1.22)

Inteoiduetng Quantin Plyason with Polariaation

whore e, o coma obes B prnding Che product, wo got
| | 1
M) + A VV) & oaopl HI) + cang|HV)
t baca|VH) + 8q85|VV)

(1.23)

To satisly this equality, we must have cocp = 8q8p = ﬁ, but cosp =
dacp 0 the two conditions are manifestly contradictory. Hence, there is
no way Lo write this state ag the product of two independent states, one for
onch subsystenm,
Wwer, -
IHowever, 75(

HIT) + |V V) still describes a valid physical state, as we
hiave mentioned carlier. We have to admit that there are some states for
which it is not possible to describe the two photons separately. Such states
nre called entangled. 16 turns out that the conditions for composite states
Lo bhe written as the product of two separate states are very constraining,
nnd that vectors chosen at random are not likely to satisfy this. Thus most
composite states are entangled.

Exercise 1.4. Consider the following two-photon states:
1
) = S(HH) +|HV) +|VH) + [VV)),

) = S(BE) + [HV) + [V )~ [VV)),

) = Sl + L v + vV,

[ths) = cosO|HH) +sinf|VV).

Verify that all the states are correctly normalized. Which ones are
entangled? Write those that are not entangled as an explicit product
of single-photon states.

1.3.4 The meaning of entanglement

What does entanglement mean? Let us stress explicitly that we are study-
ing states, i.e. the description of the system, not its dynamics. The Earth
and the Moon mentioned earlier influence the motion of each other, but
we stressed (it seemed obvious) that at each time one can assign a state to
the Barth and a state to the Moon. On the contrary, an entangled state
describes a situation in which, at a given time and without any mention




ol evolution, two photons conmot e dosertbod sopaeately. How should we
anclormtand (hin?

[t vory Bined, 0 nob fpossble, togive mn fntadbive moenntng (o ontin-
plornont wineo i not observed T overydny e However, physielsts have
porformaed tosts on ontangled photons and abmerved their proportios, Somao

ol those tonts would b desertbad fndobntl in the following chaptors, We
conelude with an intriguing exercigo:

Exoreise 1.5, Consider |o) and [o') as defined in Equation (1.14).
Check (hat

| ey vy

75(!():)[&) + |at)at)) = EOH)'H) +[VHV)) .  (1.24)

- What happens if both photons are measured in the same basis?

Notice that the polarization of the two photons are always the same, for
wll moasrements. We say that their polarization are perfectly correlated.
[Towever, this correlation is not caused by each photon having the same well-
defined state, for example, one photon is |HY, the other is also |H); thus
loth nlways have the same polarization. Recall that for entangled photons,
onch photon cannot be described separately. This may be counter-intuitive,
il oven though both photons do not have well-defined properties, their
praportios are correlated such that their relative states are well-defined.
[Uning Che same example, this means that although we cannot say that
olthor photon is [1), if one is measured to be | H), the other must definitely
[ [£1) as well. Thus we see the presence of correlations in the properties
ol entangled photons.

1.4 Transformations of States

We have discussed how to measure states and predict the results of the
meagturements. Another important concept is the transformation of states,
nnd the properties that such transformations obey.

[Yirst, we have to stress that the measurement process discussed thus far
i an optimal one. In other words, there is no way in which two states can be
(igtinguished better than by measuring them using polarizers or polarizing
leam splitters. This is important because otherwise, Born’s rule of proba-

AW produce difforent probabilition,

Hocondly, 10t an assamption of modern physies that Geansformations

Woon ineroscople staton are reversible, This means that il a state |¢)
i ho transformod (o [0), |0) ean also be transformed to [¢). An example

al thin b8 the rotation of a veetor: it can be reversed by a rotation in the

upportto divection. 16 turms out that all reversible transformations on a

Dolaelzation vector are indeed related (o rotations.

A theorem due to Wigner proves that in quantum physics, all transfor-

Auntions mugt be linear and have the property of unitarity:

o A (ransformation 7" is linear if, for all pairs of vectors {|i1), [12)},
T(lpr) + [4p2)) = T(|41)) + T(Jnb2)) - (1.25)

s A (ransformation U is unitary if it preserves the scalar product of any
lwo vectors:

(D1l¢2) = (U(1)|U(¢2)) - (1.26)

T'he proof of linearity is the most difficult part of Wigner’s theorem, here
Wwo sketeh the reason behind the necessity of preserving the scalar product.
{ According to Born’s rule, two states are perfectly distinguishable if the

nenlar product x = 0, and are the same if x = 1, indicating that x is a
inengure of the “distinguishability” of the two states in an optimal mea-
prement.

Now, let us analyze what would happen if y is not preserved. If we sup-
pose that there is a transformation such that y decreases, this means that
) (he states become more distinguishable, which contradicts the assumption
(hat the measurement is optimal. Indeed, before performing the measure-
ment, we could apply the transformation. If instead y increases, the as-
~uumption of reversibility implies that there exists a reversed transformation
in which x decreases. Thus the only remaining option is that y does not
chiange during a reversible evolution.

1.5  Summary

‘I'he polarization of light describes the direction of the electric field’s oscil-
lation, and is written using vectors. Polarizers or polarizing beam-splitters
~are used to determine the polarization, by measuring the transmitted and
reflected light intensities. For single photons, their polarization states are




widtbon g Che Divne notation, and Bors vude determbnes the probabil
ity af teanmedusdon or rofloction thromgh o memsueing dovice, The hohavior
al whnglo photons b tntrtstently vandomg only Che statistienl belinvior of o
lnege tmbor of photons con be prodictad, Twa photons can forn entan-
loch wtaten o which ench photon doos ot have w wollsdofinod stato, hut are
correlntod sueh Chnt thetr relative states are woll-definod. Reversiblo trans-
formntions nre also possible for states; these must be linear and unitary.

1.6 The Broader View

[ (s section, we present some of the concepts mentioned in this chapter in
prentor depth, These inelude veetors, probability and the degree of freedom,

1 .0. 1 Vectors

Voctors are a basic mathematical concept used in quantum theory. General
voctors have similar properties as the geometric vectors encountered in ele-
montary mathematics courses. The main difference is the notation: instead
ol the commonly used #, in quantum mechanics we use the Dirac notation,
[1). Wo also write the scalar product as (v1,v2) or (vi]vs) instead of v} 0.

Voetors can be expressed as a sum of component vectors, which is usually
done uging unit vectors that form a basis. For example,

(Z) :a((1)> +b<-(1]> ' (L27)

1
In the Dirae notation, (Z) is written as |v), and (0>, ((1)) as |ei) and

[ea) respectively. Then Equation (1.27) can be written as

[vy = aler) + blez) - (1.28)
Notice that @ is actually the scalar product of |v) and |er), or a = {e1|v).
Likewise, b = (ea|v). |e1) and |ez) also form an orthonormal basis, which
means that these conditions are satisfied: (ei]e1) = 1, (ea]ez) = 1 and
(¢1]ez) = 0. Geometrically, |e1) and |ez) are orthogonal to each other and
normalized to one.

1.6.2 Probability

Many events in our daily lives are random, e.g. the results of tossing a coin
or casting a dice. That is, their behaviour is unpredictable in the short
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Qonin However, Chone eventn iy hive noeegalae aud pradictnble patiorn in
e fong forr, T e cose of tossdog nocoln, we fad Chat aftor many (rios,
Lol the tomson produces heads and the other half produces tails. The
babﬂﬁw i the proportion of thmes an ovent oceurs over o large number
il pepetiions, Mathematieally, we define the probability of an event A as
PA) = %((—2%, (1.29)
where n(A) ds the number of times event A occurs and n(S) is the total
her of events,

~ T'he probability P(A) of any event A satisfies 0 < P(A) < 1. By
dulinttion, if 2(A) = 1, then event A will definitely happen and if P(A) = 0,
Lo ovent A will definitely not happen.

T'wo events A and B are independent if the probability of one event
Jinpponing does not affeet the probability of the other event happening.
[r oxnmple, i you toss a coin and the result is a tail, the result of this toss
Sdoen nob affect the result of the next toss. Hence each toss is independent.
Al A and B are independent, then P(AN B) = P(A) x P(B), where AN B
Aonotes that both events A and B oceur.

1.0.8  Degree of freedom

NYou may have encountered the phrase “degree of freedom” in chemistry
ol physics courses, in which mono-atomic particles are deseribed as havihg
throe degrees of freedom while diatomic particles have five. In this case,
vich degree of freedom is a type of motion that the particles can undergo.
Hore in this book, this term will be used more generally to denote a physical
~viiable that describes the system under study.

Within a system, there are often many variables, but not all the vari-

~ubloy are of interest. For example, if we have identified a car as our system,
] tho variables would include its position, velocity, and also its colour, tem-
poerature, material ete. If our aim is to study the motion of the car, then
(he colour of the car would be of little significance and can be ignored. In
tontrast, the position and speed of the car are of great importance; we call
‘thmn the degrees of freedom of the car.
Let us take another system as an example. Suppose the physical system
Iy an electron and our aim is to examine its motion. Again, the speed
nnd position of the electron are its degrees of freedom. Its motion can be
‘lescribed by the equation m# = —eE(x), where E(z) is the clectric field
in the region, and e is the charge of the electron.




Howover, 1 nstond wo wint (o (ks il how the electrie fold
climnggon e o eloetron moves, our systei would thon b componed of hoth
(ho olectron and olecteie fold, Wo would thon linve (o exprom thelr roli-
Conship sty Maswoll's ecquations, aud the analysis bocomoen more: com-
plicatod, Thus aw Che system undor consdoration chnnges, the maethod of
nuplynln nlso changoes,

Bolore we end Chis diseussion, we Husteate an important difference ho-
fwoen quantum and clagsical systems through sob theory. We first considaor
i elden system: in the example of the car, we can deseribe its degrees of
froedom using n velocity-position graph, ag in Figure 1.7

Velocity

Posmon

Clily west City' center C1ty east

-80 km /h 4

Fig. 1.7 Velocity-position graph.

I'he shaded region indicates all the cars that are between the west of the
cily and the city center, while the patterned region indicates all the cars
(hal are traveling towards the east. By simple logic based on set theory,
[he overlapped region indicates the cars that are both between the west of
(he city and the city center, and are traveling towards the east. Thus if the
enr s at the position of the dot, we know that the car is between the west
of (he city and the city center, and is traveling at about 40 km/h towards

o bty contor, Weolmoryve frome Chis ol (it elmtont propurblnu ot
b dauurllwtl unlng wol Eheory,

T gonoralize (il concept, suppose 2 and 2 e Gwo physical proper-
Uow, while 8 and Sy avo sots Chat watisly the physical properties P and P
ponpoetively. T mathematical notation,

P| - 97,

Sy (1.30)

1

o what we have digenssed Chus Far, we know that

LPAP, = 8NS5y,
2.PLVP, = 5 U8, (1.31)
3.Pp= P, = 85, CSs.

i words, the intersection of Sy and Sy satisfies the property Py and P,
Ahe union of Sy and Sy satisfies the property P or P, and if Sy is a subset
ol My, 17 is satisfied if Py is satisfied.

Ilowever, this simple, intuitive relationship breaks down in quantum
Aheory, because quantum systems do not have well-defined properties.
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LA Solutlonn to the Exercles

Solution 10 To wolve thin problo, o that the intensity transe
mitted by ench polarizor v n frnetion con ¢ o provious, Thus to i

Chie fntenmity transmittod by the Tt one, wo onn sl tply all these faetors
Logothor

A : n
cos? ¢ x cos? € % .. = (con® )N, where N = v
-

Wa cnn then take the limit of the term (cos® )N = (cos? €)% as ¢ appronchon

voro, nnd we find that

lim(cos ) = 1.

0
Ty we conclude that the intensity transmitted by the last polarizer iy
vl to the original intensity /! But the direction of polarization hay
chinnged: the light entered horizontally polarized and exited vertically po-
lnrized, In elfect, this setup rotated the polarization while maintaining thoe
intonsity. A cultural remark: this effect, especially in the context of ¢uan-
L physics, is called the Zeno effect from the name of a Greek philosopher;
wo lol you guess why.

Solution 1.2. Suppose that the polarization is €y, we can find I, and /.
with reference to Equation (1.5), in which the difference in angles is now
) - e,

Io=Icos*(0—a),
Li = Isin®(0 —a).
Similarly, if the polarization is €_g, then I, and I, . are given as follows:
In=Icos?(8 +a),
L =Isin’(0+a).
I'his difference in the resulting I, and I, can be measured, thus the two
- polarization directions can be distinguished.
Solution 1.3.
(1) A basis is defined by
(a]a) = cos® a +sina =1,
(at]at) = cos?a +sin*a=1,
{alat) = cosasina — cosasina =0.

T'hese conditions can indeed be verified, either by writing both |a) and
|ty as in Equation (1.9), or directly by using Equation (1.12).

y,*_“,g\"”_,_»,,l’ RIS ’ \’(:J alion

) Ukt Born's tule for probabilitios, :
Plov|i) w [(a@)]* = [conacon 4 sinanin g = cos®(a -~ f),
P ) = (e |8 o | winoveon f = cos asin B2 = Hiu’((.\z - B).

Mo lutlon Lo [1py) 18 ot ontanglod: it can be written as 7-(|H) + V) ®

B () e (V) = |y = 1) @] = &), All the other states are entangled (of
0 urm, [tha) I8 not entangled if cos@ = 0 or sin@ = 0, but it is in all the
olhor cases),

Holution 1.5.

71=[|~>|~ )+ o)

7[ clH) + sIV)) (el ) + 8lV)) + (s H) = clV)) (sl H) — c|V))]
% [+ P)H) + (05— s HV) + (s~ es)[VH) + (52 + ) VT)]
%DHH —I—IVV]
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Chapter 2

Quantum Cryptography

BUT THE LAWS OF
PHYSICS WON'T PROTECT
YOU AGAINST
CARELESSNESS!

DON'T WORRY. WITH
QUANTUM CRYPTO OLUR
CHANNEL 1S 100 SAFE!

Cryptography, as the name implies, is the art of sending cryptic mes-
~sages for secure communication. The aim is to prevent any third party, Eve,
[rom eavesdropping on the message between the sender and receiver, tra-
(ditionally called Alice and Bob. Cryptography consists of two main steps:
oncoding and decoding. Typically, the sender encodes a plain message into
i cryptic one which is sent to the receiver, who then decodes it to recover
~{he original plain message. This procedure, a systematic way to encode and
~decode messages, is called a cryplographic protocol.

27




Messnge in public clamsieal channel

[Key in quantum channel B

Mg, 2.1 Alice, Bob and ISve.

To date, there are two main classes of cryptographic protocols: (he
public and private key protocols. The public key protocol is used to transmit
information from one sender to many receivers. These usually use the RSA
alporithim, named after Rivest, Shamir and Adleman who devised it. "T'his
alporithim is based on the fact that it takes a lot of time to factorize a very
lnrge number into prime numbers.!

I the RSA algorithm, there is an assumption: that Eve has the same
computational power as Alice and Bob (in short, her computers are not
much more powerful than those available on the market). The second
clngs of protocols, those that use a priwvate key, are secure without this
asstmption. This class of protocols is used for communication between two
people, who share a common secret code or key. The message is safe unless
{ho cavesdropper knows this key. But there is a tradeoff for this security:
(he need to send the key without interception. How can this be done?

This is where quantum physics comes into play, opening up a new field
called quantum key distribution. In this chapter, we first describe how
private key cryptography works in practice by describing the one-time pad

11y this algorithm, the receiver, Bob, chooses two large prime numbers p and ¢. Bob
then publicly reveals two related numbers: N, where N = pg and ¢, a number having
1o common divisor with (p — 1)(g — 1). Alice, the sender, uses N and ¢ to encode the
message that she wants to send. However, to decode the message, one has to know both
p and g. Since it takes a lot of time to factorize N, if N is large, the message remains
pocrel for a long time.

Queitum Cryptogriphy an
protocal, Thon wo sty the est and mont fanous protocol for quantan
cryplograpliy,

2.0 OneTimoe Pad

Lot us fiest prove that i Alice and Bob share a secret key, then they can
cotmunicate securely.

Suppose Alice wants (o send Bob a greeting message “Hi”. Here is the
procedure for Alice (o encode her message using the one-time pad:

(1) Alice needs to express the word “Hi” using bits. One way to do this is
(0 use the ASCII scheme, in which each letter is assigned a sequence of 8
bits. This results in a message M of N bits. In this case, N = 2%8 = 16
bits.

Plain message H i
M 01001000 | 01101001

(2) Let K be the secret key shared between Alice and Bob previously. Alice
adds up M and K bit by bit, using a binary system in which 141 = 0.
T'his process creates a new list of random bits, X. Mathematically,
X = M ® K, where & denotes the bitwise sum modulo 2.

Message M 01001000 | 01101001
Key K€ 11010101 | 10010101
Cryptic message X' | 10011101 | 11111100

(3) Alice then sends X to Bob. It can be proven that Bob can extract
the message using the key and no one else can obtain any information
about it. This is the content of the following exercise.

Exercise 2.1. Prove the following statements:

(1) Knowing the key, the message can be retrieved through the
operation X & I = M

(2) The string X, which Alice sends to Bob, is random, i.e., it does
not contain any information on M. Hint: take a bit whose value
is 0 in X what is the value of the corresponding bit in M?




W live Junt proven Gt thie message can only be roteleved using the
loy, Note that the argument does ot ke sy assioption on the com-
putationnl power of the envendrapper: evon 1 Bve hos an infinitely st
compuitor, she has nothing to computel

Thin mothod 1o enlled the ‘onetimo pad® hocnmse the key can only he

Cumed onee, 1 Ghe key s usod more than onee, Bve can ind gome pattern in
(hie moessnges and possibly deduce the koy, This happened during the World
War 11, in which the Soviet Union sent codaed messages using this method,
Howoever, they made the mistake of veeyeling their keys, thinking that their
cnemios would not notice. This proved to be deadly: after the U.S. gathered
tong ol correspondence from the Soviet. Union, the mathematiciang were
nble to uncover the key and cavesdrop on messages sent by the Soviel
Updon, This is the famous story of the Venona project. The lesson to e
[onrmoed here is that it does not pay to be lazy; this protocol is sale only if
Alice and Bob generate a new key for each communication.

2.2 The Idea of Quantum Key Distribution

We have just shown that if Alice and Bob share a secret key, they will he
nhle o communicate securely. The problem now is to distribute this key
i nuch o way that it is known only to Alice and Bob, and protected from
nuy cavesdropper Eve.

Uning classical methods of key distribution, such as via the Internet or
{olophone, it is impossible to know if Eve is eavesdropping on the commu-
nication channel. This is why in movies the characters have to meet and
oxchange suitcases: there is no way of distributing the key between distant
partners... unless quantum physics is used. We have learnt in the first
chapter that if a measurement is made on the polarization of a photon, its
state of polarization would be changed. Thus if Eve eavesdrops on a channcl
sending polarized photons, the polarization states will be modified by her
intervention. By checking if the result obtained by Bob corresponds to the
polarization state sent by Alice, the presence of Eve can be detected. If no
orror is observed, it can be concluded that Alice and Bob share a secret key.

Before going into the details, it should be stressed again that quantum
physics helps in distributing the key. Once the key is shared between Alice
and Bob, the message will be sent using the classical one-time pad discussed
above. Therefore, the precise name for quantum cryptography is quantum
key distribution. ‘ '

Gt Cryplagraphy
2.8 The B84 Protocol

Lot s now go tnto Che detatl by outtntng the protocol propoged by Bennett
nndd Brassard o 1984, which s therelore known as BIB84. This is the first
(uantum cryptography protocol to boe proposed.  Interestingly, physicists
dic not notice 16 hocause 16 was prosented ab o meeting of eryptographers!
Quantbum cryptography was later independently re-discovered by Ekert in
1001 this worlk was published in a physics journal and finally the idea was
noliced,

2.8.1  The steps of the protocol

The steps are the following;:

1. Quantum communication.
Alice sends linearly polarized photons to Bob. Each photon is prepared in
one of these four states:

Z basis: [0,) = |H),

L
2
ol e = %(|H> — ).

In other words, Alice uses cither the Z basis (H/V') or the X basis (+/—),
und in each basis, one of the states corresponds to the bit value 0 and the
orthogonal one to the bit value 1.

Bob measures the polarization of each photon in either of these bases,
choosing at random because he does not know the basis chosen by Alice.
For example, suppose Alice sends a |0,) photon and Bob happens to
orient his polarizer in the Z basis. The photon is transmitted through the
polarizer and registers a count, thus Bob records the bit as 0. If Bob in-
stead chooses to use the X basis, since P(+|H) = P(—|H) = £, Bob will
register a 0 or a 1 with equal probability: there is no correlation between
Alice’s and Bob’s bits when they use different bases.

X basis:

=
S
L
|
+
<
I

(1) + V),

g

2. Basis reconciliation.
At the end of the exchange of photons, Alice and Bob publicly reveal the
basis in which each bit was coded or measured; the bits are kept if the
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s Dt win e, el disomrded G G Bisen wore difforont, T Chidn way,

(hoy romove tho bits that have no coreltion, Noto thiat disearding half of

o Bt s not w problom stee Che ey n vandonm et (whilo 16 would o
dotrtmentol o disenrd Tl of the Bibe e fe mossige ). Fho lse of its Chat

nre lkopt in enllod the raw hey.

4, Classical post-processing,
Alfce nnd Bob apply some clasgical information processing (error correcs
fion) Lo remove errors between their two lists, This procedure will toll
them the pmonnt of error present in their raw keys. 1 Chis number is small
ononph, they can apply another classical processing (privacy amplification)
to mnke ve’s information negligible. If the error rate is too large, Alico
nndd Bob discard the whole key. T'wo important remarks: first, privacy am-
plification is possible because, thanks to quantum physics, we can quantify
lve's information on the raw key. Second, if the amount of error in the
raw key ig too Targe, the raw key is discarded. A discarded key may scem
Lo hoe w failure of the protocol since Eve could stop the exchange of the key
Ly onvesdropping. But this protocol ensures that if a key is ever produced,
1t In snfo,

[ the above, notions such as the amount of error being too large and
privacy amplification are vague. In the following, we will quantify and make
[hose notions more rigorous.

20,2 Stlatistics from quantum measurements

I [ve 18 not present, i.e. no one is eavesdropping on the message, the raw
lioy 15 already secret: neither error correction nor privacy amplification is
nocded, We study this case in the form of an exercise.

Iixercise 2.2. There are a total of 16 possible measurement results
for all the different combinations of bases chosen by Alice and Bob,
gince each of them can choose from 2 polarization bases. These are
shown in the table on the next page. Fill up the last column, which
is the probability of Bob obtaining the result in the second column if
Alice sends the photon with polarization stated in the first column.

st Cryptography . i

[ Atico wondu | Bob momren . and finds ... | Probubility
El‘s i ! s 6. ; 17
| [0) Z = 1y) 0
[0.) X = 05) 1/2
[04) X = |lg) 1/2
[1:) Z = (0:)
1) Z = |1,)
[1,) X = 05)
it X = 1)
[0,) Z — |0,)
[0,) Z — |1.)
10.:) X — |0,)
0,) X = |1,)
) Z — |0.)
1) Z = 1)
[Le) X — |05)
L) X o[l

~ With the help of this table, which describes an ideal situation with-
oul any error, verify that Alice and Bob indeed share a common
Hocrel key after basis-reconciliation.

I
L

We now consider the presence of Eve. We should consider the most gen-
ornl attack that Eve can do, but this requires knowledge that goes beyond
(he scope of this text. For the purpose of illustrating the principles, we

~ present a specific attack called the intercept-resend. This attack is defined

by having Eve do the same as Bob: she measures each photon sent by Alice,
vither in the Z or in the X basis. She then sends Bob a newly prepared
photon, in the state corresponding to the result of her measurement.

I'or example, suppose Alice sends a photon |0.) and Eve happens to
measure it in the X basis. From the previous section, we know that Eve
ling a 0.5 probability of measuring either a 0 or a 1. Suppose Eve measures
i 1, she would then send to Bob a photon [1;). Now even if Bob chooses
the same basis as Alice, namely Z, he may get the wrong resuls.

Now the situation is more complicated. Alice can choose between four
polarization states, Eve and Bob can choose between the Z and X bases and
measure either 1 or 0. We see that the total number of cases is 4+4+4 = 64.
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For shmplielty, vomember that fn basis rdmﬂlwm::. I Allee nnd Bob use

ifforont bises, the bits would e disenrdod rogardlom of Eve, Thus wo cin

fgnore thewe 32 camen, To shorten the Hat even further, wo can conslder the
casen where Alice uses the Z basis ouly, the sitantion for the X basis being
shmilar, Henee we only consider 16 enmen tn the exoreise below, but benr i

Cdnd the other 16 cases in which Allee usen the X basis, Note the presence

ol errors: as noticed earlier, sometimes Alice and Bob don't have the same
bit even though they used the same basis,

lixercise 2.3. Complete the table below: Ppy. is the probability
ol live measuring the polarization stated in the third column based
on Alice’s photon, while Ppgep is the probability of Bob measuring
“the polarization stated in the fifth column based on Eve’s photon.
Ppinar 18 the probability of Bob measuring the polarization stated
in the fifth column based on Alice’s photon.

No. | Alice sends Eve Prie Bob Problt Brinal
| ) e [T 1
2 l0.) 2=y Cavlg Sy o 0
3 10.) Z = |1,) Z —0.)

4 10.) Z - |1,) Z — 1)
5 l0.) G 1B 2o | e 1
6 l0.) X500 sl
o [ xo) Z - 0.)
8 10.) X — |1.) Z — |1.)
9 [1.) Z = 0.) Z —0.)

10 [1.) Z —0.) Z = |1.)

11 I1,) Z— 1) Z —0,)

12 I1.) Z —|1,) Z — |1,)
it || (TR B S Z - 10.)

14 1) X = |0g) Z = |12)

15 1) KL T
) ro 7 i)

At this point, you may answer the following questions:

(1) Why is it necessary to use two bases? What would happen if
Alice and Bob decided to use just one basis to code the photons?
(2) How do Alice and Bob detect the presence of Eve?

- —

LG Batracting the secret hey

Having the gtatintien of the moemsueemonts, Aliee and Bob can now apply
ror correction nied privacy nrplifiention: these will extract from the raw
v o phortor key Chat s socret, But how much shorter? Again, a rigorous
rontation rocuires information theory, which we have not studied here.
Howover, the final result of those rigorous studies is intuitive and we can
tuto it hore,

Lot g andd £ppe he ameasure of Bob’s and Eve’s information on Alice’s
taw Loy rospectively. Intuitively, if 1po, > Ipye, the situation is favorable
il Bob can extract a secret key; on the contrary, if I, < Igye, Eve
vould hiave too much information and the key would have to be discarded.
Not only is this true, but for a suitable measure of information, the secret
Loy will be shorter than the raw key by the factor

r= IBob e IEve 5 (21)

I other words, if the raw key consists of N bits, the length of the secret
Loy will be »N bits if » > 0 and 0 otherwise.

The following exercise proposes this analysis for the intercept-resend
ek,

 Iixercise 2.4.

(1) e can be defined as the fraction of bits whose value Eve knows
perfectly out of the total number of bits Alice sent, thus giving
an estimate of Eve’s average certainty of each photon. Referring
to the table in the previous exercise, how much is Iy, for the
intercept-resend attack?

(2) The probability that Alice and Bob don’t have the same bit,
although they measured in the same basis, is called the quantum
bit error rate (QBER, written as Q). Verify that Q = 25% for
this attack.

(3) Accept without proof (see subsection 2.6.3) that Bob’s informa-
tion on Alice’s string is given by the following formula:

Iy =1+Qlogy Q@ + (1-Q) logs(1-Q),  (2.2)

with the convention that 0log, 0 = 0. Insert Q@ = 25% and
compare Iy with Ig,.: can a secret key be extracted?




2.4 More on Classical Post-Processing

T'he purpose of this section is to give an idea of the classical information
procogsing that is performed in error correction (EC) and privacy amplifi-
catton (PA). Let us stress again that these procedures are entively classical;
(they do not rely on any quantum formalism. However, privacy amplifi

cntion requires knowledge of Eve’s information, and there is no way of

onthmating this in classical eryptography. It is only in quantum cryptogra-

phy that the knowledge of the error rate gives access to Eve’s amount of

information.

2.4.1  Error correction

We start at the point where Alice and Bob each have a raw key of N
v it {ai}ia..v and {b;};—1...n and the two keys are not identical. Let the

.: probability that the bits are equal be given by
ne 1 ‘ .
{ pla; =b;) =p > 5 (2.3)
The goal is to produce more correlated strings.
b Here is a possible EC procedure: Alice and Bob take two successive bits

(a1, ay) and (b1, be), compute A = a; @ ag and B = by @ by, and reveal the
E rosults. If A = B, they keep the first bit: af = ay, b) = by and discard the
other one; if A # B, they discard both bits. The following exercise shows
how this procedure can indeed increase the correlations, at the expensce
ol discarding more than half of the bits. In reality, much more efficient
procedures are used that compare the parity of larger blocks and do not
igcard the whole block when an error is found.

(1) I relindn

fon which is favorable or

that the new strings are such that
N »’ ;
plag = b;) = e (2.4)

~ the probability that Alice’s and Bob’s bits have the same value
 has indeed increased.

Of course, there is a price to pay: the strings have become
shorter. Prove that the iteration decreases the length as

o N — N' = -;—(p2+(1—p)2)] N. (2.5)
| '4,) Suppose p = 0.95: how many iterations n are required to obtain
p™ = 0.99? What is the length of the final string, as a function

~ of the initial length N7

(h) Same question for an initial value p = 0.6.

~(6) Why does one discard the second bit when A = B? (Suggestion:

~ do not forget Eve). .

7.

i

2.4.2  Privacy amplification

ol’s suppose now that Alice and Bob have corrected all their errors: p(a; =
;) = 1. Eve still has some information on Alice’s bits:
1

ples=a;))=¢q > 3" (2.6)

1u order to decrease Eve’s information, Alice and Bob can apply the follow-
ing PA procedure: as before, Alice and Bob start by taking two successive
bits (a1,a2) and (b1,bs) and computing A = a1 © ay and B = by @ by.
Now, since their lists are equal, they certainly have A = B. Then, they set
ah = A, b} = B. Eve wants to guess the new bit a} by setting ¢} = e; ®ea.
As the exercise shows, Eve’s new guess is worse than her initial knowledge.
Again, in practice, more elaborate procedures are used.




Anuin. the price to pay is that the strings lmvo become shortor,
Dy w [netor of 2. Verify also that ¢ & alter many iterations,
m Suppose ¢ — 0.95. How many iterations are required to ronch
¢ = 0.617

2.6 Summary

T'he basie principles of secure quantum cryptography involve the one-tino
pad and quantum key distribution. In the BB84 protocol, Alice sends the
hit-encoded key via photons polarized in different bases, and Bob randomly
chooses one of these bases for measurement. After this exchange of pho-
fons, Alice and Bob keep only the bits for which they used the same bagiy
(hisis reconciliation). Any intervention by Eve can be detected from crrory
i these bits. If this error rate is sufficiently small, classical post-processing,
(crror correction and privacy amplification) can then be applied to establish
n Necret key.

2.6 T'he Broader View

2.6.1  The power of Eve and the power of quantum

Quantum cryptography has to deal with a very unusual standpoint. Nor-
inlly, in physics, we are interested in describing what is actually done or
observed.  Quantum cryptography, on the contrary, has to describe angy-
thing Fve could have done. Eve’s power is supposed to be limited only by
the laws of physics. Surely, she cannot send a message faster than light,
nor create a perfect copy of a quantum state (see the no-cloning theorem
i the next chapter); but anything that is not forbidden in principle, she is
nllowed to do: she can have the fastest conceivable computer, she can per-
[oetly entangle millions of photons... How far this can go from the simple
intercept-resend attack that we described in the text!

- "wn o w@'w«" b Iy m

The notions and mathomationl tools needed (o cope with such a new
blmn hael to be dnventods nowndnys, they are availablo for many proto-
o Bor dnstance, T the case of the BEBSA fmplomented with single photons,
i lenown Chnt Bve's Tnegost: possible information for an observed value of

“1:
Igye = =Q logy @ = (1 = Q) logy(1 = Q) =

‘ o neeret key vate Loy — Igoe becomes zero for @ > 11% (compare with
le rosult of the intercopt-resend attack obtained above). Therefore, above
this threshold, Fve might have used her power to perform a clever attack
(hat compromises the key entirely: Alice and Bob should abort the pro-
'col. But more importantly, we know now that a key can be extracted
I €) < 11%: if the error rate is below this threshold, whatever Eve might
lve done, Bob has more information than her on Alice’s string.

1=1pob. (2.8)

a0.2 Practical quantum cryptography

Hlnce the typical @ observed in real experiments is well below 5%, the
previous discussion might give the impression that everything is easy now:
Just run the BB84 protocol and extract a fully secret key. But it is not so
whimple.

I'irst, of all, all that we have done and mentioned in this introductory
Loxt is valid under the assumption that Alice’s source produces perfect sin-
ylo photons. There is no such object, and most experiments rather use lasers
Lt are very far from being single-photon sources. The whole sccurity anal-
il must be reconsidered, and parameters other than the observed error
ol start playing important roles (for instance, the intensity of the laser).
T'hen, when everything is well characterized on the quantum channel,
one has to turn to Alice’s and Bob’s boxes and study them carefully. Of
course, we have assumed that these boxes are private, but in a practi-
onl device are they really private? Take for instance the very first simple
demonstration of QKD (it was not more sophisticated than what could be
Hob up in the teaching lab of a school): there, when Bob changed his mea-
wurement basis, the devices made some noise. This gave rise to the famous
pun that the setup was fully secure against a deaf eavesdropper! This anec-
“dote is very silly and, by now, serious setups do not have such trivial faws;
but sometimes, someone finds more subtle ones. The ultimate check for
security can probably never be made, one shall always have to live with
Home elements of trust.




2.0 Tnformation theory

o W hiave Toft ono of the manfn oquations i the test unexplained: Fquation
(2.2) which glves o formula for Bob's infoemation on Alice's string of ity
Thiw formula comen from elassdenl anformation theory,

Information theory s an extremaely brond nnd useful branch of applied
mathomatios, Started basically by Shannon in 1946, it 18 the basis of all
wodorn communication and data processing, 1'he fivst notion of this theary
I Che notion of entropy, basically a meagure of “uncertainty before rendout™
The entropy of a biased coin, such that a head happens with probability p
nnd o tadl with probability 1 p, is given by the quantity

H({p,1~=p}) =—=plogep— (1-—p)logy(l-p). (2.0)

Now, notice that Equation (2.2) veads Ipoy = 1 — H({Q, 1 — Q}), L.e. one
ity Lhe uncertainty of Bob on Alice’s bit due to the error (Q: quito n
ronsonable definition for Bob’s information.

We cannot delve here into the explanation of entropy’s formula, its mul-
(iplo roles in information theory or its link with entropy in thermodynamics;
Uhin will lead us far away from quantum physics, and anyway, fortunately
(hore are many excellent references where these notions are discussed in
dopth,

I[' you are bored of quantum physics and want.to try something clue
[or your project or simply for your culture, information theory is certainly
pomething to look into!

2.7 References and Further Reading

[nsy reading:
- (LIl. Bennett, G. Brassard, A. Ekert, Scientific American 267, H
(1992).
Resources:
- N. Gisin et al., Rev. Mod. Phys. 74, 145 (2002).
- V. Scarani et al., Rev. Mod. Phys. 81, 1301 (2009).
Suggestions for projects:
Iixperiments in quantum cryptography are usually very technical; we have
nolocted two that are still reasonably simple here.

- W.T. Buttler et al., Phys. Rev. Lett. 81, 3283 (1998).
- (. Kurtsiefer et al., Nature 419, 450 (2002).
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Holution 2.1, To prove these statoments, we start by constructing a table
(he possible combinntions of bits of A and A

Bitwof M |00 1] 1L
Bits of (N T R
A= MSL 0L (1[0
Mm@l 01 0111

Ifrom the last row, we see that Bob can obtain the original message M
performing the decoding operation X' @ K.
We can also see from the table that if a bit in M is 0, the corresponding

Dl in A can be 0 or 1, and similarly for when M is 1. Thus we conclude
Lhal V' does not contain any information on M if K is unknown.

Holution 2.2. Starting from the first row:

P(H|H)=1;

P(VIH) =0,

P(+H) = 3,

1
P(—|H) = 3
Using similar calculations, the table can be filled up as below: :
Alice sends | Bob measures... and finds... | Probability

[1.) Z —10,) 0
[1.) Z —|1,) 1
|L1:) X — |0z) 12
L X — |1.) 1/2
02) Z —10;) 1/2
[04) Z = |1,) 1/2
[02) X = 10z) 1
|0z) X — 1) 0
e Z —10,) 1/2
L) Z = |1,) 1/2
|1z X — |0;) 0

In basis reconciliation, measurements done using different bases are dis-
carded. Hence all the measurements with probability % would be discarded.
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Tl Tomvon e with 8 combinations and wir cintt oatly woo from the tablo it
%‘l;lm Dt mmensured by Bob carrenpond porfoctly to the bits sont by Alfco,
Solution 2.3, For the first row:
Py = P(H|H) = 1,
Pyoy = P(H|EH) =]
Prinal = Ppye % Ppop = 1.
Ior the thivd row;
Pays = P(H|V) =0,
Thuw Bve would think that Alice’s photon is 0.), and would send (hin
photon to Bob.,
Prsiie POEE) =1
Prinat = Prue * Ppop = 0.
Ior the fifth row:

IJE'U(& = P(+|H) =

)

N =] =

PB()l: = P(I_Il—l') =

)

Pf‘iﬂ.al = Ppye * Ppop = = .

4
Use a similar logic to fill up the table. :

No. | Alice sends Eve Prive Bob P | Phinal
| [0.) 7 —10.) 1 7 —10,) 1 |
2 10.) Z-303 | 1 | 22| 0 0
3 [0.) Z = |1,) 0 Z —|0,) 1 0
1 10.) -3t | 0 |ZBslla)| D 0
5 [0.) X =0 ] 1/2 | Z—0,) | 1/2 1/4
§ 10.) X =00 | 1/2 | Z—]1,) | 1/2 1/4
7 10.) XL | 12 |g=0) | 172 | 14
8 10.) Xl | 48 |2 | 42 | 14
0 I1.) Z —10,) 0 7 —|0,) 0 0
10 I1.) Z-3by| B |Zsg| 1 0
1 I1.) Z=+11% |- 3 |Z=xluy] ® 0
12 I1.) Zsigy | 1 | Bl | 1
13 I1.) Xl | 172 [z | 172 | 174
14 |1z X =00 ] 1/2 | Z—=1.) | 1/2 1/4
15 I1.) XLy | 12 |zony| 12 | 14
16 I1.) Xl | T2 | 2t | 12 | 14

Note that ervors occur when Fve uses n different basis from Alice,

(1) I thay both use only o slugle bosds, Fyve can use the same basis to
mensure the bits sent by Allee, and would thus be able to determine all
the bits, On the other hand, i two bases are used, Ive would only use
the sme bagis as Alice hall the time on average, thus she would only be
nble to accurately determine hall of the entire key. Hence we observe
(hat using two bases prevents ISve from knowing the key completely.

(2) I Alice publicly reveals some of her bits, Bob can compare his own
measured ones with that of Alice. If the bits are different despite the
same basis being used, then there is a probability that Eve had inter-
copted Alice and sent the wrong bit to Bob. For example, this case can
be seen in row 6 of the table on the previous page.

Holution 2.4.

N e = %, since Eve has to use the same basis as Alice to be able to
know her bit perfectly, and Eve chooses the correct basis half the time
on average.

(2) Consider the case in which Alice sends |0.) (the first 8 rows), the case for
[1.) being symmetrical. The last column, Pfipnqs, tells us the probability
of each row to happen.

e > P(not same bit) 3 Prina of rows 6 and 8
- > P(all cases) Y Prinai of rows 1 to 8

(8) Ipop =1+ 1 1ogy(3) + (1 — 1) logy(1— %) =0.189
Tesp=0.189 < Igy. = 0.5
Hence a secret key cannot be extracted by Bob.

(1) Errors only occur for the photons intercepted by Eve. Thus @ is equal
to 25% of the proportion of intercepted photons, or

= 25%

Q=ux*x25%.

As for Eve, from Part (1) she only knows half the bits that she inter-
cepts. Thus B
IEve =ux*50%.
(5) If Ipop = IEpe, then from Equation (2.2)

1 F Q lOg2 Q + (1 = Q) 10g2(1 - Q) = IF;‘ve .




Hubutituting € « w x 26% nd M{Wm B0, wo can wolve thin to

(0) By anonnetng the vendts A nod 1 Bve would now whaethoer the (wo

ubtaln

W 0,082, Q = 17,19,

i menns thad 1 0 secret oy I to be oxtraetod, the maximum prob-
nbility w for 9ve (o perform the intorcopt-rosond attack s 0.682, nd
the magimum ¢ that Bob measures s 17,1%.

Holution 2.5,

(LIRLE 7 - %, then there is an equal probability that the bits are wrong or
correct, Thus Bob cannot determine whether any bit is more likely (o
he wrong or correct, and hence he gaing no information from p.

I 0, the situation is favourable for Bob, since it means that all (he
bits are wrong, thus Bob can simply change all his bits to accurately
determine Alice’s bits. '

(2) I A = B, then cither a; = by and ay = by, or a; # by and ay # by,
s

p(A = B) = pla12 = b12) + plarz # br2) = p*> + (1 —p)?,

plos=0;) _ p? s 1
W(A=8 = p2+(1—p)2 > p, since p > 3

I'"his means that the probability that Alice’s and Bob’s bits are (he
same has increased.

plal = bl)

(1) "I'he bits are only kept when A = B, and half of these bits are discarded.
I'hus the length decreases as

L (P +(1-p?)|N.

1
f — — e
N'=pA=B)N = |5

y (1) We know that

- (p(n—l))2
= (p(n—l))z 5 (1 _p(n—l))z .

Substituting p(© = 0.95 and doing as many iterations as required, we
find that n = 1 gives the required probability, since p™ = 0.997 > 0.99,
and N = 0.45 N.

() Repeating the steps in the previous part, we find that n = 4 gives the
required probability, since p*) = 0.998 > 0.99, and N = 0.0125 N.

p

D e Chomnrne or difforent, Thin redueens the 4 posstble combinations
ol two bite to two cambinmtions, honeo Bve gadng information. However,
in the procedure Allee and Bob diseard the second bit, and use only
the frst bit, which, to ISve, s oqually likely to be either I or 0. Even
though Kve knows the sum of the two bits, this sum does not give her
any information about the first bit, Thus by discarding the second bit,
Alice and Bob ensure that ve does not gain extra information when
they announce their results.

Solution 2.6.

(1) If ¢} = @/, this means that either ¢; = ay and es = as, or €; # a; and

Co # ag. Thus
ple; = aj) = plerg =a1) + plerp #ar2) = ¢+ (1-9)* < q.

Hence the probability that Eve’s bit is correct is smaller.

To verify that ¢ — % after many iterations, we first assume that ¢
converges, i.e. ¢ = ¢ when n — co. Then

g+ = <q<n>)2 +(1- q<n>)2 — g™

which we can solve to obtain ¢(™) = % :
(2) We know that

¢ = <q<n—1>)2 % (1 N q(n—l))2 ‘

Substituting ¢(©) = 0.95, we can do 6 iterations to obtain ¢(®) = 0.501 <
0.51.
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Chapter 3

Quantum Cloning

In the previous chapter, we saw that Eve is unsuccessful in avoiding de-
foction because she causes errors when she measures in the wrong basis.
I'or her, it would be nice to be able to make several perfect copies of each
photon that Alice sent. Then she could measure a few copies and determine
he exact polarization of the photon, while sending Bob one of the copied
photons. In this way, she could avoid detection completely since all the
photons Bob receives would be in the same polarization state as those that
Alice sent.

[ortunately for Alice and Bob and unfortunately for Eve, such perfect
cloning carnot be achieved. One can however strive to achieve the best
possible result (optimal cloning). These notions are studied in this chapter,

3.1 The No-Cloning Theorem

A physicist receives a photon in an unknown polarization state [¢)) and
would like to prepare a second photon in the same state. To do so, he
prepares another photon in a fixed state |R): this state is like a blank piece
of paper ready for the important information to be transferred. Now he
would like to implement the following process:

) ® |RY == 1) ® |4) . (3.1)

The following exercise proves that such a perfect cloning cannot be done.
T'his fact is called the no-cloning theorem.
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MM. L
L Assuine that the trar

V) Lo : ] . ] ,
1 018) — i1y 6 1),
V)®[R) — V)&[V),

i possible. 11 perfoct cloning for any arbitvary state is possible,
how 18 the state [+) = Jg ([[) + V) transformed? Using the
rule that quantum transformations must be linear, introduced
in gection 1.4, prove that the transformation leads to a different
rosulf,

(2) Prove similarly that perfect cloning is impossible even with
the help of an additional system that would play the role of o
“machine”:

) @ | R) ® [M) L [y ® i) @ | M ()

Here, [ M) is the initial state of the machine, [M (1)) is its final
state (which may depend on [1)))

for n bt {|H),

(3.2)

We see that perfect cloning cannot be achieved. On the other extreme,
(the transformation |¢) @|R)— 1) @ |R), in which the reference state |/) in
not changed at all, is certainly possible since it amounts to doing nothing,
Botween these two extremes, there must be an optimal cloning procedure
fhat transforms |R) to a state as close as can be achieved to the state [¢)),
without greatly affecting the original state. To find this procedure, we first
liseuss what we can achieve through classical cloning, and we will sce (hal
(uantum physics allows us to realize a better cloning procedure.

3.2 Trivial Cloning of Quantum States

linagine that we have a photon with state [¢)) and a reference photon |/7)
in a randomly chosen state. We pass these two photons into a machine or
black box that randomly gives us one of the photons that we put in. Each
photon has a 3 probability of emerging with state [¢)) and a 1 probability
of emerging with state |R). Thus we can say that the state [¢0) has been
partially cloned onto the photon with original state | R), at the cost of losing
{he original photon.

Quantum Olening o 10

The probability of obtatniog the state [1) from the black box can be
weltton a2 o G * 4§ We cannot compute Chis exactly
wiven nn nebitrary state |45 howover, nssuming that all possible polar-
antlon staton (i) are possible, the quantity [(p[22)[* will take all values
Botwoen 0 and 1, and it ean be proved that its average is . Thus for this
Jrocedure, the pr ulmblllly ol finding the right state at the output is, on av-
Broge, Pw= 15 FJI Jj Ihig value is also called the fidelity of the cloning
PIOCORH,

The cloning procedure deseribed here is so trivial that there is no real
Cloning involved., We did not put in any effort to clone the photon at all.
Tence if we want an optimal cloning protocol, we must ensure that it is at
Aonut better than this trivial cloning,.

.3 Optimal Cloning of Quantum States

“I'he optimal quantum cloner is called the Buzek-Hillery cloner, from the
nntnes of the people who first proposed it. It takes one photon and converts
Il into two photons with polarization similar to the original, using a third
Hyntem as a machine. This transformation therefore acts on three systems:
(he photon whose state one wants to copy (A), the photon onto which the
wlale is copied (R), and the machine which can be just a third photon (M).
Ily convention, R and M are initially set as [H). In the computational
Lingis, the transformation reads:

VEIIEIE) + /3 (V) + VI)IV)

VIE)IE) = \/2IVIVY + /5 (VIE) + )V ).

|H)|H)|H) —
(3.3)

We can verify (see Exercise 3.2) that unlike perfect cloning, this trans-
[ormation looks the same for any input state |¢)) = cos@|H) + sind|V),
where 0 is an arbitrary constant:

W)Y @ I + /5 (1) + |¢l>|«w>)|«wi>. (3.4

where |[¢1) = sinf|H) —cos 6]V). The fidelity of this procedure is 2
~ (han that of classical cloning.

, better




'n' v e ¢ “hl LSt
% | -6— '..4 { 0.
m m the result of W
linenrity and (3.3),
s OV [H ) ..

(2) Tuke (3.4), insert [y) = cos@|H) + sinf|V) and |[¢pt)
sin @) — cos0|V) and open the expression up.  Verify that
the result is the same ag in part 1. Hint: the ealeulation iy
lengthy but straightforward.

(#) We have just shown that the transformation has the same form
for all possible polarization states. Let us do a case study for
[t)) = [H). After the transformation, the three photons are
meagured in the A~V bagis: using (3.3), complete the following
table with the probabilities of all the possible outcomes:

Probability
2/3

I using
con 0| )| H)[H) +

Outcome

S
S
SESESE

~
el

(4) Verify that the probability of finding the first photon in the
initial state |[H) is 2. This means that the state of the first
photon has been modified by the transformation.

(H) Verify that the fidelity of cloning, or the probability of finding

the second photon in the desired state |H) is also 2.

3.4  Other Quantum Cloning Procedures

T'he Buzek-Hillery cloning procedure that we have studied is optimal among
the procedures for 1 — 2 symmetric universal cloning. Let us explain the
meaning of these words and the corresponding possible generalizations:

Gt Claning il

o dnntond of taldng one copy nnd trying to prodiuce two, one ean fn goneral
coustder N M elonfng: staeting from N coplow and producing M =
N onoew,

o 'I'he menning of symumetrie i that the output copies have the same
ficlolity, One can also consider asymmelric cloning, in which each copy
may have a different fdelity. For the 1 > 2 case, the extreme cases
of ngymimetric cloning are doing nothing and swapping: then, one of
the photons hag perfeet fidelity and the other has average fidelity %
(note that the trivial symmetric cloning we presented earlier is just the
mixture of these two asymmetric strategies).

o 'I'he meaning of universal is that all the input states are copied equally
well. One can consider state-dependent cloning, in which some states
are cloned better than others. For instance, in cryptography, when Eve
cavesdrops on the BB84 she knows that Alice and Bob are going to
exchange only four states: it is those states she may want to copy, not
all the others.

We cannot delve into this wealth of different procedures here. As an
oxorcise, we consider N — M symmetric universal cloning.

Iixercise 3.3. The optimal fidelity for N — M symmetric universal

cloning has been found to be 3
: MN+M+N
F R 1, P e —— .
N M MV 1 2) (3.5)
- (1) Verify that for N = 1 and M = 2 one finds F = 5 as proven
above.

(2) Fix M = N + 1: verify that Fy_, 41 tends to 1 when N ap-
proaches infinity. Is this expected?
(3) Same question for M = 2N.

3.5 Stimulated Emission and Quantum Cloning

(lonsider the emission of a photon by the decay of an electron in an atom
[rom an excited state to the ground state. In the absence of any other pho-
{on, we suppose that the photon is emitted with no preferred polarization
(this is a crude assumption, wrong in general but used here to simplify the
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dincmsion ). However, Hn phioton fn state [1) I alvoady prosent, one s
hants

(1) The probability p to have the new photon fn the state V) T
not changed;  this I enllod  spontancous emdssion and s alwiys
prosent; .

(1) The probability of emitting [£) s however incronsed (o 2p (spontie
neot and stimulated); one says that the amisgion of a new photon
I wtabe [H) is stimulated by the presence of another photon in stnto

1Y,

Of cowrse, (his is independent of the basis, because we have not doe
finod nnything that would single the -V basis out. This effect, antic
ipnted by Finstein in 1917, is the basis for the possibility of the lasor,
The fidelity of this process is '(:;, as can be verified in the following exer
cle, which is the same as that of optimal cloning. In fact, the mecha
nisnn of spontancous and stimulated emissions is a realization of optinnl

clonfng,

Exorcise 3.4.

(1) One sends a photon in state |H) to an atom in an excited state;
two photons are found at the output. What is the probability of
having the two in state |[H)? What is the probability of having
one ) and one |V)? Hint: these are conditional probabilities:
we consider only the case where a second photon has indeed
been emitted.

(2) One picks one of the two photons at random and measures in
the H-V basis: verify that the probability of finding it in state
|H) is 2.

3.6 Summary

T'he no-cloning theorem states that perfect cloning of quantum states is
impossible. Classical procedures can only achieve a fidelity, or probability
ol finding the right state at the output, of %. Quantum physics allows
n higher fidelity of % in the optimal Buzek-Hillery cloner, as well as in
npontancous and stimulated emissions of photons.

Quantum Claning ' i

The Brondor View

1 Relation with biologioal cloning

alogien] elontug v an operation on molecules (Che DNA); molecules are
ellnitely quantum objocts. But then, why i perfect biological cloning
| Whlo, wineo quantum cloning is not?

i ordoer to conelude that perfect cloning is impossible, it is not enough
) potice that some information is encoded in quantum objects — some
poaplo may even tell you that everything, ultimately, is a quantum ob-
ot Huther, one should try and find out how information is encoded. In
DINA, Che information is coded in the nature of the molecules, not in their
Wanitum states. Any amino-acid in the chain is either Adenine, Guanine,
Cytonine, or Thymine: these are perfectly distinguishable objects, therefore
thiero i no problem in reading the information and copying it. Note that,
wven for information coded in states, perfect cloning of a basis (i.e. of a set
ul porfoetly distinguishable states) is possible.

W.7.2  Relation with broadcasting in telecommunication

Auternet pages are downloaded identically by millions of people. Are the
photons propagating in optical fibers not subjected to the no-cloning the-
nrem?

T'he core of the answer is the same as for the previous one: in telecom-
1ninication, quantum objects are used to carry only classical information.
o instance, a photon carries a “0” if it arrives early, a “1” if it arrives
Julo in a given time bin.!  Still, the no-cloning theorem plays a role in
{ulocommunication, even if engineers give it a different name.

Indeed, when one downloads information from the internet, it is normal
(hint the information from the server to the user has to travel a long distance.
Now, even if many photons are sent and the optical fibers are of good
ﬁlmlit'.y, there is always a large amount of loss due to scattering: in order
for it arrive at the end user, the signal must be amplified regularly. But
nn optical amplifier uses stimulated emission, and we have learned that
plimulated emission is always accompanied by spontaneous emission.

Let us be more precise. An amplifying medium basically consists of
nloms prepared in an excited state, ready to decay and emit photons.

"I'his coding, and more elaborated versions thereof, is called “time multiplexing”.




Ry o !

h

When a pulse of Hght areives, the prabability of smittng photons In the
sne wode tnenbinnceds thin e how optical amplifieation works, But of
o cotino, oven whon there b no pulse of Hght prosent, some ntoms may docay
npontanoously, thoas ombting Hght ot o thoe when there was none,
Telecom enginoors know very woll that they have to keep their syl
woll nbove the throshold of spontaneous embssion: Chis nuisance is o diroet
consequence of the no-cloning theorem of quantim physics.

) Stindlae to the provious question, we Bt mssme that the teansformn-
o b pomdhblo for [i) belonging to n basis

Ifl) @ [R) @ M)~ [H)® |H) & |M(H)),
Vi@ |R) @ | M) — V)@ V)& |M(V)).

Now, lot us transform 1)) = |+),

48 Roforences and Farther Reading s ([HYHY|M(H)) + V)V MV))) . (3.8)

V2

We shall evaluate |+) @ |+) @ |M) for comparison:

[+)[R) M) —
Rononreos:

« V. Scarani ot al,, Rev. Mod. Phys. 77, 1225-1256 (2005). '
< N Cerf, J, Pinrdgek, Progress in Optics, vol. 49, Edt. 1. Wolf (I3lso-

vier, 2006), p. 455. [ H)M) = S ([HH) + |HV) + [VH) + |[VV)) @ |M(+)). (3.9)

N =

Hupgestions for projects: Comparing (3.8) and (3.9), we see that the only way [M(H)), |M(V))
and [M(+)) can satisfy these equalities is for them to be 0. We hence
conclude that perfect copying is impossible even with the help of an

auxiliary system.

< 8. Iasel et al., Phys. Rev. Lett. 89, 107901 (2002).
- WUTLML Trvine et al., Phys. Rev. Lett. 92, 047902 (2004).

4.0  Solutions to the Exercises Holution 3.2.

Solution 3.1. (1) Using the clue,

(1) Assuming that the transformation is possible for 1) belonging (o a

: . [)H)H) = cosO|H)| H)|H) + sin6|V)|H)|H)
basis, let us transform |+) = 7 (H) +|V)):

— cos 6 (@]HHH} + f(mv )+ |VH) IV)
+sind (@va =3 \[ (]VH) i |HV)) |H))

» \/gcosﬁlHHH) 3 \/IcosG(IHVW +|VHV))
+\/gsin0|VVV) + \ﬁ

[+)®R) = Z=(H)®|R)+|V)®|R)) i
3.0
— S (H) @ [H)+[V)2|V)).

Il the state |+) is perfectly cloned, the resulting state should be

@ [4) = &5 () + V) @ X5 (1H) + V) .
= L(\HH) + [HV) + |[VH) + |VV})) '

which is not the same as (3.6). Hence, we have proved that there is no

. 51110(|VHH £ |HVH>) .
{ransformation that can perfectly clone photons.
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(2) To lmplify the presentation, we It & wnd o stand for sinf and cosd
penpectively. To do Chin guestion, we tesd to use the trigonotmetric

- fdentity win® 0 con® 0« 1, X
[MH)IH) = \/g [ )+ \/(-E (W))Iw*) i |w¢>|'e/:>)|w-">
- \/g (cl) + V) (clry + 1)) (e
+ \/g (cltry + 1)) (sl = elv)) (s1) = V)
+ \[%(su»[) = elv)) (cl) + sIv)) (sl) ~ V)
::vgummﬂnﬂ)+vg@moQvavauvﬁ'
En \/gsinHWVV) + \/gsin()(WHH) & |IIVII)) .

(4) Irom Equation (3.3), we obtain the following table

)+ H|V))

Number | Outcome | Probability
1 |HY[H)[H) 2/3
2 |H) | H)|V) 0
3 |H)|V)|H) 0
4 [H)[V)V) 1/6
5 V)| H)|H) 0
6 [VIH)IV) 1/6
7 IVIV)IH) 0
8 VIV)IV) 0

Butnitm Cloning

=

Holution 5.4,

w'*i Submticuting the valuos for N oand M into (3.5), wo got
; 24241 b
_\ Pon=5my =6
(%) Substituting M = N - 1 and taking the limit as N — oo,
o e DA (Y L)+ N
s OV +2)
() Substituting M = 2N and taking the limit as N — oo,

2N?+2N+N

Wa TN = I TONT AN

Holution 3.4.

(1) To have both photons in state |H), the new photon must be emitted
in state |H); the probability of this is 2p. Similarly, the probability of
having one |H) and one |V) is p.

[(2) If both photons are |H) (probability 2p), picking one of these photons
al random would definitely yield |H). On the other hand, if one is |H)
and one is |V) (probability p), the probability of picking the photon in
state |H) is half. Thus the total probability is

L
p_Bigl _§
2p+p 6

(1) In the “Outcome” colummn above, looking at the first of the three pho-
tons in cach state, we add up the probabilities for all outcomes wilh
the first state as |H) (numbers 1 to 4):
2 1 5
P==+4-=-.
3 = 6 6
(h) Similiar to the previous question, we add up the probabilities of all
outcomes with the second photon as [H) (numbers 1, 2, 5 and 6):

2
P==+4

1 5
3 6 6
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Chapter 4

Quantum Teleportation

oleportation used to be only a fantasy of science fiction. However, quan-
{um physics has achieved this seemingly inconceivable feat: physicists have
doveloped a protocol that enables the teleportation of information from one
place to another, without any direct interaction or transfer of mass. This
means that Bob could obtain a photon with a certain polarization state
from Alice without Alice actually describing the polarization or sending a
vopy of the photon over. How is this possible?
' In this chapter, we shall examine the quantum teleportation protocol.

4.1 Teleportation Protocol

et us start with a setup of three photons A, B and C. A is prepared by
~ Alice in an arbitrary polarization state 1) = cos8|H) -+ sin8|V); B and C
nre in the entangled state |®) = % (|H)|H) + |V)|V)), and are sent to
Alice and Bob respectively. Our goal now is to transfer the state of photon
A to photon C using the set-up in Figure 4.1.

In a nutshell, the teleportation protocol works as follows: Alice takes
photons A and B, and performs a measurement that entangles them (Bell
measurement). The effect of this measurement is to somehow disentangle
photons B and C. Moreover, photon C is at this point in a state related to
{he desired state [1). In order to retrieve |)) exactly, Alice has to send two
bits of information to Bob, who then applies a unitary transformation to
photon C. Let us go through this protocol in detail through the following
exercises.
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ig. 4.1 Scheme for quantum teleportation.

Step 1: Entanglement
We decompose the initial state, in which B and C are entangled, in a hasiy
ol wtates in which A and B are entangled.

Ixercise 4.1, Verify the following equality:

[} a |2T) po = 5 1@) 45(cos6]H) +sinf|V))
+ 5[®7) 4p(cosf|H) —sinf|V)),, (4.1)
+ 3| 5 (cosfV) +sinb|H)), e
+ $197) a5 (cosBV) —sin0|H) )C,
where the four states below are called Bell states.
jo+) = & (|H>!H + IV>|V))
) = 5 () - V)Iv), -
|w+>=¢%(H>V +|v ),
wmy = L vy - wyim)

Step 2: Measurement
Alter photon B is sent to Alice, she performs a joint measurement of the
polarization of photons A and B. This is called a Bell measurement, and the
result of this measurement is one of the Bell states in Equation (4.2). Since
photons B and C were initially entangled, the Bell measurement would also
change the state of photon C.

nﬂ il unm‘ of mensurement A-13 | Rosultin ‘.mﬁto afa- Prabability
A 1S cos O H) + sin0|V) 1/4

g
W)
i fach

Step 3: Transformation

I'rom the table above, we see that there are four possible resulting states of
photon € after the Bell measurement on A-B. However, only one of these
lites, cos0|H) + sin0|V), is the same as the original state of photon A,
[1h). To achieve teleportation, Bob thus has to perform a transformation on
photon C. For example, if Alice measures |®7) on photons A-B, photon C
would be in the state cos 0] H) —sin §|V). To obtain |¢/), Bob could perform
the transformation |Hy — |T(H)) = |H), |V) = |T(V)) = —|V) on C. For
this transformation to be possible, it must be unitary, which means that
the scalar product must be preserved.

Exercise 4.3.

(1) Verify that (T'(H)|T(H)) = (H|H), (T(V)|T(V)) = (V|V) and
(T(H)|T(V)) = (H|V). This shows that the transformation is
unitary and is hence possible.

(2) Now, find the transformations that bring cos 6|V)+sin 6| H) and
cos V) — sin@|H) into |¢). Verify that these two transforma-
tions are also unitary.

We can now conclude by summarizing the teleportation protocol: (i)
perform a Bell measurement on photons A and B, (ii) send the result of the
measurement to the location of photon C, (iii) perform the suitable unitary
operation.




4.2 Study of Information Transtor

< Now, lob us nnalyze how the wdtaey Ceausformations affoct the resnltn of
Hob's mensuremoents onphoton C Suppose Bob measures photon Cn (he
Ll dofined by

| 4 &) = cosy|H) + slny|V)
|

) = cosy|V) = siny|H) Wkt

whore 5 i an arbitrary angle. Let P(+4) and P(—7) be the probabilition
ol measuring |+ ) and | ) respectively. If Bob receives the two bits of
information from Alice, the statistics are those expected for |4), but il he
does not, his results look completely random.,

Exercise 4.4.

(1) First, we analyze the case where photon A is initially prepared
in the state [1p) = |H). After the protocol as described in the
previous section, find P(+v) and P(—7).

(2) Let us now suppose that the result of the Bell-state measure-
ment on A-B was not sent to the location of photon C, hence
no unitary transformation was performed before measuring C.
What are P(+v) and P(—v)?

(3) Repeat points 1 and 2 for the case in which photon A was pre-
pared in the state 1) = V).

(4) A friend of yours, having heard some popular explanations of
quantum teleportation, thinks that it can be used to trans-
mit information faster than light. “It’s simple! Because of the
Bell-state measurement, the state of photon C changes instan-
tancously. It’s therefore enough for Alice to prepare photon A
cither in state |H), or in state |V); Bob recetves this state in-
stantaneously and can distingwish |H) from |V). Why is this
not possible? Can there be any other protocol that exploits
quantum teleportation to send information faster than light?

An interesting point to note about the teleportation protocol described
in this chapter is that, information about the original state of photon A did
not physically travel between the locations of photons A and C. Instead, it
is the measurement on A and B that modifies the state of photon C through

uantum Teloportation i
ontanglemoent, Allee doos not oven nood to laiow the polaeization of photon
A Lo teloport it over o HBalb,

Another fraportant polnt fn that thiv protocol only allows the telepor-
tntion of dnformation about nwtate, and not matter itsell. 16 s in principle
posible (o teleport any quantum state given the presence of enough en-
fanpled mattor, however in practice this has only been done for photons.

4.8 Summary

Quantum physies allows the teleportation of information without any direct
Interaction or transfer of mass. In the teleportation protocol, Alice and
Bob are respectively given photons B and C belonging to an entangled
Boll state.  Alice teleports the state of an arbitrary photon A to Bob’s
photon C by first performing a Bell measurement of photons A and B.
She then sends the measurement result to Bob, who performs a unitary
{ransformation on photon C to complete the teleportation. Because of this
lnst step, teleportation cannot be used to send information faster than light.

4.4 The Broader View

1.4.1 Entanglement swapping

The question we want to address here is: what happens if the photon to be
{eleported also belongs to an entangled pair? The situation is sketched in
Iigure 4.2: photon A starts out being entangled with photon D. The explicit
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I'ig. 4.2 Scheme for entanglement swapping: teleportation of a photon that is itself
entangled with another one.




endenlation b proposed s nn exercise helows the vesult inat the same tine
~abvious and deeps at the end ol the teleportation process, photon 1D i«
“ entangled with photon €. :

Bxorciso 4.5. Suppose that photons D-A, B-C are entangled as
{ollows
¥ 1
W) pa = %(W)W) + [V)H)),

0%) 5 = %(IHHH) VYY),

Verily the following equality:

U p 4@ pe = 187 4pl¥ ) ap + 127 4Bl )en
+ ¥ 4512 op + 12T apl® ) op -

Il one looks carefully at this process, the situation is: at the bheginning,
1A are entangled and B-C are entangled. The Bell measurement creates
A3 entanglement, and the result is C-D entanglement. Because of (his,
the process is called entanglement swapping.

Why is this simple? Because the result cannot be anything clse! Re
member that the state describes the properties of the physical system. Now,
{he properties of photon A were entangled with those of photon D: il all
{he properties of A are teleported to C, then at the end of the process, 1)
i entangled with C.

Why is this deep? Because this process generates entanglement between
fwo photons that have originated from different sources and have never
interacted!

4.4.2 Physics and science fiction

In this chapter, we touched on topics that are often met in science fiction:
teleportation and faster-than-light communication. In order to avoid any
misunderstanding, let us be explicit about these issues.

We have already said that, in quantum teleportation, it is the state that
is teleported: in other words, the information about the physical properties

uantun Teleportation

ol Che wystern, Netther watbor nor onergy i teloportod: o photon must al-
nly be provont, on which the faformation ecan be encoded, Tnoall physics
vithout oxcoption, matter and energy cannot be teloported: they can only
o Cennmportod, passing from one loeation to another through all the inter-
sdlinte loentions.

Mareovor, this transfor of energy or matter must happen with a speed
Ahint does not exceod that of light in vacuum. This limitation also holds
Tor the transfor of wsable information, as highlighted by an exercise in this
chinptor: i the teleportation scheme, we do not know what happens (if
iy thing) at the level of the states, but we know that Bob won’t see any dif-
Aoronce in any of his measurements until he receives the two bits of classical
communication. This fact goes beyond the specific teleportation protocol:
(unntum entanglement can never be used to send a message, neither faster
nor even slower than light.  We say that entanglement is a no-signaling
resource. 1 you want to send a message, you have to send some matter or
~onergy carrying the information.

May these limitations (no teleportation of matter, no signaling faster
than light) be overcome one day? In full honesty, we have to say: they
linve not been directly proven to be impossible, in the sense that one may
discover unexpected new physical phenomena. If such phenomena do exist,
i complete reshaping of physics will be required. In other words, as of
loday, teleportation of matter and signaling faster than light belong to
jeience fiction and only there: there is absolutely no hint of them in the
lnown degrees of freedom of the universe.

4.5 References and Further Reading
[0asy reading:
- A. Zeilinger, Scientific American 282, 50 (2000).
Resources:
- Original article for teleportation: C.H. Bennett, G. Brassard, C.
Crépeau, R.Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70,
1895 (1993).

- Original article for entanglement swapping: M. Zukowski, A. Zeilinger,
M.A. Horne, A.K. Ekert, Phys. Rev. Lett. 71, 4287 (1993).
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4.0 Solutions to the Exorcisos

Solution 4.1, We can expand the expression on the left to obtain
(e|H) + s|V)) |DF) = % (c|HHH) + 8|VHH) + c|HVV) + 8|]VVV))

whore ¢, & represent cos 0 and sin @ respectively.

Noxt, using the definitions of the Bell bases in Iiquation (4.2), similarly
oxpand the expression on the right. Simplifying it, you should obtain the
Hune expression as above.

Solution 4.2. Using the expression on the right side of Equation (4.1), we
can fill up the table as follows:

Outcome of measurement A-B | Resulting state of C | Probability
| cos 0| H) + sin0|V) 1/4
|[P) cos O|H) —sin@|V) 1/4
[wt) cos0|V) + sin 0| H) 1/4
[ cos0|V) — sinf|H) 1/4

Solution 4.3.

(1) To verify the transformation is unitary, we calculate the scalar product
of the states before and after the transformation and check that they
are the same.

Before transformation After transformation
(HH) = 1 TCHT(H)) = (HIH) =1
(Viv)y =1 TW)|T(V)) =(V|V) =1
(H|V)=0 (THE)|T(V)) =(H[V)=0

(2) For cos0|V) + sinB|H), the transformation is |V) — |T(V)) = |H),
|I1) — |T(H)) =|V). This transformation is unitary because
(T(V)IT(V)) = (H|H) =1,
(TH)|T(H)) = (V]V) =1,
(T(E)[T(V)) = (VIH) =0.

For con V) ~ win @), the transformation v (V) < [T(V)) = |H),
[H) o [ TCH)) = V) Thin transformation fs unitary beenuse
(PV)T(V)) = (H|H) = 1,
(T[T (H)) = (VIV) =1,
(TH)T(V)) = =(V|H) =0.
Honee, we see that these two transformations are possible. This means
(hat with the information on the outcome of Alice’s measurement on

photons A<B, Bob can transform photon C to obtain the original state
ol photon A,

Holution 4.4,

‘.'(1) At the end of the protocol, the state of photon C is the same as the
initial state of photon A, which is |H). Hence
P(+7) = [(H| +7)* = cos®,
P(=) = [(H| =m)* =sin®y.
(2) Since photon A is prepared in the state [¢) = |H),

: 1 (-
|H) 4|®%) g = §|<I’+>AB|H>C+ §|‘I) YaglH) e

1 1 .
T §|‘I’+>AB|V>0 + §|‘I’_>AB|V>C :

Hence photon C has a § probability of being |H) or V), thus

1 . 1 1.
P(-I-'y)=§cosz'y+§sin27:§,
1, L ocoo. il
P(—'y)—acos 'y+§sm T=g5:

~ (3) e At the end of the protocol, the state of photon C is |V). Hence

P(+7) = (V] +)* =sin’y,
P(—) = [{V] = DI = cos?7.
e Without applying the unitary transformation,

1 1
[V)al®t)po = §|‘I)+>AB|V)C - §I®_>AB|V>C

1 1
+ '2'|‘I’+>AB|H>C - §|‘I’")AB|H)0-




~ Hone, -ﬁtmﬁu Lo quention ' e T
p ' P(=y) = 0"

i (4) Thin fs not possible because i the unitary transformations are not por-
: formed, P(45) and P(~7) are the same for [H) and [V), ag can bo
poen from the ealeulations above, Thus Bob would not know il Alico
Lind prepared the photons in [H) or [V). To perform the transfor
mation, information about the Bell-state measurement on A-<13 has (o
bo sent (through a slower-than-light signal) by Alice to Bob so thal
the appropriate unitary transformation can be done. Henee quantunm
= teleportation cannot be exploited to send information faster than light,

Solution 4.5. Pirst, expand the expression on the left to obtain
[y |ty = —;— ((HVHH) + |VHHH) + |HVVV) + |[VHVV)).

Next, using the definitions of the Bell bases in Equation (4.2), similarly
oxpand and simplify the expression on the right side to verify the equality.
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Chapter b

Quantum Correlations and
Bell’s Inequality

Pntunglement is one of the most important features of quantum physics.
I chinpter 1, we have introduced this notion formally and mentioned how
AL dofies our everyday intuition. Here we present what is probably the most
diroct manifestation of entanglement: the correlations between outcomes
ol measurements on separated physical systems.

~ Such a possibility was first noticed by Einstein, Podolsky and Rosen
(IBPR) in 1935; they found it absurd and came up with an argument to
Loy and show that quantum theory was not the whole story and needed to
he completed. While EPR. indeed put the finger on something extremely
Anteresting, their article and the subsequent reply by Bohr somehow missed
~ the point, which was clarified only in 1964 by Bell. Here, we study direct]y
the approach initiated by Bell; a commentary on the EPR paper will be

l piven in chapter 9.
6.1  Quantum Description

~ We describe an experimental setup that demonstrates quantum correlations
hetween two entangled photons.

+1 "ouk

A gLt 1
] A 7 \E’ / B R
3 b

Fig. 5.1 Setup to demonstrate quantum correlations between two entangled photons.
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5.‘1.1 Buperimental setup

Moty aowonree emity two photons, Allea i Bob ench receive one of theso
photons, Inboled ne photons A and B vospectively. They measure the pos
Tnrlntion of thole respective photons slong the divections o nnd /2 (Fgare
Oo0) Mauthematically, this i doseribod by tho bisos

| @) = conalH) 4 sinal V),
| = ar) = cose|V) = sina|H),
for Allco and
| + @) = cos B|H) + sinp|V),
| = B) = cos B|V) — sinB|H),
for Bob, They can only make a single measurement of each photon, he
oo the process changes the state of the photon such that any furthor
moensurements do not give information about the photon’s original state,
I'here are four possible measurement outcomes for each pair of emittod
pliotons, We use 74 (o) and r5(8) to denote the measurement oufeomon
ubrorved by Alice and Bob respectively. If Alice or Bob measure | | o)
or [ ), they will record it as ra(a) = +1 or r(8) = +1; if they mea
e | a) or | = ), they will record it as —1. Then the four possible
monsurement outeomes will be labeled (+,4+), (+, =), (=, +) and (—, ).
I'his experiment can be carried out for many rounds, with Alice and Bol
rocording their outcomes. After the experiment, they then find the numboer
ol thines that each of the four measurement outcomes occur, in order to infor
(helr probabilities. For example, the fraction of measurements in which
rala) = 11 and r(B8) = —1 will translate into a probability P(+ — |o, /),
whore the + sign refers to o and the — to 5. Similarly, they can infer
P+ |y B), P(— + |a, 8), and P(— — o, ).

" B.1.2  Source of entangled photons

Wo consider now that the source prepares the singlet state defined by

[97) = 5 (EDIV) = V1)) (5.1)

Rolerring back to chapter 1, it is easy to prove that this state is entangled.

In this case, the probabilities observed by Alice and Bob in this experiment
nre given by

P(++|a,8) = P(— — |, 8) = 1[1 — cos 2(a — B)] ,

' - (5.2)
P(+—la,B) = P(—+ |, ) = Z[l + cos 2(a — ﬁ)] :

) Verily in partieular that if o = 4, then ra(e) = —=rp(f) deter-
ministically,

() Verily that the average value of 74 (ev) is 0 for all v, and similarly
for rpu (/).

This means that when Alice or Bob take down their measurements in-
dividually, they will observe that the two outcomes are equally likely to
he measured. In particular, what Alice or Bob observes locally is not af-
focted by what the other person does. This result is not surprising; we
linve already seen in chapter 4.2 that entangled photons cannot be used to
[ransmit signals.

However, the interesting thing is that when they share their results,
they will find that the probability of each outcome is dependent on both
{heir measurement bases. The photon reaching Alice produces its outcome
depending on what measurement the other photon at Bob undergoes!

Note that we have made no mention of the order in which Alice and Bob
make their measurements. Neither have we specified their distance apart
or the time interval between their measurements. These factors simply do
not affect the quantum correlations between the entangled photons: even if
(hey were measured at the same time, thousands of miles apart, they would
§till show this correlated behavior!

Now, we introduce a measure of the degree by which the photons are
correlated: the correlation coefficient, defined as

E(a,B) = P(ra(a) =rp(B)) — P(rale) #r5(B)) - (5.3)

This can have a range of values, from —1 to +1. A value of —1, also known
as anti-correlation, means that when one photon gives an outcome, the
other would always give the opposite outcome. On the other hand, a value
of +1, or perfect correlation, means that the two photons will always give
the same outcome. h

For the probabilities in Equation (5.2), the correlation coefficient is given
by

E(a, ) = —cos[2(a — B)]. (5.4)




b8 Mechanism for correlations?

Wo hiave seen that each photon produces an outeome that is correlated with
thnt produced by the other photon, even if they are very far apart. How in
thin possible, is there a mechanism that can explain this strange correlation
ntondistance? Did they communicate with each other, or did they male
potie agreement at the source?

While quantum physics is able to accurately predict the probabilitios
piven nbove for cach measurement outcome, it does not propose any meelin-
ninm to explain these correlations. Einstein and many others perceived (hiy
fonture as o failure of the theory. It is actually one of its greatest successon;
oxpoeriments vindicated the fact that there is actually no such mechanisim, as
wo will present in this chapter. In order to reach this remarkable conclusion,
wo linve to study the possible candidates for a mechanism and rule them oul,

h.2 Attempts at Classical Explanations

T'here are only two possible classical mechanisms that explain correlations
hotween distant events:

(1) Correlation by communication

I'he first possible mechanism is that the photons may communicale
with each other by exchanging signals. For example, photon A, which
is measured first, may send some information about the measurement
«v and its outcome 74 () to photon B, which would then produce its
outcome accordingly.

Correlation by pre-established agreement

T'he second possible mechanism is pre-established agreement: since both
photons were produced by the same source, they could be carrying

ome common fnformation shout whit they would each do for any
tmonstrement they enconntorad, Tnother words, we assume that ench
ol them enrrfos o lst

Aa o oo rale) rale'), rala), o},

Ag = {..,ra(8), ra(8), ra(6"), ..} .
Those lists specily the outeomes for each possible measurement, and are
also commonly known as hidden variables. For example, if Ay and Mg
are such that ra(e) = —rp(x) for all @, then when o = 8, the photons
will always give opposite results when measured in the same direction.
Thug hidden variables can reproduce the perfect anti-correlations no-
ticed in the previous section.

The first of these mechanisms can be experimentally ruled out; we have

already given the clues for this and we leave it as an exercise. The next

wection will desceribe how the second mechanism can be ruled out.

Exercise 5.3. Propose an experimental arrangement that can rule
out correlation by communication.

5.3 Bell’s Theorem N

Is there any way to determine whether photons correlate at the source using
hidden variables and pre-established agreement? This problem puzzled
physicists for almost 30 years, until an ingenious test was proposed by
John S. Bell in 1964. Many variants of Bell’s theorem have since been
formulated; here we will discuss the CHSH inequality, derived by Clauser,
Horne, Shimony and Holt in 1969.

We start by modifying the experimental procedure described earlier.
Previously, when the source emits two photons, Alice and Bob each use one
measurement basis. Now, they choose between two different measurement
bases: « and o for Alice, 8 and 3’ for Bob.

Suppose that the photons-exchange an agreement at the source about
the outcome that they would each produce. This is equivalent to them
forming the hidden variable A = {\4, Ap}, where

Aa = {ra(a), ra(e)},
A= {re(B),ra(8)}.




Flnving Chone tmbers, we cnn fora the oxprossion
SN = (rale) b rala’) ruli) & (rala) = rata!)) ra(d') . (6.0)
1 cnn boovorifiod that for overy powsthle A, S(A) can only tako the viluos
2 or =2,

Exercise 5.4, Verily that S(A) can only take the values +2 or —2,

I osingle run of the experiment, S(A) cannol be meagured, Indeod, wo
noto that Alice would have to measure photon A using both the o and o
Biwons similarly for Bob. This is impossible becanse they can only perforim
one moeasurement on cach photon, Nevertheless, some information aboul

S(A) enn be obtained: if they repeat the experiment with many pairs of

photons, the average value of S can be determined:
(9) = B(a,B) + E(/,B) + E(a,B") — E(, 5"). (H.7)

Eixercise 5.5. Verify BEquation (5.7) by noticing that

(S) = (ra(@)rp(B)) + (ra()rp(B))
+(ra(@ra(B)) = (rala)ra(p)).

Hint: use the definition of the average (z) = limy_; o0 ﬁ E,’\Ll T

(5.8)

Using the current experimental setup, Alice and Bob can obtain all four
correlation coefficients in Equation (5.7), and hence estimate (S).

If the assumption of hidden variables is correct, then (S) is the average
vilie of a number that can take only the values +2 or —2. So obviously,

sy < 2. (5.9)

I'his relation is called Bell’s inequality.

We thus find a way to verify if the photons indeed use hidden variables
i imechanism for their correlated behavior: if Bell’s inequality is satisficd,
then it can be a possible mechanism. If not, we would have to conclude
(hat pre-established agreement at the source does not explain quantum
correlations.

When one inserts the parameters for the above experiment, one can
indeed verify that Bell’s inequality can be violated for certain choices of
imeasurement bases, as in the following exercise.

Quantum Corvelations and Bell's Mnsguality

”

Exorcine 5,0, & L

(1) Usdngg the quantum exprossion (6:4) of (o, 4), find an expres-
~ wlon for (6.7) in this exporfment. Verify that Bell’s inequality

~ (5.9) s wiolated for suitable choices of measurement bases. Hint:

tryam0, ¢ =%, f=F and f/ =~F,

~(2) Find other measurements divections for which Bell’s inequality

i violateds find also some measurement directions for which no

violation is observed, i.e. [(9)] < 2.

In conclusion, the correlations between entangled photons are not de-
rived from pre-established agreements at the source: hidden variables do
not exist. Entangled photons can establish instantaneous correlations with
cnch other even if they are far apart, without any form of communication.

H,4  Summary

Iontangled states exhibit quantum correlations that cannot be explained
by classical mechanisms of communication or hidden variables. The latter
has been tested using Bell’s theorem, in which entangled states are able to
violate Bell’s inequality, thus proving that hidden variables do not exist. "

5.5 The Broader View

5.5.1 The danger of words

I'acing an unexpected phenomenon as the violation of Bell’s inequality, it is
normal that physicists had a hard time coming up with suitable expressions
to deseribe it. In the main text, we have been as accurate as one could.
Other expressions are less accurate, but are widely used in literature, so we
mention them here for the sake of those who would like to read more.
Historically, A = {Aa. Ap} was called a local hidden variable: “local”
because it would allow outcomes to be determined using only information
that is available at the measurement location; “hidden” because it does not
appear in quantum theory. The “hidden” part is rather imprecise: nowhere,
in the derivation of Bell’s inequality, does one make the assumption that the
pre-established agreement must be hidden! In other words, the violation of
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Bell’s inequality falsifies any kind of pre-established agreement, be it hidden
or public. '

The fact that Bell’s inequality is violated is often summarized in two
oxpressions. Both are harmless if one knows what is being spoken about,
hut may convey wrong (or highly controversial) ideas to the beginner.

e Violation of local realism. 1If “local realism” is a shortening of the
oxpression “the assumption of the pre-existence of measurement re-
sults”, the term is perfectly adequate. An equivocation may arise with
the philosophical notion of realism: realism in philosophy indicates
the standpoint in which one believes in the existence of an external
world and in the possibility of knowing it well through experience; it
i5 a sort of mid-point between empiricism! and rationalism?. Now,
it would be a bit far-fetched to conclude “non-realism” from the vio-
lntion of Bell’s inequality, in the sense that “there is no external re-
ality”: on the contrary, if there is no external reality, any experience
(including the violation of Bell’s inequality) loses its cogency for knowl-
odpge. What is certainly true is: a philosophical realist, after learning
ubout the violation of Bell’s inequality, cannot be a “local realist”,
Lo, cannot believe in pre-established agreement for results of quantum
easurements,

o Non-locality. Here as well, if by “non-locality” one means that quantum
correlations cannot be due to pre-established agreements followed by
rondonts that only take into account locally available information, the
torm i perfectly adequate. However, the term may convey the idea
ol an actual “effect at a distance” of one measurement on the other,
There is cortainly no experimental evidence for such an effect, nor any
noed for it in the theory.

The unexpericnced person may be astonished at how strongly some physi-
el ny feel in favor of or against any of these two expressions. I one
iy, wpenking about these topics, you use the “wrong” word and someono
nlttneks you on that, just keep your calim, define your terms or change your
wordu: overything will come back to normal,

Ul ornpatetedue, our knowlodgo i jast tho s of exportonces, without mny highor order
wlrueture,

enthonndinm, exporionces ave worthloss aud only mnthematioal thought londs (o
%

oo knowlede.
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5.5.2 Incompatible physical quantities

The violation of Bell’s inequality casts a clear light on a very general notion
in quantum physics: that of incompatible measurements, or more precisely
incompalible physical quantities. This notion dates back to the early years
of quantum mechanics: it underlies the famous Heisenberg’s uncertainty
relations for position and momentum, to which we shall return briefly in
chapter 9.

When we say that two physical quantities A and A’ are incompatible,
we mean the following: suppose that a is a possible outcome for the mea-
surement of A, and denote the corresponding state by |a). On such a state,
in general, the value of A’ is not well-defined: if A’ is measured on the state
|a), several results are possible and the outcome is probabilistic.

Let us take an example with a photon. Let the first physical quantity
A be the polarization in the {|H), |V)} basis, and let the second physical
(uantity A" be the polarization in another basis, say for instance {|-+) ,
[-)} where |+) = |a = +7). Take now a state associated to an outcome
of A: for instance, the state |[H). We know that this state is not also
nssociated to an outcome of A’ actually, in the example, both outcomes
ol A" can happen with equal probability. Another way of viewing this
“H and +7) that would give both outcome H for
A and - for A" with certainty. Thus these two physical quantities are
incompatible.

I summary, not all physical quantities can be assigned a definite value
pimultancously. For polarization, only one basis can be determined. When
one studies more complex degrees of freedom, it is possible that a few

i4: there is no state

physical quantities can be simultaneously determined (for instance, energy
nnd angular momentum), but not all of them. For instance, position and
momentum can never be simultancously determined.

T'his is basic quantim physics, but how do we know that it is really the
cnse? One could argue that maybe we have not found the right measure-
went procedure, or the right theory, and we are just erecting our ignorance
ot lack of fantasy to the status of physical law... There are many an-
nworn to Chis objection, but the most direct one is provided precisely by
the violation of Bell's inequality. [f all measurements were compatible and

e Junt dicl not notico ity 16 would he impossible (o violate Bell’s inequal-

Iy, bocnuse nll the possible mensurement onteomes would exist. But the
Inequality 4o violntod inoxperimoents,  Therefore there are incompatible
HORRUTOTIOn N,




A tunl rermaele T disemsdons on the topte ol tneompaeible mensie:
ontg ndifforont ronult i ofton gquoted we wells the Kochen Spockor the
oren, We ol diseuss 10 hore, shiee (e prosentation requives noslightly
Ighor Tovel of formalism than the one traduced o chaptor 1

66,8 Drue randomness, true secrecy

We hinve stressed strongly enough what the violation of Bell's inequality
wonnn: there is no pre-established agrecment; the photons do not leave
the source with o pre-arranged list of outcomes for all possible meagure:
monts, Now, this means that the oulcomes of such measurements are brue
random numbers, Why? Read these sentences again, it's almost obvious,
Indood, “random” means “not determined”: it means that the numbers are
ponerated by an unpredictable process and are not the results of o given
nlgorithm, Now, if there was an algorithm generating (hose numbers, the
algorithm could have produced a list before the experiment started: (his
i precisely what Bell’s inequality check for!  So, the violation of Bell’s
inequality guarantees the generation of true random numbers.

T'he idea can be given yet another twist, namely: these random numbers
wre also scerel; nobody else can have the same list. The argument is again
the same: il a third party could have a list, we could put this third party
vory close (o the source, produce the list and encode it in the photons before
thoy propagate far away from one another. But then again, the photons
wotlld he acting according to a pre-existing list, which is impossible if Bell’s
inocuality is violated.

Note now that Bell’s inequality is independent of quantum physics: il

I In violated, there is no list, period. Therefore, we can check for true
rindomtiess or true secrecy of a black-box: we do not need to know anything
nbout how it works, if it uses photons or neutrons or anything clse, if it
measures any specific polarization ... In this sense, Bell’s inequality is not
only a test of the foundations of quantum physics: it can be given a practical
npplication in random number generation and cryptography. We cannot
cxplore this direction further here, but some references for personal study
are given on the next page.

6.6.4  About loopholes

T'hose who read further may at some point encounter some mention about
loopholes in the experiments that showed a violation of Bell’s inequality.

Quantum Corvslations and Bell's Mequality "

Thone Toophalos hinve thelr fportance, bt not o the sonse that they may
tndormine all thnt wo have diseumsed, Weo dovote some short comments (o
Ehern, fnorder for the render o nequire the right perspoctive,

The mabn loopholos are the following:

s Locality loophole. 'This happens when the measurements of Alice and
Boh are not chosen randomly in cach run of the experiment, or more
procisely, when information about the measurement chosen by Alice
could have reached Bob's lal at the speed of light, before Bob’s parti-
clo is measured (or vice versa). In this situation, one might attribute
(he correlations to an unknown signal propagating at the speed of
light.

& Delection loophole. Detectors have limited efficiency: sometimes, even
il a photon arrives, they may not fire. This loophole assumes that
the detector’s firing or not may depend on the measurement that is
being performed, i.e. on the choice of the polarization to be measured.
Il the efficiency of the detectors is not well above 50%, with such a
mechanism one can fake the violation of Bell’s inequality with suitable
pre-established strategies.

There is no point in giving further details here, about how to close
ench loophole. The locality loophole has been closed in several experiments
with photons. The detection loophole has been closed as well, but only
with atoms: these being very close to one another, the same experiment
could not close the locality loophole. Thus, at the moment of writing, a
loophole free experiment is still missing. May this undermine all that we
have written? Certainly not! For experimental physicists, a detector is
1ot a black box: they know exactly how it works, and the reasons for its
inefficiency. Nobody thinks that the predictions of quantum theory about
the violation of Bell’s inequality will be shattered as soon as we have better
detector!

However, it is important to close the detection loophole in the black-
box assessment mentioned above: if you only have a black-box, then you
don’t know how your detectors work, so you must close all the loop-
holes to be sure. The fact that this loophole is hard to close is the
reason why quantum-certified black-boxes are not vet available on the
market.
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< N Merming Am, J. Phys, 40, 040 (1081).
< ALK, Bkert, Physfes World, September 2000, pp 28-32,

Resourcos:

- Tochnical and less technical articles by John Bell: J.S. Bell, Speakable
and unspeakable in quantum mechanics (Cambridge University Pross,
Snmbridge, 1987; 2nd edn 2004).

- Review article on experiments: W, Tittel, G, Weihs, Quantum Il
Clomput, 1, 3 (2001).

- Lecture notes with several references: V. Scarani, arXiv:0910.4222 (lee-
(ures 4-6).

Huppestions for projects:

< (4, Weihs et al., Phys. Rev. Lett. 81, 5039 (1998).
< W. Tittel et al., Phys. Rev. Lett. 81, 3563 (1998). Note: this experi-
ment does not use polarization as the entangled degree of freedom.

.7 Solutions to the Exercises

Holution 5.1.

(1) P(+ + |ev, B) is the probability of finding the original singlet state [¥™)
in the state | + a)| 4+ ). Thus we first find an expression for the latter:

|+ a)® |+ B) = (cosal|H) + sina|V)) @ (cos B|H) + sin 5|V))
= cosacos B|HH) + cosasin 3 [HV)
+sinacos 3|VH) +sinasin g |VV).

T'he probability can then be caleulated using Born's rule for probabili-
lies:

P+ + |, B) = |(+a, +81%7)* = %sinQ(a =

= %[1—(:052(&—,6)]. ‘

Topenting this procedare, wo abtadn
' POl ) = P ) = 1= cond(a - )]

POt~ ) = P+ [, ) = 5 [1 4 cos2(a— )]
If o then e 00 We can substitute this into the expressions
Mo (ho probabilities obtained in part (1):
P+ + |, B) = P(= = |a, 8) =0,
P(+ = o, f) = P(=+]af) = 3.
Thus the results for photons A and B would always be opposite, i.e.
(o) = -r(8).
(1) rom the results of part (1), we can calculate
(ra(@)) = (+1)[P(++ | B) + P(+ —|a, B)]
+H(=D[P(= = |, B) + P(= + |, 8)]
=,
(ra(B)) = (+1)[P(+ + e, B) + P(= +a, B8)]
+(_1)[P(_ - |Q{,,8) +P(+ - Iaaﬂ)]
=0
Holution 5.2.

(1) From BEquation (5.3), we can substitute the results in Equation (5.2)
Lo obtain:

Qo 0) =Pl + |05f) + Pl——|8:.8) — Pl — 0 8) — Pl—+18.0)
= %[1 —cos2(a—fB)] — %[1 + cos 2(a — B)]
= —cos2(a— B)] :
(2) To prove that E(q,3) = (ra(a)rp(8)), we note that ra(a)rg(B) is
equal to +1 when 74 = rp and —1 when 74 # rg. Thus
(ral@)rp()) = (+D[P(+ + |a, B) + P(~ — |a, B)]
+ (D [P(+ — o, 8) + P(= + |, 8)]
= E(a,8).
Solution 5.3. If Alice and Bob are stationed very far apart, make their

Imeasurements at the same time, and choose their measurement bases while
the photons are traveling towards them, then there is not enough time
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« N.D. Mermin, Am, J, Phys, 40, 040 (1081).
o A Bkert, Physies World, September 2000, pp 2832,

Renourees;

« Tochnical and loss technical articles by John Bell: J.S. Bell, Speakable
and unspeakable in quantum mechanics (Cambridge University Pross,
fnmbridge, 1987; 2nd edn 2004).

- Roview article on experiments: W. Tittel, G. Weihs, Quantim Inf,
fomput. 1,3 (2001).

- Locture notes with several references: V. Scarani, arXiv:0910.4222 (lec-
Lures 4-6).

Huggestions for projects:

- (1, Weihs et al., Phys. Rev. Lett. 81, 5039 (1998).
< W. Tittel et al., Phys. Rev. Lett. 81, 3563 (1998). Note: this experi-
ment does not use polarization as the entangled degree of freedom.

.7 Solutions to the Exercises

Solution 5.1.

(1) (-} + |, B) is the probability of finding the original singlet state |W )
in the state | + )| + B). Thus we first find an expression for the latter:

| +a)® |+ 8) = (cosa|H) +sina|V)) @ (cos B|H) +sin B|V))
=cosacos B|HH) + cosasin 3 |HV)
+sinacos B|VH) +sinasing |VV).

'I'he probability can then be calculated using Born’s rule for probabili-
ties:

P+ +]a, B) = | (b +B97)| = 2 sin*(a— 5)

= %[1—c032(a—ﬂ)]. .

Reponting Chin procedare, wo obmn
Pl 4 |ov, ) = P(= = |, ) m %[1 ~ cos 2(ov = A)] |
Pofe = |ty ) = P(= + |, B) = -}1-[1 + cos 2(cv — B)] .

(2) 1o = 4, then v = 0. We can substitute this into the expressions
for the probabilitios obtained in part (1):
P+ + |ov, ) = P(— - |o, 8) =0,
1
P+ = |a,B) = P(—+|o,B) = 5
Thus the results for photons A and B would always be opposite, i.e.
ra(e) = —=rp(f).
(4) Irom the results of part (1), we can calculate
(ra(e)) = (+1)[P(+ + |, B) + P(+ — |a,ﬁ)]
H-1)[Fl== |28+ P+ o £]]
—3 0’
(ra(8)) = (+1)[P(+ + e, ) + P(= +a, B)]
+(_]‘) [P(— - Iav ﬂ) + P(+ - IO(, B)]
=0.
Solution 5.2. X
=4

(1) From Equation (5.3), we can substitute the results in Equation (5.2)
to obtain:

Bl B) = Pit+ [ l) + Pl——|@l) — Pl B8] — Pl—+ |6:8)
= -;—[1 —cos2(a—B)] — %[1 + cos 2(a — B)]
= —cos2(a — 3)].
(2) To prove that E(a,3) = (ra(a)rg(5)), we note that r4(«)rp(f) is
equal to +1 when r4 = rg and —1 when r4 # rp. Thus
(ra(@)r5(8)) = (+1)[P(+ + |a, B) + P(= — |a, B)]
$1-1) [Plt= o) 4Pl o B
= FE(a,B) .
Solution 5.3. If Alice and Bob are stationed very far apart, make their

measurements at the same time, and choose their measurement bases while
the photons are traveling towards them, then there is not enough time




' ' : K Quantum | 23 S

for any sigual Lo Geavel from one photon to the ofher, Under wuel an
experimental arrangemont, - correlations nee sbill obrerved hotwoon (e
photons, then communication ean b ruloc aut ms nomechanism, Thin fis
been experimentally verified to a high degroo of cortainty.

Solution 5.4. We first note that 4 and 7 can only Gake (he valuon
+1 or —1. Substituting the possible combinations of values of 74 (o) and
ra(e’) into Equation (5.6), we find that if 7a(c) + rale) = £2, thon
rala) —ra(e) = 0 and vice versa. Thus we observe that S(A) con only
take the values +2 or —2.

Solution 5.5. Using the definition of the average value, we can compulo

= b Zsk
1 N
=G ; [ra(@)rrB(B)r + ra(@ )k rp(B)

+ra(@)erp(B)e — rala)ers(8)k]

= (ra(a)ra(8)) + (rale’)ra(B)) + (ra(e@)ra(8")) — (ra(@)ru()).

From Equation (5.5), we have E(a, 8) = (ra(a)rp(8)). We can suly
stitute this into the above expression to obtain

(S) = (ra(@)ra(8)) + (ra(@)ru(B) + (ral@) ru(B)) — (ra(e’)ru()
= E(O"aﬁ) iy E(O‘IHB) f E(O"B,) - E(OA,,,@/).
Solution 5.6.

(1) Taking a =0, o/ = §, 8 = § and B’ = —F, we can substitute these
values into Equation (5.4) to obtain:
E(a, ) = —cos (—g) = —g»
E(a,8") = —cos (%) = —?,
st = (£) =4,
E(d,8') = —cos (%r) = 125-

From Equation (5.7), we can compute

(S| = 4 x g = 2 B2

Hence we see that Bell’s inequality is violated.

- Another wet of auglon that violate el
Wam §, 0 = 1, A = Hf and
el v violation i obrerved whon we
s o pnel [ - -,

'll‘vinn (8) =

- .

=2V
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Hmm,,, THIS LOOKS
HARD...HOW AM |
SUPPOSED TO START?

Chaptor ¢

The GHZ Argument for
Quantum Correlations

violating Bell's inequality the only way to prove thal quantim correl
il nre nob due to presestablished agreement? In this chaptor, wo dinems
e Greenberger-Horne-Zeilinger (GHZ) argument, which is o mueh whie
plor argument that does not involve inequality. The price to pay i that i
Involves Lhree entangled particles instead of two.

(.1 Quantum Description

.1.1  The setup

Instond of two photons, we shall now consider a source that produces Clhiroo

+1 =1
o
A
_ (ocuz)
B "~ _C
+1/(}/(A \ §</Y, +1
/\'i\// o »/‘1

Fig. 6.1 Setup for the GHZ argument.
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photons b the entamgled stato

nmIvy). (t.1)

(GHZ) - 7‘5 ()Y +

The three physicints Alico, Bob and Cladre rocelve photons A, 13 niid
(! ponpoctively, They can choose between two measurement hason: (e
Sclingonal™ N basis or the “civenlar” Y basis, dofined as:

X bagls: |£a) = :/l—é-(ll/) B[V s (6.4)

Y besis: | ty) = —=(|H) £ i|V)). ((3.14)

Sl

2

Noto that for this caleulation, we need a basis defined with a complox
nimbor (0= /1),

St o the experiment in the previous chapter, we denote the men
puromoent outeomes of Alice, Bob and Claire as ra, rp and re resgpoc
tivoly. I the photon produces the outcome corresponding to the stalen
[ 1) or || y), this will be recorded as 1. Otherwise, it will be recordod
aw =1,

T'here are cight different ways in which Alice, Bob and Claire can malo
tholr choice of polarizers, but for this argument we only need to considor
[oue of them, namely X-X-X, X-Y-Y, Y-X-Y and Y-Y-X. Of these, we will
only be considering the first two cases in this chapter: since the state |(/117)
~ A pymimelric when the three particles are interchanged, the last two cases
produce similar statistics as the second case.

['or simplicity, throughout this chapter we shall use notations like
[ @y ~a, +a) = |+ z)| — z)| + z).

t.1.2 Measurement X-X-X

W lirst study the case in which all three physicists measure in the X basis.
I can be verified that the results of their measurements are always arranged

M|‘NIMMim Juantum Corelations ' in

"_ el Chnt Chote produed w1
ral@) rpe) roe) = 1, (6.4)

Fhin shows strong corrolations nmong the three particles. For example, if
two ol the photons produced the result 1, the last photon will certainly
produce the rosult 41,

Toxercise 6.1.

- Verily that the statistics of the outcomes are:

P+ + +|zze) = I(+w,+x,+x]GHZ)|2 7

[N

P(+ + —|zzz) = |(+w,+:c,—9:iGHZ)]2 =0

P(+ — +zaw) = |(+o, ~o, +2|GHZ)[* = 0

P(+ — —|zzz) = |(+z, —:c,—:z:|GHZ)|2 =1

(6.5)
P(— + +zoz) = {-= —l—ar,+a:|GHZ)[2 2 .
P(— + —|zzz) = [(—=,+z, —2|GHZ)|® = 1
P(— — +|zaz) = [(—=, —a,+2|GHZ)|” = 1
P(— — —|zzz) = [(~z,—2,~2|GHZ)|> = 0.

(2) Verify that these probabilities imply Equation (6.4).

Thus we sce that three I;hotons produce correlations. Now we ask,
are there similar correlations between two of these photons? What are
the statistics of one photon? These questions do not have any immedi-
ate bearing on the GHZ argument, and are dealt with in the following

pxercise.




Nanntion (G.5) timplion
| |

’ P }
corr ufuim butween wo photonu. Sum
d Bob compare their results, Verify the fol-

P('}' + @) = & )

e - Pt = |aw) = §,
& (_ + |.7J$) o %: )
P(- - |zz) =

W Lhe gymmetry of the experlmental setup, these probabilition

~are the same if Alice and Claire or Bob arid Claire compare (heir

~ rosults.

IIQ

0,1.8  Measurement X-Y-Y

11 the previous section, we have observed quantum correlations between
(hreo photons when the measurement X-X-X was used. How about (ho
moensurement X-Y-Y, in which one of the physicists measures in the \

< Ly, while the others measure in the Y basis?

We can show that correlations are again present between the three pho-
lon:

ra@)re(y)re(y) = -1, (6.8)
ra(y)re(@)rely) = -1, (6.9)
ra(y)rey)re(z) = -1, (6.10)

with cortainty. This means that when one physicist measures in the X basis

~ und the other two physicists measure in the Y basis, the three results are
ulways arranged such that their product is —1.

(6.7) 4"'3

L pose Ehd A TTCC THensires 1 Ly

1ol Wit ien of nll MM Cpopstble onleormes

_ W) = [, oyl GHZ)|
(k= layy) = |(re,~y, ~y|GHZ)|”
P~ + +|zyy) = |[(~@, +y, +y|GHZ)|?
P(= + ~|ayy) = |(~x, +y, ~y|GHZ)|*
P(~ ~ +leyy) = [(~2, ~y, +y|GHZ)|”
P(~ ~ ~|oyy) = [(~=,~y, ~y|GHZ)* =

' By the symmetry of the GHZ state and the experimental setup,
the statistics are the same if the physicist measuring in the X
basis is Bob or Claire.

(2) Verify that the statistics above imply Equations (6.8), (6.9) and
(6.10).

Il
Rl S O BIE O A= A=

-

-

B

(4,2 Impossibility of Classical Mechanisms for Correlations

"'Ia.ving observed strong correlations for the outcomes of some measure-
“ments on the GHZ state, we are now going to consider possible classical
‘mechanisms for the behavior of these photons.

(1) Correlation by communication
With reference to the previous chapter, it can be verified that these
correlations are not due to communication between the photons.
(2) Correlation by pre-established agreement
We now suppose that the photons have “pre-established agreements”
at the source about the measurement results that they would produce.
Mathematically, this is equivalent to the photons leaving the source
with a common list of six numbers

A= {ra(@),ra®); r8(2),78(Y); rc(2),7a(y)} - (6.12)




16 onn b vortfied that oo sl Hat osdats, which menns that pro-
ontabilighod mgeooment cammot explnhn Che correlntions obrorved nmong
the photoms, This avgument londs to the snme concluston s Chat
the provioms weetion ustng Bell's fnoquality.

~ lixorelwo 6.4, Vorlly that no 1t (6.12) ean fulfll the four condi-
(lomn (Gn4)| (0»8); (BIQ) i (6.10).

6.4 Summary

The CGHZ-nrgument, involving an entangled state of three particles, ig an
alhor prool that quantum correlations are not derived from pre-establishod
npreemont,

.4  'Tho Broader View

Thie GHZ argument has been presented as a useful exercise to practice (he
[ormnlism of quantum physics. Lts message, however, is ultimately the same
i for Bell's inequality: the outcomes of quantum measurements do nof
catme from pre-established agreement. Yet another argument for the same
conclusion, with a different Qavor, is known as Hardy’s paradoz. Instead of
fmdnting npgain on the same message, we introduce here a different kind of
font, that allows checking for a more subtle aspect of quantum theory.

G L Falsification of Leggett’s model

Lot s po back to the very definition of entanglement given in chapter 1
nonbnte of two systems that cannot be written as a product of two states,
one for each system. We stressed the difference between an entangled state
I quantum physics and the state of a composite classical system like the
ISnrth nnd Moon: within the theory, this means that individual systems do
notl have well-defined properties.

Now, can one test this last statement directly? You may think that
ol inequality do that, but actually pre-established agreement is a
nlronger requirement than just the existence of some individual properties.
A ore refined test was proposed by Leggett and improved in subsequent
worls, Here we can only give the gist of it.

The CHE Argument for Quantum o

Anntind, fwo photons are gent apaet o one anothor and measired
b diforent oontions, one by Allco and the ather by Bob, Leggett's modal
amptninen Lt Chore fien hiddon pormmetor A Chat plays Che following role: if

Hidlnely for Boby for any fixod value of A, his photon gives the statistics
carresponding to o woll-defined one-photon state |£y). 16 is not assumed
Chint the correlations should be compatible with the state |ay) @ |8x), be-
e such nomodel would not violate Bell’s inequality. In fact, the model
doos not asstume anything about the correlations: the only aim is to try and
Cunve, ab least, the existence of some well-defined properties for individual
pliotons,

lven such a general model has been tested and falsified. The criterion,
lilio Bell’s inequality, is independent of quantum physics: therefore, we
cnn really say that, in some cases (corresponding to what quantum theory
doseribes ag entangled states), individual systems do lose their individual
properties.

(.6  References and Further Reading

[0nsy reading:

- D.M. Greenberger, M. Horne, A. Zeilinger, Physics Today, August 1993,
pp 22-29.

Resources:
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Theorem, Quantum Theory, and Conceptions of the Universe (Kluwer,
Dordrecht, 1989), p.69.

- N.D. Mermin, Am. J. Phys. 58, 731 (1990).

- On Leggett’s model: S. Groblacher et al., Nature 446, 871 (2007); C.
Branciard et al., Nature Physics 4, 681 (2008).

Suggestion for projects:

- J-W. Pan et al., Nature 403, 515 (2000).




0.0 Solutlons to the Bxorclses

Solution 6.1,

(1) P awa) is the probability that all three photous will be Cransimii-
ted when Alice, Bobh and Claire make mensuroments using the | & )
basis. We compute this by first expanding the oxprossion

| + @byt

(%(]H} + IV))) (%(IH) + |V>)> (%(lﬂ) * |V>)>

1
mﬂHHH) +|HHV)Y+|HVH) + |HVV)

+VHH) +|VHV) + [VVH) + [VVV)).
Since |GHZ) = %(IH)|H)|H)+|V)|V)|V)), we can compute (he
probability

i 9

4 4 4
The other probabilities can be verified in a similar manner.
(2) Irom the statistics, we can take into account the outcomes with nonzero

probabilities, which are P(+ + +|zzz), P(+ — —|zxx), P(— + —|vax)

2 1
P(+ + +zzz) = |(+z, +z, +2|GHZ)|* =

and (- feaa). By multiplying the outcomes of the three measure-
ments for cach of these four probabilities, we find that the results arc
nlways < 1. For example, for P(+ — —|zzz), we have

ra(x)rp(@)re(z) = (+1)(=1)(-1) = +1.
Thus we see that Equation (6.4) is valid with certainty for the mea-
surement X-X-X.

Solution 6.2.

(1) We can verify these probabilities by using the statistics in Equation
(6.5):
?

P(+|z) = P(++ +|zzz) + P(+ — —|zzz) =

P(—|z) = P(— + —|zaz) + P(— — +|zzz) =

SRR Y

(2) These probabilities can by calculated using the statistics in Equation
(6.5). For example,

1
P4+ |zz) = P(++ +|zax) + P(+ + —lezz) = .

We can do the same for the other probabilities.

Holutlon 0.3,
~~’;* Wo e cotmpite (1 ‘* A [ by tent oxprading the oxprossion
iy by )

= (gt + 0} (5 m + 4y (G50 +av))

= ?'7,3(“1 HH) +i|HHV) +i|HVH) — |HVV)
HVHH) + i|VHV) +4|VVH) - |VVV)).

Wao can then compute the probability
2

1
. =0,

4 4

The other probabilities can be verified in a similar manner.

(1) We prove the first equality by considering only the outcomes with
nonzero probabilities, which are P(+ + —|zyy), P(+ —+|zyy), P(—+
Iayy) and P(— — —|zyy). We observe that for P(+ + —|zyy),

ra@)rey)re(y) = (+1(+1)(-1) = -1.
We can prove this for the other three probabilities, and repeat this
procedure for r4(y) rp(x) re(y) and ra(y) re(y) ro(z).

PO+ Hayy) = [(+o, +y, +yIGHZ)? =

Holution 6.4. Combining (6.4) and (6.8), we have
ra()re(x) = —re(y)re(y).
Clombining (6.9) and (6.10) gives us
re(@)raly) = re(y)ro(r).
Combining the above two equalities, we obtain
rg(z) = —r(y),

which is a contradiction since rZ(z) = 74(y) = 1. Thus we conclude that
no list (6.12) can fulfill the four conditions.
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Chaptor 7

Measurement and Decoherence

y
A clnssienl physics, measurements have always played o passive role, We
nine Chat everything around us hag well-defined proportics, rognrdlon of
whothor they are being observed or meagured, Aflter all, the moon in thore
~ovon 1 no one g looking ab it, isn’t it?

In quantum physics, can we say the same about meagurermont! Do
ovaryLhing already have a predefined state before we moeasure Chom' [ we
~ensure o photon’s polarization to be horizontal, can we sy Chat 10 win
nlrendy horizontal hefore we meagured i6?7 We know that this s problematic
Locnuse of the violation of Bell’s inequality.

In (his chapter, we start by introducing the concept of pre-moensuroment,
[ollowed by decoherence, and a short discussion on the “measureiment prol
lom™ in quantum physics. We shall finish by bricfly mentioning the notion
ol (uantum computing,.

7.1 Measurement and Entanglement

Vory often, in actual measurements, we do not measure the desired proporty
directly. Rather, we couple it to a pointer, which is another property (hit
will actually be measured. For example, when we use an analog amimaolor
{0 measure current, what we measure is the deflection ol a needle ((he
pointer) when current passes through the circuit, and not the current itsolf,
In quantum physics, the same happens, but the coupling of two quantum
yystems leads to entanglement.

We first consider using a polarizing beam-splitter to measure a pho
ton’s polarization in Figure (7.1). This beam-splitter allows photons wilh
a horizontal polarization |H) to be transmitted, corresponding to patl
whereas photons with a vertical polarization |V) are reflected, correspond-
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Fig. 7.1  How the polarization of a photon i measurod,

ing to path y. We can thus deduce the photon’s polarization by meastring
the path that it takes.
Mathematically, this process can be written as
(cosO|H) +sin0|V))|z) — cos O H)|x) + sin0|V)|y). (7.1)
Here we see that the beam-splitter entangles the photon’s polarization (the
system) to its path (the pointer). From this, it is possible to predict the
probabilities of measuring each polarization in either path.

Exercise 7.1. Fill up the table below.
Result of measurement Probability
Polarization |H) in path | cos? 0
Polarization |V) in path |x)
Polarization |H) in path |y)
Polarization [V in path |y)

Note that (7.1) is a reversible transformation: at this stage no mea-
surement has taken place yet. This is why this step is sometimes called
pre-measurement: a coupling between the system and pointer such that

|H)|z) — |H)|z)

[V)lz) — [V)y)
Given that |H) and |V) are orthogonal, we also want |z) and |y) to be
orthogonal, because we want them to be perfectly distinguishable. This
would allow us to deduce |H) or |V} from |z) or |y) with certainty.

Note that in this setup, |H) and |V) have to be orthogonal. Two non-
orthogonal (and hence non-distinguishable) states cannot be coupled to two
orthogonal states of the pointer, as can be verified in the following exercise.

thene Iwo statos nee not orthogonal. From wlmt wo liave dlnoumd 1o
L i this bools, convinee yourseld that such o transformation cannot
possible, This can be mathematically shown by proving that
hin transformation is not unitary, and iy therefore forbiddon, il
~compute the scalar product of the state in the first line with the
wlate in the second line, both before and after the transformation.
I they are different, then the trangformation i nob unitary,

7.2 Decoherence

In (he previous section, we have discussed pre-measurement asbng o polar
Izing beam-splitter. In actual fact, pre-measurement is always occenring
nround us, through the environment! This process is callod decolierenee.
A degree of freedom is never decoupled from everything olser dvon I we
can prepare a pure state, with time it will interact with the onvironment.,
I other words, part of the information initially contained in (ho wyutonm
will diffuse into the environment. We can also say that the environment
nequires information about the system.
Using the formalism of pre-measurement, we identily the envivonimont
ns the pointer. We consider the following evolution in Gime:
(B E) = | H)| B (1))
[V)IE) = (V)| By (1))
where |Eg (t)) and |Ey (t)) are two states of the enviromment, which nre i
peneral not orthogonal. We express these two states using an orthonorinnl
basis {|E1),|Fa)}, by rewriting them as
54(0) = VAR + VI SOIE), o8
By () = /D) Ba) +\/1— D1 (7.3)
IFor simplicity of notation, we would not explicitly write l,lw depoendanee on
t of |[En), |Ev) and A.

(7.2)
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Now, you iy wonder, what doos the praemmetor N monn? How da [ £,)
and [£y) change with thme? Those nee Che quontions wo nre gotng (o mtudy.
It is convenient o denote the sealne product hotwoer the wbaton of Che on
vironment as x = (W[ 1), this quantity plays nn mportant rolo in wlhint

follows.
Exercise 7.3. Find an expression for y as a function of A,

We know that initially, at ¢ = 0, the environment is in the state [14),
Thus we can write that |Ey) = |Ey) = |E) at { = 0.

Exercise 7.4. Find A and hence x at ¢ = 0, and express [[7) in (he
basis {|E1),|F2)}.

As time progresses, the environment states, |[Ey) and |[Fy), will evolvo
from being in the same state to becoming increasingly different as thoy
interact more with the system. Thus intuitively, we know that alter a vory
long time, |Ex) and |Ey) will become orthogonal.

Exercise 7.5. Find A and x for this case.

Now we define a function of y with respect to time, x(¢) = e~%/7, where
7 is called the “decoherence time”. Intuitively, if the interaction with the
environment is strong, y should decrease rapidly with time, which means
that 7 should be short.

Exercise 7.6. Plot this function. Verify that the values of y at t =
0 and as t — oo correspond to those in the previous two exercises.

We now have an idea of how the environment varies as it interacts
with the system. We have also seen that x is related to the degree of the
system’s interaction with the environment. Next, we shall investigate how
decoherence affects the outcomes of measurements made on the system.

Suppose that the initial state of the system is |[¢)|E) = (cos 0|H) +
sing|V))|E). Through interaction with the environment, at time ¢, this

Moaanroment and Doooheronie i

bk L ovolved fnto
(WY1 = (VAeonO[H) + VT Nuin@[V)) | #)
(VI Neon 01V Autn V) | 8y)
o ) Eh) b ()| B)

(T4

i

~ lixovedso 7.7, Vorily quation (7.4).

Huppose that at Gime £ wo choose (o monsure the polarization g the
i | F ) = cos ol ) b sina|V) and | < o) = conalV) < winal ). Using
Mguation (7.4), it can be shown that the probabilitios of obtaining oach
~unleome are

P(+cr|0,A) = & (1 + cos 20 cos 2c -+ X sin 20 8in 200) |

P(=a|0,)) = 5 (1 — cos 20 cos 2a ~ x #in 20 sin 2e) «
Henee we can derive the probabilitios of each onteome as funetions of ¢, o
nndd v,

(7.h)

~ Exercise 7.8.
(1) Verify that the statistics are

P(xa)0,X) = P(Ealpy) + Pdafs)

' : » (10
= |<:i:rv|'f/»|)|2 i |<,|'.i(l'|’l/’g>|1. (&)
(2) Compute explicitly
; 2
P(+ald, \) = ’\/Xcos()cosw SRVATIES )\Hin()sin(v‘ (7.7)
..... 2
1 + l\/f——_)\cos()msnz + vV Asin O sin o (7.8)

= %(1 + cos 20 cos 2c - x sin 20 sin 2ov) (7.0)

where for the last line we used the trigonometric fdentition
cos?z = (1 + cos2z) and 2sinzcos® = sin 2z, Notico (hat
the only term here that depends on the environment sy,

(3) Find a similar expression for P(—a|0,\), and vorily (hnt
P(—~al0,\) = 1 — P(+al0, \).

(4) Whrite explicitly P(+a|0,A) and P(—a|0,\) for oo = 4 andd plot
these probabilities as functions of 0 for y = I, x 5 and o 0
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Ione ploty the probabilities of the poliedzation measuremonts ag o (e
tion of 0, as was suggestad i the provious oxerelse for o particular case,
one obtains sinusoidal functions with varying amplitudes depending on y.
When x = 1, we know that this corresponds to the initial state of the
system, without any decoherence. This case corresponds to maximum am- i
plitude, which means that interference effects are the most observable. On
the other extreme, x = 0 corresponds to constant probabilities, and hence
no interference effects. Thus, y is related to how observable interference
eflects are.
The wvisibility of interference fringes is defined as:

Pmaz - szn

P2 B,
Pmam e Pmin

(7.10)
Here, Ppqy is the maximum probability for all values of 0; we write it as
P = M5Xp [P(:ﬁ:alﬁ,)\)]. Similarly, P,,;, = ming [P(:I:cv|0,)\)]. In our
case, it can be shown that V' = y.

Exercise 7.9.

(1) Verify that V = y.

(2) From the previous plots of probability, the visibility also has a
graphical meaning. Verify that P,q. = # and Pypn= %/-
How do you read the visibility from the plots?

7.3 Summary

In pre-measurement, the desired property of a system is coupled to a

pointer, leading to entanglement for quantum states. Decoherence is a

form of pre-measurement, in which a system interacts with the environment. '
This causes the system and environment to evolve with time, resulting in

a decrease of the visibility.

7.4 The Broader View

7.4.1 The measurement problem

We have devoted a full chapter to a somewhat detailed description of the
measurement process in quantum physics. The reason is that the notion

Muiatrvment and Pevobivrenoe 10

ol tensurerent oot as tevind ae o classtenl pliyatoss O o Go Chink
ol tenstrerment ae e procedure Chnt just rovends prosesdnbing progor o
however, wo have strogsed oy e e provious ehoptor thit aquut o
phenomoenn cannol bo pseribod (o prosoxisting proportion, So, wlhink doos n
maeaguremaent actundly do There in no agrooment on Clie question; Ch
has become cugtomary (o speak of the measurcement problem,

T'he core of the igsue seems to bhe the following: quantom physton Haoll
has no sharp recipe to decide what s o meagurement dovico, Wo linve oo
it in this chapter with the notion of the pointers the polntor fn nnot e
physical system that couples to the gystenm (o bo maonsired wnd vonds (s
information. In the text, we stopped Chere, but one might negunbly al
how do I measure the pointer now? You need o pointer for the poinfor
If one pushes the formalism to its limit, even the observer can be trontbod
as yet another pointer. This would give the following desceription of the
measurement process: first, the system has been prepared fnon wbonde, bl
neither the detector nor the observer are correlated Co ity Chon, T Che wocond
step, the detector correlates to the systems; in the Chivd stop, Che alimerve
correlates to the detector. Formally:

(cos O|HY +sin@|V))| ") 4|
— (cos O|H)|“H”) o + s VHIV"Y o)1 ot
— o8 0| HY | “H™} qoi | “H" Y o1 S|V “V™ Yot “V" istn
The last line is a tripartite entangled state, very similar (o (thd GHZ wtialo
of chapter 6.

Now, operationally, everything is fine: at any stage, you can jusl sejiinre

the coefficients and recover the usual probabilities. So, the statistion will

obs

det

obs

det |

be the same independent of whether you choose the boundary hetweon pro
measurement and actual measurement (incidentally, this boundary in ofton
referred to as Heisenberg’s cut).

But this nice feature hides a deep problem: does the last line correnponid
to something real? Is it really the case that, ultimately, no meaguromenl
ever “happens”, that one just has entanglement developing hetween more
and more parties, including ourselves? This is the standpoint of the radicnl
solution to the measurement problem proposed by Fverct( in 1957
called the many-worlds interpretation. The daring elegance of this solution
meets a problem: what is the sense of probabilities, of squaring cocllicion(n!
Why do we observe probabilities in the first place? In spite ol sovernl
attempts by the proponents of this interpretation, no satisfactory nnnwer
has been given to this question.
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T'he many-worlds nterpratation just mentioned o eathior radieal and s
not the most commonly adoptod, "U'he orthodor interpretation s the one
we adopted in this book: at some point, o measurement really takes place.
In this view, the notion of probabilitics makes perfect sense, but of course

one is assuming that there is a real Helsenberg’s cut. At the moment of

writing, nobody has any clue of what could define such a cut. Morcover, a
measurement apparatus is made of atoms and atoms obey quantum physics:
why should many atoms suddenly lose their quantum character?

There are several other interpretations; for the purpose of this text, let
us mention only a group of mechanistic interpretations, the most famous
and developed of which is called Bohmian mechanics. In Bohmian mechan-
ics, everything is pre-established as in classical physics: in order to achieve
this, one is obliged to postulate the existence of an all-pervasive “quantum
potential”, a sort of wave that carries no energy and has to change instan-
taneously everywhere when a measurement is made — this is a strongly
non-local hidden variable, the non-locality being needed to justify the vio-
lation of Bell’s inequality and similar phenomena. In Bohmian mechanics,
measurement is not a problem because everything is deterministic. How-
ever, this interpretation is very controversial because it introduces physical
objects that are in principle unobservable.

Let us summarize. The orthodox interpretation has a measurement
problem that could be solved by discovering a real Heisenberg’s cut, which
however is problematic to define. The many worlds interpretation removes
the measurement problem by saying that no real measurement ever takes
place, but finds it difficult to give a meaning to our observation of proba-
bilities. The Bohmian interpretation solves the measurement problem by
recovering determinism, at the price however of postulating the existence of
a strongly non-local and unobservable physical object. If you were feeling
that you had not fully grasped quantum physics yet, now you know why:
nobody really has!

7.4.2 Quantum computing

We have just seen that decoherence, i.e. interaction with the environment,
is an effective explanation of the fact that we don’t observe quantum inter-
ference of large objects. This very fact is also an important nuisance in the
dream of building a quantum computer one day. We do not have space here
to discuss this topic in depth, but it is useful to have some idea of what is
at stake.

Meanwrvmnont and Decohierenion (U

You have to et forgoel wll Che b lae Tonturon of o computor; e
seroon, koybonrd obes, and focun on Che computations Chnt nee onsgolig
in the procossor.  Ulthmately, any such computation takon o Tong Het ol
zorod and onew ng nne dnpul, and oubpubs anothor let ol zevos and oo,
But what i8 o zero o aoone? I your computor, these are probably two
different lovels of voltages, or two orientations of o magnetic domadn, L nny
case, the logical values 0" and “1" are codod into two states of o physienl
systenn.

Now, one may think of encoding the logical values in two quanbnm plndon
[0) and [1). If one does this, the physical system that codes for the hif e
also form superposition states «|0) + B[ 1), or bhe entangled with otlior sy
tems. These operations have no analog in a computer operating o climicnl
coding. Thus in principle, one can do more operations with quantun codig
than with classical coding. The question is, is this uselul? In TOO4, ot
Shor showed that the answer is yes: the possibility of acconsing niporon
tion and entanglement can significantly speed up some computabionn Ui
means that a given computation would require far fewer clementary sleps,
it is not a question here of how much time each elementary step will tinle
In other words, the promise is not that quantum physics can onstly prodice
terahertz processors; rather, if you have a classical megaher(z proconsor niid
a quantum megahertz processor, the latter will perform some compubations
much faster than the former.

More than fifteen years after Shor, nobody has found any intuitive ox
planation of the power of quantum computing. One often hears the populi
explanation: “a quantum computer would compute all possible vesully nl
the same time, because of superposition”. This explanation is certainly nof
the heart of the matter: if it were, all possible computations would he gpad
up; on the contrary, it is known that only some specific compubations nro
and many others are definitely not!

Now, in order to perform the type of computations that Shor cnvig
aged, one needs to control thousands of quantum systems, to manipulalo
and measure each of them individually, and to entangle any two of thoni,
This is a formidable experimental challenge: while nice demonstrations of
such control have been made, they only involved a few quantuin systeng
(approximately ten, the number varies with the technologies), and it is not
clear how to scale the design up (the often-mentioned scalabilily issue). On
top of this, the evolution of all the thousands of systems needs to be wn
der control: decoherence here plays a negative role, because it is unwantod
interaction with an environment that we don’t control.
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Can decoherence be harnessed? Or maybe even turned to an advantage
by clever coding? Can one do meaningful computations with fewer systems
than initially thought? All these questions are still being debated among
researchers at the moment of writing. What we can say with assurance is,
nobody has yet found a fully viable way to build a quantum computer.

7.5 References and Further Reading

Fasy reading:

- On decoherence: W.H. Zurek, arXiv:quant-ph/0306072v1 (the updated
version of an article published in Physics Today, 1991) ,

- On quantum computers: S. Lloyd, Scientific American 273, 140 (1995);
S. Aaronson, Scientific American 298, 62 (2008)

Resources:

- Online review by Guido Bacciagaluppi:
http://plato.stanford.edu/entries/qm-decoherence/
- Review article: M. Schlosshauer, Rev. Mod. Phys. 76, 1267 (2004).

Suggestion for projects:

- M. Brune et al., Phys. Rev. Lett. 77, 4887 (1996).
7.6 Solutions to the Exercises

Solution 7.1. To calculate the probability of the photon with polarization
|H) to be in path |z), we square the scalar product of (cos6|H)|z) +
sinf|V)|y)) and |H)|z), which gives us cos® 6. We can determine all the
other probabilities using this method.

Result of measurement Probability
Polarization |H) in path |z) cos® 0
Polarization |V} in path |z) 0
Polarization |H) in path |y) 0
Polarization [V) in path |y) sin? 0

Solution 7.2. Let us first compute the scalar product of the states helore
the transformation. Since

I ! V
|4) ) \/1!(|//>|-') FIVA®))
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we have

1
H x|+, 2) = —.
(H,al+2) = ==
where |H, z) stands for |[H) @ |2); similarly for |+, ).
Now we compute the scalar product of the states after the transforma

tion. Since

) = % (D) + V) 8))

thus
(H,z|+,y) = 0.

Since the two scalar products are not equal, this transformation i ol
unitary and is hence forbidden.

Solution 7.3. x =2/A(1—)).
Solution 7.4. At ¢ =0, |Ey) = |Ey). Thus

VA ELD + V1= A E) = VA|IE) + V1 = MNE),
VA =vVI=-2A.

Hence we see that A(t = 0) = é Using this value of A, we oblain y [
/’.‘//), “?till}'.
122)} s follows

By) is the same as

This can also be deduced by noting that

equation (7.3), we can then express |££) in the basis {|19)),

| I |
| £2) '\/2 ) 4 ¢1 .N)|/‘f'.’> \/2(|/’f'|> - | Fg)) .

Observe that the environment has an equal probability of heing i oithor

of the two orthogonal states [19)) and [195).

Solution 7.5, U |[F) and
which in turn corresponds to A 1,

[9yv) are orthogonal, this means that y 0,

Solution 7.0, From the graph, wo can soo that ot £ 0,y L and o Ghe
Hndt o & % o0, x 0 00 Thin corresponeds to the provious two exorelnos,
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Fig. 7.2 Plot of x with respect to time t.

Solution 7.7. We can transform the initial state to obtain:

[} E) = (cos|H)+sind|V))|E)
— cos0|H)|Ey) + sind|V)|Ey)
— cos0|H) (\/X|E1) el /\|E2))

+sind|V) (\/XIE2> g A1E1>) .
Rearranging this, we get

WY E) = (ﬁcosmH) g — AsinHlV)) |Ey)
+(\/1 X cosO|H) + \/Xsin0|V>> | E2)
= [Y1)|Er) + [2)| Ez)

where [¢1) = vV Xcos 0| H) + /1 — Asin0|V), and |gho) = /T — Acos6|H) +
VAsinf|V).

Solution 7.8.

(1) As the system interacts with the environment, the original state |¢)
evolves to a state having probabilities of being in either |11} or [i)2).
Thus to find P(+alf, \), we find the individual probabilities for the
cases in which the state is |¢01) and [i2). The total probability is
obtained by summing these up.

B

Megnuromient anid Deesheroon
(2) Wao cnn expand the exprossion frome Chie previons quostion to obibain
P(ra]o; N)
[Chedgn) ] - |(ralua)]*

- ]
‘\//\(!()H()(f().‘-l(\’ VAl /\Hlnﬂﬂlllrl‘}

fedils 2
| ‘\/l A cos ) cos cv | \//\Hill()Hill(lf‘

= sin? Osin? ov - cos® 0 cos® o - 4 \/5:(17; )\'v)“sin 0 cos 0 8in (v eon o

1
= E(I — cos20)(1 — cos 2a) -+ Z(l - cos20) (1 + cos 2)

1
—+ X sin 20 sin 2qv

1
= —(1 4+ cos 20 cos2c + x sin20sin 2q) .
2

(3) We use the same method as above, except that the state is now |
instead of | + a).
P(=alf, )

2 2
= |(—aly1)|” + [{(—al)|
2
= |\/1 — Asinfcos o — \/Xcosﬁsina’
2
+ ‘\/Xsin@cosa V1= Acosﬁsina-l
= sin” § cos® a + cos”® Osin? a — 44/ A(1 — ) sin 0 cos O sin a cos v
1 |
= Z(l —c0820)(1 + cos 2a) + 4_1(1 + cos260)(1 — cos 2a)

— —;—X sin 20 sin 2

1
= —(1 — cos 20 cos 2ar — x sin 26 sin 2
2

=1-P(+ald,N).
(4) Substituting o = 7§, -

P(+ald, ) = %(1 - speiEs)

Plalf %) = %(1 ~ xsin26).

)
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Fig. 7.3 Graphs of P(+alf,\)

7/2 T 3n/2 2n

Fig. 7.4 Graphs of P(—al|0, )

Solution 7.9.
(1) The maximum and minimum values of a sine function are +1 and —1
respectively. Thus

L
Pma:c TX,
Pmin

1%

2 ?
P, maxr P, min, -
Pmcm: + F, min

|4

(2) 10 fw onmny Lo vertly that Pt P = 1 We enn submtitnte this nto the
oxprosslon for V and solve 16 to obtiln Py, = S5 and £y = 155
To vond the vikibility from the plots, we talko

Pran = P = V.

Thus we see (hat V' ois just twice the amplitude of the probability plots,

i

Fig. 7.5  Graphical determination of visibility
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Chapter 8

Other Two-Level Systems

We have introduced quantim physics using polarization and we have pire
sented all the previous phenomena using that language. Tn thig chinplor,
we briefly review other degrees of freedom that share with polarvization (1o
fact of being two-level systems, i.e. systems for which only two nbaton it
be perfectly distinguished. This chapter will show how the same formnlin
can be applied to describe a larger variety of phenomena,

8.1 Spin %

In many textbooks, the typical example of a two-level system is (the spin
%, a property of many elementary particles, notably protons, neutrons nnd
electrons.

8.1.1 Spins as intrinsic magnetic moments

The spin is a magnetic moment, like the needle of a compass. Its stale iy
defined by a direction, the direction in which the needle points. The moul
typical dynamic behavior of spins is observed when they are placed in n
magnetic field: in the absence of dissipation, they rotate around the axiy
defined by the field with constant angular velocity.

The name “spin” misleadingly suggests that something is spinning. In
order to understand the origin of this name, we have to embark in a sketchy
historical remark. The existence of magnetic effects for electrons was pre-
dicted in the very early days of quantum physics: indeed, since electrons arce
charged particles, they generate a magnetic moment by rotating around (he
nucleus. However, this mechanism alone could not explain all the observed
magnetic effects: an additional magnetic moment was needed. Physicisis
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started looking for another moechandsm Chat would explain i, and surmisod
that it could be due to the spinning of the clectron around its axig; Chus
the word “spin”. The name stuck, even though it became clear very soon
that this explanation was completely inadequate —— the reader of this book
should know by now that it is sometimes impossible to find classical mech-
anisms to explain quantum physics.

In summary, the spin is an intrinsic magnetic moment. It does not derive
from rotating charges or other dynamical effects: it is a purely quantum
property of some particles. As for the number % it is related to the number
of orthogonal states: in general, a spin S has d = 25 4 1 orthogonal states.
For the reason why S, instead of d, is chosen to label spins, we refer the
reader to any standard textbook. For the purpose of this text, just keep in
mind that a spin % has d =2 x % +1 = 2 states and is therefore a two-level
system.

8.1.2 States of spins
8.1.2.1 States of one spin

The mathematical formalism is exactly the same as for polarization; only
the interpretation of the states changes. The most common basis, which was
{|H).|V)} for polarization, is usually written {| 1),] 4} or {| + 2),| — 2)},
and is interpreted as the spin pointing upwards or downwards in the 2
direction — of course, the choice of which direction in space is the 2 di-
rection is completely arbitrary, just as the choice of what I and V are for
polarization.

Already at this stage, one finds an issue that creates some confusion
for beginners: note that orthogonal quantum states of spins are associated
to opposite, and not to orthogonal, directions in space! There is nothing
wrong with this, if you remember that the quantum state describes the
properties of a system: the statement just means that two states of spin
can be perfectly discriminated if and only if they indicate opposite direc-
tions. Still, one has to get accustomed to these subtleties, and this is one
of the reasons for our choice of polarization as the degree of freedom in
this book.

One consequence of this fact is the following, which we give without
further proof: a spin that points in the direction cos §2 +sin 87 is described
by the state |

P(0)) = cosZ|+2) +sin§| — 2). When one adds the third
direction, complex numbers must be used: the spin that points in the

v _—
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diroction n(f, @) = conds | sl 0o i slngg] 8

(! ()
| |- 1) [1p(0, ) c'ur-lz| v £) o= 6" Hin L’l hi (8:.1)

Exercise 8.1,

(1) Write down explicitly the four states | &), | = @), |+ §) and
| —9). Verify that (+2| = &) = (-+g| = @) = 0. Important ro
mark: when complex numbers are involved, the sealar prod
uct is defined as follows: if |y = ay|+ 2) + ag| —~ £) nud
|py = bi| + 2) + ba| = 2), then (¢ |1hs) = afby -+ ajby, whare
the “*” denotes complex conjugation.

(2) Write down the state | — i) orthogonal to | ). Hint: which
angles (0',¢") define the direction 7(¢', ") = —n(0,¢)!

For a beam of neutral particles, a measurement of spin along i piven

direction is made by a device called the Stern-Gerlach magnet. Thin dovive
is described in all textbooks of quantum physics and we refer (o (howe [
all the details: the reader will see that it is the analog for sping ol (ho

polarizing beam-splitter that we have introduced in this book.

8.1.2.2  Entanglement of two spins

Surely the reader of this book has some elementary knowledge of the poe
riodic table of elements and has therefore learnt how different clemaenty
appear: the electrons around the nucleus must occupy some well-definod
orbitals, and each orbital can accommodate at most two electrons. Why
Because of Pauli’s exclusion principle, two electrons cannot have (he samoe
state, so if they are in the same orbital they must have opposite spins: one
must be “up”, the other must be “down”.

Now, this rule is already so surprising and new that students are over
whelmed and invariably fail to ask an obvious question: along which dirce
tion are the two spins opposite? Maybe it’s good that they don’t ask this
during a first presentation, because the answer involves entanglement! The
actual state is the so-called singlet state:

1 2 o 2 = .
|w >=E(I+Z>I—Z>*I~Z>I+Z>)‘ (8.2)
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As written, it seoms Chat the gping are oppostte in the & diveetion. Bt
this cannot be the whole story, because the & divection is our arbitrary
choice: how can the electrons know about it?7 In fact, there is no issue,
thanks to entanglement: the singlet state has the remarkable property that
it looks the same in every basis. Indeed, for any direction 7 of our choice,
the expression

1

— (| +7)—n) —|—-7)|+ 7 8.3
75 1+ R =) = | = )] +7) (53)
represents the same state. So, the spins of the two electrons in the same
orbital point in opposite directions... for all directions!

Exercise 8.2. Replace the states | +7) in Equation (8.3) using
Equation (8.1) and the result found in Exercise 8.1. Show that this
state is identical to the one defined in (8.2), up to a multiplicative
complex number —e*? that does not play any role.

We have just found that there is entanglement of spins in virtually any
atom, as soon as an orbital is occupied by two clectrons. And an atom is
just the simplest example: if one moves to several atoms, for instance in a
solid, one can find many-electron entanglement, similar to the one discussed
for the GHZ argument. However, the fact that there is entanglement in the
electrons that compose the pages of this book does not make it any simpler
to observe this entanglement. For instance, nobody knows how to extract
two cntangled electrons, send them far apart and check for a violation of
Bell’s inequality by measuring their spins.

In summary, entanglement of spins is ubiquitous; the problem is how to
detect it. Interestingly, John Bell derived his inequality using the language
of spins, not polarization, and thinking precisely in terms of the singlet
state. But the experiments were finally done with photons.

8.2 Selected States

Polarization and spin 51 are, so to say, natural two-level systems. One can
obtain effective two-level systems out of more-level systems, if only two
states and their superpositions are involved in an experiment. This proce-
dure may seem artificial, but in actual fact some of the most meaningful
examples of two-level systems are obtained precisely in this way. Here we
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Brielly dinem two ol Choms two possthle pathe for o propagating partielo
and two peloctod anorgy lovels of anoloctran i mn wlon,

8.2.1  Two paths: interferometry

Congider a source emitting a beam of light. In the previons chnplors, wo
have studied the polarization of the beam. Bul actually, with Hght, some
thing even simpler can be done: one can split. the beanm into two unlng
a semi-transparent mirror, also called a beam-splitter. '1I'his offoel v woll
known from everyday life: just look at a window panc or through womie
spectacles, and you will see that much light is transmitted bhul part ol 16 s

also reflected.

Transmitted

Reflected

Iig. 8.1 Beam-splitter.

Then one can ask the same question that we asked at the heginniig,
for polarization: how does one describe these partial reflections in tormu
of single photons? What does each photon do? The simplest experimont
(Figure 8.1) shows that each photon is found either on the transmitted or
on the reflected path: one never finds a “half-photon” in each path. 'I'hiy
seems to settle the issue: each photon is either transmitted or reflectod,
But the reality is more interesting.

In order to understand this better, we have to complicate the sclup
(Figure 8.2). Using mirrors, one can recombine the initially split beams on
another beam-splitter; prior to that, a piece of matter with larger refractive
index can be placed in one of the paths to make it slightly longer. Such a
setup is called a Mach-Zehnder interferometer. Let us do the calculations
for this setup.

First, we have to identify the distinguishable states. We can distin:
guish a photon propagating along the direction # from one propagating
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Fig. 8.2 Mach-Zehnder interferometer.

along the direction §. We refer to these two states as |k,) and |k,). Note
that there are infinitely many other distinguishable states describing pho-
tons that propagate in other directions, but these states do not enter into
the description of the Mach-Zehnder interferometer, so we do not have to
consider them. In this sense, the setup is described by an effective two-
level system. Second, we note that a beam-splitter acts as the following
transformation:

ke) — %(|kr> +ilky)) »

lky) — %(V‘:y) +ilka)) -

(8.4)

The presence of the imaginary 7 is needed to guarantee that the transfor-
mation is unitary. Lastly, we need to describe the delay that is inserted
into path z. Its effect is simply |k,) —> e*#|k,.), while |k, ) is obviously left
unchanged.

Exercise 8.3. Verify that the transformation (8.4) is indeed unitary
as written, and would not be unitary if the imaginary number i is
removed from the right-hand side.
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Having ol the pleces, wo ean sbart with o ieombong paeticlo on piath e
and propagate 16 Chirough the getup:
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So, at the output of the interferometer, the probability of finding the photon

propagating along @ is

2,
O),

&

P(kr) =

(M,0)

e 1 ’2
= COS

i
2

similarly, the probability of finding the photon propagating along ¢ in

e —1

2

P(ky) = = sin (M.

20
e,

We see that, for ¢ = 0, P(k,) = 1: all the photons will propagate ol alony
#; while for ¢ = w, P(ky,) = 1: all the photons will propagate oul along
. But then, it is sufficient to change ¢ in one path to change the state of
all the photons: thercfore, necessarily, each photon collects the information
available on both paths — in other words, each photon is delocalized in
both paths.

This delocalization is quite a striking effect of quantum superposition;
so much so that the Mach-Zehnder interferometer is often chosen as (ho
simplest setup to demonstrate the quantum behavior of a single particle,
We rather chose polarization for our main text for the following two reasons:
first, the superposition of two polarization states defines another dircction
of polarization; on the contrary, the superposition of two path states docs
not define another path, but a delocalized particle. There is thus an acddi
tional layer of conceptual difficulty in interpreting the superposition stales.
Second, experiments with entanglement become more cumbersome (o de-
scribe in terms of paths (though entanglement in paths is certainly possible
and has been observed as well).
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8.2.2  Two energy levels

Electrons that are bound around a nucleus in an atom can take only discrete
values of energy; this well-known fact is the origin of the spectral lines
observed in the emission and absorption of light, one of the phenomena that
triggered the discovery of quantum physics. One needs the full quantum
theory of position and momentum in order to predict these energies; this
goes beyond the scope of this book and will only be dealt with superficially
in the next chapter. Let us just accept that there are states |F1), |Es), | Es)
and so on associated to each of these discrete energy levels.

As spectral lines indicate, one can couple one energy level to another by

shining light at the suitable frequency and polarization. So, again, one can
consider an experiment in which only two levels are coupled; the others are
of course there, but they never come into play. The two meaningful states
are generically called |g) or “ground” for the state of lower energy, |e) or
“excited” for the state of higher energy: yet another example of an effective
two-level system.

But we are dealing with quantum systems, therefore any state of the
form ¢g|g) + cele) is also a possible state. What does such a state mean?
It is a state of undefined enecrgy, something for which we lack intuition,
possibly even more than for spatially delocalized states. Once again, while
the meaning of such states is hard to convey, their existence is largely
vindicated by observations and carefully designed experiments. We do not
have time to describe these ones here (sce below for some hints); the reader

who studies quantum physics further than this book will certainly meet
them.

8.3 Summary

Two-level systems are systems for which only two states can be perfectly
distinguished. Spin, an intrinsic magnetic property of clectrons, is an
example of such a two-level system. Spin is similar to polarization and
can be entangled, but the detection of entangled electrons is still a chal-
lenge. Other two-level systems can be obtained from more-level systems.
An interferometer consists of two possible paths for propagating particles,
giving rise to delocalized particles that explore both paths. Two energy
levels in an atom can be similarly coupled, resulting in a state of un-
defined energy. These systems exemplify the interesting phenomenon of
entanglement.

s
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8.4 I'he Broader View

8.4.1  Two aystems on a single “particle”

This subseetion is devoted to o remark that s somehow obyious, but eleh
in consequences. Consider the Mach-Zehnder interforomaotor: we linve de
seribed it for photons, so one may ask, what aboul polavization? Cloarly,
we could neglect it, because neither the bheamesplitters nor the mirrors il
fect the polarization. In other words, the polarization remaing Che e
the whole interferometer, as the polavization of the inpul hoan,

But what if one adds, in the interferometer, a device that doca clinpo
the polarization? For instance, suppose that in path @, hefore the deliy,
one adds a plate that rotates the polarization. Then, one hing o nbidy
both degrees of freedom: path and polarization. Iven il there fn only one
photon, it is a composite system!

For the sake of the calculation, call H the initinl polarization, and sip
pose that the rotation is |H) — |a) = cosalH) -+ sinar|V). Thon, (he
calculation starts as follows:

o) ) 253 —(lka) -+ il )| H)

S

2

rotation | ’
(ks a) + lky)|H))

We leave it for those who are interested to complete the calculation, huf
by comparison with chapter 7, the reader should see what happens: onfan
glement with another degree of freedom, hence decoherence! The cage in
pretty obvious if the rotation is such that |H) is transformed into [V): (hen
the polarization identifies the path and no interference will be observed,

Needless to say, the same effect can be observed using particles will
spin instead of photons and rotating the spin on one path using a localizod
magnetic field; this is typically done with neutrons. Yet another variation:
an interferometer for atoms, in which the energy level is modified in one
of the paths. All these experiments have been performed; we give some
references on the next page.

S

8.4.2 Ramsey interferometry: pulsed NMR and atomic clocks

For consistency with the structure of the present book, we have focused
on the preparation and measurement of states and said very little aboul




 wea
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cvolution i time, "The purpose of Chin paeagraph is to sketel o specitic
measurement procedure, generically known as Hamasey inderferometry, thal
is widely used in different contexts. Ramsey interferometry is most simply
described with spins %, which we thus do here.

Consider a spin in a constant magnetic field, initially aligned along the
field (direction 2). Suppose that one is able to induce a fast rotation on the
spin around the Z axis. Then one can apply a fast rotation by ninety de-
grees, at the end of which the spin is found along direction §. Now the spin
feels the magnetic field again, but is no longer aligned with it: as it should,
it starts precessing around the 2 axis, i.e. in the (Z,#) plane, with angular
velocity wp proportional to the intensity of the magnetic field. Some time 7
later, another fast rotation around & is applied: where does the spin end up?

Of course, it depends on 7! If 7 = 0, then the two rotations are simply
combined and the spin ends up along —2. If wgT = 7, the spin has rotated
from ¢ to Z, so a rotation around @ does not change it: the spin remains
along &. If wpT = m, the spin has rotated from § to —, so a rotation
around & brings it back to 2. And so on. The probability of finding the
spin in the state | — 2) as a function of 7 is not difficult to compute in
general: its value is P(7) = cos? “4T,

Note the striking analogy with the Mach-Zehnder interferometer de-
scribed earlier: the fast rotations around & play the role of the beam-
splitters, the time 7 during which the system is left precessing plays the
role of the delay ¢. The main difference is that in this case, the interference
is between spin states, something much more abstract than the optical in-
terference between different paths. This sequence is at the core of nuclear
magnetic resonance (NMR), a powerful spectroscopic technique best known
for its applications in medical imagery.

Exactly the same procedure can be applied to energy states, in which the
fast rotation is induced by a light pulse at a suitable frequency. This is the
principle on which atomic clocks are built: since the frequency of oscillation
wp between two energy levels is known very precisely, the measurement of
P(7) gives access to the time 7 with the same high precision.

8.5 References and Further Reading

Easy reading:

- B.-G. Englert, M.O. Scully, H. Walther, Scientific American 271, 86
(1994).
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Chaplers 14 ol V. Searand, Quantum Physies: A Biest Eucounter
(Oxclord Undvorsity Pross, Oxlord, 20006),

Resoureos:

= Chapters b, 6, 11 and 12 of: R.P. Feynman, R.3. Leighton, M. Sunds,
The Feynman Lectures on Physics, Vol 3: Quantum mechanies (Addi
son Wesley, 2nd edition 2005).

Suggestions for projects:

- S. Diirr, T Nonn, G. Rempe, Nature 395, 33 (1008),
- P. Bertet et al., Nature 411, 166 (2001).

8.6 Solutions to the Exercises

Solution 8.1.

(1) In spherical coordinates, the direction -1 is given by 0 [~ ()
— is given by 0 = §, ¢ = m. Similarly, the divections |y nnd g nio
givenby 0 =5, ¢=Fand 0 =5, ¢ = i} vespectively, Subutituting
these angles into Equation (8.1), we obtain

From the above expressions, we can calculate the scalar products

L 4
Fl—3)==—==0
(48] =8y = 3~ 3 =0,
1
(+91 - 9) = 5 +4*5 =0.
(2) The angles (¢, ¢’) that define 2(0', ¢") = —n(6, ) in spherical coordi
nates are
0 =m-0,
o=p+m.
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Substituting theso anglos to Boguation (8.1), we obltain

) ‘ )
| = f) Hill;| - ) (""’<=(>H;| 2. (8.7)

Solution 8.2. Substituting Equations (8.1) and (8.7) into (8.3), and using
the trigonometric identity cos? g + sin? g— =1, we obtain
1 1

ﬂ(l+ﬁ)l—ﬁ>—|—ﬁ>[+ﬁ))=—E€i‘°(|+5>|—2>—|—2"')|+2>)~

Solution 8.3. Before the transformation, the scalar product of the states
is [(kz|ky)|? = 0. We can verify that the scalar product after the transfor-
mation is %(z—z) = 0, thus the transformation preserves the scalar product
and is unitary.

If 4 is removed from the right-hand side, notice that the transformed
states are the same for both |k,) and |ky). Thus the scalar product after
the transformation would be 1 instead of 0, and the transformation would

not be unitary.

Chapter 9

Link with More Traditional
Presentations of Quantum Physics

Having reached the end of the book, we feel the noed (or nn adeftianal
chapter that would relate our approach (o more widesprond, raditiomnl
approaches to quantum physics. This Tinking will benofit thome whio have
studied following the traditional method and may he disortonted by flio
absence of notions like “wave-functions” or “operators’, Lo will Bogefit e
beginners as well, who should at least have an iden of how el Chere 1y
left to learn, if they wish to go beyond this introduction ad roncl nmerion
level of competence in the field.

Contrary to the previous ones, this chapter is nol sclf-contained: mnny
notations and notions will be given without a proper explanntion. Tk
it rather as a guide to orient yourself in the material of one ol Cho sy
excellent textbooks that follow a more traditional approach,

9.1 The Content of Traditional Approaches
In a nutshell, traditional approaches differ from ours in two main respec(s:

(I) Choice of the degree of freedom. Our approach is centered on a vory
simple example of a physical degree of freedom, namely polarization,
As we have seen in the previous chapter, the same mathematics ap
ply to any “two-level system”, i.e. a degree of freedom such that only
two orthogonal states can be defined. There exist of course systeins
with more than two orthogonal states, but as long as there are finitcely
many of these, the main tools are similar. However, extremely in-
portant degrees of freedom like position and momentum define sys-
tems with infinitely many orthogonal states. In these cases, while the
deep mathematical structure is still retained (in particular, the set of
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states 18 still o vector space), tho manipulation requires some specific
tools. These degrees of freedom, with the corresponding mathematical
tools, are normally taught first in traditional approaches. "I'he notions
of the wave-function and Heisenberg’s uncertainty relations appear
here.

(11) Importance of dynamics. In our text we have focused on the prepara-
tion and the measurement of quantum systems. Ounly a very limited
number of physical phenomena can be described in this framework:
essentially the ones we presented. In order to unravel the full poten-
tial of quantum physics, one has to discuss dynamics, i.e. the evo-
lution in time of physical systems due to their mutual interaction.
It’s in the study of dynamics that objects like Planck’s constant and
Schriodinger’s equalion appear, that one can start speaking of energy
levels, transition probabilities and similar notions.

We devote the next two sections to each of these topies.

9.2 Description of Systems with Position and Momentum

We have seen that any measurement of polarization yields only two possible
results, which we denoted as + and —, hence we were led to define two
orthogonal states |+) and |—). We could try to follow the same procedure
for a measurement of position (for simplicity of notation, we consider here
a one-dimensional problem). A measurement of position can in principle
yield any = € R as a result: we should therefore associate a state |z) to each
of these measurement outcomes. The gist of the idea is indeed here, but

this simple road leads to mathematical problems. The way out, as often in
science, consists in moving to a slightly loftier mathematical level.

9.2.1 Position, wave-functions

In polarization, we have seen that each state |¢) is associated to a vector
with two components. Therefore, let us declare that “being a vector” is
the essential feature: now we just have to find vectors with continuously
many components! This sounds very weird at first, indeed one would not
know how to write an array with continuously many entries. But vectors
are not defined as arrays —— you don’t define a mathematical object by the
way you draw it on a piece of paper. Mathematicians define vectors as
elements of a set on which two operations are defined: addition between

Lo with Move Traditional Presentations of Quantume Physios (1]

voctors o mlepliention with o owmber, "Uhin abstraet defoltion gives
ahmost hmedintely Che anpwor (o our question: the “veetors™ wo nee ook
g for nre just funetions! Indood, A0/ (Ge) and gGe) nre two finetions, the
objocet h(e) () + gle) walvo o netiong 0 acts o number, the objoct
af () s also o funetion, Thos fonetions are veetors i Che mnbhemntietm s
languagoe.

We know now that the state [10) of a quantum system possensiig porition
as a degree of freedom can be written as o function (). 0 o ol Chid
these functions must be complex, e p(a) is o complex nmbor, The nenl
product of these vectors is defined as

00
(Ploh) / O () (a) dae (0,1)
J =00
Note that this is not unlike the usual scalar product ol voctors, i1 yon
think of @ as the index of the component: we are just mlbiplying ve

tors component-wise and taking the sum of these numbern,  Now, wlotig
with the vector structure, we want to keep the probabilistic fntorpretation
[{(¢|¥)]? must still be the probability of finding |¢) given that (ho wtate i
[1). But integrals over arbitrary functions can go to infinity, while probn

bilities must be smaller than 1, so this requirement puts a restriction an (e
functions that one can use to describe quantum states. [0 Curng oul Chit 1l
is necessary and sufficient that these functions satisfy [ ()] di

1; this set of functions still defines a vector space for (he operntiong
above.

At this point, we can explain why the simple road sketched al the ho
ginning was leading to trouble. The state “particle at position xy” should
be described by a function that is zero everywhere but at xg. I'he go-callod
delta~-function §(x — ) would be the only candidate, but it fails (o moof
the requirements since ]_OOOC §(x — 10)? = 0o. So, strictly speaking, thero i
no quantum state associated to an infinitely precise location. This mathe
matical fact is unrelated to the uncertainty relations described on the nexl
page; also, it does not lead to any deep problem in the theory.

A remark on terminology. The functions that represent quantum staley
are called wave-functions for essentially historical reasons: their dynain
ics are governed by an equation that is analog to those that govern (he
evolution of waves (see page 131). Only some particular interpretations
of quantum physics try to find a physical meaning in the “wave”: mosl
physicists are rather convinced that the analogy is only formal. The name
has stuck, though, and is very much in use.




9.2.2  Adding mormentbuwmng wncertainty relations

For the moment, we have described asystem that has the degree of freedom
“position”. We could have done the same construction for “momentum”
and we would have gotten functions 4)(p). Now, in order to describe both
degrees of freedom, one would be tempted to write ¢(x, p). This is one of
the most forbidden mistakes in quantum physics! In this text, we cannot
give sufficient reasons to explain why, so we limit ourselves to state things
as they are.

Basically, position and momentum cannot be treated separately: only
together do they define the degrees of freedom of a physical system. There-
fore, a system with position and momentum is described by a single state
[1). The choice of using the representation () or the representation ¥(p)
is similar to the choice of a basis to represent a vector; but ¥ (z) and ¥ (p)
describe the same state, i.e. contain the same information on the properties
of the system. Just as, for ordinary vectors in space, two bases are related
by a rotation, these two representations are related by a transformation
called the Fourier transform.

This mathematical situation translates into the physical fact that po-
sition and momentum are incompatible quantities. This fact is extremely
well-known and often misquoted. Since the number of incorrect statements
is virtually infinite, it is pointless to discuss them here; let us just state the
correct version: there is no state of a particle such that both position and
momentum are sharply defined. More quantitatively, let Az be the spread
of the wave-function in z and Ap be the spread of the wave-function in p,
then

Az Ap > g., (9.2)

where i = h/2m and h is Planck’s constant.

9.3 Dynamics of Quantum Systems

In our text, we have said very little about dynamics. In section 1.4, we
mentioned that dynamics are assumed to be reversible for isolated systems,
just as the case in classical physics; chapter 7 was dealing with a case of
a non-isolated system, but the time dependence was admittedly put there
by hand without any justification. Traditional approaches, on the contrary,
bring dynamics in the play from the very beginning.
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The crucial object in Che equation i the Hamillon operator H notiotinos

[ip(t)) = Hip(t)) . (0.4)

called the “Hamiltonian”, Belore turning our attention o ity Tet un Tigh
light that the equation is a first-order differential equation in Cime, Fiovery
clementary texts, this is sometimes stressed as being fundamoentully diffor
ent from Newton’s equation, which is second-order in timaoe, Bt thore inno
difference, and in fact the evolution equation of the state must ho al ordeo
in time. If this statement seems strong, just remember Che definttion of e
“state”: the mathematical object that describes all the physienl propertion
of the system at a given time. In particular, the state al Chime £ 0 sl
contain all the meaningful initial conditions. Indeed,; the claspdenl nbate of
a particle at time ¢ is given by S(¢) = [2(¢), p(£)], and it is a sbandnrd oy
ercise to show that Newton's equation translates as a first-ordor oquntion
for S(t).

Now, if H was an ordinary number, the solution of such an cquntion
would be well-known:

[ (t)) = e~ 1/ ](0)) (04

where we used 1/i = —¢. But H is not a number. For finite-dimennionnl
systems, i.e. when [¢) is a vector of d components, I would be o d =
matriz. For the case of position and momentum, it is a generalized version
of a matrix, called an operator.

The Hamilton operator is not typical of quantum physics: quantim
dynamics was built upon the formalism of classical mechanics as buill by
Lagrange and Hamilton (precisely) during the nineteenth century. Ior n
particle with position and momentum subjected to a conservative force, (o
Hamilton operator is just the sum of the kinetic and potential encrgies:

p?
H=—+V(z). 0.h)
5 T V(2) (
The same form is kept in quantum physics; however, the objects p and »
are no longer numbers, but operators (generalized matrices) themselves,
If one chooses to work in the z representation of states (), for in
stance, z itself becomes a number, but p becomes —ih:d% (the derivative
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is obviously an operator, Lo, an operantion that can act on a function), thas
p? = -4

An interesting remark: for many systems, the Hamilton operator has the
same form as the energy, as in the preceding example; therefore sometimes it
is loosely said that the Hamilton operator is the energy. But even when the
two objects coincide formally, their meaning is very different: the energy is a
property of the system, while the Hamilton operator governs the evolution.
Moreover, there are cases where the Hamilton operator and energy do not
coincide.

9.3.2 Schrdodinger equation: solution

There is no reason to explain in detail here how an equation involving
an operator can be solved: this is exactly what traditional approaches to
quantum physics focus on, so we can safely refer to those. As we did
before, let us just state the facts without any proof. We focus on Hamilton
operators that do not depend on time; if H depends on time, as is the case
in some meaningful problems (e.g. an atom driven by a laser), what we
discuss here does not apply directly.

The main ideas are simpler to state keeping in mind the finite-
dimensional case, where H is a matrix. In order to solve the differential
equation, one takes a step that has apparently nothing to do with it: diag-
onalize H, that is, find its eigenvalues and the corresponding eigenvectors.
Because of some properties that H must satisfy, the cigenvalues are real
numbers and the eigenvectors form a basis.

Why does this help? Suppose that |¢y) is an eigenvector of H for the
eigenvalue Fj: formally, this means that H|¢r) = Ex|¢r). Suppose that
the initial state of the system is precisely [¢(0)) = [¢x). Then, we can
replace the operator H with the number I in the Schrodinger equation
and we immediately have the solution as in Equation (9.4):

[ = & A (9.6)

But we said that the eigenvectors form a basis, therefore any initial condi-
tion can be written as

d
[9(0)) = ce(0)|¢x) - (9.7)

Lank with Morve Traditional Prosentations of Quanbum Plyston 1

for wore cormpanent o (0) () Ty the lnereity of Cho Selirddipgper
acpunbion, wo tnmodintoly Timve the ovalition of e mont general sbiate:
o
() >~ e (B)|eb) with ep(£) w ey (0)e = Rt/A, (0.H)
hiw |
T'his procedure generalizes to Che infinite-dimoensional came,

Now, this may sound guspicionsly simple: we are cladming Chint we hinve
the general solution of the Schrodinger equabion, while inall toxthooke it ix
stressed that this equation is very diflicult, il not somebimon fmporsdbile, (o
solve. But there ig no contradiction between the two statomoents we hiayve
assumed that we know the cigenvalues and eigenvectors of £ fos thint wi
have solved

H|py = ). (0.1

This is the hard part, for which indeed there is no gonoral vectpe ti e
infinite-dimensional case. If you manage to solve this linonr alpgelivn prols
lem, the solution of the differential equation comes indeod (or freo necordiig
to the scheme sketched here. This is the reason why “dingonndiziig il
tonians” is the most typical (and feared) exercise in quantun theory,
The following solvable cases are to be found in all (exthool
. 2

e Free particle, i.e. H = £-.

e Square well (the most trivial model of an atom, exhibiting ducreto
energy levels), square step, square barrier (used (o pregent Lho fnimong
tunneling effect). 7

e Harmonic oscillator, i.e. H = 2237:7 + Fmw?a?.

e Hydrogen atom, i.e. an electron subjected to the Coulomb potentinl

of a proton.

Unfortunately, in each of these cases, Equation (9.9) is solved using n il
ferent method. Already, the next simple atom, Helimm, is unsolvable i
an analytical way: there are now two electrons subjected not only (o (ho
Coulomb attraction of the nucleus, but also to their mutual Coulomb 1o
pulsion, and this additional term is sufficient to spoil everything,.

9.4 Summary

A system that has the degrees of freedom “position” and “momentum™ can
be described by (x) and #(p) respectively. However, both contain (he
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same information on the propertios of the wystam and cannot bhe sharply
defined as described in the uncertainty principle, T'he Schrodinger equation
“describes the evolution of quantum states in time, and the solution of the
Schrodinger equation involves diagonalizing the Hamilton operator H.

9.5 The Broader View

9.5.1 The original Einstein-Podolski-Rosen argument

Readers who have some knowledge of the quantum description of position
and momentum, and in particular of the corresponding operators, can ap-
preciate an explanation of the original EPR paper [A. Einstein, B. Podolski,
N. Rosen, Phys. Rev. 47, 777 (1935)].

As is well-known, the position ¢ and the momentum p of a particle
are incompatible physical quantities. EPR noticed that, by taking two
particles, -an interesting arrangement can be found. Let ga = ¢ ® I and
pa = p & I be the position and momentum of the first particle, where 7 is
the identity operator, and similarly, let g5 = I ® ¢ and pgp = I ® p be the
position and momentum of the second particle. Using [qx, pi] = iR 1, it is
casy to check that the quantities (¢4 — ¢g) and (pa + pp) are compatible.
In particular, one can construct a state that is an eigenstate of both: for
instance,

(ga —gB)¥ = zoy and (pa -+ pp)p =0. (9.10)

Let us stress what these conditions mean. There are two particles, each of
which can be found everywhere in space, but if the first particle is found
at position x4, the second particle will necessarily be found at position
Tp = x4 — wg. Similarly, the momentum of each particle can take any
value, but if the momentum of the first is found to be p, the momentum of
the second will necessarily be —p. Note that the uncertainty relations are
not violated by this reasoning: if the measurements are repeated, both x4
and p will be different and actually, since they could take any value, one
would have Agy, = Apy = oo.

Now it is pretty obvious to derive the EPR reasoning. Suppose the po-
sition of the first particle is measured: then we also learn the position of
the second one (or more precisely, the position where the second one would
have been found). But on the second particle, we can measure its momen-
tum, and by doing so we learn also the momentum of the first particle.
This way, we know the position and momentum of both particles!

Lk with More Tradittonal Proasotattons af Quaidune Phyaton (U]

Takn fne 0 compolling remmontng! Whnt s wrang® Tlhie wuswer innabillo

One et wiy Gt nothing o wreong, e the followiang sonse; Chore rorilin
can indeod bo producod with toenl vartablos! Tndood, Choy could come from
the lsts Aa = {a, =pk, Ap = {@ 4w, pl Thin should not bother us oo
much: wo know from our sludy of Bell's tnoquality (clhimptor 4.6) that Che
results of some meaguremaents on entanglod states can bhe roproduced with
pre-cstablished agrecment.  And once we look ot Chings from Chin nngle,
we also know what is wrong in the general conelusion drawn by B
there are other measurements on the same state, or othor staton for fhe
same measturements, such that the loeal variable explanation will nof liold
Now, if one proves once that local variables do not exisl, then Chey do ol
exist, even if some specific measurements on some specilie wbaton iy b
reproduced with such models.

It’s unfortunate that EPR missed the point, [Sven more unfortunmtely,
Bohr’s reply in defense of the standard interpretation of quantim phiyeios
was a showcase of dogmatism that did not address the renl e Hode
people speculate that, if Bohr had started a more construetive dineumslon,
Bell’s inequality could have been discovered by him or some ol i contor
poraries, maybe by Einstein himself. What we know for sure i (hind Chidvgn
did not happen that way, and when Bell discovered Che tnoqunlity, hoth
Einstein and Bohr were no longer present to continue the debnto,

9.6 References and Further Reading

Suggested textbooks that follow a more traditional approach:
- L.E. Ballentine, Quantum Mechanics: A Modern Development (World

Scientific, 1998).
- J.J. Sakurai, Modern Quantum Mechanics (Addison Wesley, 10041),




Concluding Remarks

Congratulations for having reached the final pages of this boolk, Wo hiopo
that this book has succeeded in giving you an introduction to bhaste concoptn
in quantum physics. Here, we summarize some ol the key polnts thiat we
hope the reader will remember.

e IMirst, quantum systems can exhibit fraly random behavior, Nol overy
thing in the world can be predicted or explained as closgionl phyuicn
may lead you to believe. Playing with ISinstein’s famous words, 16
seems that God does play dice.

e Second, entanglement can occur in composite quantum systoms il
though the individual states are not well-defined, the plobal staton
are. Entangled systems can exhibit surprising corvelations that dely
all classical explanation.

e Because of the above, we know by now thal nature ilself is weird nnd
behaves non-intuitively at the level of quantum states. "I'his iw (he
reason why quantum physics may be conceptually difficult (o conpro
hend, and also the reason why it should be known beyond the acadomic
circle: its weirdness is not just something that will he explained nwny
by the next smart theorist, it is a fundamental feature of o univerie,

e [from this book, you may also have noted that these strange conceply of
quantum physics, by the very virtue of their “strangeness”, have lound
potential applications in interesting fields such as quantum cryplogrn
phy and random number generation. Some versions of scicnee-fiction
phenomena such as cloning and teleportation have found their renlily
in quantum systems. Quantum physics hag not. only afforded us hel
ter insights into how nature really hehaves, it has also opened up now
possibilities in what technology can nchiove,
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There is much more to quantum physies Chan what we hiave presentodd
in this book, many more surprises, interesting applications and discoverios,
We hope that your journey into the quantum world does not end here, that
this book is just your first step into this field.
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