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Jumpstarting Quantum Computing in the Middle and 
High-School Classroom: A Guide for Teachers and Learners

Experiential Learning

Catching a frisbee is not easy but dogs and Computer Science (CSCI) sophomores seem to be good at it. How they 

actually do it is still very much subject for debate [6, 7]. That they might be calculating trajectories in real time, using 

Newton’s equations, remains a very unlikely hypothesis. And yet it is undeniable that catching a frisbee demonstrates 

a working knowledge of physics. How is this knowledge acquired? Recently the concept of “embodied heuristics” [6] 

has been proposed as a possible operational explanation. Such a heuristic is a distillation of evolved sensory and motor 

abilities and is the result of practice and evolution. If you want to be good at catching a frisbee you need to practice. 

And if you keep at it, you get good at it. Catching a frisbee is classical physics. Classical physics is all around us. 

Interaction with it is inevitable, ubiquitous, vital and fun. Quantum physics, however, is a different story. We cannot 

directly interact with quantum systems as with classical, so we must build intuition with them in different ways. 

Building an Intuition

As Dirac taught us, there is a minimum disturbance that accompanies a measurement, a disturbance that is inherent in 

the nature of things and can never be improved by experimental technique. “If the disturbance is negligible, then the 

object is large in an absolute sense, and it can be described by classical physics. [I]f the minimum disturbance 

accompanying a measurement is nonnegligible, then the object is absolutely small, and its properties fall in the realm 

of quantum mechanics. The quantum properties of absolutely small particles are not strange; they are just unfamiliar 

and not subject to our classical intuition.” [4] Thus, it may be accurate to say that a quantum object is produced as a 

particle, propagates as a wave and is detected as a particle with the probability distribution of a wave but what 

difference does that make to a computer scientist? Why do we need quantum mechanics? 

Quantum Computing

At the foundation of our field we have two rewriting systems equivalent in computational power: Turing machines 

and lambda calculus. Turing machines are important for many reasons, but especially because of two long-held beliefs 

regarding computation: first, the Church-Turing thesis says that everything that is computable can be computed with 

a Turing machine, although it could sometimes take a very long time. This correctly suggests there are problems that 

cannot be computed—they are called undecidable problems, the most famous being the halting problem. Aside from 

such uncomputable problems, everything else can be computed using a Turing machine. 

The extended Church-Turing thesis is the other foundational principle of computer science that says that the 

performance of all computers is only polynomially faster than a probabilistic Turing machine. In 1993, Bernstein and 

Vazirani showed that quantum computers could violate the extended Church-Turing thesis. Their quantum algorithm 
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offered an exponential speedup over any classical algorithm for a certain computational task called recursive Fourier 

sampling. Quantum computation is the only model of computation to date to violate the extended Church-Turing 

thesis, and therefore only quantum computers are capable of exponential speedups over classical computers. This is 

because quantum computers harness quantum mechanics to compute by different rules than classical computers do. 

Although quantum computers don’t actually compute faster than classical ones, the rules unique to quantum 

computing allow algorithms new, shorter routes to solutions. 

It's important to understand that quantum computers would not violate the regular Church-Turing thesis. What is 

impossible to compute will remain impossible. The hope is that quantum computers will efficiently solve problems 

that are inefficient on classical computers. One such problem is the factoring of very large numbers. Another one is 

simulating nature with computers. Nature appears to follow the laws of quantum mechanics. Sometimes classical 

computers can struggle to crunch the numbers to figure out what nature is doing, but quantum computers play by 

different rules. They don’t need to crunch these numbers per se; they can simply mimic nature rather than approximate 

it numerically like the classical computers do—and that’s because, like nature, quantum computers are quantum. The 

potential here is enormous not just for understanding physics but for designing new materials, and medicines, for 

instance. 

Student Agency

Having decided that the topic is important we now ask ourselves what learner-sighted teaching technique is best suited 

here. Education should foster independent exploration and construction of knowledge, rather than passive acceptance 

of instruction, encouraging agency in students. Though we agree that a motivated student will always be in pursuit of 

knowledge, in school we often find knowledge to be in heavy pursuit of the student. Furthermore, we believe all 

students are intrinsically motivated to learn but become unmotivated if they repeatedly fail. Every student has the 

basic needs to belong, to be competent and to influence what happens to them; motivation to learn only exists when 

these three conditions are satisfied1. With this in mind we have developed an operational approach to jumpstarting 

quantum computing education in learners as early as middle or high school. Here we restrict ourselves to present the 

phase kickback phenomenon and the Bernstein-Vazirani algorithm using just the basic rules of arithmetic. Our 

approach is based on a string-rewriting system invented by Terry Rudolph and introduced in his 2017 book "Q is for 

Quantum" [10, 11, 12]. We start from classical bits and little by little we introduce phase, superposition, and 

interference. We show the simple rules that can help a middle school student trace qubits through a quantum circuit. 

We show how to verify what we do, using the misty states formalism, with circuits implemented in Qiskit. The reader 

is invited to read along with a pen and some paper. A laptop would come in handy as well.

1 For all the talk that dogs and CSCI sophomores have a short-attention span, the truth is that individuals in both 
groups typically exhibit laser focus when the motivation (and determination on what to focus) comes from inside. 
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Misty States

The 12-year-olds of today may well have access to large quantum computers before they leave their teenage years. 

Yet a standard educational trajectory would see them still several years away from learning enough quantum theory 

to explore this technology’s amazing potential meaningfully. In addition to barriers of convention (“This is the order 

in which things have always been taught”) there are math-related barriers (“You can’t understand quantum theory 

until you have mastered linear algebra in a complex vector space”). But, as has been shown, and in true CSCI spirit, 

it is possible to replace linear algebra with some string-rewriting rules [10] which are no more complicated than the 

basic rules of arithmetic. These rules are very simple indeed but we have to warn the reader of underestimating them. 

In class we emphasize that mastery of any system, no matter how simple, requires both attention and especially 

practice. When these two conditions are satisfied we’re convinced that the learner will be very succesful. 

Also important is to note that our focus is quantum computing (QC) and not quantum mechanics (QM) or quantum 

physics in general. Learning QC is much easier [3] than learning QM because QC deals with a simple subset of QM, 

as follows: (a) a qubit—the foundation of quantum computing—is the simplest non-trivial quantum system; (b) you 

never have to solve the Schrödinger equation, or even learn what it is, because the quantum systems that carry out 

quantum computations evolve in a controlled manner based on the quantum gates applied to them; and (c) there’s 

already a model of quantum computation, so the most difficult aspect of quantum mechanics—the art of applying it 

to real systems—is absent. We approach presentation from the mindset of maker-centered learning: “What I cannot 

create I cannot understand” is a good description of that persuasion and a quote from Richard Feynman. From here 

on, in our discussion of any QC concept, we advocate an environment of concrete representations via Python, Qiskit 

and the misty states formalism (the method developed and introduced by Terry Rudolph).  

Maker-Centered Learning

According to Piaget “children in the early years of primary school need concrete2 objects, pictures, actions, and 

symbols to develop mathematical meanings.” The same is true of students who lack a certain background or affinity 

for the pure structures of mathematics. This is where the simplicity of the misty state formalism shines through. Piaget 

also said “[l]ogic and mathematics are nothing but specialized linguistic structures.” The misty state formalism can 

facilitate access to both. Another quote, from Seymour Papert, is relevant here: “My basic idea is that programming 

is the most powerful medium of developing the sophisticated and rigorous thinking needed for mathematics.” So our 

approach is trying to scaffold the knowledge needed to understand quantum computing and quantum information 

science starting from computing in Python in a notebook (Google Colab). We build an understanding of the misty 

state formalism and then use it to define, recognize and synthesize (operationally, in Qiskit and Python) the following 

concepts: superposition, phase, interference, entanglement, quantum gates and quantum circuits, the Deutsch-Josza 

algorithm, the Grover search algorithm, the Bernstein-Vazirani algorithm (and the phase kickback phenomenon that 

2 Our brains need to interact with something in order to create a model of it. As Papert puts it: “You can’t think about 
thinking without thinking about thinking about something.”
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makes it possible) along with superdense coding and the GHZ game (quantum pseudo-telepathy via quantum 

entanglement). We then need to extend the system and present quantum teleportation and the phenomenon known as 

entanglement swapping (i.e., teleportation of entanglement). In this paper we only present the Bernstein-Vazirani 

algorithm via phase kickback and misty states. The rest has been presented and is available elsewhere and is now 

essentially part of the CS2023 report as a separate knowledge unit (KU).  

Quantum Flytrap

We emphasize that our main goal is not quantum mechanics. But we need to stress that “[s]tudents and professionals 

interested in quantum information sciences need to adopt a different way of thinking than the one used to construct 

today’s (classical) algorithms. This certainly presents tremendous challenges, since, for many years, computer science 

students have been led to believe that they can get by with some knowledge of discrete mathematics and little 

understanding of physics at all. [However, of necessity, in quantum computing w]e are going back to the age when a 

strong[er] relationship between physics and computer science existed.” [8] Having said all of this we also need to 

point out that we don’t consider detailed knowledge of QM a necessity for a CSCI student unless they decide to choose 

a career in building quantum computing hardware. Here (as is also recommended in the CS2023 KU) we only promote 

an appreciation of (and familiarity with) the main quantum concepts: qubit, state, phase, interference, entanglement, 

teleportation, measurement, sensing, coherence,  quantum communication and the main differences between QIS and 

QM. An environment facilitating direct interaction with these concepts is the Quantum Flytrap [2] which self-describes 

as a no-code IDE for quantum computing. We strongly encourage its use in the classroom and labs. We made it clear 

that we consider experiential learning a sine qua non feature of learning for the kind of learners and topics we have in 

mind. In such a process building an intuition via embodied heuristics is fundamental but direct interaction with the 

world of the very small is (a) expensive and (b) has to be mitigated since we’re so big. John Preskill once remarked: 

“Perhaps kids who grow up playing quantum games will acquire a visceral understanding of quantum phenomena that 

our generation lacks.” With this in mind we advocate the use of Quantum Flytrap as a tool to complement the system 

developed and introduced by Terry Rudolph (the misty states formalism) which we proceed to introduce next.  

Bernstein-Vazirani

The problem states that we have a circuit in which we have placed a number of (quantum) gates. The circuit will be 

presented to us as a black box. It will have a number of inputs and an equal number of outputs. We will be asked to 

determine the internal connectivity of the black box by just interacting with it from the outside. Using only classical 

physics (gates and principles) we can only conclude that the task of determining what the black box looks on the inside 

is linear in the number of inputs. But if we are allowed to use quantum physics (both hardware and principles) the 

same task can be solved in just one step, regardless of how many inputs the circuit has. Here’s an example:
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Figure 1. A Bernstein-Vazirani challenge. The black box contains C-NOT gates; they are introduced below.

We now proceed to define the gates and the formalism we need. Familiarity with the first part of [10] is desirable but 

won’t be assumed. As a result we first introduce some of the material already in the book (NOT and C-NOT gates 

along with the Hadamard (PETE) gate). We then proceed to prove the phase kickback phenomenon via misty states 

and use it to solve the Bernstein-Vazirani challenge. 

The NOT Gate

An excellent resource here is the 20-minute video [12] available on the book’s [11] website. 

Figure 2. The NOT gate flips its input: NOT(W) = B and NOT(B) = W.

The classical bits are 0 and 1. We can represent them as W and B and draw them as a white or black ball. Indeed they 

are classical values. A quantum bit (qubit) is a more complex entity but when we measure a qubit we only get one of 

these two values, W or B. The effect of this gate is consistent with our knowledge of the classical NOT gate. 

The C-NOT Gate

The controlled-NOT (C-NOT) gate has two inputs: a target and a control. It works by flipping the target, i.e., acting 

as a NOT gate on the target when the control is a black ball. Here’s a diagram, redrawn from the book:
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Figure 3. Behavior of the two qubit gate C-NOT.
 
A Simple Circuit

Next, we consider that by stacking boxes on top of each other, we can use the output of one box as the input to another. 

For example, we can stack two NOT boxes, as shown on page 8 in [10] with the result that the output now matches 

the input: NOT(NOT(W)) = W and NOT(NOT(B)) = B. We assume familiarity with Python and Google Colab. So, 

naturally, our next step is to implement this arrangement in Qiskit (the X gate is the quantum NOT):

Figure 4. Stacking two NOT boxes in Python (Qiskit) recovers the input, as expected..

Access to the quantum emulator is immediate. We now introduce the Hadamard gate.

A Necessary Detour

The Hadamard gate is a fundamental single-qubit quantum gate used to create superposition states. In the book [10] it 

is known as the PETE box. As Terry indicates in the FAQ on the book’s website [11] it is the only “actually quantum” 
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box used in the book; all other boxes in the book just shuffle colors around and would be at home in a classical 

computer. This group of gates is universal; every calculation can be done (to good-enough accuracy, and perhaps with 

a small overhead) using only PETE boxes and the classical boxes. The reason is a remarkable mathematical result due 

to Shih, leveraging another powerful result due to Kitaev.“ There’s a citation at the end of the book,” Terry says. “A 

few years ago I was in the middle of pondering this result when I realized I was running late to give a talk at a math 

camp for 12-14 year olds [...] run in part by my friend PETE Shadbolt. I raced for the tube, and while on it thought 

about what could I explain to these kids that wasn’t the usual jargon-filled quantum fluff. And so here we are.” 

Our goal in this paper is to introduce the misty state formalism from [10] in its pure form (no coefficients whatsoever) 

and use it to prove the phase kickback phenomenon. With the pure misty states formalism exactly as defined in the 

book one can show entanglement, Deutsch-Josza, Grover search, superdense coding, the GHZ game and entanglement 

swapping. It is true that one needs to extend this formalism to properly deal with phenomena such as W-entangled 

states (involving controlled-Hadamard gates and arbitrary rotations) and teleportation (since the input to the quantum 

teleportation algorithm is an arbitrary3 quantum state) but at that point the extension feels natural. The misty formalism 

is universal, in as much as you can use it to do any quantum calculation with only a small overhead. “I should reiterate 

I am not advocating that we should recast all of quantum theory into this formalism. The misty state picture is a good 

way of getting people to the heart of some nontrivial quantum theory without them having to absorb a boatload of 

irrelevant math. But that math is not largely irrelevant if you actually want to work in the field, it makes many things 

much easier.” Math is our ultimate goal here as well. For example, we’d like our readers to be able and ready to read 

[1, 9, 13] as soon as they master the contents of our class.

We already have the NOT and C-NOT gates. We now define the Hadamard gate (also known as PETE box).  

The PETE Box

Figure 5. Behavior of the Hadamard gate (also known as the PETE box in [10]).

We capture the behavior shown in Fig. 5 by introducing the superposition operator. As a drawing it is represented as 

a cloud (hence, the name “misty state” used for a superposition state). This, again, would be a great opportunity to 

3 We emphasize then that we cannot clone but we can teleport an unknown, arbitrary quantum state.
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watch (or rewatch) Terry’s video [12] off  the book’s website at [11]. In text we can use the following two 

representations corresponding to each one of the situations shown above: H(W) = [W, B] and H(B) = [W, -B]. The 

notation says, in essence, that there are two outcomes and each one is equally likely to be measured. Here's how we 

represent these two transformations graphically: 

 
Figure 6. Misty states are superposition states (as shown in [10]). A negative sign (phase) shows on the right.

The Z Gate

The Z gate is introduced here as an exercise. Its definition is Z(W) = W and Z(B) = -B. Show that, just like for NOT, 

stacking two Z boxes leaves the input unchanged. We will soon learn that this is a general property of quantum gates 

and our next goal will be to prove it for PETE boxes (or Hadamard gates). That H(H(W)) = W and H(H(B)) = B is 

both non-trivial and very instructive. We can also demonstrate that experimentally in the Quantum Flytrap. 

Exercise. Show that Z(H(W)) = H(X(W)) and Z(H(B)) = H(X(B)). 

Linearity of Quantum Operators 

A misty state, so far, is just a sum of two states with probability amplitudes equal to each other. The phase we 

encountered thus far is just a multiplication with the scalar -1. In quantum mechanics linearity of operators means that 

they satisfy two key properties: (a) they preserve the sum of states and (b) they preserve scalar multiplication. This 

property is fundamental to the superposition principle and how quantum states evolve over time. Therefore we shall 

enforce it here. As a result we have the following diagram showing how a NOT gate acts on a superposition of states:

Figure 7. The effect of NOT gate on superposition of states. This diagram reproduced by permission from [10].
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We can describe what happens in Figure 7 as follows: 

NOT( [W, B] ) = [ NOT(W), NOT(B) ] = [ B, W ] = [ W, B ]

We take the opportunity to point out that like in a sum the order of factors (that is, of states in a superposition operator) 

does not matter so the NOT gate in effect leaves the first misty state unchanged. 

In the case of the second diagram we have: 

NOT( [W, -B] ) = [ NOT(W), NOT(-B) ] = [ B, -NOT(B) ] = [ B, -W ] = -[ -B, W ] = - [ W, -B ]

We have in fact proved that these are the two eigenvectors (CSCI: fixed points) of the NOT gate. In the process we 

illustrated linearity of phase and superposition operators with respect to the NOT gate. By a similar process we show 

how stacking two PETE boxes (or as everybody else knows them, Hadamard gates) leaves the input unchanged. 

Figure 8. The effect of the PETE box (Hadamard gate) on two superpositions of states. Also from [10].

This part further uses the fact that a superposition operator is a sum and under certain conditions (i.e., when the 

superpositions are at the same depth and have the same number of distinct states) we can combine two mists by fading 

their boundaries so they can combine (join together) into a larger mist. Here’s how this happens (in Fig. 8) in the 

notation we used to restate what was going on in Figure 7:

H( H(W) ) = H( [W, B] ) = [ H(W), H(B) ] = [ [W, B], [W, -B] ] = [ W, B, W, -B ] = [ W, W ] = W

Now please look at Figure 8 as it shows (diagrammatically) what we wrote above, and below: 

H( H(B) ) = H( [W, -B] ) = [ H(W), -H(B) ] = [ [W, B], [-W, B] ] = [ W, B, -W, B ] = [ B, B ] = B

These relationships can be easily represented, reproduced and confirmed as experimental setups in Quantum Flytrap. 

Page 9 of 33



For Peer Review

Systems of Two Qubits

There are four possible combinations of two qubits: WW, WB, BW and BB. We can represent this with white and 

black balls (or blobs) and we say that while they resemble multiplication they lack one important property of 

multiplication as they are not commutative. Thus WB and BW are different so order matters but other than that we 

can carry over some of the other properties encountered in multiplication: B [W, B] for example is the same as [BW, 

BB]. This, in effect, is how we define entanglement. Two (or more) particles are entangled when they are all described 

by the same wave function. For us this means that the expression that represents the state of the two (or more) qubits 

can’t be separated as a product of factors each representing an individual qubit. Thus, because [BW, BB] = B [W, B] 

this equation does not describe a system of two entangled qubits. However a state like [BW, WB] cannot be split into 

a product of two states and thus represents an entangled state of two qubits (it’s one of the Bell states). There is no 

entanglement in the Bernstein-Vazirani challenge that we discuss but we will be working with systems of two qubits 

so we wanted to clarify this up front. 

The phase kickback is the following situation (that is, this is what we need to prove): 

Figure 9. The phase of the target qubit is being “kicked back” to the first qubit. Target influences control. 

How do we prove that that’s what happening here? Let’s start by writing the input as a system of two qubits. It is 

convenient here to keep the second qubit as a superposition and work with it as such. We have by distributivity: 

Figure 10. The input [ W, B ] [ W, -B ] = [ W [ W, -B ] , B [ W, -B ] ] in diagrammatic form.
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Now that we have the input expressed as such let’s pass it through the C-NOT gate and transform it using the rules of 

engagement already mentioned for this gate. We have: 

Figure 11. Effect of the C-NOT gate on our two qubit input. 

As shown above, each pair of qubits passes through the C-NOT gate. The first one is placing a W on the control which 

means the gate will leave the second qubit unchanged. The second pair has a B on the control which flips the second 

qubit. The rule for flipping a superposition of states (via NOT) has been shown before and it’s like in Figure 12, below. 

Figure 12. The effect of the NOT gate on a superposition of states. See also right side of Fig. 7.

The purpose of Fig. 12 is to support the transformation shown in Fig. 11. Thus, some readers might consider the 

picture to be be redundant while some might prefer to use shorthand to describe it, e.g. NOT( [ W, -B ] ) = [ -W, B ]. 

We’ve gone over this earlier when we said that the input here is one of the two eigenvectors of the NOT gate. Since 

the superposition operator is actually a sum (as we said before) the order of states in a mist is not important but an 

order is usually preferred and the phase distributes over the constituent states, as shown in the picture below:
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Figure 13. A negative phase applied to a mist distributes over its constituent states. 

Now we can rewrite the second state in the output of Figure 11 as follows: 

Figure 14. Moving the sign (phase) from the second qubit to the first has this effect.

Figure 15. The output from C-NOT (factoring via reverse FOIL) as a product of states, each one a superposition. 

So now we have proved the following:

Figure 16. Phase kickback, conventional notation. 

We’re now ready to solve the Bernstein-Vazirani challenge. 

Figure 17. Bernstein-Vazirani challenge: the solution. If the C-NOT gates inside the black box had been oriented the 

other way the solution would have been immediate. But since they’re as shown above one would need to test every 
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input in part, thus establishing a linear lower bound for the complexity of finding the pattern. We trade space and 

hardware for speed. With the previous result and a corresponding number of Hadamard (PETE) boxes we can 

determine the structure of the black box in one step. 

Below we show how this challenge can be implemented in Qiskit:

Figure 18. Creating and measuring the quantum circuit for the Bernstein-Vazirani challenge

From the previous figure we observe that the order of inputs is reversed in Qiskit so the circuit is reflected: as an 

example, the third C-NOT in the black box in our drawing connects the bottom line (its target) to the third line from 

the top (the control). In the Qiskit circuit it connects the bottom line (target) with the third line from the bottom (Qiskit 

numbers the qubit lines in reverse order). Also, the left-to-right order of gates in the black box is not important; but 

the vertical order of the lines in the input and output is—and the output is determined, as predicted, in one shot. 

Conclusions and Acknowledgments

CS2023 makes some excellent recommendations on (for the first time ever) how to include a knowledge unit on 

quantum information science, computing and quantum algorithms. Their proposal is organized in three stages and 

comprises a short (eight-weeks) class, a one semester class and a longer, two semester sequence that (at least in 

principle) makes heavy use of a lab (or fab, depending on resources) in quantum hardware, gates and circuits. 

Following those recommendations we have described here our approach of implementing the eight-week syllabus 

with extended material from Terry Rudolph’s groundbreaking “Q is for Quantum”. This material has been tested in 

the classroom, in various conferences in workshops and tutorials, and at many levels – including creating a faculty 

learning community (FLC) for HS and middle school CSCI teachers in the state last summer with significant support 

from the Computer Science Teachers’ Association (CSTA) in our state.  
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Afterword

We started with frisbees and classical mechanics and extolled the virtues of experiential learning. We then discussed 

what absolutely small means (according to Dirac) and how direct interaction with the quantum world does not come 

easy. Turing machines and lambda calculus were invented by Alonzo Church and his student Alan Turing; they’re the 

cornerstones of our field and were introduced in the first part of the 1930s so they’re younger than quantum mechanics. 

Quantum computing is the only model of computation that breaks the strong (extended) Church-Turing thesis. The 

misty state formalism favors learner-sighted teaching techniques and the Quantum Flytrap along with Python coding 

with Qiskit in Google Colab notebooks supports maker-centered learning. In this paper we solve a Bernstein-Vazirani 

challenge using the pure misty state formalism introduced in [10]. We only need the NOT gate, the two-qubit C-NOT 

gate, the mysterious PETE box (also known as the Hadamard gate) and the concept of superposition. Systems of two 

or more qubits can exhibit entanglement but this phenomenon is not present in the Bernstein-Vazirani challenge. The 

Z gate is introduced as a means to practice with the new system. Linearity of quantum operators translates into very 

simple operations with B and W (black and white balls). The system devised by Terry Rudolph is incredibly effective 

and works even with states that break the representation chosen in the book. We would have loved to show you 

irreducible misty states (e.g., the two Hadamard eigenvectors have this property) and how useful they are in facilitating 

abstraction and representation of non-classicality. More exercises would have asked you to design a one-qubit circuit 

that generates the eigenvectors of the Hadamad gate and then a two-qubit circuit that would do the same. Unfortunately 

space restrictions did not allow us to share those with you here. A longer version of this paper is available online [5]. 
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Figure 1. A Bernstein-Vazirani challenge. The black box contains C-NOT gates; they are introduced below. 
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Figure 2. The NOT gate flips its input: NOT(W) = B and NOT(B) = W. 
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Figure 3. Behavior of the two qubit gate C-NOT. 
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Figure 4. Stacking two NOT boxes in Python (Qiskit) recovers the input, as expected. 
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Figure 5. Behavior of the Hadamard gate (also known as the PETE box in [10]). 
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Figure 6. Misty states are superposition states (as shown in [10]). A negative sign (phase) shows on the 
right. 
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Figure 7. The effect of NOT gate on superposition of states. This diagram reproduced by permission from 
[10]. 
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Figure 8. The effect of the PETE box (Hadamard gate) on two superpositions of states. Also from [10]. 
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Figure 9. The phase of the target qubit is being “kicked back” to the first qubit. Target influences control. 
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Figure 10. The input [ W, B ] [ W, -B ] = [ W [ W, -B ] , B [ W, -B ] ] in diagrammatic form. 
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Figure 11. Effect of the C-NOT gate on our two qubit input. 
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Figure 12. The effect of the NOT gate on a superposition of states. See also right side of Fig. 7. 
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Figure 13. A negative phase applied to a mist distributes over its constituent states. 
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Figure 14. Moving the sign (phase) from the second qubit to the first has this effect. 
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Figure 15. The output from C-NOT (factoring via reverse FOIL) as a product of states, each one a 
superposition. 
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Figure 16. Phase kickback, conventional notation. 
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Figure 17. Bernstein-Vazirani challenge: the solution. If the C-NOT gates inside the black box had been 
oriented the other way the solution would have been immediate. But since they’re as shown above one 

would need to test every input in part, thus establishing a linear lower bound for the complexity of finding 
the pattern. We trade space and hardware for speed. With the previous result and a corresponding number 

of Hadamard (PETE) boxes we can determine the structure of the black box in one step. 
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Figure 18. Creating and measuring the quantum circuit for the Bernstein-Vazirani challenge 

335x192mm (72 x 72 DPI) 

Page 33 of 33


