
Newton thought that light consists of point particles, called corpuscles. Huygens, a contemporary of Newton 

thought that light is a wave. Not before Young did his diffraction experiments with single and double slits was 

this dispute temporarily settled in favor of the wave theory of light. In fact it took more than a century to realize 

that light is not a continuous wave, but in fact sometimes behaves in ways better described with the help of 

point particles. However, light particles, or photons, are unlike anything Newton ever dreamt of: they are 

massless, have spin, and, in a vacuum, move at the highest possible speed allowed by physics. In addition, 

photons may be polarized, a property that cannot be explained on the basis of classical point particles. Now 

that we are back to thinking of light in terms of particles, we again encounter the difficulties faced by the old 

corpuscular theories of light, e.g., the difficulty of explaining diffraction and interference. Quantum mechanics 

resolves this by assigning both wave-like and particle-like aspects to photons (i.e., the wave-particle duality).  

Because of their mutually exclusive properties all phenomena we encounter in our macroscopic, classical 

world can be grouped naturally into two categories: particles and waves. This natural division of the classical 

world does not hold in the microscopic quantum world: The objects of the micro-world exhibit both wave and 

particle aspects. Even the simplest quantum experiments, such as the single-particle double-slit experiment, 

cannot be understood without invoking this duality. What is this duality? Does it mean that photons, electrons, 

and other fundamental objects of our world are “really” particles if we look closely enough, and that the wave 

description is only a convenient approximation whenever many particles are involved simultaneously? In the 

case of light this idea seems natural, since macroscopic light consisting of many photons, behaves like a 

wave to an excellent approximation, whereas individual photons make tiny spots on photographic film and 

clicks in detectors, behavior more consistent with the particle picture. However, when interpreting the photon 

as point particle, we run into irreconcilable logical difficulties when interpreting single- and double-slit 

experiments with photons. We are therefore forced to assign both wave and particle aspects to photons. 

(Even electrons, the best examples of point-particles in nature, sometimes behave as waves to such an 

extent that even scientific instruments, such as the electron microscope, would not work, were it not for wave-

particle duality). According to this principle: A quantum object (a) is produced as a particle, (b) propagates 

like a wave, and (c) is detected as a particle with a probability distribution that corresponds to a wave.  

There are two layers to quantum mechanics: The conceptual and the machinery. We review many baffling 

quantum effects and learn how to interpret them with the help of the three fundamental rules of quantum 

mechanics: Feynman’s Rule, Born’s Rule and the Composition Rule. While these three rules are sufficient to 

explain many quantum effects qualitatively, we need the machinery of quantum mechanics to make 

quantitative predictions. The most powerful tool in the quantum shed is Schroedinger’s equation. Given a 

quantum system, Schroedinger’s theory allows us to formulate an equation for the amplitude of a system. 

Solving Schroedinger’s equation, we obtain this amplitude explicitly, and with it possess the maximal 

information about the system allowed by quantum mechanics. Since all the information about the system is 

encoded in its wave function, the natural question to ask is how to extract this information and how to predict 

the values of physical observables such as position and momentum on the basis of the wave function. This 

question can be answered when we connect the formal, mathematical machinery of quantum mechanics to 

the real world. This is accomplished by assigning Hermitian operators to physical observables. The operators 

may then be used to “operate” on the wave function to extract physical system information. We then study 

several examples of how to do this in practice. We also introduce and study the important concept of the 

spectrum of a quantum system. We learn that the spectrum is computed by solving certain eigenvalue 

equations that directly derive from Schroedinger’s equation. The model systems studied next are carefully 



selected to exemplify the most important type of spectra encountered in real-life quantum systems. Next we 

take a closer look at Dirac’s notation already introduced in the previous chapter. Not only do we develop it 

into a handy tool to perform actual quantum calculations, we also encounter many parallels to ordinary linear 

algebra, which makes Dirac’s notation more palatable, since it suggests that Dirac’s notation is nothing but 

a convenient adaptation of linear algebra to the specific needs of quantum mechanics. We then proceed to 

make extensive use of Dirac’s notation when we discuss Heisenberg’s formulation of quantum mechanics. 

We also formulate some new operator-based techniques for the solution of Schröedinger’s equation. The 

most useful one is the time evolution operator 𝑈̂(𝑡), which also plays a central role in the transition from 

Schroedinger’s formulation to Heisenberg’s formulation of quantum mechanics. Next, in order to prepare the 

ground for quantum computing, we study quantum two-level systems. The central point here is to show that 

we have complete control over two level systems. This means that if we have a physical means to induce 

transitions from the ground state to the excited state of a two-level system, for instance a magnetic field or a 

laser, then we are able to produce any two-level quantum state whatsoever, at will. This is a fundamentally 

enabling technology for the construction of quantum computers.  

In classical physics the theory of measurement plays a minor role and is not usually emphasized in textbooks 

on classical mechanics. The reason is that in classical physics it is assumed that measurement is a process 

that can be minimized to such an extent that it negligibly influences the dynamical state of the system. In 

contrast to the subordinate role of measurement in classical physics, measurement plays a central role in 

quantum mechanics whose influence on the system to be measured is usually large. Moreover, the act of 

measurement itself is poorly understood and to this day measurement is the most controversial part of 

quantum mechanics. Sidestepping the controversy, we adopt von Neumann’s view of measurement as a 

nondeterministic collapse of the wave function, a process strictly outside the realm of Schrödinger’s equation 

that requires its own axiom of measurement. We argue that even if someday the act of measurement is 

explained microscopically as a purely deterministic effect amenable to a dynamical description via the 

deterministic Schrödinger equation, this would not diminish the value of the von Neumann picture of 

measurement. The relation between the “new,” microscopic theory of measurement and the “old” von 

Neumann theory would be akin to the relationship between statistical mechanics and thermodynamics, where 

statistical mechanics plays the role of the microscopic theory that explains the effective, phenomenological 

theory of thermodynamics without invalidating it. We next turn to one of the most profound differences 

between classical and quantum mechanics. While in classical mechanics all system variables can always be 

measured simultaneously with arbitrary accuracy, this is not the case in quantum mechanics. Heisenberg’s 

Uncertainty Principle imposes a fundamental limit on the accuracy with which the values of two incompatible 

observables can be measured simultaneously. Using our quantum machinery developed in the chapter 

before, we’re able to derive the exact formulation of Heisenberg’s Uncertainty Principle without making any 

assumptions. We then encounter another counterintuitive quantum effect: It is impossible to make copies of 

an unknown quantum state. This is known as the quantum no-cloning theorem and, again, we can prove it in 

full generality. We next study yet another quantum effect intimately connected with quantum measurement: 

The quantum Zeno effect. Here, a sequence of measurements is used to slow down the time evolution of a 

quantum system. The quantum Zeno effect is one of the most fascinating quantum effects. It has already 

found a practical application in connection with interaction-free measurements. We will see it again soon. 

Sounds like a contradiction in terms and yet it works. A first hint of how to perform interaction-free 

measurements was provided by Renninger in the 1950s. He noticed that the absence of detection is 



sometimes a measurement, too, which may provide valuable information on location and momentum of a 

particle. Renninger called this type of measurement negative-result measurements. We illustrate this idea in 

connection with the familiar double-slit experiment. While this setup provides the conceptual foundation for 

interaction-free measurements, it is not of much use in practice. A first practical scheme for  interaction-free 

measurement was provided by Elitzur and Vaidman who proposed using a Mach-Zehnder interferometer to 

perform interaction-free measurements. We study their scheme in detail. It illustrates that interaction-free 

measurement plays on the wave-particle duality. The wave aspect of light allows us to zero out the signal in 

one of two detectors. The particle aspect of light forces photons to take one of two paths in case an observer 

is present in one of the interferometer arms and destroys wave coherence. The ideas of Elitzur and Vaidman 

were implemented experimentally by Kwiat and collaborators with the help of a Michelson interferometer. We 

study their experimental scheme. Once the idea of interaction-free measurements had been confirmed 

experimentally, Kwiat and collaborators went further. With the help of an ingenious optical implementation of 

the quantum Zeno effect they obtained interaction-free observations exceeding 50% efficiency. Meanwhile 

interaction-free measurements evolved into interaction-free imaging of small objects. Interaction-free imaging 

may find useful applications whenever an object to be imagined is particularly sensitive to the light.  

Although Einstein helped create quantum mechanics in the years before 1925, he never accepted the “final 

product,” the quantum mechanics of Heisenberg and Schrödinger, created in 1925-1926. Einstein was 

particularly displeased with Born’s probabilistic interpretation of quantum mechanics, and Heisenberg’s 

Uncertainty Principle, which both imply that quantum theory, unlike classical mechanics, is unable to predict 

simultaneously exact values of the positions and momenta of particles. In addition, Einstein thought it 

untenable that reality should be tied to measurements, and that, according to quantum mechanics, a local, 

objective reality may not even exist between quantum events and measurements. Einstein’s dissatisfaction 

with these “deficiencies” of quantum theory is only natural. Einstein was a classical physicist at heart. He 

lived in the Newtonian tradition where the attributes of particles, such as positions and momenta, are always 

objectively real, i.e., existing independently of observers and measuring devices. In fact, with his special and 

general theories of relativity, he completed the classical worldview. Therefore, fully accepting the successes 

of quantum mechanics within its range or applicability, he was dissatisfied by what he considered to be 

essential limitations of quantum mechanics, namely its probabilistic interpretation, and the inability of 

quantum mechanics to predict sharp results for physical observables that correspond to noncommuting 

quantum operators. As a consequence, Einstein thought that quantum mechanics is an incomplete theory 

that is badly in need of improvement. In order to understand what EPR mean by an “incomplete theory,” we 

study theory building and the properties of physical theories. Einstein’s best stab at proving the 

incompleteness of quantum mechanics occurred in 1935 when he published a paper co-authored with 

Podolsky and Rosen, the “EPR paper”. In it, EPR present an ingeniously constructed scattering system that 

seemingly leads to the paradox of being able to predict sharp values of noncommuting physical observables. 

This is referred to as the “EPR paradox”. We review this part of the EPR paper. However, analyzing in detail 

the collapse of the EPR wave function, we conclude that EPR’s argument is flawed. EPR assigned a definite 

quantum mechanical state to subsystems of the EPR system that are entangled, and therefore not in a 

definite state at all. Understanding this part of quantum mechanics resolves the EPR paradox, and leads to 

a better understanding of quantum systems, subsystems and entanglement. Thus, although ultimately 

flawed, the EPR argument contributed decisively to sharpening the concepts and the language of quantum 

mechanics. Next we present Bell’s analysis of the EPR paradox. Reaching far beyond qualitative, 

philosophical arguments, Bell proved quantitatively, using mathematical derivations that the local realism that 



EPR favored, simply does not exist as a universally valid concept in nature. Bell showed this by proving that 

local hidden-variable theories, possible implementations of Einstein’s “local reality program,” are incorrect 

descriptions of nature. More than an elaboration of an obscure, technical point in quantum mechanics, by 

proving that local reality is not a fundamental feature of nature, Bells work is as revolutionary as Einstein’s 

relativity and quantum mechanics themselves, and marks one of the greatest scientific revolutions of 20th 

century physics. An illustration of the EPR “paradox” is Mermin’s Reality Machine, which we present. It allows 

a more intuitive and more direct appreciation of the problem of local reality in nature.  

Now we lay the conceptual foundations of quantum computing and quantum information processing. 

Although the computational power of classical computers is impressive, increasing their performance relies 

on continued miniaturization of classical electronic circuitry. First we see that due to the atomistic nature of 

matter this miniaturization cannot go on forever, setting distinct fundamental limits to classical computing. 

Therefore, a further increase in computing and information processing power can be achieved only if we 

change the computing paradigm. Quantum computing and information processing provides an example of 

such a paradigm shift. It promises unprecedented computer power, computer power so tremendous that it 

easily exceeds the computer power of a classical computer the size of the universe! While classical 

computers are based on binary switches, i.e., bits, that can take only the logical values 0 and 1, quantum 

computers are based on qubits that may be in a quantum superposition of |0⟩ and |1⟩, which accounts for 

one of the “secrets” of quantum computing. We take a look at classical bits and quantum qubits. In order to 

perform a computation, no matter whether classical or quantum mechanical, we need gates that allow us to 

perform logic operations on bits (classical gates) or qubits (quantum gates). We study classical and quantum 

gates together with their main differences. Next we combine classical and quantum logic gates into classical 

and quantum circuits. Now we encounter our first meaningful quantum circuit, the quantum register loading 

circuit. This circuit is a common element in quantum algorithms. In fact, without it, it is hard to imagine how 

we could possibly make effective use of quantum parallel processing and obtain the exponential speedups 

that quantum algorithms afford us. Next we learn how to teleport the quantum state of a single electron. 

Although teleportation of the quantum state of a macroscopic object is impossible to do with present-day 

technology, there are no physical laws that would forbid it. While teleportation has obvious technical 

applications that even include the possibility of a quantum internet (discussed in the last chapter), its main 

scientific value is of a conceptual nature: it shows how to resolve the quantum information of a given single-

qubit state |
1
⟩ into two components, two bits of classical information and a purely quantum EPR correlation. 

This is where we start studying the basic ideas behind quantum computing. We start by constructing a 

primitive quantum computer that illustrates how superposition may be used to achieve parallel processing in 

quantum computers. We also see that parallel processing is not enough: It has to be combined with 

interference in order to select desired results from the multitude of computed results. Deutsch’s algorithm 

was the first to combine both principles. Deutsch’s algorithm performs a task that cannot be performed on 

any classical computer in principle. Thus, Deutsch’s algorithm was the first to prove the point that quantum 

computing is a qualitatively new way of information processing. While Deutsch’s algorithm beats any classical 

algorithm by a factor of two, practically speaking, this is not too impressive given how difficult it is to construct 

quantum circuitry and keep its coherence. Simply using two off-the-shelf classical processors and running 

them in parallel, erases the speed advantage of Deutsch’s algorithm. This is where the Deutsch-Jozsa 

algorithm comes in: It demonstrates that quantum computers can perform computations that are out of the 

league of classical computers, even if we allow for a classical computer the size of the universe! Therefore, 



when it comes to solving problems of the Deutsch-Jozsa type, classical computers simply are no match for 

quantum computers. Although quantum computers excel when solving problems of the Deutsch- or Deutsch-

Jozsa type, one could argue that these problems and their quantum solution algorithms are rather contrived 

and do not have any practical applications. To counter this argument, and to show that quantum computers 

reign supreme even in areas of everyday importance, we study Grover’s quantum algorithm. Grover’s 

algorithm addresses the problem of finding an item in an unsorted database. Not only since the advent of the 

Internet and its various search engines do we know that searching for items in an unsorted environment is 

an everyday occurrence. We see that Grover’s algorithm solves the task of locating an object in an unsorted 

database of size 𝑁2 in approximately 𝑁 steps, while any classical algorithm requires 𝑁2/2 steps, on 

average. This may seem like a marginal advantage but as the size of the database (haystack) increases the 

savings are more and more significant. Based on the examples of quantum algorithms presented in this 

chapter, it is not hard to imagine that quantum computers have the potential to revolutionize the fields of 

information processing and computing. In the next chapter we examine their potential to disrupt.  

Secure communication is an enabling technology for all of modern military, government, and commercial 

information exchange. Internet commerce, and especially Internet banking, are unthinkable without 

convenient cryptosystems for the secure transmission of business transactions. There are essentially two 

different ways to set up a cryptosystem for the secure exchange of messages: symmetric, private-key 

cryptosystems, and asymmetric, public-key cryptosystems. While private-key cryptosystems display the 

highest degree of security, they are awkward and inconvenient in practice and suffer from the key-distribution 

problem. Public-key cryptosystems, in particular the RSA cryptosystem, are the dominant technology in 

today’s Internet applications. RSA, however, is only as safe as integer factorization is difficult to do. Advances 

in number theory, resulting in a fast factoring algorithm, may render RSA obsolete. But even in the absence 

of number-theoretic breakthroughs quantum computers have the potential to crack RSA. A quantum 

algorithm specifically developed for cracking RSA is Shor’s algorithm which we discuss next.  

According to present scientific consensus, classical computers cannot crack RSA cryptosystems with RSA 

moduli that have 300 decimal digits or more. The reason is that classical factoring algorithms requires an 

execution time that grows exponentially with the number of digits of the RSA modulus. Quantum computers, 

however, have the capability of executing exponentially many instructions in parallel, thus outclassing any 

classical computer. However, a quantum computer without quantum software is powerless. In this chapter 

we present the basis for a possible future quantum factorization software, Shor’s algorithm, that has the 

ability/potential to crack the RSA cryptosystem. It is based on an ingenious combination of the “classical” 

Miller algorithm for factoring semi-primes and the quantum Fourier transform (we discuss both).  

In theory quantum computers are powerful devices. But do they work in practice? In this chapter we show 

that the answer to this question is an emphatic: “yes”! Nothing is more convincing than demonstrating a 

working quantum computer in the lab. And several experimental groups throughout the world have done just 

that (this is 2009): These groups are operating quantum computers that are based on various quantum 

computer architectures, one of them the ion-trap quantum computer design. Due to its conceptual simplicity 

we chose the 40Ca+ ion-trap quantum computer of the Innsbruck group as a representative example. The 

centerpiece of the Innsbruck quantum computer is a linear radio-frequency ion trap. Initially, the trap is loaded 

with several 40Ca+ ions, which are dynamically confined to the trap, but form a relatively “hot” (i.e., room 

temperature) charged gas, a non-neutral plasma. In this state the ions are useless for quantum computing. 

However, application of a cooling laser, reduces the kinetic energy of the ions, eventually lining them up on 



the axis of the trap. This state of the ions is sometimes referred to as the crystalline state of the 40Ca+ ions, 

in which each 40Ca+ ion represents one qubit of the quantum computer. As far as the hardware is concerned 

(the trap and the ions), the qubits are now ready for a quantum calculation. This is where the 

microprogramming, i.e., the realization of basic quantum gates, comes into play. According to the Cirac-Zoller 

scheme, laser pulses and the ion-crystal’s center of mass motion, are used to implement the quantum CNOT 

gate. Since the CNOT gate is universal (with Hadamard), all quantum computations can be done on a 

quantum computer once the CNOT gate is implemented. Thus, the trap hardware together with the Cirac-

Zoller scheme, implements a universal quantum computer. The details of how this is done in practice are 

presented here, providing positive proof that quantum computers are now a reality1.  

Not long ago it was inconceivable how pure research in the foundations of quantum mechanics could possibly 

lead to practical applications. Yet, here we are, with Einstein’s “spooky action-at-a-distance” providing the 

foundation for a completely new industry, quantum information technology. The relatively short time it took to 

turn quantum paradoxes into practical quantum devices provides one of the success stories of how curiosity-

driven research results in a major scientific and industrial revolution.   

                                                                                                                             

                                                            
1 See, e.g., hardware like in the Richerme lab. Other modalities: topological qubits (belong to the pure, or 

exotic, superconducting modality) and seem to be our only chance to get out of the NISQ range. Current 

NISQ modalities: superconducting qubits (fast, technology (silicon wafers, CMOS) is well established, but 

integration of control and readout technologies that maintain qubit coherence even at mK temperatures 

remains a challenge). Trapped ions are very stable systems, and very well characterized (technology has 

been in use in atomic clocks for decades) but main challenge is 3D integration. Doped Si qubits leverage 

silicon fabrication technology and spin qubits have long coherence times but they’re rather slow and  

scalability/integration remains an issue. NV centers afford both an electron spin and a nuclear spin, and 

have large(r) coherence times (with lower coherence they can even be operated at room temperature) 

but scalability remains an issue (hard to place in precise locations to create large qubit arrays). SiGe 

quantum dots leverage well established technology, are relatively small and controlled by gate voltages; 

their main challenge, again, is needed 3D integration techniques. Neutral atoms make highly stable qubits 

with coherence times that are comparatively very long; this modality will require integrated optics to 

ultimately scale up. Some of the other modalities that could be mentioned here: linear optics (hard to 

make photons interact with one another), molecular ions, electrons on liquid helium and (again) 

Majorana fermions (top choice since they will exhibit, crucially, topologic protection to errors). 
  



Final thoughts (for now): In 2006 Vazirani published a book with Dasgupta and Papadimitriou. It starts with 

an ancient hard problem (factoring) and ends with a chapter on quantum computing (and its promise to 

disrupt). The book asks (on p. 310, this is 2006): “Can quantum computers be built?” Ten years later IBM Q 

was launched, as was Rigetti. Online courses (professional certificates in quantum engineering) started to 

appear too at about the same time. If one considers how pervasive a sense of astonishment in fact is (e.g., 

David Deutsch himself in [2]: “Last year I saw their ion-trap experiment, where they were experimenting on a 

single calcium atom […t]he idea of not just accessing but manipulating it, in incredibly subtle ways, is 

something I totally assumed would never happen. Now they do it routinely”) one immediately understands 

why the probability remains significant to continue being pleasantly surprised by the pace of advancements 

in technology. For the most skeptical though it’s worth sharing the brilliant argument of Michele Mosca [1] 

that addresses the time frame aspect from a somewhat inverted perspective: if we add the security shelf life 

(of our secure data) to migration time and then compare to the collapse time any responsible manager or 

executive immediately feels the impending doom (or, rather, sense of urgency). 

[1] https://www.youtube.com/watch?v=vipU_-QGoOg (Michele Mosca relevant part @28:32) 
[2] https://www.economist.com/technology-quarterly/2017/03/09/david-deutsch-father-of-quantum-computing 
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