Independence Day.

No classes today.

However, we have office hours (via Zoom) as usual.

Here are three more exercises from the Linear Algebra section of The Highlights Quiz:


**Question 12.** Normalize the vector $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$.

This is example 2.25 on page 55 in Martin's booklet.

--

a = np.array([1, -2])
result = a / np.linalg.norm(a)
print(result)
# in WolframAlpha type:
# Normalize[ {1, -2} ] 

--

(1/np.sqrt(5), -2/np.sqrt(5))

--

**Question 13.** Is this a unitary matrix $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ?

A matrix is unitary if its transpose conjugate is its inverse.

This is example 2.38 on page 67 in Martin's booklet.

--

X = np.array([[0, 1], [1, 0]])
print(np.dot(X, np.conj(X).T)) 

--

**Question 14.** Same question for $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ 

This is part of the same example 2.38 on page 67.

--

Y = np.array([[0, -1j], [1j, 0]])
print(np.dot(Y, np.conj(Y).T)) 

--