Independence Day.
No classes today.
However, we have office hours (via Zoom) as usual.
Here are three more exercises from the Linear Algebra section of The Highlights Quiz:
**Question 12.** Normalize the vector $\begin{pmatrix} 1 \\ -2 \end{pmatrix}$. This is example 2.25 on page 55 in Martin's booklet. -- a = np.array([1, -2]) result = a / np.linalg.norm(a) print(result) # in WolframAlpha type: # Normalize[ {1, -2} ] -- (1/np.sqrt(5), -2/np.sqrt(5)) -- **Question 13.** Is this a unitary matrix $X = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ ? A matrix is unitary if its transpose conjugate is its inverse. This is example 2.38 on page 67 in Martin's booklet. -- X = np.array([[0, 1], [1, 0]]) print(np.dot(X, np.conj(X).T)) -- **Question 14.** Same question for $Y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$ This is part of the same example 2.38 on page 67. -- Y = np.array([[0, -1j], [1j, 0]]) print(np.dot(Y, np.conj(Y).T)) --