Today we finished Deutsch-Josza (Money or Tiger).
The notebook we developed is available here.
Here are four more problems from the Linear Algebra section from The Highlights Quiz:
**Question 8.** Calculate the complex conjugate of $M = \begin{pmatrix} 1 & e^{-i\frac{\pi}{5}} \\ 3 - i & 10 \end{pmatrix}$ This is example 2.16 on page 48 of Martin LaForest's booklet. -- # in WolframAlpha just type: # complex conjugate of {{1,e^(-i*pi/5)},{3-i,10}} a = np.array([[1, np.exp(-1j*np.pi/5)], [3-1j, 10]]) result = np.conj(a) display(sym.Matrix(result)) # confirm top right entry by typing this # in WolframAlpha: e^(-i*pi/5)) -- Also look up: transpose and conjugate transpose (e.g., example 2.18, p. 49). **Question 9.** Calculate the inner product of $v = \begin{pmatrix} i \\ 2+i \end{pmatrix}$ and $w = \begin{pmatrix} 2 \\ -1 \end{pmatrix}$. This is example 2.19 on page 51 in the Martin LaForest booklet. -- v = np.array([1j, 2+1j]) w = np.array([2, -1]) result = np.dot(v, w) print(result) # in Wolfram Alpha type # something like {a, b} * {c, d} -- **Question 10.** Same for $\begin{pmatrix} i \\ i \end{pmatrix}$ and $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$. This is example 2.22 on p. 52 in Martin LaForest. -- a = np.array([1j, 1j]) b = np.array([1, -1]) result = np.dot(a, b) print(result) -- **Question 11.** How long is the vector $\begin{pmatrix} 1 \\ -2 \\ i \end{pmatrix}$ ? This is example 2.23 on p. 54 in Martin's booklet. -- np.linalg.norm([1, -2, 1j]) # in WolframAlpha type: # Norm[ {1, -2, i} ] -- np.sqrt(6) --