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Abstract

Quantum Logic Processors can be implemented with Mach Zehnder
Interferometer(MZI) configurations for the Quantum logic operations and
gates. In this paper, its implementation for both optical and electronic
system has been presented. The correspondence between Jones matrices
for photon polarizations and Pauli spin matrices for electrons gives a rep-
resentation of all the unitary matrices for the quantum gate operations. A
novel quantum computation system based on a Electronic Mach Zehnder
Interferometer(MZI) has also been proposed. It uses the electron spin as
the primary qubit. Rashba effect is used to create Unitary transforms on
spin qubits. A mesoscopic Stern Gerlach apparatus can be used for both
spin injection and detection. An intertwined nanowire design is used for
the MZI. The system can implement all single and double qubit gates. It
can easily be coupled to form an array. Thus the Quantum Logic Proces-
sor (QLP) can be built using the system as its prototype.
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1 INTRODUCTION

According to the ITRS (International Technology Roadmap for Semiconduc-
tors) Roadmap [1], the channel length of CMOS should diminish to 22nm by
the year 2015 to maintain the ever increasing computing demands. As dimen-
sions shrink further, the atomistic limitations will come into light and Boolean
Logic will start to fail. To continue further scaling and improve computing
power, Quantum Logic will become inevitable. Nevertheless the experimental
realization of quantum logic has not been so impressive.

Preskill [2] has estimated that to have a reliability of 10−6 atleast 106 qubits
must be present in the quantum logic system. Such a large number of qubits
is easily possible in a solid state system only. Thus, tremendous improvements
have been made in the field of solid state quantum computation in the last 7
years e.g. Nuclear Magnetic Resonance (NMR) [3],electrons floating on liquid
helium [4], quantum dots [5], terahertz cavity quantum electrodynamics [6],
Cooper-pair box [7], superconducting quantum interference loop [8], ion trap
quantum computer [9] spin in silicon [10] etc. Nevertheless the experimental
realization of solid state systems are still nowhere near Preskill’s vision. In this
project we devise a scheme of implementation of quantum logic in an electronic
Mach Zehnder Interferometer.

This paper has been arranged as follows-a fleeting glance of quantum com-
puting and MZI has be given in the beginning. This will be followed by the
implementation of various quantum logic gates using the optical MZI. Then we
show the transformation of the scheme used in optical MZI to electronic MZI.
Finally, the scheme of implementation of quantum logic using electronic MZI
will be detailed.

2 QUANTUM COMPUTING: ANOVERVIEW

Quantum computation and information is the study of the information process-
ing tasks that can be accomplished using quantum mechanical systems. But it
may be argued that today’s computers are using nano-sized components where
quantum effects play a big role. So are these computers built on ’quantum
mechanical systems’ quantum computers? The answer is NO. It is because the
logic on which the computer operates is classical rather than quantum mechan-
ical.

Just as the classical computation is built upon bits, quantum computation
also has an analogous concept called qubits. The main difference between a bit
and a qubit is that while a bit can be either 0 or 1, a qubit can be in a super-
position of states |0〉 and |1〉 (where | 〉 is the Dirac notation). It is possible to
form a linear combination of states called superposition:

|Ψ〉 = α |0〉+ β |1〉 (1)

α and β are complex numbers such that |α|
2
+ |β|

2
= 1. A qubit can be

geometrically represented by a Bloch sphere as seen in Fig. 1. Analogous to



Figure 1: The Bloch Sphere

classical computation, the operations on qubits are carried out using quantum
logic gates.

3 MZI: AN OVERVIEW

The ubiquitous Mach Zehnder Interferometer was discovered almost a century
ago. The simple structure is as shown in Fig 2 [11].

Figure 2: The optical Mach Zehnder Interferometer



ELEMENT SYMBOLS

Light Source

50-50 Beam Splitter

Totally reflecting mirror

Detector

Different elements can be put in either of the paths of Mach Zehnder Interfer-
ometer for manipulating the output states. Fig 3. shows a phase shifter in one
of the paths. The simple structure has led to numerous uses of the optical MZI

Figure 3: MZI with Phase Shifter

since its inception.[12, 13, 14, 15, 16, 17, 18]. It is this flexibility that makes it
ideal for quantum computation also.

4 QUANTUM LOGIC IN OPTICAL MZI

The implementation of quantum logic based on optical MZI harnesses photon
polarization as qubit. The different polarizations are represented vectorially
using Jones vectors[19].The different Jones vectors are tabulated in Table 1.

The elements that are used for manipulating the polarization stated are rep-
resented mathematically using Jones Matrices. The Jones Matrices for various
optical elements are tabulated in Table 2.



POLARIZATION JONES VECTOR

Linear horizontal

[

1
0

]

Linear vertical

[

0
1

]

Linear at +45o 1√
2

[

1
1

]

Linear at −45o 1√
2

[

1
−1

]

Circular, right-handed 1√
2

[

1
−ι

]

Circular, left-handed 1√
2

[

1
ι

]

Table 1: Jones Vectors

POLARIZATION JONES MATRIX

Linear horizontal polarizer

(

1 0
0 0

)

Linear vertical polarizer

(

0 0
0 1

)

Linear polarizer at +45o 1
2

(

1 1
1 1

)

linear polarizer at −45o 1
2

(

1 −1
−1 1

)

Quarter-wave plate,fast axis vertical exp iπ/4

(

1 0
0 −i

)

Quarter-wave plate, fast axis horizontal exp iπ/4

(

1 0
0 i

)

Circular polarizer, right-handed 1
2

(

1 i
−i 1

)

Circular polarizer,left-handed 1
2

(

1 −i
i 1

)

Beam Splitter 1√
2

(

1 −1
1 1

)

Table 2: Jones Matrices



The implementation of various quantum logic gates using optical MZI is
tabulated in Table. 3.

Quantum Logic Gate Unitary Matrix Relation for MZI Elements

implementation

Beam Splitter(B(θ))

[

cosθ −sinθ
sinθ cosθ

]

50-50 Beam Splitter(B) 1√
2

[

1 −1
1 1

]

Hadamard(H) 1√
2

[

1 1
1 −1

]

H=BZ 50-50 Beam splitter

Phase flip gate (Z)

[

1 0
0 −1

]

Z=HB π Phase shifter

Bit Flip gate (X)

[

0 1
1 0

]

X=BH Beam Splitter,

Hadamard

T gate

[

1 0
0 exp(iπ/4)

]

π/4 phase shifter

S gate

[

1 0
0 i

]

Quarter wave plate

Pauli Y gate

[

0 −i
i 0

]

CNOT gate









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









(I⊗H)×K×(I⊗H)
Kerr Media(K)
Hadamard(H)
Identity(I)

Table 3: Quantum Logic Gates



5 ANALOGY BETWEEN ELECTRONS AND

PHOTONS

The analogy and similarity between electrons and photons has been noted in
Table 4.

PHOTONS ELECTRONS

Electric Field(E) Wavefunction(Ψ)
Polarization Spin

Poynting Vector(P) Current Density(J)
≈ Re [E∗×H] ≈ Re[iΨ∗ ×∇Ψ]
≈ Re [-iE∗×∇×E]

exp(-iωt) exp(-iEt/h̄)
ω-Frequency E-Energy

∇2E = ω2µǫE ∇2Ψ = -(2m/h̄2[E-U]Ψ

k2 = ω2µǫ k2 = -(2m/h̄2[E-U]

Table 4: Comparison between Electrons and Photons

The similarity of photon polarization and electron spin on which this whole
concept of a spin MZI is based must be illustrated further. The comparison
between electron spin and photon polarization is shown in Table 5.

PHOTON POLARIZATION ELECTRON SPIN

Spinor Spinor
Jones vector Spin polarization vector
Spin ±1 Spin ±1/2
Jones matrices Pauli matrices

Table 5: Comparison between Electron Spin and Photon polarization



The realization of various gates and the relation between Jones and Pauli
matrices has been shown in the Table 6.

Optical Element Jones Matrix Pauli Matrix Quantum Logic Gate

Linear horizontal polarizer

(

1 0
0 0

)

I + σ3

Linear vertical polarizer

(

0 0
0 1

)

I − σ3

Linear polarizer at +45o 1
2

(

1 1
1 1

)

1
2 [I + σ1]

linear polarizer at −45o 1
2

(

1 −1
−1 1

)

1
2 [I − σ1]

Quarter-wave plate,

fast axis vertical exp iπ/4

(

1 0
0 −i

)

Quarter-wave plate,

fast axis horizontal exp iπ/4

(

1 0
0 i

)

Phase Gate

Circular polarizer,

right-handed 1
2

(

1 i
−i 1

)

1
2 [I − σ2]

Circular polarizer,

left-handed 1
2

(

1 −i
i 1

)

1
2 [I + σ2]

Beam Splitter 1√
2

(

1 1
1 −1

)

1√
2
[σ1 + σ3] Hadamard Gate

σ1 X Gate
σ3 Z Gate

Table 6: Jones and Pauli matrices,a comparison

In Table 6. σi where i=1,2,3) are Pauli Matrices.
The four Pauli Matrices are:

I = σ0 =

(

1 0
0 1

)

σ1 =

(

0 1
1 0

)

σ2 =

(

0 −i
i 0

)

σ3 =

(

1 0
0 −1

)

Interestingly, σ1 is NOT (X) gate and σ3 is Z gate.



6 QUANTUM COMPUTATION WITH ELEC-

TRONIC MZI

Recently, a great interest has been generated in various electronic analogues
of optical instruments viz. -the electronic double slit interferometer [20, 21,
22, 23, 24, 25]; spin dependent Fabry Perot Interferometer [26, 27]; electro-optic
modulator [28] etc. This is mainly due to exhibition of quantum phase coherence
in electronic interference experiments by Aharonov-Bohm oscillations, persistent
currents (PC), weak localization, universal conductance fluctuation etc.

This interest has also been extended to MZI. The ubiquitous optical MZI
was rediscovered when simulation of quantum logic with optical MZI was pre-
sented [29]. An electronic analogue of the MZI was fabricated recently [30] using
quantum Hall edge states. In this paper we will extend this interest in MZI with
our proposal of an electronic MZI to implement spin based quantum logic gates.

The different elements that can be used for the implementation of quantum
logic using a spin MZI is tabulated in Table 7.

7 DEVICE CONFIGURATION

Electron spin has been used as the primary qubit in our proposed device. All
single qubit gates can be realized on the spin qubit using Rashba interaction.
However, using the spatial degree of freedom in a electronic Mach Zehnder
Interferometer (MZI), the two qubit gates have also been realized. The MZI
has been assumed to be free of spin scattering. To ensure this the MZI is
expected to be formed by two intertwined ballistic nanowires.

7.1 Design Challenges

There were quite a many challenges in the design of this system. The challenges
are discussed one by one.

Magnetic field is normally required for the manipulation of electron spin.
Almost all the spin manipulation based quantum computation systems propose
to use external magnetic field. Nonetheless, having a different magnetic field in
each of the units of the quantum computation system is lithographically very
challenging. However,a localized magnetic field in a particular region can be
created with the modern technology. Thus the system should be designed so
that it should be more or less free of the dependence on the magnetic field. An
external magnetic field at a few specified places may be used.

Spin-polarized electrons have been traditionally created in semiconductors
simply by illuminating the material with circularly polarized light. Nonetheless,
a purely electrical method for injecting spin-polarized electrons into semicon-
ductors is needed to guarantee the success of quantum computing system. In
literature, two different concepts have been employed to solve the problem.
The first approach involves injecting spins from a dilute magnetic semiconduc-
tor(DMS) that acts as an efficient spin aligner when an external magnetic field



Optical Element Electronic element Unitary matrix

Polariser/Analyser Ferromagnetic material
which produces spin
sub band splitting.

The spin which is to be
selectively transmitted
should have ~P0 parallel

to ~M

Depends on the angle
of polarization.

However mostly it is
like a linear horizontal

polarizer

[

1 0
0 0

]

Phase Shifter

• Rashba spin orbit
interaction

• Aharonov Bohm
phase

• Ferromagnetic
material where ~P0

is perpendicular
to ~M

The general matrix of
a phase shifter which
shifts the phase by θ is

given by
[

exp(−iθ/2) 0
0 1

]

(up to an unimportant
global phase factor).

Polarizing Beam
Splitter (PBS)

An arrangement with
two beam splitters and
a phase shifter.[35]

|σ; k〉 −→ cosθ |σ; k〉+
isinθ |σ; 1 − k〉 For a
beam splitter where σ
gives the spin degree of
freedom and k gives
the orbital degree of

freedom.
Wave guides Electrons in 2-DEG
Beam Splitter

• Point contacts

• Simple differenti-
ating lines

Table 7: Elements required for implementation of spin MZI



is applied. This concept works well at low temperatures - almost all the elec-
trically injected electrons have their spins pointing in the same direction. How-
ever, it is extremely difficult to implement at room temperature because most
of the known magnetic semiconductors lose their spin-aligning characteristics
just above liquid-helium temperatures (i.e. above 4 K). The second approach
involves injecting spin-polarized electrons from a ferromagnetic material [28],
where almost all of the conducting electrons are intrinsically aligned. However,
this approach also faces problems. Randomly oriented spins - known as mag-
netically dead layers - in the ferromagnetic material close to the semiconductor
interface are a barrier to effective spin injection Hence, a different spin injection
and detection scheme must be proposed to ensure the robustness of the quan-
tum computing system.

CNOT gate is an essential gate for the flexibility of a quantum computation
system. Hence the scheme must be able to implement double qubit gates like
CNOT.

The strategies adopted for overcoming all the aforementioned challenges are
discussed in the following section. A localized magnetic field was created with
the aid of Rashba effect using a localized electric field created by a gate. The spin
injection and detection problem was solved with the aid of a recently proposed
Stern Gerlach apparatus. CNOT gate was also implemented using spin as the
target qubit and spatial degree of freedom as the control qubit.

7.2 Rashba Effect in ballistic MZI

Even in the absence of a magnetic field, the spin degeneracy may be lifted due
to the coupling of the electron spin and its orbital motion. This mechanism
is popularly referred to as the Rashba effect [34]. The spin orbit (Rashba)
Hamiltonian is given by

HR =
α

h̄
~y · [~σ × ~p] (2)

Here y axis has been chosen to be perpendicular to the plane of motion of the
electron(the direction of the electric field), α is the spin-orbit coupling coeffi-
cient, ~σ represents the Pauli spin matrices, ~p is the momentum operator. Typical
values of α range from 9× 10−12 eV m at electron density of n = 7× 1011cm−2

to 6 × 10−12eV m at electron density of n = 2 × 1012cm−2. Due to Rashba
interaction, the Fermi sphere splits into two(see Fig 4). Thus a spin dependent
band splitting is achieved. In the limit of α = 0, the eigen energies are given by

E0
n = En +

h̄2k2y
2m∗ (3)

If we treat the spin orbit interaction using the perturbation model( This model
is quite correct as the spin orbit effect is quite weak), the eigenvalues can be
written as:

E±(ky) = E0
n ± αky (4)

E±(ky) = En +
h̄2k2y
2m∗ ± αky (5)



Figure 4: Splitting of the Fermi Sphere

Here n is the subband index, m∗ is the effective mass. The above equation
allows more than one values of ky to have the same energy. Let these values be
ky1 and ky2. Hence,

E+(ky1)− E−(ky2) =
h̄2

2m∗ (k
2
y1 − k2y2) + α(ky1 + ky2) (6)

= 0 (7)

ky1 − ky2 =
2m∗α

h̄2 = ∆ky (8)

φR = ∆kyL (9)

φR =
2m∗αL

h̄2 (10)

Here φR represents the phase shift in the Rashba region.L is the length of the
Rashba region. The unitary transform associated with this phase shift is

UR = exp[ιφRσz] (11)

Thus the effect of the Rashba interaction is to rotate the spin direction by
φR in the spin space. A point to note here is that in the above derivation,
the intersubband coupling was neglected. This approximation is valid if the
following condition holds [28]:

w ≪
h̄2

αm∗ (12)

Here w is the width of the ballistic nanowire.

7.3 Mesoscopic Stern Gerlach Apparatus

As mentioned earlier, traditionally, ferromagnetic contacts have been used for
spin injection and detection. However it is well known that the same can be done
with a Stern Gerlach apparatus in macroscopic domain. Extending this concept,
spin injection and detection through a mesoscopic Stern Gerlach Apparatus [35]
was proposed for the quantum computing system.



The aforementioned Stern Gerlach Apparatus uses a MZI like structure to
produce a Polarizing Beam Splitter(PBS). It is a two input, two output structure
and hence is easily compatible with our MZI design. It has Rashba interaction
selectively on one of the arms. Also there is flux Φ threading the apparatus.
The outputs can be tuned to have only spin ups and spin downs along different
paths. Let us define the two modes to be k=0,1. Let the Rashba interaction be
present in only the ‘1’ mode. Hence the transformation can be written as:

|↑, k〉 → eιkφR |↑, k〉 (13)

|↓, k〉 → e−ιkφR |↓, k〉 (14)

The magnetic flux Φ threading the interferometer generates a Aharonov Bohm(AB)
phase. This induces a phase difference in the electronic wavefunctions in the
two arms. This phase difference can be assumed in the ‘1’ mode without any
loss of generality. Thus,

|σ, 0〉 → |σ, 0〉 (15)

|σ, 1〉 → eιΦAB |σ, 1〉 (16)

ΦAB = Φ/Φ0 (17)

Φ0 =
hc

e
(18)

The net transformation induced by the two mechanisms are as follows (assuming
the beam splitter to be 50-50):

|↑; 0〉 → t↑0 |↑; 0〉+ t↑1 |↑; 1〉 (19)

|↓; 0〉 → t↓0 |↑; 0〉+ t↓1 |↑; 1〉 (20)

t↑,↓0 = −eι(ΦAB±ΦR)/2ιsin

(

ΦAB ± ΦR

2

)

(21)

t↑,↓1 = eι(ΦAB±ΦR)/2ιcos

(

ΦAB ± ΦR

2

)

(22)

Choosing ΦAB = ΦR = π/2 ,we get,

|↑, 0〉 → |↑, 0〉 (23)

|↓, 1〉 → ι |↓, 1〉 (24)

Hence spin injection can be done as required by choosing an appropriate ΦAB

and ΦR. The spin injection can be as high as 100% as both the spin injector
and our device can be of the same material. There is no impedance mismatch
at the interface.

Single spin detection is a big problem in spintronics. The success of spin
systems depends on efficient spin injection and detection. However efficient
methods for detection of electron spin directly in solids are still eluding. Nev-
ertheless single charge detection is possible. Hence some proposals for single
spin detection in nano devices are based on the swap operation of a spin state
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Figure 5: A schematic electronic MZI with the different qubits depicted

to a charge state [10]. Proposals have also been made for spin detection us-
ing Scanning Tunneling Microscopy(STM) [36] and Magnetic Resonant Force
Microscopy(MRFM) [37, 38].

Single Electron Transistor(SET) can used to detect single electron charge.
Thus in our system too, efficient single spin detection can be done by performing
the swap operation of a spin state to a charge state. The MSGA performs the
swap function efficiently. Hence for spin readout in our system, an MSGA is
coupled to the output of the electronic MZI. The output of the MSGA is fed to
SET. Again the MSGA can be fabricated in the same material as MZI. Hence
the spin detection efficiency would be high.

7.4 Quantum Logic Gates

The realization of different quantum logic gates will be discussed in this section.
The quantum logic gates can be implemented in an electronic MZI system.A
schematic MZI system with the spatial(modal) and spin qubit has been shown
in Fig 5.

The electron spin is the primary qubit in the proposed system. Hence all the
single qubit gates have been designed for the spin qubit. It was mentioned in
section 7.2 on Rashba effect, that it rotates electron spin in the spin space. Now
it is well known that all single qubit gates are nothing but rotations on the Bloch
sphere. An electron spin can easily be visualized on the Bloch sphere with the
↑ and ↓ on opposite poles. All superposition states can also be represented by
points on the Bloch sphere. Thus rotations in spin space correspond to rotations
on Bloch sphere (Fig 1). It has already been shown that all rotations can be
achieved by varying the spin orbit coupling coefficient α. α in turn can be tuned
by a gate voltage in a ballistic MZI ( Fig 6).

For an analytical calculation, the device size can be fixed at 50 nm by 30



Figure 6: A schematic ballistic MZI with gates for application of voltage. The
Rashba interaction can be controlled by tuning the gate voltages

nm (50 nm is the distance between two consecutive beam splitters, 30 nm is
the distance between the centers of the two parallel paths.) The width of the
channel is assumed to be 5nm, the length of Rashba interaction is 20nm. In
InGaAs/InAlAs system, a similar structure has been fabricated [39]. The effec-
tive mass(m∗) is 0.05 m0(m0 is the rest mass of a free electron) in that system.
Also the confinement voltage was 0.53 V . In this system the various α values
required for various gates are shown in Table 8.

The values are close to the values obtained in experiments [39, 40]. Hence
the single qubit gates can be easily obtained by the rotation of the spin.

Double qubit gates are an imperative feature of any quantum computing
system. To achieve double qubit gates, entanglement has to be obtained. The
electrons are constrained to move in either of the two modes, ‘0’ or ‘1’. Hence
the spatial location of the electron(the modes) can also used as a qubit. The
beam splitter acts on the spatial qubit and can be represented by the U(2)
matrix,

|k;σ〉 → cos θ |k;σ〉+ ι sin θ |1− k;σ〉 (25)

Hence the superposition states for the spatial qubit can also be obtained. As
shown in Fig 5, the two qubit representations can be depicted with the spatial
qubit as the 1st qubit and spin as the next qubit. The first qubit can easily
act as the control qubit. If the Rashba field is turned on in the ‘1’ mode only,
spin manipulation will occur in that mode only. For example, in the CNOT,
gate, the Rashba field is turned on in mode ‘1’ only with α as shown in Table



Quantum Logic Gate Unitary Matrix α(×10−11eV m)

50-50 Beam Splitter(B) 1√
2

[

1 −1
1 1

]

1.198

Hadamard Gate(H) 1√
2

[

1 1
1 −1

]

1.198

Not Gate(X)

[

0 1
1 0

]

2.397

Phase flip gate (Z)

[

1 0
0 −1

]

4.795

T gate

[

1 0
0 exp(iπ/4)

]

0.300

S gate

[

1 0
0 i

]

0.599

Table 8: The spin orbit coupling coefficient α required for some standard single
qubit quantum logic gates

8 for NOT gate. Thus there is preferential flipping of the spin qubit in the ‘1’
mode only. This is simply the CNOT gate. Similarly controlled Z gate etc can
also be obtained. The Bell states can easily be obtained in this system. This
will require a Hadamard on the spatial qubit and then a CNOT gate with the
spatial qubit as the control qubit.

8 Conclusions

In this paper, Mach Zehnder based quantum computing systems have been
presented. All single qubit and double qubit quantum logic gates are feasible
in this system. The system can be implemented in a ballistic nanowire MZI
system. The specifications suggest that it can be made within the current
state-of-the-art technological facilities available.

The device size should be smaller than the phase coherence and spin co-
herence length. These have been typically reported to be 20 microns [41] and
100 microns [42] respectively. Hence an array of about 1000 MZI units can be
placed in an array to perform any complex operation. This could lead to the
ultimate Quantum Logic Processor (QLP). The problems of coupling that exist
in a static electron spin quantum computation system have been eliminated in
our proposed mobile spin qubit representation. Hence it is better suited for
implementation of the QLP.
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