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Abstract
Quantum computers which use quantum interference of di†erent computa-

tional paths to enhance correct outcomes and suppress erroneous out-

comes of computations can be viewed as multiparticle interferometers. I

discuss this approach to quantum computation and argue that it provides

additional insights into the nature of quantum algorithms.

1. From interferometers to computers

Richard Feynman [1] in his talk during the First Con-

ference on the Physics of Computation held at MIT in 1981

observed that it appears to be impossible to simulate a

general quantum evolution on a classical probabilistic com-

puter in an efficient way. He pointed out that any classical

simulation of quantum evolution appears to involve an

exponential slowdown in time as compared to the natural

evolution since the amount of information required to

describe the evolving quantum state in classical terms gener-

ally grows exponentially in time. However, instead of

viewing this fact as an obstacle, Feynman regarded it as an

opportunity. If it requires so much computation to work

out what will happen in a complicated multiparticle inter-

ference experiment then, he argued, the very act of setting

up such an experiment and measuring the outcome is tanta-

mount to performing a complex computation. Indeed, all

quantum multiparticle interferometers are quantum com-

puters and some interesting computational problems can be

based on estimating internal phase shifts in these interfer-

ometers. This approach leads to a uniÐed picture of

quantum algorithms and has been recently discussed in

detail by Cleve et al. [2].

Let us start with the textbook example of quantum inter-

ference, namely the double-slit experiment, which, in a more

modern version, can be rephrased in terms of Mach-

Zehnder interferometry (see Fig. 1).

Fig. 1. A Mach-Zehnder interferometer with two phase shifters. The inter-

ference pattern depends on the di†erence between the phase shifts in di†er-

ent arms of the interferometer.

ÈÈÈ
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A particle, say a photon, impinges on a beam-splitter

(BS1), and, with some probability amplitudes, propagates

via two di†erent paths to another beam-splitter (BS2) which

directs the particle to one of the two detectors. Along each

path between the two beam-splitters, is a phase shifter (PS).

If the lower path is labelled as state o 0T and the upper one

as state o 1T then the particle, initially in path o 0T, undergoes

the following sequence of transformations

o 0T ÈÈÈ Õ
BS1 1

J2
(o 0T ] o 1T) ÈÈÈ Õ

PS 1

J2
(eiÕ0 o 0T ] eiÕ1 o 1T)

\ ei*(Õ0`Õ1)@2+ 1

J2
(ei*(Õ0~Õ1)@2+ o 0T ] ei*(~Õ0`Õ1)@2+ o 1T)

ÈÈÈ Õ
BS2

ei*(Õ1`Õ2)@2+(cos 12(/0 [ /1) o0T

] i sin 12(/0 [ /1) o 1T), (1)

where and are the settings of the two phase shifters/0 /1
and the action of the beam-splitters is deÐned as

o 0T ]
1

J2
(o 0T ] o 1T),

o 1T ]
1

J2
(o 0T [ o 1T), (2)

(we have ignored the phase shift in the reÑected beam). The

global phase shift is irrelevant as the interferenceei*(Õ0`Õ0)@2+
pattern depends on the di†erence between the phase shifts in

di†erent arms of the interferometer. The phase shifters in the

two paths can be tuned to e†ect any prescribed relative

phase shift and to direct the particle with/ \ /0 [ /1
probabilities cos2 (//2) and sin2 (//2) respectively to detec-

tors ““0ÏÏ and ““1ÏÏ.

The roles of the three key ingredients in this experiment

are clear. The Ðrst beam-splitter prepares a superposition of

possible paths, the phase shifters modify quantum phases in

di†erent paths and the second beam-splitter combines all

the paths together erasing all information about which path

was actually taken by the particle between the two beam-

splitters. As we shall see in the following sections quantum

algorithms are not much di†erent. A superposition of com-

putational paths is prepared by the Hadamard (or the

Fourier) transform, followed by a quantum function evalu-

ation which e†ectively introduces phase shifts into di†erent

computational paths, followed by the Hadamard or the

Fourier transform which acts somewhat in reverse to the

Ðrst Hadamard/Fourier transform and combines the com-

putational paths together. To see this let us start with re-

phrasing the Mach-Zehnder interferometry in terms of

quantum networks.
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Fig. 2. A quantum networks composed out of three single qubits gates.

This network provides a hardware-independent description of any single-

particle interference, including the Mach-Zehnder interferometry.

2. Quantum gates and networks

In order to avoid references to experimental details

(hardware) let us now describe our Mach-Zehnder inter-

ference experiment in more general terms. It is very conve-

nient to view this experiment as a quantum network with

three quantum logic gates (elementary unitary

transformations) operating on a qubit (a generic two-state

system with a prescribed computational basis Mo 0T, o 1TN).

The beam-splitters will now be called the Hadamard gates

and the phase shifters the phase shift gate (see Fig. 2).

The Hadamard gate is the single qubit gate H performing

the unitary transformation known as the Hadamard trans-

form given by (eq. (2))

H \ 1

J2

A1

1

1

[1

B
, o xT È H È ([1)x o xT ] o 1 [ xT.K

(3)

The matrix is written in the basis Mo 0T, o 1TN and the

diagram on the right provides a schematic representation of

the gate H acting on a qubit in state o xT with x \ 0,1. Using

the same notation we deÐne the phase shift gate / as a

single qubit gate such that o 0T o 0T and o 1T eiÕ o 1T,# #

/ \ 1

J2

A1

0

0

eiÕ
B

, o xT È / È eixÕ o xT.K (4)

From now on we will use the language of quantum net-

works to describe any quantum interference, however, in

order to cover the multiparticle case we have to extend the

reportoire of our gates to quantum gates which operate on

two (or more) qubits.

The conditional phase shift is the two-qubit gate B(/)

deÐned as

B(/) \a100
0

0

1

0

0

0

0

1

0

0

0

0

eiÕ
b ,

o xT

o yT

ÈIÈ

ÈIÈ
heixyÕ o xT o yT. (5)

t
t
t
t

The matrix is written in the basis Mo 0T o 0T, o 0T o 1T, o 1T o 0T,

o 1T o 1TN (the diagram on the right shows the structure of the

gate). Another important two-qubit gate is the quantum

Fig. 3. Phase factors can be introduced into di†erent computational paths

via the controlled-U operations. The controlled-U means that the form of

U depends on the logical value of the control qubit (the upper qubit). Here,

we apply the identity transformation to the auxiliary (lower) qubits (i.e. do

nothing) when the control qubit is in state o 0T and apply a prescribed U
when the control qubit is in state o 1T. The auxiliary or the target qubit is

initially prepared in state o uT which is one of the eigenstates of U.

controlled-NOT (or XOR) operation deÐned as

C \a100
0

0

1

0

0

0

0

0

1

0

0

1

0
b ,

o xT

o y]

ÈIÈ

È=È

o xT

o x = yT

(6)

t
t
t
t

where x, y \ 0 or 1 and = denotes XOR or addition

modulo 2. In fact, we do not need to consider any more

complicated quantum gates. It has been shown that the

controlled-NOT together with the single qubit gates H and

/ are sufficient to construct any quantum network i.e. any

unitory transformation operating on n qubits [4, 5].

Let us explain now how the phase shift / can be ““com-

putedÏÏ with the help of any auxiliary qubit (or a set of

qubits) in a prescribed state o uT and some controlled-U
transformation where U o uT \ eiÕ o uT (see Fig. 3).

Here the controlled-U means that the form of U depends

on the logical value of the control qubit, for example we can

apply the identity transformation to the auxiliary qubits (i.e.

do nothing) when the control qubit is in state o 0T and apply

a prescribed U when the control qubit is in state o 1T. In our

example, shown in Fig. 3, we obtain the following sequence

of transformations on the two qubits

Ho 0T o uT ÈÈÈ Õ
1

J2
(o 0T ] o 1T) o uT

c~UÈÈÈ Õ
1

J2
(o 0T ] eiÕ o 1T) o uT

HÈÈÈ Õ
A

cos
/
2

o 0T ] i sin
/
2

o 1T
B

o uT. (7)

We note that the state of the auxiliary register o uT, being an

eigenstate of U, is not altered along this network, but its

eigenvalue eiÕ is ““kicked backÏÏ in front of the o 1T com-

ponent in the Ðrst qubit. The sequence (7) is the exact simu-

lation of the Mach-Zehnder interferometer and, as it was

shown in [2], the kernel of quantum algorithms.

3. The Ðrst quantum algorithm

Since quantum phases in the interferometers can be intro-

duced by some controlled-U operations, it is natural to ask

whether e†ecting these operations can be described as an

interesting computational problem.

Suppose an experimentalist, Alice, who runs the Mach-

Zehnder interferometer delegates the control of the phase

shifters to her colleague, Bob. Bob is allowed to set up any

value / and AliceÏs task is to estimate /. Clearly for general

/ this involves running the device several times until Alice

accumulates enough data to estimate probabilities andP0
however, if BobÏs promise is that / is set up either at 0P1,

or at n then a single-shot experiment can deliver the conclu-

sive outcome (click in detector ““0ÏÏ/““1ÏÏ corresponds to

/ \ 0// \ n). The Ðrst quantum algorithm proposed by

David Deutsch in 1985 [3] is related to this e†ect.

Consider the Boolean functions f that map M0, 1N to

M0, 1N. There are exactly four such functions : two constant

functions ( f (0) \ f (1) \ 0 and f (0) \ f (1) \ 1) and two ““bal-

ancedÏÏ functions ( f (0), f (1) \ 1 and f (0) \ 1, f (1) \ 0).

Suppose one is allowed to evaluate the function f only once
and required to deduce from the result whether f is constant

or balanced (in other words, whether f (0) and f (1) are the
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same or di†erent). Note that we are not asking for the par-

ticular values f (0) and f (1) but for the global property of f.
Classical intuition tells us that to determine this global pro-

perty of f, we have to evaluate both f (0) and f (1) anyway,

which involves evaluating f twice. We shall see that this is

not so in the setting of quantum information, where we can

solve DeutschÏs problem with a single function evaluation,

by employing an algorithm that has the same mathematical

structure as the Mach-Zehnder interferometer.

Let us formally deÐne the operation of ““evaluatingÏÏ f in

terms of the f-controlled-NOT operation on two bits : the

Ðrst contains the input value and the second contains the

output value. If the second bit is initialized to 0, the f-
controlled-NOT maps (x, 0) to (x, f (x)). This is clearly just a

formalization of the operation of computing f. In order to

make the operation reversible, the mapping is deÐned for all
initial settings of the two bits, taking (x, y) to (x, y = f (x)).

Note that this operation is similar to the controlled-NOT

except that the second bit is negated when f (x) \ 1, rather

than when x \ 1.

If one is only allowed to perform classically the f-
controlled-NOT operation once then it is impossible to dis-

tinguish between balanced and constant functions in the

following sense. Whatever the outcome, both possibilities

(balanced and constant) remain for f. However, if quantum

mechanical superpositions are allowed then a single evalu-

ation of the f-controlled-NOT suffices to classify f. Our

quantum algorithm that accomplishes this is best represent-

ed as the quantum network shown in Fig. 4, where the

middle operation is the f-controlled-NOT, which can be

deÐned as :

f~c~No xT o yT ÈÈÈ Õ o xT oy = f (x)T. (8)

The initial state of the qubits in the quantum network is

o 0T(o 0T [ o 1T) (apart from a normalization factor, which

will be omitted in the following). After the Ðrst Hadamard

transform, the state of the two qubits has the form

(o 0T ] o 1T)(o 0T [ o 1T). To determine the e†ect of the f-
controlled-NOT on this state, Ðrst note that, for each

x ½ M0, 1N.

f~c~No xT(o 0T [ o 1T) ÈÈÈÕ o xT(o 0 = f (x)T [ o 1 = f (x)T)

\ ([1)f(x) o xT(o 0T [ o 1T). (9)

Therefore, the state after the f-controlled-NOT is

(([1)f(0) o 0T ] ([1)f(1) o 1T)(o 0T [ o 1T). (10)

That is, for each x, the o xT term acquires a phase factor of

([1)f(x), which corresponds to the eigenvalue of the state of

the auxiliary qubit under the action of the operator that

sends o yT to o y = f (x)T.

Fig. 4. Quantum network which implements DeutschÏs algorithm. The

middle gate is the f-controlled-NOT which evaluates one of the four func-

tions f : M0, 1N # M0, 1N.

This state can also be written as

([1)f(0)(o 0T ] ([1)f(0) ^ f(1) o 1T)(o 0T [ o 1T), (11)

which, after applying the second Hadamard transform to

the Ðrst qubit, becomes

([1)f(0) o f (0) = f (1)T(o 0T [ o 1T). (12)

Therefore, the Ðrst qubit is Ðnally in state o 0T if the function

f is constant and in state o 1T if the function is balanced, and

a measurement of this qubit distinguishes these cases with

certainty.

DeutschÏs result laid the foundation for the new Ðeld of

quantum computation, and was followed by several other

quantum algorithms for various problems. They all can be

viewed as the phase estimation in some multiparticle inter-

ferometer. Let us illustrate this taking as an example the

Shor quantum algorithm for efficient factorization (for a

comprehensive discussion of ShorÏs factoring algorithm see

[6, 7]). This time ““the interferometerÏÏ is much more compli-

cated and the phase estimation is performed by the

quantum Fourier transform (rather than the Hadamard

transform).

4. Quantum Fourier transform

The discrete Fourier transform is a unitary transformation

of a s-dimensional vector M f (0), f (1), f (2), . . . , f (s [ 1)N
deÐned by :

f 8 (y) \ 1

Js
;

x/0

s~1
e2nixy@s f (x), (13)

where f (x) and are in general complex numbers. It canf 8 (y)

also be represented as a unitary matrix

1

1

1

u
1

u2
É É É
É É É

1

u(s~1)
1

Js a11 u2
u3

u4
u6

É É É
É É É

u2(s~1)
u3(s~1)b , (14)

<
1

<
u(s~1)

<
u2(s~1)

}
É É É

<
u(s~1)2

where u \ exp((2ni/s) is the sth root of unity. In the follow-

ing we assume that s is a power of 2, i.e., s \ 2n for some n ;

this is a natural choice when binary coding is used.

The quantum version of the discrete Fourier transform is

a unitary transformation which can be written in a chosen

computational basis Mo 0T, o 1T, . . . , o 2n [ 1TN as [8, 9],

QFT: o xT #
1

Js
;

y/0

s~1
exp(2nixy/s) o yT. (15)

More generally, QFT e†ects the discrete Fourier transform

of the input amplitudes. If

QFT: ;
x

f (x) o xT # ;
y

f 8 (y) o yT, (16)

then the coefficients are the discrete Fourier transformsf 8 (y)

of f (x)Ïs.

Let x be represented in binary as wherex0 . . . x
n

½ M0, 1Nn,
(and similarly for y). For the purpose of thex \ ;

i/1n~1 x
i
2i

phase estimation it is interesting to note that the state ;
y/0s~1

exp(2nixy/s) o yT is unentangled, and can in fact be factorized

as

(o 0T ] eiÕx o 1T)(o 0T ] ei2Õx o 1T) É É É (o 0T ] ei2n~1Õx o 1T), (17)
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Fig. 5. The quantum Fourier transform (QFT) network operating on four

qubits. If the input state represents number the output state ofx \ &
k
2kx

k
each qubit is of the form where and k \ 0, 1, 2o 0T ] ei2kÕx o 1T, /

x
\ 2n/2n

. . . n [ 1. N.B. there are three di†erent types of the B(/) gate in the network

above : B(n), B(n/2) and B(n/4).

where Thus if we can prepare a quantum state/
x
\ 2nx/2n.

of the form (17) then by applying the reverse of the QFT to

this state we obtain x and consequently the value of /
x
.

This can be easily seen from the QFT network in Fig. 5. The

network is constructed using only two types of quantum

gates, these are : the Hadamard gate H and the conditional

phase shift B(/). The input qubits are initially in some state

where is the binaryo xT \ o x0T o x1T o x2T o x3T x0 x1 x1 x3
representation of x ; x \ ;

i/03 x
i
2i.

A general case of n qubits requires a trivial extension of

the network following the same sequence pattern of gates H
and B.

Let us describe now how quantum the states of the form

(17) can be generated as the result of some quantum compu-

tations.

5. Computing phase shifts

Suppose that U is any unitary transformation on m qubits

and o UT is an eigenvector of U with eigenvalue eiÕ and con-

sider the following scenario. We do not explicitly know U or

o UT or eiÕ, but instead are given devices that perform

controlled-U, and so oncontrolled-U21, controlled-U22
until we reach Also, assume that we arecontrolled-U2n~1.
given a single preparation of the state o UT. From this, our

goal is to obtain an n-bit estimator of /.

This can be solved as follows. First, apply the network of

Fig. 6. This network produces the state

(o 0T ] ei2n~1Õ o 1T(o 0T ] ei2n~2Õ o 1T) É É É (o 0T ] eiÕ o 1T). (18)

As noted in the last section, in the special case where

/ \ 2nx/2n, the state (and hence /) can beo x0 . . . x
n~1T

obtained by just applying the inverse of the QFT (which is

the network of Fig. 5 in the backwards direction). If x is an

n-bit number this will produce the state o x0 . . . x
n~1T

exactly (and hence the exact value /).

Fig. 6. The network which computes phase shifts in ShorÏs algorithms ; it

also implements the modular exponentiation function via repeated squar-

ings.

However, / is not in general a fraction of a power of two

(and may not even be a rational number). For such a /, it

turns out that applying the inverse of the QFT produces

the best n-bit approximation of / with probability at least

4/n2 B 0.405 [2].

6. Quantum factoring

ShorÏs quantum factoring of an integer N is based on calcu-

lating the period of the function ax mod N for a randomly

selected integer a between 0 and N. It turns out that for

increasing powers of a, the remainders form a repeating

sequence with a period which we denote r. Once r is known

the factors of N are obtained by calculating the greatest

common divisor of N and ar@2 ^ 1.

Suppose we want to factor 15 using this method. Let

a \ 11. For increasing x the function 11x mod 15 forms a

repeating sequence 1, 11, 1, 11, 1, 11, . . . . The period is r \ 2,

and ar@2 mod 15 \ 11. Then we take the greatest common

divisor of 10 and 15, and of 12 and 15 which gives us respec-

tively 5 and 3, the two factors of 15. Classically calculating r
is at least as difficult as trying to factor N ; the execution

time of calculations grows exponentially with the number of

digits in N. Quantum computers can Ðnd r very efficiently.

In order to formulate ShorÏs algorithm in terms of the

phase estimation let us apply the construction from the last

section taking

o UT \ ;
j/0

r~1
e(~2nij)@r o aj mod NT. (19)

Such a state is not at all trivial to fabricate ; we shall see

how this difficulty is circumvented later. Consider the

unitary transformation U that maps o xT to o ax mod NT.

Note that o UT is an eigenvector of U with eigenvalue

e2ni(1@r). Also, for any j, it is possible to implement efficiently

a gate. Thus, using the state o UT and thecontrolled-U2j

implementation of gates, we can directlycontrolled-U2j

apply the method of the last section to efficiently obtain an

estimator of 1/r.
Let us notice in passing that the sequence of controlled-

operations is equivalent to the implementation (viaU2j

repeated squarings) of the modular exponentiation function

in ShorÏs algorithm,

ax \ a20x0 Æ a21x1 Æ É É É a2n~1xn~1, (20)

where . . . are the binary digits of x [10].x0 , x1
The problem with the above method is that we are aware

of no straightforward efficient method to prepare state o UT,

however, let us notice that any state of the formo U
k
T

o U
k
T \ ;

j/0

r~1
e~*(2nikj)@r+ o aj mod NT, (21)

where k is from M1, . . . , rN would also do the job. For each

k ½ M1, . . . , rN, the eigenvalue of state is e2ni(k@r), and weo U
k
T

can again use the technique from the last section to effi-

ciently determine k/r and if k and r happen to be coprime

then this yields r. Now the key observation is that

o 1T \ ;
k/1

r
o U

k
T, (22)

and o 1T is an easy state to prepare.

If we substituted o 1T in place of o UT in the last section
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then e†ectively we would be estimating one of the r, ran-

domly chosen, eigenvalues e2ni(k@r). This demonstrates that

ShorÏs algorithm, in e†ect, estimates the eigenvalue corre-

sponding to an eigenstate of the operation U that maps o xT
to o ax mod NT.

7. Conditional quantum dynamics

Quantum gates and quantum networks provide a very con-

venient language for building any quantum computer or

(which is basically the same) quantum multiparticle interfer-

ometer. But can we build quantum logic gates?

Single qubit quantum gates are regarded as relatively easy

to implement. For example, a typical quantum optical reali-

zation uses atoms as qubits and controls their states with

laser light pulses of carefully selected frequency, intensity

and duration ; any prescribed superposition of two selected

atomic states can be prepared this way. Two-qubit gates are

much more difficult to build.

In order to implement two-qubit quantum logic gates it is

sufficient, from the experimental point of view, to induce a

conditional dynamics of physical bits, i.e. to perform a

unitary transformation on one physical subsystem condi-

tioned upon the quantum state of another subsystem,

U \ o 0TS0 o = U0 ] o 1TS1 o ? U1 ] É É É

] o kTSk o ? U
k
, (23)

where the projectors refer to quantum states of the control

subsystem and the unitary operations are performed onU
i

the target subsystem [4]. The simplest non-trivial operation

of this sort is probably a conditional phase shift such as

B(/) which we used to implement the quantum Fourier

transform and the quantum controlled-NOT (or XOR) gate.

Let us illustrate the notion of the conditional quantum

dynamics with a simple example (see Fig. 7). Consider two

qubits, e.g. two spins, atoms, single-electron quantum dots,

which are coupled via interaction (e.g. a dipoleÈp
z
(1)p

z
(2)

dipole interaction). The Ðrst qubit with the resonant fre-

quency will act as the control qubit and the second one,u1
with the resonant frequency as the target qubit. Due tou2 ,

the coupling V the resonant frequency for transitions

between the states o 0T and o 1T of one qubit depends on the
neighbourÏs state. The resonant frequency for the Ðrst qubit

becomes depending on whether the second qubit isu1 ^ X
in state o 0T or o 1T. Similarly the second qubitÏs resonant

frequency becomes depending on the state of theu2 ^ X,

Ðrst qubit. Thus a n-pulse at frequency causes theu2 ] X

Fig. 7. The control qubit of resonant frequency interacts via withu1 VŒ

the target qubit of resonant frequency Due to the interaction the twou2 .

resonant frequencies are modiÐed and the combined system of the two

qubits has four di†erent resonant frequencies and Au1 ^ X u2 ^ X.

n-pulse at frequency causes the transition o 0T % o 1T in the secondu2 ] X
qubit only if the Ðrst qubit is in state o 1T. This is one possible realization of

the quantum controlled-NOT gate.

transition o 0T % o 1T in the second qubit only if the Ðrst

qubit is in o 1T state. This way we can implement the

quantum controlled-NOT gate.

Thus in principle we know how to build a quantum com-

puter ; we can start with simple quantum logic gates and try

to integrate them together into quantum networks.

However if we keep on putting quantum gates together into

networks we will quickly run into some serious practical

problems. The more interacting qubits are involved the

harder it tends to be to engineer the interaction that would

display the quantum interference. Apart from the technical

difficulties of working at single-atom and single-photon

scales, one of the most important problems is that of pre-

venting the surrounding environment from being a†ected by

the interactions with the computer. The more components

the more likely it is that quantum computation will spread

outside the computational unit and will irreversibly dissi-

pate useful information to the environment. In other words

the environment can learm about which computational path

was taken in the multiparticle interferometer and this

““welcher WegÏÏ information can destroy the interference and

the power of quantum computing. However, current devel-

opments in the experimental quantum computing together

with a set of new tricks to protect quantum interference give

some hope that complex multiparticle interferometers will

be built in a not too distant future.

8. Concluding remarks

Multiparticle interferometers can be viewed as quantum

computers and any quantum algorithm follows the typical

multiparticle interferometry sequence of operations. This

approach sems to provide an additional insight into the

nature of quantum computation and, I believe, will help to

unify all quantum algorithms and relate them into di†erent

instances of quantum phase estimation.
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