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ABSTRACT This article presents the definition and implementation of a quantum computer architecture
to enable creating a new computational device—a quantum computer as an accelerator. A key question
addressed is what such a quantum computer is and how it relates to the classical processor that controls
the entire execution process. In this article, we present explicitly the idea of a quantum accelerator that
contains the full stack of the layers of an accelerator. Such a stack starts at the highest level describing
the target application of the accelerator. The next layer abstracts the quantum logic outlining the algorithm
that is to be executed on the quantum accelerator. In our case, the logic is expressed in the universal
quantum-classical hybrid computation language developed in the group, called OpenQL, which visualized
the quantum processor as a computational accelerator. The OpenQL compiler translates the program to a
common assembly language, called cQASM, which can be executed on a quantum simulator. The cQASM
represents the instruction set that can be executed by the microarchitecture implemented in the quantum
accelerator. In a subsequent step, the compiler can convert the cQASM to generate the eQASM, which is
executable on a particular experimental device incorporating the platform-specific parameters. This way, we
are able to distinguish clearly the experimental research toward better qubits, and the industrial and societal
applications that need to be developed and executed on a quantum device. The first case offers experimental
physicists with a full-stack experimental platform using realistic qubits with decoherence and error-rates,
whereas the second case offers perfect qubits to the quantum application developer, where there is neither
decoherence nor error-rates. We conclude the article by explicitly presenting three examples of full-stack
quantum accelerators, for an experimental superconducting processor, for quantum accelerated genome
sequencing and for near-term generic optimization problems based on quantum heuristic approaches. The
two later full-stack models are currently being actively researched in our group.

INDEX TERMS Quantum computing, parallel architectures, parallel programming, quantum entanglement.

I. INTRODUCTION
The history of computer architecture dates back various
decades and has been very evolving. An important extension
is the emergence of accelerators [1] as specialized processing
units to which the host processor offloads suitable computa-
tional tasks. Recently, computer architecture research is get-
ting more focused on quantum computing. In the next 5–10
years of quantum computer development, it does not makes
sense to talk about quantum computing in the sense of a
universal, Turing computer that can be applied in any kind of
application domain. Given the recent insights leading to, e.g.,
noisy intermediate-scale quantum (NISQ) technology as ex-
pressed in [2], we are much more inclined to believe that the

first industry-based and societal relevant application will be
a hybrid combination of a classical computer and a quantum
accelerator. It is based on the idea that any end-application
contains multiple computational kernels and the properties
of these parts are better executed by a particular accelerator,
which can be, as shown in Fig. 1, either field-programmable
gate arrays (FPGA), graphics processing units (GPU), neural
processing units such as Google’s tensor processing unit, etc.
The formal definition of an accelerator is indeed a coproces-
sor linked to the central processor that is capable of accelerat-
ing the execution of specific computational intensive kernels,
as to speed up the overall execution according to Amdahl’s
law. We now add two classes of quantum accelerator as
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FIGURE 1. System architecture with heterogeneous accelerators.

additional coprocessors. The first one is based on quantum
gates and the second is based on quantum annealing. The
classical host processor keeps the control over the total sys-
tem and delegates the execution of certain parts to the avail-
able accelerators.
Computer architectures have evolved quite dramatically

over the last couple of decades. The first computers that
were built did not have a clear separation between com-
pute logic and memory. It was only with von Neumann’s
idea to separate and develop these distinctly that the famous
von Neumann architecture was born. This architecture had
for a long time a single processor and was driven forward
by the ever increasing number of transistors on the chip,
which doubled every 18 months. In the beginning of the 21st
century, the single cores became too complex and did not
provide any substantial processing improvement. This led
to the incorporation of multiple cores. The homogeneous
multicore processor dominated the processor development
for a couple of years but companies such as IBM and In-
tel started understanding that heterogeneity is the right way
forward to improve the compute power. GPUs and FPGAs
are seen as natural extensions of the computer architecture,
implying that the quantum accelerator would be a logical
next step.
In the quantum computingworld, there exist two important

challenges. The first is to have enough numbers of good qual-
ity qubits in the experimental quantum processor. The cur-
rent competing qubit technologies include ion traps, majo-
ranas, semiconducting and superconducting qubits, nitrogen-
vacancy-centers, and even graphene. Improving the over-
all status of the qubits is challenging as these suffer from
decoherence that introduces errors when performing quan-
tum gate operation. It is only when the quantum physical
community overcomes those challenges that the quantum

accelerator will be a widespread adopted solution. This di-
rection is shown in the left picture of Fig. 2 where different
quantum technologies are depicted in the lowest layer. The
second challenge is to formulate, at a high level, the quantum
logic that companies and other organizations need to be able
to use high-performance accelerators for certain computa-
tions that can only run on the quantum device. This requires a
long-term investment in terms of people and technical know-
how from companies that want to pursue this direction and
reap the benefits. The right part of Fig. 2 shows the industrial
commitment to think about the required quantum logic that
can be executed using the full stack, evaluated and tested on
a quantum simulator. It is important to emphasize that the
qubits are called perfect qubits that do not decohere or have
any other kind of errors generated by them. With the emer-
gence of huge amounts of data, commonly called big data, it
is understood that this paradigm is not scalable to superlarge
datasets. The key factor is the huge amount of data that needs
to be processed by multiple computing cores, which is a very
tough problem to solve. The data communication between
the cores is a very difficult programming problem and the
data management problem is substantially slowing down the
overall performance.
Based on our group’s research since 2004 [1] and as shown

in Fig. 2, an important concept that we have been implement-
ing in the quantum computing world is the implementation
of a full stack for a quantum accelerator as will be described
later in this article. The basic philosophy of any accelerator
is that a full stack needs to be defined and implemented. The
past 10–15 years have shown a large number of accelerators
that were developed as part of any modern computer archi-
tecture. It always consists of the same following layers: it
starts at the highest level describing the logic that needs to be
mapped on the accelerator. Examples are video processing,
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FIGURE 2. Two approaches for full-stack quantum accelerators. (a) Experimental full-stack with realistic qubits. (b) Simulated full-stack with perfect
qubits.

security, matrix computation, etc. These application-specific
algorithms can be defined in various languages such as
C++ or Fortran. In the case of FPGAs, these algorithms are
translated into VHDL or Verilog. In the case of GPUs, the
language is often formulated using mathematics or other
libraries and translated by the compiler to an assembly
language that can be mapped on the GPU architecture.
Especially in the case of FPGAs, there is no standard
microarchitecture on which the VHDL or Verilog can be ex-
ecuted. Such an architecture needs to be developed for every
application that needs to be accelerated. The final layer is
a chip-based implementation of the microarchitecture com-
bined with the hardware accelerator blocks that are needed.

A. BACKGROUND
One of the first proposals on quantum computing was writ-
ten by Feynman in 1982 [3], which launched a world-wide
research on quantum computing focusing on important low-
level challenges leading to the development of superconduct-
ing qubits, ion trap qubits, or spin-qubits. He formulated
the use of quantum computers as an important scientific in-
strument to allow us to understand the quantum phenom-
ena that quantum physics tries to understand. The design
of proof-of-concept quantum algorithms and their analysis
with respect to their theoretical complexity improvements
over classical algorithms has also received some attention.
However, we still need substantial progress in either of those
domains. Qubits with a sufficiently long coherence time
combined with a true quantum killer application are still
crucial achievements on which the community is working.
These are vital to demonstrate the exponential performance
increase of quantum over conventional computers in prac-
tice and are urgently needed to convince quantum skeptics

about the usefulness of quantum computing such that it can
become a mainstream technology within the coming 10–15
years. However, as we will describe in this article, we need
muchmore before any kind of computational device can been
developed, which ultimately connects the algorithmic level
with the physical chip. What is needed involves a compiler,
run-time support, and more importantly a microarchitecture
that executes a well-defined set of quantum instructions.
An interesting and quite high-level kind of description was

published in 2013 [4]. Meter and Horsman describe their
understanding of the blueprint of a quantum computer. They
correctly emphasized the need to look at computer engineer-
ing to better understand what the similarities and differences
are between quantum and classical computing. As men-
tioned before, the most important difference is the substan-
tially higher error rate that qubits and quantum gates (10−3)
have compared to CMOS technology (10−15). Guaranteeing
fault-tolerant (FT) computation can easily consume more
than 90% of the actual computational activity. The second
difference focuses on the nearest-neighbor (NN) constraint,
which imposes that two-qubit gates can only be applied if
the qubits reside next to each other. The no-cloning theorem
prohibits copying quantum states. The way that two-qubit
gates are applied requires the two qubits to be sufficiently
close to each other. They also describe a hierarchical layered
structure but rather than defining these layers in terms of
more computer engineering concepts, the schema is more ex-
pressed in terms of the different, relevant fields and research
domains. Examples are quantum error correction (QEC) the-
ory, programming languages, FT implementation, etc. There
are also other mechanisms with undefined time costs that
are necessary to make FT-quantum computing (hopefully)
efficient and performing. Examples are state distillation for
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ancilla factories and the emergence of a wide variety of
defects and errors, which all impose an additional burden
on the microarchitecture and the corresponding run-time
management.
An older but conceptually quite similar paper was pub-

lished by DiVincenzo in 2000 [5]. This article outlines the
following five criteria needed to build a quantum computer:

1) a scalable physical system with well-characterized
qubits;

2) the ability to initialize the state of the qubits to simple
fiducial state;

3) long relevant coherence times;
4) a universal set of quantum gates;
5) a qubit specific measurement capability.

Two additional criteria needed for quantum communica-
tion are the ability to interconvert stationary and flying qubits
and the ability to transmit flying qubits between specified
locations. Considering currently available quantum proces-
sors, we could say that they already comply to DiVincenzo’s
criteria, and thus, we already have a quantum computer.
However, an important and missing criterion is the number
of qubits that we need for any kind of reasonable application.
Depending on the application domain, the estimates of the
number of qubits goes from relatively low, such as a couple
of hundreds, to several billions. Being less critical, we could
say that the first criterion explicitly formulates the size of
the system, which is still a very considerable challenge to
compute in a reliable way.
The rest of the article is structured as follows. First, we

describe the various layers such as application, algorithmic
logic, programming language and OpenQL compiler, mi-
croarchitecture, mapping, and simulator. Each layer is po-
sitioned with respect to real, realistic, and perfect qubits.
Three examples of quantum accelerators are presented next.
Finally, our vision on various aspects of quantum computing
is discussed.

II. QUANTUM FULL-STACK
In the context of quantum accelerator development, the same
full-stack approach is adopted for either perfect or realistic
qubits. The execution can be either on an experimental quan-
tum chip or on the QX simulator. The highest level starts at
the end-user application for which a part of that application
is developed in a quantum language, such as OpenQL. The
quantum part of any industrial or societal application can be
executed on any kind of available quantum prototype. For
any quantum logic that is specified, a specific and target-
related microarchitecture needs to be defined and used. We
present the considerations for the various layers in this sec-
tion. Besides gate-based quantum computing approach, we
also include the quantum annealer based system/simulator in
Fig. 3, as we currently investigate the components of all types
of architectures currently in the market. We first introduce
here the different kinds of qubit models that we support at
this state of research in the quantum computer engineering

FIGURE 3. Full-stack execution.

field. The real, realistic, and perfect qubits are presented here,
which can be used for either purely experimental or purely
application development perspective.

A. REAL, REALISTIC, AND PERFECT QUBITS
An important concept that is introduced for our line of re-
search is the use of three kinds of qubits, namely real, real-
istic, and perfect qubits. In this section, we define them in
detail and how these relate to each other.
Real qubits: The first qubit type is the experimental qubit,

called the real qubit, which refers to experimentally re-
alized systems with challenges, such as decoherence and
error-rates. These features need to be substantially improved
for any commercially available quantum device. The real
qubits are investigated by the experimental quantum physi-
cists community. The goal is to improve the quality of the
real qubits such that these become more easy to scale to
large numbers and allow for a pragmatic microarchitectural
control. This implies that there is a need to study how long
the qubits can stay in a particular state and maintain their
fidelity, called the coherence time. Most of the real qubits go
to the ground state in a very short time (ranging from micro-
to milliseconds) after these are created in a particular state.
Adding to that, all the quantum gates that need to be applied
to the qubits generate errors. In quantum gate operations, the
errors and the error-rates need to be better than the current
10−2 rates.1 There are currently many quantum technologies
experimenting to produce good quality qubits for reasonable
quantum computation. The use of real qubits is very impor-
tant as the physicists need to understand the dynamic and
static behavior of the qubits under different circumstances.
Many large companies implement physical system for quan-
tum computing, such as IBM, Google, Rigetti, D-Wave Sys-
tems, IonQ, etc. However, the quality as well as the num-
ber of these qubits is very limited and the decoherence and

1We will limit ourselves now to quantum gates but will introduce later
the quantum annealing approach.
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error-rates as mentioned before are currently problematic for
application development as these tend to influence the overall
result that the quantum device is computing.
Realistic qubits:Realistic qubits represent the third dimen-

sion in Fig. 2 and any computer architecture needs function-
ality to continuously monitor the quantum system to detect
and recover possible errors, as we describe here. For quite
a long period, the focus has been mostly on planar surface
codes (SC) as it was considered one of the most promising
QEC codes for short-term implementations and for scala-
bility concerns in the FT era and manufacturing. Qubits are
generally manufactured in a regular 2-D lattice connectivity
with only NN interactions. The array comprises two kinds
of qubits, namely the data and ancilla qubits. Data qubits are
used to store the quantum information for the computation,
whereas ancilla qubits are helper qubits that are used to detect
bit-flip and phase-flip errors by performing error syndrome
measurements. This implies that after every sequence of
quantum gates, the system needs to measure out its state and
interpret those measurements to see if an error has been pro-
duced. Given the constraints of the coherent qubit lifetime,
it implies that a very large graph needs to be processes and
interpreted in real time such that any error can be identified.
Measurements themselves can be erroneous and, therefore,
need to be repeated multiple times before a final conclusion
is reached. In 2018, Preskill [2] introduced a counterargu-
ment to this approach because SC requires too many ancilla-
qubits for logical protection. This led to the reinitiation of
the small-codes, which were first defined almost 20 years
ago. The impact on the system architectural and compiler
level is yet unclear but this is currently the focus of a lot of
research.
Perfect qubits: Companies, governments, and other orga-

nizations interested in building a quantum accelerator need
to evaluate the availability of quantum computing resources
in terms of quantum algorithms and have a way to test the
correctness of the quantum logic. To serve these needs, we
use perfect qubit, such that any of the erroneous behavior
arising due to qubit quality can be avoided during applica-
tion development phase. These qubit modeled in the sim-
ulator do not decohere and stay in ideal state required for
the algorithm. Using these perfect qubits guarantees that the
end-users can verify and check the algorithm that they are
working on and test if the computed results have a meaning
that can be easily interpreted. We are not the only ones who
use this but it is a very clear concept that separates the two
directions that we are investigating in the Quantum Com-
puter Architecture Lab. As explained earlier, we introduce in
OpenQL, a datatype that represents the perfect qubit that has
a more stable behavior than the realistic qubits. Whether or
not the NN constraint applies is a discretion of the designer.
The compiler may or may not compute a route for the qubits.
These decisions are based on the requirement and maturity
of the application development stage before translating to
realistic experimental testing.

B. INDUSTRIAL AND SOCIETAL QUANTUM
APPLICATION LOGIC
The highest layer in the full stack focuses on the application
that needs to be developed for any organization. On current,
modern architectures, there are a large number of initiatives
developed that run on either the FPGA, the GPU, or the
tensor processing unit as the accelerator platform. When en-
visioning the quantum accelerator idea, many similar topics
are well suited, such as security, artificial intelligence, au-
tonomous driving, genome sequencing, sensors, and trajec-
tories for aeroplanes and rockets. For the three application
examples that we are currently developing, we assume the
use of perfect qubits such that the focus can be completely
given to the algorithm logic and themicroarchitecture design.

1) We research algorithms for accelerating quantum
genome sequencing (QGS). These are motivated by the
application of gene therapy and personalized medica-
tion for every single individual on earth. The treatment
will be based on every person’s DNA profile that has
to be generated by extensive computational processing
of the reads from sequencing devices.

2) The other example that we will discuss in this article is
for optimization problems pervasive in operations re-
search based on the traveling salesman problem (TSP).
It is expressed as a quadratic unconstrained binary op-
timization (QUBO) problem and can be solved both on
the gate-based model or the annealing model.

3) We are also working on a quantum accelerator model
in collaboration with our research partners in the auto-
motive industry focusing on autonomous and electrical
cars. For confidentiality agreements, we do not go into
any detail of this project.

Given the potential of quantum acceleration, this top-down
approach is necessary to understand how investing in the
development of quantum computing has the potential to be-
come a world-wide technology that can be used by every
country, organization, or individual. In Section III, we will
present the three accelerators in more detail.

C. QUANTUM LOGIC
For this section, we always consider perfect qubits. The high-
est level is the application layer where a potential end-user
of the quantum compute power instructs what exactly needs
to be computed. Quantum computing promises to become
a computational game changer, allowing the calculation of
various algorithms much faster (in some cases exponentially
faster) than their classical counterparts. Especially, appli-
cations requiring manipulation of a large set of data items
to produce a statistical answer are very suitable to be pro-
cessed by quantum computers, which we call in this article
quantum accelerators. Currently, there is no generally ac-
knowledged or accepted functional domain where quantum
technology would be the game changer. Potential promising
domains include physical system simulation, cryptography,
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FIGURE 4. Compiler infrastructure.

and machine learning. Evidently, the cryptography domain
is a clear candidate as algorithms such as Shor’s factoriza-
tion showed that potentially a quantum computer can break
any RSA-based encryption, as it leads to finding the prime
factors of the public key [6] based on which the private key
can be easily calculated. However, the cryptography domain
has actively establishing a new research theme, namely the
postquantum cryptography such that the attacks emerging
from such a compute power can be rebuffed.
Another potential application area is the biological domain

where chemistry, medication, and pharmacology belong to.
We focus on one such candidate application of genome se-
quence reconstruction. For instance, quantum computational
power would be imperative if we aim want to compute the
DNA-profile of every human being in the world, which takes
around one week on a large network of very powerful servers
for one person’s DNA. With the availability of enough qubit
capacity, the entire parallel input dataset can be evolved si-
multaneously as a superposition of a wave function.2 This
particular property makes it possible to perform the compu-
tation of the entire dataset in parallel. This kind of computa-
tional acceleration provides a promising approach to address
the computational challenges of DNA analysis algorithms.
The essence of accelerating sequence reconstruction is the
ability to run parallel search operations on the short reads
obtained from sequencing an individual DNA from a se-
quencing machine onto an already available reference of the
organism. In recent years, GPU, FPGA, and cluster comput-
ing frameworks such as Hadoop and Spark have been used to
reduce the total run-time. Potentially, quantum computation

offers a fundamentally different way to address the enormous
volume of data by employing superposition of reads in the
search process, thereby reducing the memory requirement
maybe even exponentially. The quantum search primitive
(Grover’s search) itself is provably optimal [7] over any
other classical or quantum unstructured search algorithm.
The rather modest quadratic speedup in cycles, however,
becomes extremely relevant for industrial application due to
the total CPU run-time involved in the big data manipulation
(in order of 1000 s of CPU hours [8] for a single human DNA
sequence reconstruction).

D. PROGRAMMING LANGUAGE, COMPILER, AND
RUN-TIME SUPPORT
The quantum algorithms and applications presented in
the previous section can be described using a high-level
programming language, such as Q# [9], Scaffold [10],
QisKit [11], Quipper [12], or OpenQL [13], and compiled
into a series of instructions that belong to the (quantum)
instruction set architecture. Many of other languages that
are available in the world are mostly developed for support-
ing the quantum physical experiments, such as Forest [14],
CirQ [15], Strawberry Fields [16], XACC [17], and Ocean
Software [18].
Consistent with our distinction between perfect, realistic,

and real qubits, the compiler is capable of adapting to the
requirements of the end-user. So, there is an option that

2By our estimate, given the size of the human genome and currently
available sequencers, the number of qubits required will be around 150
logical qubits.
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translates the qubits in perfect, realistic, or real manner. As
shown in Fig. 4, the compiler infrastructure for such a het-
erogeneous system consists of the classical compiler for the
host processor combined with the quantum compiler. It is
important to note that the architectural heterogeneity where
classical processors are combinedwith different accelerators,
such as the quantum accelerator, imposes a specific compiler
structure where each compiler part can target the different in-
struction sets and ultimately generates one binary file that can
be executed on different instruction set architectures. For the
computer architecture envisioned in our research, any high-
level implementation of the system application will consist
of two interleaved types of logic: the classical logic that
will be executed by the microarchitecture of the controlling
processor and the quantum logic that will be mapped onto the
quantum processor. The quantum logic can be encapsulated
by classical language structures, such as decision and loop
constructs. The microarchitecture extracts the quantum part
and send it to the quantum processor.
As we adopt the quantum circuit model as a computa-

tional model, the quantum compiler translates the quantum
logic into quantum circuits for which reversible circuit de-
sign, quantum gate decomposition, and circuit mapping are
needed. The output of this compiler is a series of instructions,
expressed in a quantum assembly language, such as cQASM,
which belongs to the defined instruction set architecture.3

The definition of a shared quantum assembly language is a
key challenge such that there is uniformity in the algorithmic
descriptions of different research groups.

1) Real qubits: The OpenQL compiler can generate code
that physicists can use for testing the behavior of the
qubits, taking all kinds of errors and decoherence into
account. An important exercise is to examine the FT
of the quantum circuits. A central issue for any quan-
tum technology is its fragility, implying that the qubit
superposition state disappears quite rapidly. First, the
coherence time of real qubits is extremely short. For
example, superconducting qubits may lose their in-
formation in tens of microseconds [19], [20]. Sec-
ond, quantum operations are unreliable with error rates
around 0.1% [21]. As mentioned earlier, in January
2018, Preskill [2] emphasizes that early stage quantum
computers should be based on NISQ technology with
much less ancilla qubits for QEC activities. QEC is
more challenging than classical error correction, due
to the no-cloning theorem, which states that (unknown)
quantum states cannot be copied. This makes the clas-
sical way of creating several copies of the same bit
impossible. In addition, quantum errors are continu-
ous and any measurement will destroy the information
stored in qubits. The basic idea of QEC techniques is to
use several physical imperfect qubits to compose more

3QASM is one candidate for such a language and was originally pro-
duced by Nielsen and Chuang to generate the LaTeX figures for the quantum
circuits for their book.

reliable units called logical qubits based on a specific
QEC code [22]–[28]. This is what scientists looking
at physical implementations of qubits have been doing
such that it is relatively simple to generate and test a
super- or semiconducting qubit.

2) Realistic qubits: Similar to real qubits, it is also pos-
sible to simulate the behavior of realistic qubits such
that we have a better understanding of the impact of
realistic error models, better error-rates, and longer
coherence times on the overall quantum circuit perfor-
mance, the microarchitecture needed to control them,
etc. Therefore, there is an option to compile for realistic
qubits such that the duration of a quantum gate oper-
ation is shorter or less error-prone. It can also lead to
better investigation of the qubit plane topological con-
straint and the associated routing algorithm required
for multi-qubit gate operations.

3) Perfect qubits: The compiler can also target the use of
perfect qubits. As defined earlier, which implies that
these qubits live as long as they are needed and have
principally no error-rates in the quantum gates that
are executed. Depending on the state of the execution
platform, connectivity constraints can be imposed for
mapping and routing. When we generate everything in
terms of perfect qubits, that also implies that there is
no separation anymore between logical and physical
qubits as there is no requirement for error coding.

E. QUANTUM MICROARCHITECTURE
Any computer has a series of instructions that can be exe-
cuted on the dominant processor. To this purpose, any kind of
processor has a particular architecture capable of executing
any sequence of the legitimate instructions. This also holds
for the quantum processor, which also has a series of instruc-
tions that it can execute, some of which are classical logic and
others are the quantum instructions that will be executed on
the quantum chip. So the quantum accelerator will consist of
two components: the classical and digital microarchitecture
part that has a classical processor to execute part of the ac-
celerator logic and the quantum chip that contains the qubits
that need to be executed in an analog way.
Essential to any kind of computational device is the pres-

ence of one or multiple computer architectures that are re-
sponsible for executing the instructions that are delegated to
the coprocessor. The architecture of a machine connects the
physical hardware to the applications that can run (on that
hardware) and dictates how instructions are executed. This is
also true for the case of a quantum accelerator. For the quan-
tum algorithms to be understood by the quantum accelerator,
a low-level representation of the quantum instructions is re-
quired that the classical control hardware of the quantum chip
can understand. This is known as the quantum instruction set
architecture (QISA). The content of the QISA can be modi-
fied for each accelerator logic that needs to be implemented.
One example of amicroarchitecture is given in Fig. 5. For any
microarchitecture, there are a number of properties that we
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FIGURE 5. Example of a general-purpose microarchitecture.

have to estimate, such as the appropriate instruction-length,
pipeline depth (for parallel quantum gates), and targeting
multiple control channels per single instruction. Based on
these principles, the basic blocks are constructed, such as
timing control unit and the microcode instruction set of the
overall microarchitecture.

1) Real and realistic qubits: To accommodate quantum
processor development, we look at the experimental
algorithms that the physics community are interested
in, such as randomized (single and double) qubit gates.
This phase would also comprise of hardware assess-
ment and characterization to meet the timing-precision
and signal synchronization requirements for a specific
qubit-technology. In a later phase, the experimental
implementation will need to include error-correcting
codes in the pipeline. A system-on-chip running a
quantum error-decoder would enable faster develop-
ment and debugging capabilities for QEC on hard-
ware. Area utilization and power consumption of such
a firmware would become a necessary consideration
at this point, depending on the size of decoders. The
development and testing of this platform would be
done on both the QX simulator and the physical quan-
tum processing unit. Mapping of the quantum circuit
also needs to be addressed as part of the compilation
process.

2) Perfect qubits: We do not yet have a full implemen-
tation of the microarchitecture for logic expressed in
terms of the perfect qubits. Later in this article, we
present a tentative microarchitecture for QGS, which
is one of the accelerators that we are working on. It
is important to define the QISA needed for QGS and
fine-tune the corresponding microarchitectural blocks
needed to execute the quantum instructions on the QX
simulator.

F. MAPPING OF QUANTUM CIRCUITS
Mapping of quantum circuits is considered in two different
contexts: the first is when applied on small real quantum

processors and the second one targets a simulation engine
that addresses larger number of qubits. Depending on the test
objective, we can either take into account large number of
qubits or stay at a small scale and closer to the experimental
state of the art.

1) Real qubits: When targeting a real quantum proces-
sor, the mapping of circuits is an important topic as
described in [29] and [30]. The circuit description of
the algorithms does not usually consider a physical
location of the qubits and assumes that any kind of
interaction between qubits is possible. However, real
qubits need to be placed on a specific physical qubit
layout that will limit the possible interactions between
these, leading to an increase of the circuit latency. It is,
therefore, important to optimize the mapping process
that includes the following.

a) Scheduling of operations: The parallelism of
current quantum algorithms is pretty limited
but applying classical scheduling methods and
techniques, the inherent parallelism of the log-
ical qubits can be exploited. Depending on the
chosen QEC, different constraints apply to the
scheduling problem. For instance, in defect-
based SC, single-control multitarget cnot gates
are possible, whereas planar-based surface only
supports single-control single-target cnot gates.
Furthermore, other limitations such as the num-
ber of available frequencies to control the qubits
can also affect the scheduling process and restrict
the parallelism.

b) Placement and routing of qubits: As mentioned
before, most of the current quantum technolo-
gies are pursuing a 2-D array of qubits with
only NN-interactions. This means that 2-qubit
(physical) operations are only possible between
adjacent qubits. It also impacts the placement
of logical qubits. For instance, a cnot between
two planar-based SC qubits can theoretically be
performed transversally, i.e., applying pairwise
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cnot gates to each pair of data qubits in the
sublattices. However, it is not possible to im-
plement such a transversal gate in a 2-D array
requiring techniques such as lattice surgery [31]
where planar-based SC qubits still need to be
placed next to each other. Finally, not all qubits
can be placed in the necessary adjacent positions.
Therefore, some of them will have to be moved
or routed for which the compiler will insert a
MOVE-operation for the run-time routing logic.

2) Realistic qubits: This is the quantum processor where
the qubits are not yet fully realized in any experimen-
tally designed qubit processor. Realistic qubits imply
that we are focusing on experimental processors but
have modified some parameters in the overall design to
understand the impact, for instance, a different topol-
ogy, a different error distribution, the number of qubits,
etc.

a) Scheduling of operations:Assuming that we also
have parallelism between the qubits when exe-
cuting a quantum circuit, we have to understand
what the scheduling is of qubits and, for instance,
how cnot-gates need to be implemented to have
a successful execution of the quantum gates.
Comparison between the behavior of defect-
based SC qubits single-control multitarget cnot
gates and planar-based surface that only supports
single-control single-target cnot gates needs to
be investigated.

b) Placement and routing of qubits: Even with
realistic qubits, we still have the challenge to
take the NN-interaction constraints into account.
Preskill’s paper and talk against Surface Code
and in favor of NISQ brings to our awareness
the limitations on the experimental physicists.
Small codes maybe be more relevant in this
regime. Similar to real qubits, it also impacts
the placement of logical qubits. It is impor-
tant to understand if we have similar constraints
as the real qubits when we are using the realistic
qubit paradigm. We also need to understand if
we need a similar MOVE-instruction to put the
qubits close to each other.

3) Perfect qubits: When the algorithmic behavior and
content is not yet defined, which is the case in most
of the situations, it is important to be able to use per-
fect qubits that are more reliable and predictable than
the experimental ones, as that have no decoherence
and execute reliably the quantum gates of the quantum
circuit.

a) Scheduling of operations: With perfect qubits,
we have the freedom to impose or relax simi-
lar kind of restrictive scheduling instructions on
their behavior.

b) Placement and routing of qubits: Also for this
feature, it depends on how much freedom the

algorithm designers needs to experiment with
the algorithm they are designing. The more re-
strictive we are in the placement and routing,
the more difficult it becomes. In a more relaxed
situation, the designer enjoys more possibilities
to experiment and test the algorithm.

G. QX SIMULATOR
The QX simulator, as shown in Fig. 3, was developed in
our group as a platform to simulate quantum operations on
either realistic or perfect qubits. The QX engine can execute
any quantum logic expressed in OpenQL and translated by
the compiler to cQASM, the common quantum assembly
language. The assumed microarchitectural layer encapsulat-
ing the QX simulator executes the cQASM instructions by
sending the quantum instruction to QX, which then executes
it, measures the qubit states, and sends back the results to
the microarchitecture. The QX simulator is scalable based on
the underlying host processor, and is capable of simulating
with up to 35 fully entangled qubits on a laptop PC, which
are either perfect or realistic. The main advantage of a plat-
form like QX is to provide application developers, computer
scientists, and computer engineers the tools to model and
test designs before experimental implementation on quantum
processors. A order of 50 fully entangled qubits already give
a lot of possibilities to test the application in a proof-of-
concept simulation. We can also use the different kinds of
qubits that we presented in this article.

1) Realistic qubits: Whenever we are interested in run-
ning quantum circuits on real hardware, we need to
be able to introduce error models for the qubit or gate
operations, at the simulation level of realistic qubits.
Current quantum error rates do not go beyond 10−2,
so there is a need to understand the impact of error
rates in the order of 10−5/10−6. The errors will have an
effect on the real qubits as well as the quantum gates.
Using the QX simulator on such realistic qubits, we
can investigate beyond simplistic error models such as
the depolarizing model (where every quantum gate is
followed by some error, drawn from a uniform distri-
bution of the different errors than can follow the Pauli
gates X, Y, or Z). It can be extended to other error
distributions, which aremore realistic sketching the ex-
tensions that the quantum physics research community
need to address.

2) Perfect qubits: For application development, there is
the need to execute the quantum logic to verify the
computed results of the algorithm in the functional
sense. The QX simulator is capable of assuming the
nonemergence of errors. The current stage of research
on QGS algorithm uses the QX simulator in this mode
of development. In principle, any universal quantum
logic can be executed on the simulator, the result can
be measured and fed back to the microarchitecture.
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FIGURE 6. Experimental implementation of the microarchitecture for superconducting (real) qubits.

III. THREE FULL-STACK ARCHITECTURE EXAMPLES
In this section, we present and briefly describe three imple-
mentations of the full stack. The first was developed for the
experimental design of superconducting qubits, the second
is being implemented for accelerating genome sequencing
on quantum logic, whereas the third application involves
optimization problems. The full stack, as shown in Fig. 2,
is used as the basic structure.

A. FULL STACK FOR REAL, SUPER/SEMICONDUCTING
QUBITS
Here, we present the developed microarchitecture for the
superconducting quantum chip based on an experimental im-
plementation of all the components that were defined and
needed for the quantum research collaborations in our depart-
ment. The end-to-end pipeline involves writing an algorithm,
up to sending the analog pulses to the qubits. It starts with a
high-level quantum algorithm, which is useful for the physi-
cists. We have been focusing on randomized benchmarking
experiments for one or two qubits, which was written in
OpenQL.
The code is translated by the OpenQL compiler into our

version of the quantum assembly language, cQASM. As a
logical extension of cQASM, the compiler then translates
that version to an executable QASM, called eQASM, which
supports, in principle for any quantum technology, taking
low-level information into account, such as gate times,
topology, etc. It basically means that there is a second
back-end compiler pass that translates cQASM into the
eQASM version.
Based on the cQASM code, the compiler generates the

eQASM instructions that can be executed by the microarchi-
tecture, as shown in Fig. 6 [32]. The eQASM is then executed
and at run-time translated into the horizontal microcode
version, which ultimately sends the micro-operations to
the queues.4 From that level on, the timing execution

4Described in a recently submitted paper by Fu et al. [32].

requirements are very strict and need to be precise up to
the nanosecond level. The code words that are generated by
the microcode unit will ultimately be translated in an analog
pulse and sent to the qubit chip.
This microarchitectural demonstration was done for two

quite different quantum technologies: one for the supercon-
ducting qubit chip and one for the semiconducting quan-
tum chip. The specific combination of the microarchitecture
design parameters, the c/eQASM compiler passes and the
microcode unit proved very useful. Especially, the last two
options allowed us to retarget the same microarchitecture
to two different quantum technologies and the only changes
that were needed are the configuration file for the compiler
and the implementation of the microcode unit needed for
the specific quantum technology to make sure the analog
pulses, stored in the analog–digital interface (ADI), were
available.

B. FULL STACK FOR QGS ON PERFECT QUBITS
Genome sequencing involves taking fragments of the DNA
(called short reads) from the sequencingmachines and stitch-
ing them together to reconstruct the original genome of the
individual. Reconstruction can either be carried out by align-
ing these reads to an already available reference genome, or
in a de novo assembly manner. This requires the algorithmic
primitive of searching an unstructured database or graph-
based combinatorial optimization. Translating such quantum
kernels to an efficient implementation on a quantum acceler-
ator requires in-depth tuning of both an architecture-aware
quantum algorithm and the underlying microarchitecture.
We have obtained initial results from combining domain-

specific modification on the Grover’s search [33] and quan-
tum associative memory [34] approaches. This new align-
ment algorithm, described and analyzed in [35], has been
tested on the QX simulator platform. The reference DNA is
sliced and stored as indexed entries in a superposed quan-
tum database giving exponential increase in capacity. The
designed algorithm [36] considers inherent read errors in
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FIGURE 7. New microarchitecture for the QGS accelerator.

the sequence, incorporating the requirement for approxi-
mate optimal matching. A quantum search on the database
amplifies the measurement probability of the nearest match
to the query and thereby of the corresponding index. Due
to the reference database and index, being entangled, the
closest-match index can be estimated. Current explorations
involves designing optimization algorithm for genomics ap-
plications using near-term quantummachine learning (QML)
primitives like the quantum approximate optimization algo-
rithm (QAOA).
As already mentioned, the proposed quantum accelera-

tor will not be a standalone machine, but rather a quantum
coprocessor that will be part of a heterogeneous system in
which classical processors are connected to the quantum ac-
celerator. Each processor will have its own instruction set. A
first tentative view of the QGS microarchitecture is shown in
Fig. 7.
There is need for run-time support to coordinate the ac-

tivities of the different microarchitectural components and,
as discussed, be responsible for the run-time routing of qubit
states for two-qubit gates. In the quantum accelerator, the ex-
ecuted instructions generally flow through modules from left
to right. The pink block on the right of the figure represents
the QX simulation platform or an implementation of a quan-
tum chip on which the test-runs of the QGS algorithms will
be performed. The rest of the large (blue) block represents the
microarchitecture. The DNA datasets is to be retrieved from
an external classical database and transported to a local mem-
ory in the quantum accelerator. The size of the local memory
will depend on the capabilities of the QX simulator platform
and how that information is encoded. This research is based

on the large-scale microarchitecture simulation platform that
we have already developed. Using the QX simulator platform
makes it possible to rapidly develop hardware prototypes
and verify their behavior and performance before an FPGA
implementation is started. The set of queues will be relevant
for feeding the DNA information to the qubit chip and for
defining how the quantum gates are applied.
In a specific qubit plane topology, qubits will have to move

around so that two-qubit gates can be applied on adjacent
qubits. It is a prevailing idea that quantum compilers generate
technology-dependent instructions [10], [37], [38]. However,
not all technology-dependent information can be determined
at compile time, because some information is only available
at run-time due to hardware limitations, for instance qubits
that need to be re-calibrated.
For testing the functionality of the algorithm, we use artifi-

cial DNA sequences that preserve the statistical and entropic
complexity of the base pairs in biological genomes; yet in
a reduced size so that they can be efficiently simulated in
a classical architecture with qubit limitations. This implies
understanding which run-time and, thus, routing support will
be necessary to make sure that the quantum accelerator al-
ways has enough data to process and that they are in adjacent
positions when necessary.
From an algorithmic perspective, near-term quantum opti-

mization algorithms employ the variational principle, where
a shallow parameterized quantum circuit is iterated multi-
ple times while the parameters are optimized by a classical
optimizer in the host CPU. This model of hybrid quantum-
classical (HQC) algorithms requires fast feedback between
the quantum accelerator and the real-time circuit/instruction
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FIGURE 8. Model for near-term quantum-accelerated optimization. (a) Quantum accelerator model. (b) Hybrid quantum accelerators.

generator (i.e., the compiler and the microarchitecture).
Since most quantum algorithms expect a statistical central
tendency over multiple measurement, the expected probabil-
ity of the solution state can be calculated inside the quantum
accelerator itself, aggregating the measurements over multi-
ple runs.

C. FULL STACK FOR QUANTUM OPTIMIZATION ON
HYBRID QUANTUM ACCELERATORS
Optimization problems are ubiquitous and well-suited for
near-term quantum acceleration. In this stack model, a
generic execution model for optimization problems is con-
sidered, as shown in Fig. 8(a). Near-term quantum processors
will be limited in size (number of qubits), quality (noisy
operations), power (connectivity and controllability of every
qubit), as well as the length of reliable computation (deco-
herence). To work with these constraints and still achieve
a quantum advantage over pure-classical computation, the
quantum application community is in favor of a hybrid ap-
proach, where some parts of the computation is carried out
on classical logic.
The application is modeled in the classical host CPU,

and translated to a quantum representation using a quantum
programming language (such as OpenQL). The entire ap-
plication software would generally consist of one or more
quantum kernels (which are suitable for acceleration) and
classical pre/postprocessing that are required to produce the
final result of the problem. The quantum kernels are loaded
to the hybrid quantum accelerator using a hybrid quantum
representation (such as cQASM 2.0).
We consider two different types of quantum computation

models for optimization: the gate-based and the annealing
based methods. Both models can solve an optimization task
encoded as a QUBO model, as discussed later.
The hybrid quantum accelerator typically has two process-

ing elements, as shown in Fig. 8(b). The part that can benefit
computationally from quantum effects, such as superposi-
tion, entanglement and tunneling, are offloaded to the quan-
tum logic. Since near-term quantum processors cannot run
a long computation, the entire process is generally split into
small chunks of quantum circuits/anneals that can be carried
out in burst, measured, and restarted based on the obtained

results. The classical logic keeps track of this progress and
suggests the quantum logic the parameters for the next trial
run.
The optimization problem is modeled as a QUBO ex-

pressed by: minimize y = xtQx, where x is a vector of bi-
nary decision variables (xi ∈ {0, 1}) and Q is a (symmetric
or upper triangular) square matrix of constants. Quantum
annealers use the Ising model of spin variables (with the
binary variables taking the values of {−1,+1}) as the com-
putational model. This is isomorphic to theQUBOmodel and
can, thus, be easy translated to an implementation on the an-
nealer for estimating the minimum energy state of the spins.
QUBO models can also be solved on gate-based quantum
systems using the QAOA. QAOA is a variational algorithm
where the classical optimizer specifies a low-depth quantum
circuit to find the lowest energy configuration of a problem
Hamiltonian. We believe that the choice of the quantum ac-
celerator is dependent on the specific energy landscape of
the application, as well as the characteristics of the quantum
systems (e.g., annealers can process larger problem sizes,
whereas gate models allow longer coherence times).
A specific use-case, we consider here, is the optimiza-

tion problem called TSP. TSP falls under the NP-hard class
(thus outside BQP), so the time to find the exact solution
scales exponentially also on a quantum computer with re-
spect to the problem size. Often a good suboptimal solu-
tion is admissible, thus heuristic algorithms of much lesser
complexity can be employed. Our choice of TSP is moti-
vated by its usefulness in many industrial applications in the
domains of planning, scheduling, logistics, packing, DNA
sequencing, network protocols, telescope control, VLSI
testing, etc.
Given a complete graph G = (V,E ) with weights wi j on

the edge i ↔ j, the TSP aims to find a (directed/undirected)
Hamiltonian cycle of minimumweight, i.e., a cycle that visits
all nodes (cities) of the graph and such that the sum of the
edge weights (travel cost) is minimum. Intuitively, given the
ordered pairwise distance between cities, the TSP involves
finding the shortest route that visits every city once. The
order in which these cities are visited is not constrained. In
our example, shown in Fig. 9, we search the shortest route
between four cities in the Netherlands. The TSP graph is
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FIGURE 9. Route-planning reduction to TSP graph.

made from the scaled Euclidean distance We enumerate all
possible solutions and find an optimal solution for this TSP
with a cost of 1.42 (as shown in green).
Since the total number of visits (time IDs) equals the to-

tal number of nodes (city IDs); the total possible combina-
tions of “(c, t)” is square of the the number of cities. The
QUBO interactions (for the Q matrix off-diagonal entries)
denote pairs of two nodes that can/cannot coexist and the
associated reward/penalty. The interactions are categorized
as follows.

1) Every node must be assigned.
2) Same node assigned to two different time slot is

penalized.
3) Same time slot assigned to two different nodes is

penalized.
4) The additional cost including an edge in the route to

two consecutive time slots is the weight of the edge in
the TSP tour.
We need 16 qubits to encode the example TSP into a
QUBO.

When mapping the QUBO to a realistic hardware (such
as D-Wave 2000Q, or IBM 20 qubit System One), the con-
nectivity of the qubits in the physical topology is important.
The embedding and mapping process considerably increases
the number of required qubits and also the quality of the
solution. In the traveling sales person, for example, which
was given earlier, the highest number of cities that can be
solved on a D-Wave 2000Q machine is nine. The amount of
qubits needed to solve the problem grows as N2 and finding
embedding for the case with ten cities will fail in most (if
not all) cases. On Fujitsu’s digital annealer, where it is fully
connected (no embedding), we should be able to solve 90
cities. Error correction and routing for gate-based models
adds further overhead in number of required qubits and oper-
ations. In classical computation, however, the current record
for exact solutions to the problem, using branch and bound

algorithms is 85 900 cities. Heuristics, such as Monte Carlo
methods, are used for larger inputs.

IV. HARDWARE AND SOFTWARE LONG-TERM VISION
There are different ways of building a computer and the way
it is currently done is to combine multiple heterogeneous
multicore processors. There are several models of quantum
computation. The theoretical models, such as the quantum
circuit model, adiabatic quantum computing, measurement-
based (cluster state) quantum computation, and topologi-
cal quantum computing, are equivalent to each other within
polynomial time reduction. One of the most popular and
by far the most extensively developed is the circuit model
for gate-based quantum computation. This is the conceptual
generalization of Boolean logic gates (e.g. and, or, not,
nand, etc.) used for classical computation. The gate set for
the quantum counterpart allows a richer diversity of states
on the complex vector space (Hilbert space) formed by qubit
registers. The quantum gates, by their unitary property, pre-
serves the two-norm of the amplitude of the states thereby
undergoing a deterministic transformation of the probability
distribution over bit strings. The power of quantum compu-
tation stems from this exponential state space evolving in
superposition while interacting by interference of the ampli-
tudes.
Most of the quantum computer that are made today are

based on superconducting qubits, but in the past, there have
been attempts on ion traps and semiconducting qubits are
becoming very popular. We are just starting to reach the 50
qubit mark in processors but are way below the required
coherence. The big system is shown in Fig. 3, where we
include both the quantum annealer and the quantum gate
accelerator. The same holds for the microarchitecture, for
which, the components need to be developed.
Full connectivity: An important limitation that is not yet

solved in any scalable way is the connectivity between the
qubits, as for two-qubit gates the qubits need to be close to
each other. It means that there is direct connectivity only in
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the neighborhood of each qubits. This has important implica-
tions on the initial mapping of the qubits on the topology and
especially the routing of the qubits to a location close to the
other. Evidently, the kind of logical qubit one uses is very im-
portant. That is also an open issue currently brought to light
by Preskill’s paper [2] stating that SCs are too expensive. It
suggests to move to small codes where much less qubits are
needed to create a logical qubit. That is also why we have
introduced the notion of a perfect qubit such that some of the
complexities and problems can be abstracted away for the
application developer.
Fig. 3 shows our long-term schema of what a quantum

computer can look like in the two directions that are cur-
rently being explored, quantum gates-based and the quantum
annealing approach. To give an overview of what is available
on the market is very difficult as there are no commercially
available computer systems that can be used in any reason-
able way. The market can be split in two parts: Companies
that are building a quantum-gate-based computer and ones
that are focusing much more on optimization problems that
can be solved with quantum annealing.

A. QUANTUM GATE-BASED COMPUTERS
Gate-based quantum algorithms are designed such that the
solution states interfere constructively, whereas the nonso-
lutions interfere destructively, biasing the final probability
distribution in favor of reading out the solution(s). However,
the error rates are still around 10−2/−3 and need to be sub-
stantially improved.

1) IBM: They offer a quantum processor up to 53 qubits.
The qubits have all the normal error behavior but they
can be programmed. The specific thing is that IBM has
not yet looked at any microarchitectural control of the
physical level.

2) Intel: It is looking at both semi- and superconducting
qubits but are in essence more interested in the semi-
conducting qubit processor. The essence is fixing a lot
on the qubit production, partly supported by a solid
microarchitecture.

3) Microsoft: It has some preference for the majorana-
based approach, but they still have to make the first
qubit based on that quasi-particle. They are very active
in the software development.

4) Alibaba: It is a strong player in this field, and they
have a quantum lab that focuses on a range of activities
going from the development of a quantum processor,
quantum-classical algorithms up to simulation of quan-
tum physics.

5) Google: It is also one of the leaders in superconducting
qubits (John Martinis’s team).

6) Rigetti: It is a start-up focusing on the superconducting
quantum processor. They advance well, but there is not
yet any applicable processor in the market even though
there is a processor that can be used for some testing
purposes.

7) Xanadu: The team focuses on continuous variable
quantum computing based on photonics of squeezed
light.

B. QUANTUM ANNEALING BASED COMPUTERS
Quantum annealing has a slightly different software stack
than gate-model quantum computers and must be interpreted
as a more limited edition of a quantum accelerator based
on quantum gates algorithms. Instead of a quantum circuit,
the level of abstraction is the classical Ising model, i.e., the
problem we are interested in solving must be in this form.
Just like superconducting gate-model quantum computers,
superconducting quantum annealers also suffer from limited
connectivity. It means that we have to find a graph minor
embedding, combining several physical qubits into a logical
qubit. Finding an embedding is NP-hard in itself, so proba-
bilistic heuristics are normally used.5 We make a distinction
between companies that offer a quantum computer such as
D-Wave or a quantum-inspired computer such as Fujitsu.
QNNcloud is a third offer based on neural-network and op-
tical based quantum mechanisms.

1) D-Wave: The technology is up to 2000 superconduct-
ing qubits (in 2018), compared to the less than 100
qubits on gate-model quantum computers. D-Wave
systems has been building superconducting quantum
annealers for over a decade. D-Wave systems company
offers an open source suite called Ocean, which can be
used to make small examples of applications that can
be executed on a D-Wave computer.

2) Fujitsu: It has invested in the development of a digi-
tal annealer. They offer a quantum-inspired computer
and not a quantum computer. It is meant for the same
kind of optimization problems that D-Wave can handle
(QUBO problems). They currently offer 8192 nodes
with full-connectivity and a programming interface but
it is not clear and not known how the quantum-inspired
accelerator works.

3) Hitachi: Similar to Fujitsu, Hitachi is also specializing
in making a quantum accelerator based on quantum
annealing using semiconducting qubits.More informa-
tion can be found on the URL site mentioned here.6

4) QNNcloud: It is a company that offers a neural-
network-based optical quantum computer where the
neurons can be put in superposition and quantum-
measurement circuits. A quantum optics implementa-
tion by QNNcloud uses a coherent Ising model, having
different restrictions from superconducting architec-
tures.

5) 1QBit: It develops general-purpose algorithms for
quantum computing hardware, primarily focused on
computational finance, materials science, quantum

5Reference to the QAnnealing workflow: Open source software in quan-
tum computing—arxiv.org/abs/1812.09167.

6https://www.hitachi.com/rd/portal/contents/story/cmos_annealing2/
index.html
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chemistry, and the life sciences. While there is a
plethora of quantum computing languages, frame-
works, and libraries for the gate-model, quantum an-
nealing is less well-established. Their 1Qloud plat-
form is focused on mapping optimization problems
intoQUBO format necessary to computewith quantum
annealing processors and similar devices from Fujitsu,
D-Wave, Hitachi, and NTT (QNNcloud) while their
QEMIST platform is focused on advanced materials
and quantum chemistry research with universal quan-
tum computing processors.

C. QUANTUM PROGRAMMING LANGUAGES
A last component of the offering is related to the program-
ming language that can be used.

1) Qiskit [11]: It is IBMs open-source quantum com-
puting software development framework for leverag-
ing available quantum processors. It consists of Terra
(core compiler and libraries for quantum program-
ming), Aer (noisemodeling and noise-free simulators),
Ignis (characterization of errors and QEC), and Aqua
(applications).

2) Forest [14]: It is Rigetti’s SDK that includes a simula-
tor and cloud connection utilities.

3) CirQ [15]: It is Google’s open-source quantum frame-
work for experimentingwith NISQ algorithms on near-
term quantum processors. Also, the OpenFermion plat-
form helps in translating problems in chemistry and
materials science into quantum circuits.

4) Strawberry Fields [16]: It is Xanadu’s full-stack
Python library for designing, simulating, and optimiz-
ing quantum optical circuits. Xanadu also offers the
Blackbird quantum programming language and the
PennyLane QML platform.

5) XACC [17]: A vendor-independent solution is XACC,
an extensible compilation framework for HQC com-
puting architectures.

6) Ocean Software [18]: It is a quantum macroassembler
for D-Wave systems from Los Alamos National Lab-
oratories. It fills a gap in the software ecosystem for
D-Wave’s adiabatic quantum computers by shielding
the programmer from having to know system-specific
hardware details while still enabling programs to be
expressed at a fairly low-level of abstraction.

7) OpenQL: The language that was discussed in this
article earlier.

V. TOWARD IN-MEMORY COMPUTING
In-memory computing is becoming increasingly important
as a new computer architecture. Rather than moving the huge
amounts of data around to the logic, it is much more mean-
ingful to move the logic around and keep the data as local as
possible without moving it around, using, for instance, inno-
vative technology, such as memristors. Memristors were the-
oretically defined already several decades ago by Leon Chua,

but recently the semiconductor manufacturers are seriously
investigating their production. The key idea of a memristor is
that it can be used to store data but also to make calculations.
This is why memristors are an ideal candidate for making an
in-memory architecture. The concept of in-memory comput-
ing is described in a paper where the concept is illustrated
using memristor-based devices [39]. The main advantage of
memristors is that they can be used both to store information
and to work on it. So an intelligent merging of logic with
data storage is the key of an in-memory architecture. It is a
completely new way of designing algorithms and computing
systems and it is far from evident what the design rules are
that are needed to fully exploit the in-memory computing
potential.
The link with quantum computing is very straight: the

quantum logic is directly applied on the qubits and the qubits
do not need to be transported to any quantum arithmetic
and logical unit (ALU) before being processed. In quantum
computing, the routing of qubit states is, therefore, also a
very important problem. The qubits need to be put on the
quantum chip in a way that the movement of qubit states is
as minimal as possible. Also what routing protocols will be
used for any quantum chip is a big open area of research
in quantum computer engineering. Currently, in any of the
semiconducting or superconducting quantum implementa-
tions the interaction between qubits has a NN constraint.
That induces the need for deciding where to map and how
to route the qubits used in the algorithm on the quantum
chip. This qubit routing is an important and illustrative exam-
ple of what in-memory quantum computing actually means.
When adopting an in-memory computing architecture, a cru-
cial challenge is to decide on the placement of the data that
needs to be processed and to have a programming language
and compiler, such that the appropriate logic can place close
to the data. Any kind of algorithm will have data that the
algorithm is changing to get a result and it is quite unlikely
that there is no dependence between any of those data items.
What that implies is that intermediate results will have to
move around in the architecture such that it reaches the place
where that result is used in the next computational step.
Even though in-memory puts all the data in some kind of
memory, those data items still have to move around such that
a final result can be computed by the classical host-CPU.
From a quantum physics point of view, the main challenges
are the coherence of the qubits, the fidelity of the opera-
tions and the overall error rate of the quantum computa-
tion, involving both the qubits as well as their operation and
the involved error-corrections. This is already being suffi-
ciently studied by the quantum community but there are also
clearly other challenges that need to be researched as soon as
possible.
One of the main problems is the error-proneness of the

qubit behavior, which consumes up to 90% of the (quan-
tum) computer time. As explained, the routing and moving
around of qubit states is a very important challenge. So any
progress the physics community is making in that respect is
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FIGURE 10. Quantum computer development future projections. (a) Development time frame. (b) Structural division between perfect and realistic
qubits.

extremely important as it will reduce substantially the pres-
sure on the microarchitecture and the overall system design.
Brennen et al. [40] present a quantum computer architecture
that addresses the important problem of qubit state routing
for NN two-qubit gate execution. They use an idea from the
von-Neumann architecture of classical machines such as a
quantum bus, which is a refreshable entanglement resource
to connect distant memory nodes. The overall approach is at
the level of entanglement purification and qubit pairs with
different fidelities. Given that a quantum computation on
qubits complies to the same overall in-memory comput-
ing logic, that particular architecture is definitely interesting
for any quantum device. The challenges involved with in-
memory computing are, therefore, the same as for quantum
computing. The underlying technology are not memristors
or other technology but any of the quantum technologies and
require also a full-stack integration of the different layers. In
that sense, the quantum computing research should be based
very much on the basic principles of in-memory computing.

VI. FUTURE PROSPECTS
It is very important that companies and other organizations
start investing as soon as possible in quantum technology.
Fig. 10 shows a projection of when different parts of software
and hardware development will be required to create an ef-
ficient quantum computer. The distinction is made between
the use of quantum accelerators and that of manufacturing
a quantum chip. In general, any commercial or other orga-
nization is interested in new technology if the technology
readiness level (TRL) is high enough. If we adopt the same
levels as for classical technology, the TRL needs to have
reached level 8 and that is sketched in the red and black line
that are shown in Fig. 10(a). There are four vertical, green-
dotted lines to illustrate three moments leading to the last
phase where we assume there is enough software or hardware

maturity that can be used for any accelerator one wants to
build. Phase I focuses on the reflection by the organization
on the concrete need that exists and for which a quantum
accelerator logic can be developed. Phase II resembles the
team members brainstorming on the logic for the quantum
accelerator. They will express that logic in OpenQL and
develop some prototype microarchitecture and executed the
logic on the QX-simulator. Phase III then focuses exclusively
on the actual implementation and execution of the quantum
accelerator logic, whether on an experimental quantum chip
or on the QX simulator. This is the moment when the top
and low curves can be combined in a real quantum prototype
of the accelerator. Fig. 10(b) represents the way that the two
lines of research are currently separated and which will be
joined in maybe over the next decade. The division was used
in this article where we made the distinction between the use
of perfect and realistic qubits and how that determines the
different layers in the full stack.

VII. CONCLUSION
Over the last couple of decades, quantum computing has
been a 1-D research effort focusing on understanding how
to make coherent qubits and how to implement the different
universal quantum gate sets on any of the multiple quan-
tum approaches. As far as computer architectural choices
were made, the community has been focused very much on
the von Neumann computer architecture and defined qubits
in terms of memory and processing qubits. However, com-
puter engineering as a field has understood by now that this
approach never scales to the size needed for handling, for
instance, the Big Data volumes that worldwide are being
generated and collected. Two approaches seem to be very
promising: the first comes from the accelerator community
and involves the full-stack integration of the different layers
that are needed to build the quantum accelerator. The use of
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perfect qubits in that context makes sense as the end-users
of any quantum accelerator can focus their reasoning on the
quantum logic of the application and verify it through some
implementation of the microarchitecture and the execution
of the quantum instructions on the quantum simulator. The
second option is to use the full stack for the control of, for
instance, superconducting and semiconducting qubits with
a microcode layer where we translate any kind of common
QASM into an operational set of microinstructions, for a
meaningful adoption of existing computer technology. It is
very difficult to predict the performance improvement of a
quantum computational device but that it will bemuch higher
than any existing computational technology is clear. It also
depends on the quantum application that is being looked at
and the way the qubits are manufactured. Research is still
needed for at least a decade before the full-integration effects
become visible and verifiable.

REFERENCES
[1] S. Vassiliadis, S. Wong, G. Gaydadjiev, K. Bertels, G. Kuzmanov,

and E. M. Panainte, “The MOLEN polymorphic processor,” IEEE
Trans. Comput., vol. 53, no. 11, pp. 1363–1375, Nov. 2004, doi:
10.1109/TC.2004.104.

[2] J. Preskill, “Quantum computing in the NISQ era and beyond,” Quantum,
vol. 2, 2018, Art. no. 79, doi: 10.22331/q-2018-08-06-79.

[3] R. P. Feynman, “Simulating physics with computers,” Int. J. Theor. Phys.,
vol. 21, pp. 467–488, 1982, doi: 10.1007/BF02650179.

[4] R. Van Meter and C. Horsman, “A blueprint for building a quantum com-
puter,” Commun. ACM, vol. 56, pp. 84–93, 2013, doi: 10.1145/2494568.

[5] D. P. DiVincenzo, “The physical implementation of quantum compu-
tation,” Fortschritte Phys., vol. 48, no. 9-11, pp. 771–783, 2000, doi:
10.1002/1521-3978(200009)48:9/11<771::AID-PROP771>3.0.CO;2-E.

[6] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” inProc. 35th Annu. Symp. Foundations Comput. Sci., 1994,
pp. 124–134, doi: 10.1109/SFCS.1994.365700.

[7] C. Zalka, “Grover’s quantum searching algorithm is optimal,” Phys. Rev.
A, vol. 60, 1999, Art. no. 2746, doi: 10.1103/PhysRevA.60.2746.

[8] E. J. Houtgast, V.-M. Sima, K. Bertels, and Z. Al-Ars, “Hardware
acceleration of BWA-MEM genomic short read mapping with longer
read length,” Comput. Biol. Chem., vol. 75, pp. 54–64, 2018, doi:
10.1016/j.compbiolchem.2018.03.024.

[9] K. Svore et al., “Q#: Enabling scalable quantum computing and develop-
ment with a high-level DSL,” in Proc. Real World Domain Specific Lang.
Workshop, ACM, 2018, pp. 7:1–7:10, doi: 10.1145/3183895.3183901.

[10] A. J. Abhari et al., “Scaffold: Quantum programming language,” Tech.
Rep. TR-934-12, Princeton Univ., Princeton, NJ, USA, 2012.

[11] “QISKit—Quantum programming,” 2020. [Online]. Available: https://
www.qiskit.org

[12] A. S. Green, P. L. Lumsdaine, N. J. Ross, P. Selinger, and B. Valiron,
“An introduction to quantum programming in Quipper,” in Proc. Int. Conf.
Reversible Comput., Springer, 2013, pp. 110–124.

[13] N. Khammassi et al., “OpenQL 1.0: A quantum programming language
for quantum accelerators,” QCA Tech. Rep. 8, QCA Lab, Delft University
of Technology, Delft, The Netherlands, 2018.

[14] “Rigetti forest software development kit,” 2017. [Online]. Available: http:
//docs.rigetti.com/en/stable/

[15] “CirQ—Software development kit,” 2017. [Online]. Available: https://
github.com/quantumlib/Cirq

[16] “Strawberry fields—Photonic quantum computing,” 2017. [Online].
Available: https://strawberryfields.readthedocs.io/en/stable/

[17] “XACC quantum computing,” 2018. [Online]. Available: https://xacc.
readthedocs.io/en/latest/

[18] “Ocean software for quantum computing,” 2016. [Online]. Available:
https://ocean.dwavesys.com

[19] D. Riste et al., “Detecting bit-flip errors in a logical qubit using stabi-
lizer measurements,” Nature Commun., vol. 6, 2015, Art. no. 6983, doi:
10.1038/ncomms7983.

[20] A. Córcoles et al., “Demonstration of a quantum error detection code using
a square lattice of four superconducting qubits,” Nature Commun., vol. 6,
2015, Art. no. 6979, doi: 10.1038/ncomms7979.

[21] J. Kelly et al., “State preservation by repetitive error detection in a su-
perconducting quantum circuit,” Nature, vol. 519, pp. 66–69, 2015, doi:
10.1038/nature14270.

[22] D. A. Lidar and T. A. Burn,Quantum Error Correction.Cambridge, U.K.:
Cambridge Univ. Press, 2013.

[23] P. W. Shor, “Scheme for reducing decoherence in quantum com-
puter memory,” Phys. Rev. A, vol. 52, 1995, Art. no. R2493, doi:
10.1103/PhysRevA.52.r2493.

[24] A. Steane, “Multiple-particle interference and quantum error correction,”
in Proc. Roy. Soc. London A: Math., Phys., Eng. Sci., vol. 452, 1996, Art.
no. 2551, doi: 10.1098/rspa.1996.0136.

[25] A. R. Calderbank and P. W. Shor, “Good quantum error-correcting
codes exist,” Phys. Rev. A, vol. 54, 1996, Art. no. 1098, doi:
10.1103/PhysRevA.54.1098.

[26] D. Gottesman, “Class of quantum error-correcting codes saturating the
quantum hamming bound,” Phys. Rev. A, vol. 54, 1996, Art. no. 1862,
doi: 10.1103/PhysRevA.54.1862.

[27] H. Bombin, and M. A. Martin-Delgado, “Topological quantum dis-
tillation,” Phys. Rev. Lett., vol. 97, 2006, Art. no. 180501, doi:
10.1103/PhysRevLett.97.180501.

[28] A. G. Fowler, M. Mariantoni, J. M. Martinis, and A. N. Cleland, “Surface
codes: Towards practical large-scale quantum computation,” Phys. Rev. A,
vol. 86, 2012, Art. no. 032324, doi: 10.1103/PhysRevA.86.032324.

[29] C. Lin, S. Sur-Kolay, and N. K. Jha, “PAQCS: Physical design-
aware fault-tolerant quantum circuit synthesis,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 23, no. 7, pp. 1221–1234, Jul. 2015, doi:
10.1109/TVLSI.2014.2337302.

[30] M. J. Dousti and M. Pedram, “Minimizing the latency of quantum circuits
during mapping to the ion-trap circuit fabric,” in Proc. Conf. Des., Autom.,
Test Europe, 2012, pp. 840–843, doi: 10.5555/2492708.2492917.

[31] C. Horsman, A. G. Fowler, S. Devitt, and R. Van Meter, “Surface code
quantum computing by lattice surgery,” New J. Phys., vol. 14, 2012, Art.
no. 123011, doi: 10.1088/1367-2630/14/12/123011.

[32] X. Fu et al., “eQASM: An executable quantum instruction set architec-
ture,” in Proc. IEEE Int. Symp. High Perform. Comput. Architecture, 2019,
pp. 224–237, doi: 10.1109/HPCA.2019.00040.

[33] L. K. Grover, “Quantum mechanics helps in searching for a needle
in a haystack,” Phys. Rev. Lett., vol. 79, 1997, Art. no. 325, doi:
10.1103/PhysRevLett.79.325.

[34] D. V. P. Wang et al., “Artificial associative memory using quantum pro-
cesses,” in Proc. Joint Conf. Inf. Sci., 1998, vol. 2, pp. 218–221.

[35] A. Sarkar, Quantum algorithms for pattern-matching in genomic se-
quences, M.Sc. thesis, Quantum and Comput. Eng., Delft Univ. Technol.,
Delft, The Netherlands, 2018.

[36] A. Sarkar, Z. Al-Ars, C. G. Almudever, and K. Bertels, “An al-
gorithm for DNA read alignment on quantum accelerators,” 2019,
arXiv:1909.05563.

[37] K. M. Svore, A. V. Aho, A. W. Cross, I. Chuang, and I. L. Markov,
“A layered software architecture for quantum computing design tools,”
Computer, vol. 39, pp. 74–83, 2006, doi: 10.1109/MC.2006.4.

[38] T. Häner, D. S. Steiger, K. Svore, and M. Troyer, “A software method-
ology for compiling quantum programs,” Quantum Sci. Technol., vol. 3,
2018. Art. no. 020501, doi: 10.1088/2058-9565/aaa5cc.

[39] S. Hamdioui et al., “Memristor based computation-in-memory architec-
ture for data-intensive applications,” in Proc. Des., Autom., Test Europe
Conf. Exhib., 2015, pp. 1718–1725, doi: 10.7873/DATE.2015.1136.

[40] G. K. Brennen, D. Song, and C. J. Williams, “Quantum-computer archi-
tecture using nonlocal interactions,” Phys. Rev. A, vol. 67, 2003, Art. no.
050302, doi: 10.1103/PhysRevA.67.050302.

VOLUME 1, 2020 4500717

https://dx.doi.org/10.1109/TC.2004.104
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1007/BF02650179
https://dx.doi.org/10.1145/2494568
https://dx.doi.org/10.1002/1521-3978(200009)48:9/11&lt;771::AID-PROP771&gt;3.0.CO;2-E
https://dx.doi.org/10.1109/SFCS.1994.365700
https://dx.doi.org/10.1103/PhysRevA.60.2746
https://dx.doi.org/10.1016/j.compbiolchem.2018.03.024
https://dx.doi.org/10.1145/3183895.3183901
https://www.qiskit.org
http://docs.rigetti.com/en/stable/
https://github.com/quantumlib/Cirq
https://strawberryfields.readthedocs.io/en/stable/
https://xacc.readthedocs.io/en/latest/
https://ocean.dwavesys.com
https://dx.doi.org/10.1038/ncomms7983
https://dx.doi.org/10.1038/ncomms7979
https://dx.doi.org/10.1038/nature14270
https://dx.doi.org/10.1103/PhysRevA.52.r2493
https://dx.doi.org/10.1098/rspa.1996.0136
https://dx.doi.org/10.1103/PhysRevA.54.1098
https://dx.doi.org/10.1103/PhysRevA.54.1862
https://dx.doi.org/10.1103/PhysRevLett.97.180501
https://dx.doi.org/10.1103/PhysRevA.86.032324
https://dx.doi.org/10.1109/TVLSI.2014.2337302
https://dx.doi.org/10.5555/2492708.2492917
https://dx.doi.org/10.1088/1367-2630/14/12/123011
https://dx.doi.org/10.1109/HPCA.2019.00040
https://dx.doi.org/10.1103/PhysRevLett.79.325
https://dx.doi.org/10.1109/MC.2006.4
https://dx.doi.org/10.1088/2058-9565/aaa5cc
https://dx.doi.org/10.7873/DATE.2015.1136
https://dx.doi.org/10.1103/PhysRevA.67.050302


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


