C241 Homework Assignment 4

- 1. Which of the following formulas are tautologies and which are contradictions? Which of the formulas are logically equivalent to each other?
 - (a) $p \wedge (q \vee r)$
 - (b) $(\neg p \land r) \Rightarrow (q \lor r)$
 - (c) $(p \land q) \lor (p \lor r)$
 - (d) $\neg (r \Rightarrow q \land r)$
 - (e) $\neg (p \Rightarrow (q \Rightarrow p)$
 - (f) $((p \Rightarrow q) \lor (r \land s \lor t)) \lor (p \land \neg q)$

SOLUTION

As demonstrated by their truth tables below, (a), (c) and (d) are contigencies; (b) and (f) are tautologies; (e) is a contradiction. None of the formulas are equivalent.

- \overline{F} TTTTTFTTTTFTTFFTFT

(f) The truth table is large enough that it pays to analyze the expression first. If you recognize that $\neg(p\Rightarrow q)$ eq $(p\wedge \neg q)$ then this formula is an instance of $X\vee Y\vee \neg X$ for $X\equiv (p\Rightarrow q)$ and $Y\equiv ((r\wedge s)\vee t)$. Since

$$X \lor Y \lor \neg X$$
 eq $(X \lor \neg X) \lor Y$ eq $T \lor Y$ eq T

the whole formula is a tautology.

p	q	r	s	t	(((p	\Rightarrow	q)	V	((r	\wedge	s)	V	t))	V	(p	Λ	\neg	q))
\overline{F}	F	F	F	F	F	T	F	T	F	F	F	F	F	T	F	F	T	F
F	F	F	F	$T \mid$	F	T	F	T	F	F	F	T	T	T	F	F	T	F
F	F	F	T	F	F	T	F	T	F	F	T	F	F	T	F	F	T	F
F	F	F	T	T	F	T	F	T	F	F	T	T	T	T	F	F	T	F
F	F	T	F	F	F	T	F	T	T	F	F	F	F	T	F	F	T	F
F	F	T	F	T	F	T	F	T	T	F	F	T	T	T	F	F	T	F
F	F	T	T	F	F	T	F	T	T	T	T	T	F	T	F	F	T	F
F	F	T	T	T	F	T	F	T	T	T	T	T	T	T	F	F	T	F
\overline{F}	T	F	F	\overline{F}	F	T	T	T	F	F	F	F	F	T	F	F	F	T
F	T	F	F	T	F	T	T	T	F	F	F	T	T	T	F	F	F	T
F	T	F	T	F	F	T	T	T	F	F	T	F	F	T	F	F	F	T
F	T	F	T	T	F	T	T	T	F	F	T	T	T	T	F	F	F	T
F	T	T	F	F	F	T	T	T	T	F	F	F	F	T	F	F	F	T
F	T	T	F	T	F	T	T	T	T	F	F	T	T	T	F	F	F	T
F	T	T	T	F	F	T	T	T	T	T	T	T	F	T	F	F	F	T
F	T	T	T	T	F	T	T	T	T	T	T	T	T	T	F	F	F	T
\overline{T}	F	F	F	\overline{F}	T	F	F	F	F	F	F	F	F	T	T	T	T	F
T	F	F	F	T	T	F	F	T	F	F	F	T	T	T	T	T	T	F
T	F	F	T	F	T	F	F	F	F	F	T	F	F	T	T	T	T	F
T	F	F	T	T	T	F	F	T	F	F	T	T	T	T	T	T	T	F
T	F	T	F	F	T	F	F	F	T	F	F	F	F	T	T	T	T	F
T	F	T	F	T	T	F	F	T	T	F	F	T	T	T	T	T	T	F
T	F	T	T	F	T	F	F	T	T	T	T	T	F	T	T	T	T	F
T	F	T	T	T	T	F	F	T	T	T	T	T	T	T	T	T	T	F
\overline{T}	T	F	F	\overline{F}	T	T	T	T	F	F	F	F	F	T	T	F	F	T
T	T	F	F	T	T	T	T	T	F	F	F	T	T	T	T	F	F	T
T	T	F	T	F	T	T	T	T	F	F	T	F	F	T	T	F	F	T
T	T	F	T	T	T	T	T	T	F	F	T	T	T	T	T	F	F	T
T	T	T	F	F	T	T	T	T	T	F	F	F	F	T	T	F	F	T
T	T	T	F	T	T	T	T	T	T	F	F	T	T	T	T	F	F	T
T	T	T	T	F	T	T	T	T	T	T	T	T	F	T	T	F	F	T
T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	T	F	F	T

2. Use a truth table to show that

- (a) $\neg (p \lor q)$ is <u>not</u> logically equivalent to $(\neg p \lor \neg q)$, and
- (b) $\neg (p \land q)$ is \underline{not} logically equivalent to $(\neg p \land \neg q)$.

Remember these facts.

SOLUTION

$$\begin{array}{c|ccccc} (a) & p & q & \neg (p \lor q) & \neg p \lor \neg q \\ \hline F & F & T & T \\ F & T & F & T \\ T & F & F & T \\ T & T & F & F \\ \end{array}$$

$$\begin{array}{c|c|c|c} \text{(b)} & p & q & \neg (p \wedge q) & \neg p \wedge \neg q \\ \hline F & F & T & T \\ F & T & T & F \\ T & F & T & F \\ T & T & F & F \\ \end{array}$$

3. Consider the logical operation defined below:

$$\begin{array}{|c|c|c|c|} \hline P & Q & P \downarrow Q \\ \hline F & F & T \\ F & T & T \\ T & F & T \\ T & T & F \\ \hline \end{array}$$

Show that ' \downarrow ' can be used to implement (in the sense of Prop. 3.2) all of the operations of Definition 3.1.

SOLUTION

By Proposition 3.2, all the operations can be implemented with \lor ' and \lnot ', so it suffices to show how these can be implemented with \circlearrowleft '.

$$\begin{array}{ccc}
\neg P & \rightarrow & P \downarrow P \\
P \lor Q & \rightarrow & (P \downarrow P) \downarrow (Q \downarrow Q) \\
\hline
P \land Q & \rightarrow & (P \downarrow Q) \downarrow (P \downarrow Q) \\
P \Rightarrow Q & \rightarrow & P \downarrow (Q \downarrow Q) \\
P \Leftrightarrow Q & \rightarrow & ((P \downarrow P) \downarrow (Q \downarrow Q)) \downarrow (P \downarrow Q) \\
P \Leftrightarrow Q & \rightarrow & (P \downarrow (Q \downarrow Q)) \downarrow (P \downarrow Q)
\end{array}$$

- 4. Let P stand for the proposition "Sue says it." Let Q stand for the proposition "Sam saw it." Let R stand for the proposition "Sid did it." Express the following sentences as formulas involving the logical connectives. If there is more than one way to translate a sentence, use truth tables to explain any differences in the meaning among these translations.
 - (a) Sid did it, Sam saw it, and Sue says it.
 - (b) If Sid did it, Sam saw it.
 - (c) Sid did it only if Sam saw it.
 - (d) Sue says it only if Sid did it, and Sam saw it.
 - (e) If Sue says it implies Sam saw it, Sid did it.

SOLUTION

- (a) $R \wedge Q \wedge P$
- (b) $R \Rightarrow Q$
- (c) $R \Rightarrow Q$
- (d) The comma indicates that the interpretation should be $(P \Rightarrow R) \land Q$. Ignoring the comma, another possibility is $P \Rightarrow (R \land Q)$. The truth table shows that these are distinct interpretations.

P	\overline{Q}	R	$(P \Rightarrow R)$	\wedge	Q	P	\Rightarrow	$(R \wedge Q)$
F	F	F		F			T	
F	F	T		F			T	
F	T	F		T			T	
F	T	T		T			T	
T	F	F		F			F	
T	F	T		F			F	
T	T	F		F			T	
$\mid T$	T	T		T			T	

(e) $(P \Rightarrow Q) \Rightarrow R$, which is not the same as $P \Rightarrow (Q \Rightarrow R)$

P	Q	R	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$
F	F	F	F	T
F	F	T	T	T
F	T	F	F	T
F	T	T	T	T
T	F	F	T	T
T	F	T	T	T
T	T	F	F	F
$\mid T \mid$	T	T	T	T

5. Determine whether the following proposition is a tautology.

$$(a \lor b \Leftrightarrow c) \land (d \lor e) \Leftrightarrow ((a \lor b \Leftrightarrow c) \land d) \lor ((a \lor b \Leftrightarrow c) \land e)$$

SOLUTION

The problem is simpler to solve if you recognize that a single term occurs three times in the proposition:

$$\boxed{(a \lor b \Leftrightarrow c) \land (d \lor e) \Leftrightarrow (\boxed{(a \lor b \Leftrightarrow c)} \land d) \lor (\boxed{(a \lor b \Leftrightarrow c)} \land e)}$$

Call this repeated term X. It should suffice to determine whether

$$X \wedge (d \vee e) \Leftrightarrow (X \wedge d) \vee (X \wedge e)$$

is a tautology because the original proposition can be obtained by substituting term \forall for the X. The truth table for this term has eight cases, where the original had thirty-two.

X	d	e	X	\wedge	$(d \lor e)$	\Leftrightarrow	$(X \wedge d)$	\vee	$(X \wedge e)$
\overline{F}	F	F	F	F	F	T	F	F	F
F	F	T	F	F	T	T	F	F	F
F	T	F	F	F	T	T	F	F	F
F	T	T	F	F	T	T	F	F	F
T	F	F	T	F	F	T	F	F	F
T	F	T	T	T	T	T	F	T	T
T	T	F	T	T	T	T	T	T	F
T	T	T	$\mid T \mid$	T	T	T	T	T	T

Thus, the proposition is a tautology. By the way, we have just shown that ' \land ' distributes over ' \lor ', in the same way that multiplication distributes over addition.

In general we should check whether $a \lor b \Leftrightarrow c$ is a tautology or a contradiction. In either case the problem is easier because the truth table is smaller. But it doesn't matter what X evaluates to; $X \land (d \lor e) \Leftrightarrow (X \land d) \lor (X \land e)$ still evaluates to T.

6. Show whether the following pairs of formulas are equivalent.

(a)
$$(p \Rightarrow q) \Rightarrow r$$
 and $p \Rightarrow (q \Rightarrow r)$

(b)
$$p \Rightarrow (q \Rightarrow r)$$
 and $(p \land q) \Rightarrow r$

(c)
$$(p \land q) \Rightarrow r$$
 and $(p \Rightarrow r) \land (q \Rightarrow r)$

SOLUTION

(a)
$$(p \Rightarrow q) \Rightarrow r \text{ and } p \Rightarrow (q \Rightarrow r)$$

Since their truth tables differ, these formulas are not equivalent

(b)
$$p \Rightarrow (q \Rightarrow r)$$
 and $(p \land q) \Rightarrow r$

These formulas are equivalent; their truth tables are the same

p	\overline{q}	r	p	\Rightarrow	$(q \Rightarrow r)$	$(p \wedge q)$	\Rightarrow	r
T	T	T	T	T	T	T	T	T
T	T	F	T	F	F	T	F	F
T	F	T	T	T	T	F	T	T
T	F	F	T	T	T	F	T	F
F	T	T	F	T	T	F	T	T
F	T	F	F	T	F	F	T	F
F	F	T	F	T	T	F	T	T
F	F	F	F	T	F	F	T	F

(c)
$$(p \land q) \Rightarrow r \text{ and } (p \Rightarrow r) \land (q \Rightarrow r)$$

 $Since \ their \ truth \ tables \ differ, \ these \ formulas \ are \ not \ equivalent$

p	q	r	$(p \wedge q)$	\Rightarrow	r	$(p \Rightarrow r)$	\wedge	$(q \Rightarrow r)$	
T	T	T	T	T	T	T	T	T	
$\mid T \mid$	T	F	T	F	F	F	F	F	
T	F	T	F	T	$\mid T \mid$	T	T	T	
T	F	F	F	T	F	F	F	T	←
F	T	T	F	T	T	T	T	T	
F	T	F	F	T	F	T	F	F	←
F	F	T	F	T	$\mid T$	T	T	T	
F	F	F	F	T	F	T	T	T	

- 7. For each of the following propositions, give the DNF under the variable ordering $\langle a,b,c\rangle.$
 - (a) $a \vee (\neg a \wedge \neg b)$
 - (b) $a \Rightarrow (b \Leftrightarrow c)$
 - (c) $(\neg b \land c) \land (\neg a \Rightarrow \neg c) \land (c \land (\neg b \lor \neg a))$
 - (d) $(a \Rightarrow b) \Leftrightarrow (b \Rightarrow c)$

SOLUTION

(a) Variable c does not appear in this formula, so it may be excluded from the truth table.

a	b	c	$\mid a \mid$	$ \vee $	$(\neg a$	\wedge	$\neg b)$	
\overline{F}	F	_		$\mid T \mid$		T		\leftarrow
F	T	_		F		F		
T	F	_		T		F		\leftarrow
T	T	_		T		F		\leftarrow

However, a DNF ovar $\langle a,b,c\rangle$ might be required to include all c-clauses. This "full" DNF is

$$(\neg a \wedge \neg b \wedge \neg c) \vee (\neg a \wedge \neg b \wedge c) \vee (\neg a \wedge b \wedge \neg c) \vee (\neg a \wedge b \wedge c) \vee (\neg a \wedge \neg b \wedge \neg c) \vee (a \wedge b \wedge \neg c) \vee (a \wedge b \wedge c) \vee (a \wedge b \wedge \neg c) \vee (a$$

If c is omitted, the resulting DNF is

$$(\neg a \land \neg b) \lor (\neg a \land b) \lor (a \land b)$$

(b)

a	b	c	$a \Rightarrow (b \Leftrightarrow c)$	
\overline{F}	F	F	T	\leftarrow
F	F	T	T	\leftarrow
F	T	F	T	\leftarrow
F	T	T	T	\leftarrow
T	F	F	T	\leftarrow
T	F	T	F	
T	T	F	F	
T	T	T	T	\leftarrow

The DNF is

 $(\neg a \wedge \neg b \wedge \neg c) \vee (\neg a \wedge \neg b \wedge c) \vee (\neg a \wedge b \wedge \neg c) \vee (\neg a \wedge b \wedge c) \vee (a \wedge \neg b \wedge \neg c) \vee (a \wedge b \neg$

(c) In the truth table below, working from left to right, I stopped once I reached a conjunct that evaluates to F. The red entries show where I stopped.

a	b	c	$(\neg b \wedge c)$	\wedge	$(\neg a \Rightarrow \neg c)$	\wedge	$(c \wedge (\neg b \vee \neg a))$
\overline{F}	F	F	F	F	T	F	F
F	F	T	T	F	F	F	T
F	T	F	F	F	T	F	F
F	T	T	F	F	F	F	T
T	F	F	F	F	T	F	F
T	F	T	T	T	T	T	T
T	T	F	F	F	T	F	F
T	T	T	F	F	T	F	F

The DNF contains no clauses. The "or" of zero terms evaluates to F, so one could write $DNF \equiv T$.

 $DNF \equiv (\neg a \wedge \neg b \wedge \neg c) \vee (\neg a \wedge \neg b \wedge c) \vee (\neg a \wedge b \wedge c) \vee (a \wedge b \wedge c)$

8. Reduce the following boolean expressions to simpler terms

(a)
$$xy + (x+y)\overline{z} + y$$

(b)
$$x + y + \overline{(\overline{x} + y + z)}$$

(c)
$$yz + wx + z + [wz(xy + wz)]$$

SOLUTION

(a)
$$xy + (x+y)\overline{z} + y$$

 $= xy + y + (x+y)\overline{z}$ commutativity
 $= xy + 1y + (x+y)\overline{z}$ Identity
 $= yx + y1 + (x+y)\overline{z}$ commutativity, twice
 $= y(x+1) + y\overline{z} + x\overline{z}$ distributivity
 $= y1 + y\overline{z} + x\overline{z}$ dominance
 $= y(1+\overline{z}) + x\overline{z}$ dominance
 $= y1 + x\overline{z}$ dominance
 $= y + x\overline{z}$ identity

For the remaining derivations, rearrangement by commutativity and associativity is implicit.

(b)
$$x + y + \overline{(\overline{x} + y + z)}$$

 $= x + y + (\overline{\overline{x}} \ \overline{y} \ \overline{z})$ DeMorgan's Law
 $= x + y + (x \ \overline{y} \ \overline{z})$ negation
 $= y + x + (x \ \overline{y} \ \overline{z})$ commutativity
 $= y + x \ 1 + x \ \overline{y} \ \overline{z}$ identity
 $= y + x \ (1 + \overline{y} \ \overline{z})$ distributivity
 $= y + x$ dominance, identity

(c)
$$yz + wx + z + [wz(xy + wz)]$$

 $= yz + wx + z + wzxy + wzwz$ distributivity, twice
 $= yz + wx + z + wzxy + wz$ idempotence
 $= wx + z + yz + wzxy + wz$ commutativity, associativity
 $= wx + z(1 + y + wxy + w)$ distributivity
 $= wx + z$ dominance, identity

- **9.** Write the truth tables for the following logical formulas and state whether each is a tautology, a contradiction, or neither (a contingency).
 - (a) $P \wedge (Q \vee R)$
 - (b) $(P \land \neg P) \Rightarrow Q$
 - (c) $P \Rightarrow (Q \vee \neg Q)$

SOLUTION

				(a)			(b)			(c)		
R	P	Q	P	\wedge	$(Q \vee R)$	$(P \land \neg P)$	\Rightarrow	Q	P	\Rightarrow	$(Q \vee \neg Q)$	
\overline{T}	T	T	T	T	T	F	T	T	T	T	\overline{T}	
T	T	F	T	T	T	F	T	F	T	T	T	
T	F	T	T	T	T	F	T	T	F	T	T	
T	F	F	T	F	F	F	T	F	F	T	T	
F	T	T	F	F	T	_	_			_	_	
F	T	F	F	F	F	_	_			_	_	
F	F	T	F	F	T	_	_			_	_	
F	F	F	F	F	F	_	_			_		
			contigency			tauto	tautology			tautology		

Comments.

- 1. I chose to arrange the truth table variables in the order R, P, Q because the formula in Parts (b) and (c) contain only P and Q. This way, I could use just the upper half of the table as a truth table for (c).
- 2. In Part (b) once I recognized that the premise $P \land \neg P$, is a contradiction, I realized that evaluation of the implication $(P \land \neg P) \Rightarrow Q$ "reduces" to $F \Rightarrow Q$, which is always T.
- 3. Similarly, in Part (c), once I recognized that the conclusion $Q \vee \neg Q$ is always T, and $P \Rightarrow T$ is always T

No Supplemental Problem this week.