C241 Homework Assignment 4

- 1. Which of the following formulas are tautologies and which are contradictions? Which of the formulas are logically equivalent to each other?
 - (a) $p \wedge (q \vee r)$
 - (b) $(\neg p \land r) \Rightarrow (q \lor r)$
 - (c) $(p \land q) \lor (p \lor r)$
 - (d) $\neg(r \Rightarrow q \land r)$
 - (e) $\neg(p \Rightarrow (q \Rightarrow p)$
 - (f) $((p \Rightarrow q) \lor (r \land s \lor t)) \lor (p \land \neg q)$

- **2.** Use a truth table to show that
 - (a) $\neg(p \lor q)$ is <u>not</u> logically equivalent to $(\neg p \lor \neg q)$, and
 - (b) $\neg (p \land q)$ is <u>not</u> logically equivalent to $(\neg p \land \neg q)$.

Remember these facts.

3. Consider the logical operation defined below:

P	Q	$P \downarrow Q$
F	F	T
F	T	T
T	F	T
T	T	F

Show that ' \downarrow ' can be used to implement (in the sense of Prop. 3.2) all of the operations of Definition 3.1.

- 4. Let P stand for the proposition "Sue says it." Let Q stand for the proposition "Sam saw it." Let R stand for the proposition "Sid did it." Express the following sentences as formulas involving the logical connectives. If there is more than one way to translate a sentence, use truth tables to explain any differences in the meaning among these translations.
 - (a) Sid did it, Sam saw it, and Sue says it.
 - (b) If Sid did it, Sam saw it.
 - (c) Sid did it only if Sam saw it.
 - (d) Sue says it only if Sid did it, and Sam saw it.
 - (e) If Sue says it implies Sam saw it, Sid did it.

5. Determine whether the following proposition is a tautology.

$$(a \lor b \Leftrightarrow c) \land (d \lor e) \Leftrightarrow ((a \lor b \Leftrightarrow c) \land d) \lor ((a \lor b \Leftrightarrow c) \land e)$$

- 6. Show whether the following pairs of formulas are equivalent.
 - (a) $(p \Rightarrow q) \Rightarrow r$ and $p \Rightarrow (q \Rightarrow r)$
 - (b) $p \Rightarrow (q \Rightarrow r)$ and $(p \land q) \Rightarrow r$
 - (c) $(p \wedge q) \Rightarrow r$ and $(p \Rightarrow r) \wedge (q \Rightarrow r)$

- 7. For each of the following propositions, give the DNF under the variable ordering $\langle a, b, c \rangle$.
 - (a) $a \lor (\neg a \land \neg b)$
 - (b) $a \Rightarrow (b \Leftrightarrow c)$
 - (c) $(\neg b \land c) \land (\neg a \Rightarrow \neg c) \land (c \land (\neg b \lor \neg a))$
 - (d) $(a \Rightarrow b) \Leftrightarrow (b \Rightarrow c)$

8. Reduce the following boolean expressions to simpler terms

(a)
$$xy + (x+y)\overline{z} + y$$

(b)
$$x + y + \overline{(\overline{x} + y + z)}$$

(b) $x + y + \overline{(\overline{x} + y + z)}$ (c) yz + wx + z + [wz(xy + wz)]

- **9.** Write the truth tables for the following logical formulas and state whether each is a tautology, a contradiction, or neither (a contingency).
 - (a) $P \wedge (Q \vee R)$
 - (b) $(P \land \neg P) \Rightarrow Q$
 - (c) $P \Rightarrow (Q \lor \neg Q)$

NO SUPPLEMENTAL PROBLEM this week.