
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 1990

The Performance of Spin Lock Alternatives for
Shared-Memory Multiprocessors

THOMAS E. ANDERSON

Abstract-Most shared-memory multiprocessor architectures provide
hardware support for making mutually exclusive accesses to shared data
structures. Thii support usually consists of instructions that atomically
read and then write a single memory location. These atomic instructions
are used to manipulate locks; when a processor is accessing a data
structure, its lock is busy, and other processors needing access must wait.

For small critical sections, spinning (or “busy-waiting”) for a lock to
be released is more efficient than relinquishing the processor to do other
work. Unfortunately, spin-waiting can slow other processors by consum-
ing communication bandwidth.

This paper examines the question: are there efficient algorithms for
software spin-waiting given hardware support for atomic instructions, or
are more complex kinds of hardware support needed for performance?

We consider the performance of a number of software spin-waiting
algorithms. Arbitration for control of a lock is in many ways similar to
arbitration for control of a network connecting a distributed system. We
apply several of the static and dynamic arbitration methods originally
developed for networks to spin locks.

We also propose a novel method for explicitly queueing spinning
processors in software by assigning each a unique sequence number when
it arrives at the lock. Control of the lock can then be passed to the next
processor in line with minimal effect on other processors.

Finally, we examine the performance of several hardware solutions that
reduce the cost of spin-waiting.

Index Terms-Architecture, cache coherence, locking, multiprocessor,
and performance.

I. INTRODUCTION

M ANY shared-memory multiprocessors have been
designed in the past few years. The Sequent Symmetry

[181, Alliant FX [20], and the BBN Butterfly [6] are among the
more commercially successful; research vehicles include the
DEC SRC Firefly [24], Illinois Cedar [lo], IBM RP3 [22],
and the Wisconsin Multicube [ll].

In shared-memory multiprocessors, each processor can
directly address memory that can also be addressed by all
other processors. This uniform access requires some method
for ensuring mutual exclusion: the logically atomic execution
of operations (critical sections) on a shared data structure.
Consistency of the data structure is guaranteed by serializing
the operations done on it.

Manuscript received April 21, 1989; revised August 25, 1989. This work
was supported by the National Science Foundation Grants CCR-8619663,
CCR-8703049, and CCR-87CKllOL, the Naval Ocean Systems, U.S. West
Advanced Technologies, the Washington Technology Center, and Digital
Equipment Corporation (the Systems Research Center and the External
Research Program).

The author is with the Department of Computer Science and Engineering
FR-35, University of Washington, Seattle, WA 98195.

IEEE Log Number 8931909.

Since pure software mutual exclusion is expensive [171,
virtually all shared-memory multiprocessors provide some
form of hardware support for making mutually exclusive
accesses to shared data structures. This support usually
consists of instructions that atomically read and then write a
single memory location. All of the multiprocessors mentioned
above support atomic instructions, although some, most
notably the Multicube, also provide other mechanisms [121.

Atomic instructions serve two purposes. First, if the
operations on the shared data are simple enough, they can be
encapsulated into single atomic instructions. (Herlihy [14]
discusses the computational power of atomic instructions for
building parallel algorithms.) Mutual exclusion is directly
guaranteed in hardware. If a number of processors simultane-
ously attempt to update the same location, each waits its turn
without returning control back to software.

A lock is needed for critical sections that take more than one
instruction. Atomic instructions are used to arbitrate between
simultaneous attempts to acquire the lock, but if the lock is
busy, waiting is done in software. When a lock is busy, the
waiting process can either block, relinquishing the processor
to do other work, or spin (“busy-wait”) until the lock is
released. Even though spin-waiting wastes processor cycles, it
is useful in two situations: if the critical section is small, so
that the expected wait is less than the cost of blocking and
resuming the process, or if no other work is available.

This paper examines the question: are there efficient
algorithms for software spin-waiting for busy locks given
hardware support for atomic instructions, or are more com-
plex kinds of hardware support needed for performance?
(Jayasimha [15] and Agarwal and Cherian [2] have looked at
the related issue of efficient spin-waiting for data dependen-
cies .)

We show that the simple approaches to spin-waiting for
busy locks have poor performance [3]. Spinning processors
can slow processors doing useful work, including the one
holding the lock, by consuming communication bandwidth.
This performance penalty occurs if processors spin by
continuously trying to acquire the lock; it also occurs for small
critical sections if processors spin reading the (cached) lock
value and try to acquire the lock only when it is released.

We consider the performance of several software spin-
waiting alternatives. Although the analogy is not perfect,
arbitration for control of a lock is in many ways similar to
arbitration for permission to transmit on carrier-sense multi-
ple-access (CSMA) networks. In both there is a cost when
either zero or more than one waiting processor attempts to

1045-9219/90/0100-0006$01.00 0 1990 IEEE

ANDERSON:SPIN LOCKPERFORMANCE

acquire the resource. A number of arbitration mechanisms
have been proposed for CSMA networks, including statically
assigned slots (BRAM [9]), static delays (Aloha [S]), and
dynamic backoff (Ethernet [191); we discuss the performance
of these methods when applied to spin-waiting.

We propose a novel method for explicitly queueing spinning
processors. As processors arrive at a lock, they each acquire a
unique sequence number specifying the order that they will
execute the critical section. When the lock is released, control
can be directly passed to the next processor in line with no
further synchronization and minimal effect on other proces-
sors.

We also examine the performance of several hardware
solutions. We propose an addition to snoopy cache protocols
that exploits the semantics of spin lock requests to obtain better
performance.

The remainder of this paper discusses these issues in more
detail. Section II outlines the range of architectures that we
will consider and how these systems commonly support
mutual exclusion. Section III analyzes the performance prob-
lems of simple spin-waiting. Section IV presents new software
alternatives; Section V considers hardware solutions. Section
VI summarizes our conclusions.

II. RANGE OF MULTIPROCESSOR ARCHITECTURES CONSIDERED

While spinning processors can slow busy processors on any
multiprocessor where spin-waiting consumes communication
bandwidth, the precise performance of spin-waiting varies
along several architectural dimensions: how processors are
connected to memory, whether or not each processor has a
hardware-managed coherent private cache, and if so, the
coherence protocol. This paper will consider six types of
architectures from within this design space:

l multistage interconnection network without coherent
private caches

l multistage interconnection network with invalidation-
based cache coherence using remote directories

l bus without coherent private caches
l bus with snoopy write-through invalidation-based cache

coherence
l bus with snoopy write-back invalidation-based cache

coherence
l bus with snoopy distributed-write cache coherence

(We assume for all of these that processors block when making
a read request to memory.) While there are clearly some
shared-memory architectures that are not represented in this
list, these sample architectures expose most of the interesting
issues in the performance of spin-waiting.

A. Common Hardware Support for Mutual Exclusions
Most architectures support mutual exclusion by providing

instructions that atomically read, modify, and write memory.
These atomic instructions are straightforward to implement.
Conceptually, they require four services that might need inter-
processor communication: the read and write, some method of
arbitration between simultaneous requests, and some state that
prevents further accesses from being granted while the

7

instruction is being executed. Most multiprocessors are able to
collapse these services into one or two bus or network
transactions.

Multistage networks connect multiple processors to multiple
memory modules. Memory requests are forwarded through a
series of switches to the correct memory module. When a
value is read from memory as part of an atomic instruction,
any cached copies of the location (recorded in the directory
associated with the memory module) must be invalidated and
subsequent accesses to that memory module or at least to that
location must be delayed (or refused and retired) while the new
value is being computed. To minimize this delay, the
computation can be done remotely by an ALU attached to each
memory module. The Butterfly [6] and RP3 [22] implement
this kind of remote “fetch and op.”

In single bus multiprocessors, the bus can be used for
arbitration between simultaneous atomic instructions. Before
starting an atomic instruction, a processor acquires the bus and
raises a line (the atomic bus line). This line is held while the
new memory value is being computed to prevent further
atomic requests from being started, but the bus can be released
to allow other normal memory requests to proceed. Waiting
atomic requests delay and only re-arbitrate for the bus when
the line is dropped.

In systems that do not cache shared data, the bus transaction
used to acquire the atomic bus line can be overlapped with the
read request for the data. Similarly, with invalidation-based
coherence [4], even if the lock value is cached, acquiring the
atomic bus line can be overlapped with the signal to invalidate
other cache copies. Note that normally the invalidation occurs
even if the instruction does not change the value of the
location, because it is done before the instruction executes.

Write-back invalidation-based coherence avoids an extra
bus transaction to write the data. In this protocol, the new
value is temporarily stored in the processor’s cache. When
another processor needs the value (for instance, as part of an
atomic instruction), it gets the value at the same time it
invalidates the first processor’s copy.

With distributed-write write-back coherence, the initial read
is usually not needed. Because copies in all caches are updated
instead of invalidated when a processor changes a memory
value, the cache block needed by an atomic instruction will
often already be in the cache. In this case it would be wasteful
of bus cycles to piggy-back the arbitration mechanism for the
atomic bus line on top of the arbitration for the bus. For this
reason, the Firefly, which implements distributed-write cache
coherence, has a separate arbitration mechanism for its atomic
bus line [24]. A bus cycle is still usually needed at the end of
the atomic instruction to update copies in other caches.

III. THE PERFORMANCE OF SIMPLE APPROACHES TO
SPIN-WAITING

Given atomic read-modify-write instructions, it is relatively
straightforward to develop a correct spin lock. For instance,
each processor can execute an atomic test-and-set instruction
to acquire the lock; this instruction reads the old value of the
lock and sets it to busy. If the read returns that the lock was
free, the processor has the lock; if the lock was busy, the

8

processor must try again. The lock is released by (atomically)
clearing the lock value.

It is more difficult to devise an efficient spin lock; this
requires balancing several apparently opposing concerns.
Performance when there is contention for the lock depends on
minimizing the communication bandwidth used by spinning
processors, since this can slow processors doing useful work;
the delay between when a lock is released and when it is re-
acquired by a spinning processor must also be minimized,
since no processor is executing the critical section during this
time. This appears to pose a tradeoff: the more frequently a
processor tries to acquire a lock, the faster it will be acquired,
but the more other processors will be disrupted.

Latency, the time for a processor to acquire a lock in the
absence of contention, is also important, for instance to
applications with frequent locking, yet containing no bottle-
neck lock. A complex algorithm that reduces the cost of spin-
waiting could degrade overall performance if it takes longer to
acquire the lock when there is no contention.

It might seem that the behavior of multiprocessors when
there is contention for a spin lock is not important. A highly
parallel application will by definition have no lock with
significant amounts of contention, since that would imply a
sequential component. If an application has a lock that is a
bottleneck, the best alternative would be to redesign the
application’s algorithms to eliminate the contention. In no case
does it make sense to add processors to an application if they
end up only spin-waiting.

There are, however, several situations where spin lock
performance when there is contention is important. Poor
contention performance may prevent an application with a
heavily utilized lock from reaching its peak performance,
because the average number of spin-waiting processors will
become nontrivial as the lock approaches saturation. Further-
more, if processors arrive at a lock in a burst, queue lengths
can be temporarily long, resulting in bad short-term perform-
ance, without the lock being a long-term bottleneck.

Alternately, it may not always be possible to tune a program
to use the optimal number of processors. An operating system,
for instance, has little control over the rate at which users
make operating system calls. At high load, locks that are
normally not a problem could become sources of contention.
Similarly, on a multiprogrammed multiprocessor, a naive user
can inadvertently ruin performance for all other users by
combining a bottleneck critical section, lots of processors, and
an inefficient spin lock.

In this section, we analyze the performance of two simple
spin-waiting algorithms; combined measurement results are
presented at the end of the section.

A. Spin on Test-and Set
The simplest spin-waiting algorithm is for each processor to

repeatedly execute a test-and-set instruction until it succeeds at
acquiring the lock. Table I lists sample code for this approach.
Not surprisingly, the performance of spinning on test-and-set
degrades badly as the number of spinning processors in-
creases.

Two factors cause this degradation. First, in order to release

TABLE I
SPIN ON TEST-AND-SET

hit
Lock
Unlock

lock : = CLEAR;
while (TestAndSet (lock) = BUSY);
lock : = CLEAR;

TABLE Il
SPIN ON READ (TEST-AND-TEST-AND-SET)

Lock while (lock = BUSY or TestAndSet (lock) = BUSY)

the lock, the lock holder must contend with spinning proces-
sors for exclusive access to the lock location. Most multipro-
cessor architectures have no way of giving priority to the clear
request of the lock holder, requiring it to wait behind test-and-
sets of spinning processors, even though these cannot succeed
until the lock is released.

Furthermore, on architectures where test-and-set requests
share the same bus or network as normal memory references,
the requests of spinning processors can slow accesses to other
locations by the lock holder or by other busy processors. On
multistage network architectures, spin-waiting can cause a
“hot-spot,” delaying accesses to the memory module contain-
ing the lock location as well as to other modules [21]. On bus-
structured multiprocessors, each test-and-set consumes at least
one bus transaction, regardless of whether the lock value is
changed; these can saturate the bus.

B. Spin on Read (Test-and-Test-and-Set)
Intuitively, coherent caches should be able to reduce the

cost of spin-waiting. Segall and Rudolph [23] propose that
spinning processors loop reading the value of the lock, and
only when the lock is free, execute a test-and-set instruction;
this eliminates the need to repeatedly test-and-set while the
lock is held. They call this spinning on test-and-test-and-set;
code for it is listed in Table II. (We assume that Boolean
expressions are evaluated only if needed; the test-and-set is
only executed if the lock is not busy.)

While the lock is busy, spinning is done in the cache without
consuming bus or network cycles. When the lock is released,
each copy is updated to the new value (distributed-write) or
invalidated, causing a cache read miss that obtains the new
value. The waiting processor sees the change in state and
performs a test-and-set; if someone acquired the lock in the
interim, the processor can resume spinning in its cache.

When the critical section is small, however, spinning on a
read has almost as much effect on busy processors as spinning
directly on a test-and-set instruction. The reason is that transient
behavior can dominate; when the lock is released and reac-
quired by one of the waiting processors, it takes some time for
the remaining processors to resume looping in their caches.
During this time, most spinning processors have pending
memory requests, delaying requests by busy processors during
this interim. This behavior is most pronounced for systems with
invalidation-based cache coherence, but it also occurs with
distributed-write.

--

ANDERSON: SPIN LOCK PERFORMANCE

Suppose a number of processors are spinning reading the
lock value in their caches. When the lock is released, these
cache copies will all be invalidated; each processor will then
incur a read miss to fetch the new value back into its cache.
These read misses will be satisfied serially. Each processor to
get the new value will then try to execute a test-and-set; these
requests must compete for the bus or memory module with any
remaining processors doing read misses.

The first processor to test-and-set will acquire the lock. Any
processor who completed its read miss before this, however,
will have seen the lock as free, proceed to do a test-and-set
itself, fail, and go back to spinning reading the lock value.
Unfortunately, each failing test-and-set instruction, because it
is treated as a memory write, invalidates all cache copies of the
lock, forcing any processors that had resumed spinning to miss
again.

Thus, once the lock has been reacquired, some processors
have passed the barrier and have a pending test-and-set
request; the remainder have pending reads, trying to fill their
cache after the original read miss. (The number of processors
who have seen the lock as free will be worse on systems with
multistage networks, because of the greater distance between
the processors and memory.) Each read miss that is satisfied
decreases the number of pending requests; that processor
obtains a cache copy of the lock and resumes looping. Each
test-and-set request that is satisfied decreases the number of
processors waiting to test-and-set; however, it also invalidates
all existing cache copies of the lock, forcing those processors
that had been spinning in their cache to read miss again. After
each test-and-set, every processor but the one that did the test-
and-set must contend for memory. Eventually, the last
spinning processor does a test-and-set, allowing every other
spinning processor to do a read miss and then quiesce.

Before quiescence, each spinning processor spends most of
its time contending for the bus or memory. After quiescence,
spinning processors consume no communication resources.
Thus, a normal memory request will be slowed dramatically if
it occurs before quiescence and not at all if it occurs
afterwards. For long critical sections, this initial s lowdown is
less significant, but for short critical sections, it dominates
performance.

Our discussion so far has assumed random arbitration
among memory requests. It might seem that spinning on a
cache copy would perform well given fixed priority bus
arbitration, as for instance on the Firefly. When a lock is
released, the highest priority processor will acquire the lock.
Even if it takes some time for the other processors to quiesce,
the lock holder would not be slowed since it has higher priority
than the other processors. However, if the lock is released
before quiescence, a low priority processor with a pending
test-and-set could acquire the lock before higher priority
processors looping on read. The lock holder might then be
delayed by these higher priority processors.

C. Reasons for the Poor Performance of Spin on Read
There are several factors that cause the performance of

spinning on a memory read to be worse than expected.
l There is a separation between detecting that the lock has

9

been released and attempting to acquire it with a test-and-set
instruction. This separation allows more than one processor to
notice that the lock has been released, pass by that test, and
proceed to try a test-and-set. Ideally, if one processor could
notice the change and acquire the lock before any other
processor committed to doing a test-and-set, the performance
would be better.

l Cache copies of the lock value are invalidated by a test-
and-set instruction even if the value is not changed. If this
were not the case, invalidations would occur only when the
lock is released and then again when it is reacquired.

l Invalidation-based cache-coherence requires O(P) bus or
network cycles to broadcast a value to P waiting processors.
This occurs despite the fact that, after an invalidation, they
each request exactly the same data.

While a solution to any of these three problems by itself
would result in better performance, any single solution would
still require bus activity that grows linearly with the number of
processors.

For example, distributed-write cache coherence eliminates
invalidations; each processor directly receives all updates to
the lock value. All reads can therefore be done locally; only
test-and-sets still require bus traffic. The Sequent Balance [7]
and the Silicon Graphics 4D-MP [5] both use a separate bus
for test-and-set variables for just this reason; the bus imple-
ments distributed-write coherence to reduce bus traffic due to
spin-waiting. Unfortunately, broadcasting updates makes the
separation between the test and the test-and-set worse: all
processors receive the updated lock value at the same time,
and all therefore proceed to try the test-and-set. The result is
that P test-and-sets must be performed before quiescence. It is
unclear whether either the Balance or the 4D-MP has special
hardware to avoid this problem.

D. Measurement Results
To demonstrate the performance of simple spin-waiting, we

implemented both approaches on a Sequent Symmetry Model
B shared-memory multiprocessor with 20 80386 (approxi-
mately 2 MIP) processors. The Symmetry has a shared bus
and write-back invalidation-based cache coherence; unlike the
Balance, test-and-set variables are handled on the same bus as
normal memory references [181. Acquiring and releasing a
lock on the Symmetry normally takes 5.6 ps, less if the cache
block containing the lock is initially private to the locking
processor.

Fig. 1 is the principal performance comparison: the elapsed
time for various number of processors to cooperatively
execute a critical section one million times, for the two
alternatives. Each processor loops: wait for the lock, do the
critical section once, release the lock, and delay for a time
randomly selected from a uniform distribution. The mean
delay is equal to five times the size of the critical section. The
wait in the loop eliminates any locality effect: each iteration,
the lock and the shared data accessed by the critical section
move between caches. The lock and shared data are placed so
as to fall in separate cache blocks.

This benchmark simulates the performance of an application
with a small central critical section. (Similar curves have been

10 IEEETRANSACTIONSONPARALLELANDDISTRIBUTEDSYSTEMS,VOL.~,NO.~,JANUARY~~~~

-

-I#-

*

ideal
spin test&set
spin on read

o .l.I.I’I
1 5 9 13 17

number of processors

Fig. l.Principal performance comparison: elapsed t ime (second) to execute
benchmark (measured). Each processor loops one mill ion/P times: acquire
lock, do critical section, release lock, and compute.

measured using a fixed delay between lock accesses.) It also
shows spin lock latency and performance with small and large
amounts of contention. Ideally, performance initially im-
proves as processors are added, due to increased parallelism,
but as the critical section becomes a bottleneck, performance
levels out. The ideal curve in Fig. 1 is the time the test would
have taken, given free spin-waiting; this was determined by
simulation from the time to execute the critical section and the
mean delay between lock accesses.

Fig. 1 confirms our analysis. Performance degrades badly
as processors spin on test-and-set; spinning on a read is better,
but it still has disappointing performance. As the critical
section becomes a bottleneck, the average number of spin-
waiting processors increases, significantly slowing the proces-
sor executing the critical section. As a result, peak ideal
performance is never reached. Performance with these altema-
tives is very sensitive to the exact number of processors given
to an application; adding even a few processors beyond where
the lock saturates worsens overall performance considerably.

This behavior can be degenerative [3]. Critical sections,
since their purpose is to manipulate shared data structures,
typically have higher memory access rates than noncritical
sections. As a critical section becomes a bottleneck, the
spinning processors slow the lock holder’s execution, both in
absolute terms and relative to noncritical sections, making it
more of a bottleneck, resulting in more spinning processors.

As we noted, there is a difference in the effect on memory
accesses before and after quiescence when processors spin on
a read. This two-phase behavior allows us to measure the time
to quiesce on the Symmetry. We construct a critical section
whose behavior mirrors that of the bus, but in reverse. The
critical section begins by delaying for some amount of time
without using the bus at all, then proceeds to use the bus
heavily before releasing the lock. If the initial delay is longer
than the time to quiesce the spinning processors, then the
critical section will run as fast on P processors as on one. If the
heavy bus usage begins before quiescence, the critical section
will run slower on P processors. We vary the length of the
initial delay to find this performance knee; in practice, this
knee was quite sharp.

Fig. 2 shows the results of this test. The time to quiesce
grows steeply but linearly with the number of processors. As a
result, even a few spinning processors can adversely impact
the execution speed of a moderate-sized critical section.

cfuiesce time

1 5 9 13 17
number of spinning processors

Fig. 2. Time to quiesce, spin on read (microseconds).

TABLE III
DELAY AFTER SPINNER NOTICES RELEASED LOCK

Lock while (lock = BUSY or TestAndSet (Lock) = BUSY)
begin
while (lock = BUSY) ;
Delay 0;
end;

TABLE IV
DELAYBETwEENEACHREFERENCE

Lock while (lock = BUSY or TestAndSet (lock) = BUSY)
Delay 0;

IV. N E W SOF~VARE ALTERNATIVES

In this section, we first describe five software spin-waiting
approaches, four based on CSMA network protocols, and one
using explicit queueing, leaving until afterwards the presenta-
tion of their combined measurement results.

A. Delay Alternatives
We consider four ways of inserting delays into the spin-wait

loop, defined by two dimensions: where the delay is inserted
and whether the size of the delay is set statically or
dynamically. A delay can be inserted after the lock has been
released or alternatively after every separate access to the
lock; code for these approaches is listed in Tables III and IV.
Because processors first try to acquire the lock before
delaying, lock latency is unaffected.

1) Delay after Spinning Processor Notices Lock has
been Released: We can reduce the number of unsuccessful
test-and-sets when spinning on a read by inserting a delay
between when a processor reads that the lock is released and
when it commits to trying the test-and-set. If some other
processor acquires the lock during this delay, then the
processor can resume spinning; if not, then the processor can
try the test-and-set, with a greater likelihood that the lock will
be acquired. In this way, the number of unsuccessful test-and-
sets, and thus invalidations, can be reduced.

Each processor can be statically assigned a separate slot, or
amount of time to delay, from 0 to P - 1 where P is the
number of processors. The spinning processor with the
smallest assigned delay checks the lock, sees that it is free, and
acquires it. Processors with longer delays then time out, see
that the lock is busy (enduring another cache miss), and
resume spinning. By statically assigning delays, we can ensure

ANDERSON: SPIN LOCK PERFORMANCE

that at most one processor times out at any instant. Chlamtac et
al. [9] propose a similar method to arbitrate access to a CSMA
network. (Slots can also be used to implement priority access
to the critical section, by assigning lower delays to higher
priority processes.)

This algorithm performs well when there are many spinning
processors. It is likely that some spinning processor will
have a short delay; when the lock is released, some processor
will quickly reacquire it. When there is only one spinning
processor, however, it is unlikely to have a short delay,
leaving the lock unacquired for a relatively long time, harming
performance.

The number of slots can be varied to trade off performance
between these two cases. When there are few spinning
processors, using fewer slots improves performance by
reducing the time to pass control of the lock to a waiting
processor. When there are many spinning processors, using
fewer slots worsens performance since more than one proces-
sor would simultaneously time out and attempt to test-and-set,
requiring longer to quiesce.

By varying spinning behavior based on the number of
waiting processors, we can have good performance in both
situations. Such an algorithm has already been devised for
CSMA networks: Ethernet’s exponential backoff [19]. In a
CSMA network, each processor can detect when the network
is being used. When the network is unused, a processor can
acquire the network by beginning to transmit, but if another
processor simultaneously begins transmitting (‘ ‘collides’ ‘),
they both fail and must retry. The idea is for each processor to
use the number of collisions it has experienced to estimate the
number of spinning processors.

Initially, an arriving processor assumes that there are no
other processors waiting to use the network and chooses a
random delay with a small mean. Whenever it times out, tries
to acquire the network and fails because some other processor
timed out at the same time, then, assuming random arrivals,
there are likely to be many more waiting processors that did
not collide. Collisions are unlikely if the average delay is at
least half the number of spinning processors. In Ethernet,
then, each processor doubles its mean delay after each
collision.

Analogously, a processor trying to acquire a spin lock could
begin by assuming there were no other waiting processors.
Each time it times out, sees the lock is still free, tries to test-
and-set and fails, it has “collided” with at least one other
processor. There are likely to be many other spinning
processors it did not collide with, and thus it should double its
mean delay, up to some limit.

Although Ethernet’s backoff has been shown to have good
performance [191, the performance of backoff for spin locks
will not be the same as for networks. In a network, a collision
aborts all processors; there is an equal cost to a collision
among any number of processors as there is to an empty slot.
By contrast, a test-and-set collision allows one processor to
proceed, and the cost depends on how many processors
collide. The more processors that try to acquire the lock and
fail, the longer it will take them to quiesce, and the more that
other processors, including the lock holder, will be slowed.

11

In designing a backoff scheme for spin locks, there are a
number of details that affect performance. Our first implemen-
tation got most of these wrong.

l When a processor detects that the lock has been acquired,
it should not increase (or decrease) its mean delay. The fact
that some other processor had a shorter delay does not imply
much about how many other spinning processors there are.

l There needs to be a maximum bound on the mean delay.
Otherwise, if a processor backs off a number of times and then
becomes the only waiting processor, it will take a long time for
it to acquire the lock. This bound should be equal to the
number of proessors, so that backoff has the same perform-
ance as statically assigned slots when there are many spinning
processors.

l The initial delay of an arriving processor should be some
fraction of its delay the last time at the lock. In a CSMA
network, an arriving processor can efficiently reestimate the
number of spinning proessors because collisions are not
unduly costly. For spin locks, however, the learning curve can
be expensive. There is no more reason to assume initially that
there are no other spinning processors than that the number is
related to past experience. For our measurements, we set the
initial delay to be half the previous delay. Note that in Table
III if the lock if free when the processor arrives, it will
immediately acquire it; backoff is only used if the lock is
initially busy.

While the justification for backoff assumes random arrivals
at the lock, it performs well compared to using static slots even
when this is not the case. If processors execute for a fixed
amount of time between lock accesses, they will tend to self-
schedule so that either there is no contention for the lock or
there are always the same number of spinning processors. In
the latter case, backoff would increase the delays until there
were few collisions, and then the hysteresis would help
maintain those delays.

Similarly, both backoff and static slots have performance
problems when processors repeatedly arrive at a lock in a
burst. The first time the lock is accessed, all processors choose
a small delay, time out together, and take a long time to
quiesce. Eventually the mean delays are increased enough to
avoid collisions; this initial degradation is largely avoided the
next iteration. Using static slots also avoids this initial
performance degradation. However, since the number of
waiting processors decreases as more acquire the lock, both
alternatives are finally left with processors with inappropri-
ately long delays, making it take longer to pass control of the
lock.

Polling for the lock release is only practical for systems with
per-processor coherent caches. On other systems, processors
would consume communication bandwidth if they were to spin
reading memory waiting for the lock to be released. Some
multistage network multiprocessors with caches based on
remote directories limit the number of outstanding copies of a
location in order to limit the size of the directories [l]; if the
number of spinning processors exceeds this number, spinning
on a read degenerates to spinning across the network.

Even for multiprocessors with snoopy or complete directory
invalidation-based caches, using exponential backoff or static

12 IEEETRANSACTIONSONPARALLELANDDISTRIBUTEDSYSTEMS,VOL.1,NO.1, lANUARY1990

TABLE V
QUEUEUSINGATOMICREAD-AND-INCREMENT

Init

Lock

flags[O] : = HAS-LOCK;
flags[1. .P - l] : = MUST-WAIT;
queueLast : = 0;
myPlace : = ReadAndIncrement (queueLast);
while (flags[myPlace mod P] = MUST-WAIT)

Unlock
flagsimyplace mod P] : = MUST-WAIT;
flags[(myPlace + 1) mod P] : = HAS-LOCK;

slots solves only one of the problems with spinning on a
memory read. Each spinning processor still requires at least
two cache read misses per execution of the critical section, one
when the lock is released and one when the lock is acquired.
For sufficient numbers of spinning processors, this read miss
activity can saturate the bus or network.

Exponential backoff after the lock is released does, how-
ever, provide scalable performance for multiprocessors with
distributed-write cache coherence. In these systems, each test-
and-set requires a single bus cycle to broadcast the new value,
independent of the number of spinning processors. Exponen-
tial backoff, in turn, limits the number of unsuccessful test-
and-sets.

2) Delay Between Each Memory Reference: An alterna-
tive approach to reducing the cost of spin-waiting is to insert a
delay between each memory reference. This can be used on
architectures without coherent caches or with invalidation-
based coherence to limit the communication bandwidth con-
sumed by spinning processors. In the code in Table IV, we
check if the lock is free before trying to test-and-set since we
assume that a test-and-set instruction consumes more band-
width than a simple read.

The mean delay between each reference can be set statically
or dynamically, analogous to the Aloha [8] and Ethernet
network protocols. Most of the tradeoffs outlined above apply
to these alternatives: more frequent polling improves perfonn-
ante when there are few spinning processors and worsens
performance when there are many. Exponential backoff can be
used to dynamically adapt to varying conditions.

Delaying between each reference poses special problems,
however. For instance, the performance of backoff is bad
when there is a single spinning processor for a moderate-sized
critical section. The processor will continue to back off the
delay as long as the lock is held. When the lock is released, the
spinning processor will be in the midst of a long delay that
must finish before it noties the change.

B. Queueing in Shared Memory
It might seem that shared memory could be used to store

state to control the activity of spinning processors. This is less
easy than it appears. For instance, a shared counter could be
used to directly keep track of the number of spinning
processors, instead of relying on a backoff algorithm to
estimate that number. Given atomic increment and decrement
instructions, the apparent cost of maintaining this state is the
execution of two extra atomic instructions per critical section.
However, each spinning processor must read this data to
compute its delay; on systems without distributed-write

coherence, this would consume as much bandwidth as directly
polling the lock.

Another approach would be to maintain an explicit queue of
spinning processors. Each arriving processor enqueues itself
and then spins on a separate flag. When the processor finishes
with the critical section, it dequeues itself and sets the flag of
the next processor in the queue. This approach can reduce
invalidations: if each processor’s flag is kept in a separate
cache block, then only one cache read miss is needed to notify
the next processor. Maintaining queues, however, is expen-
sive; the enqueue and dequeue operations must themselves be
locked. (Even if there are atomic enqueue and dequeue
instructions, as on the VAX, these operations are likely to be
slow since they must modify more than one location.) The
result is a much worse performance for small critical sections.
For instance, it would not be reasonable to do this if the critical
section itself was a queue operation.

We have developed a method of queueing spin-waiting
processors that requires only a single atomic operation per
execution of the critical section. Each arriving processor does
an atomic read-and-increment to obtain a unique sequence
number. When a processor finishes with the lock, it taps the
processor with the next highest sequence number; that
processor now owns the lock. Since processors are sequenced,
no atomic read-modify-write instruction is needed to pass
control of the lock. Table V lists the code for this approach
(“myplace” is a location private to each processor). Sequent
[131 has independently devised a similar algorithm.

The best implementation varies somewhat among architec-
tures. With distributed-write coherence, processors can all
spin on a single counter. To release the lock, a processor
simple writes its sequence number into the counter; each
processor’s cache is updated, directly notifying the next
processor in line with a single bus transaction.

With invalidation-based coherence, each processor should
wait on a flag in a separate cache block. Only two bus or
network transactions (an invalidation and a read miss) are
needed to signal the next processor. Similarly, on a multistage
network without coherent caches, each flag should be placed
in a separate memory module. Even though processors must
poll to learn when it is their turn, there can be no more than P
such polling requests outstanding at a time among P x log P
switches and P memory modules.

This approach is less valuable in a system with a bus but no
cache coherence. Processors must still poll to find out if it is
their turn; the bus can easily be swamped with this polling. To
be effective, a delay can be inserted between each poll that
depends on how close the processor is to the front of the queue
and on how long it takes to execute the critical section. This
indicates one way of using fewer than P separate memory
locations in Table V: if a processor is farther from the front
than the number of flags, it can poll (rarely) to find out when it
is close enough to spin on its own flag.

If an architecture does not support an atomic read-and-
increment instruction, this operation can itself be locked.
Since the operation would take at most a few instructions, it
would not normally become a bottleneck except when used
with the most trivial of critical sections. When processors

-- _ _____..--- --.-___- ___-..

ANDERSON: SPIN LOCK PERFORMANCE

arrive in a burst, however, there can be short-term contention
for this lock. In this case, one of the delay alternatives from
Section IV-A should be chosen to minimize bus traffic. The
tradeoffs are slightly different here; a delay in passing control
over the read-and-increment operation need not impact overall
performance, provided some backlog of spinning processors
have already obtained a number. Interestingly, the Symmetry
supports an atomic increment but not an atomic read-and-
increment instruction (the original value is not saved).

Because a spinning processor automatically gets control of
the critical section when its bit is set, the time between when
one processor finishes and the next processor starts executing
the critical section is reduced. In some sense, this exploits
parallelism: the spinning processor does the time-consuming
work of the atomic operation before the lock is released,
decreasing the amount of serial work required to pass control.
Thus, throughput actually increases as a critical section
becomes a bottleneck.

Unfortunately, queueing has some bad aspects. It increases
lock latency. Each processor must increment a counter, check
a location, zero that location, and set another location; in the
other methods, when there is no contention, the first test-and-
set acquires the lock. Thus, when there is contention, queueing
is better; when there is no contention, backoff or simple spin-
waiting is better.

While processor preemption can yield bad spin-locking
performance [25], queueing makes this problem more severe.
Normally, if a process holding a lock is preempted, every
process spinning on that lock must wait for it to be re-
scheduled. Good performance requires lock holders to not be
preempted. With queueing, however, preempting any spin-
waiting process forces all behind it to wait if it reaches the
front of the queue before being rescheduled. This can cause
lock-step behavior if a small critical section is accessed
frequently. When a process in line is preempted, other
processes queue up behind it; when it is rescheduled, it uses
the lock once, but may then have to wait when it reaccesses
the lock for other processes that have been preempted in the
interim. One way of avoiding this problem, if a process can be
notified before it is preempted, is for it to remove itself from
the queue by notifying the next process in line of that event
(e.g., by setting a bit).

Another problem with queueing is that it makes it more
difficult to wait for multiple events. As the number of
processors increases, any centralized resource can become a
bottleneck. One way of increasing throughput is to divide
control over a resource among several critical sections, so that
a spinning processor need access only one of the locks to get
service. It is easy to see how delays could be used in this case;
each waiting processor could randomly poll a server, and if
busy, delay before polling another server. It is hard to see how
queueing could be adapted, however, since a processor would
only be able to wait in one queue at a time.

C. Measurement Results
We implemented the five software alternatives we have

described on the Symmetry Model B with 20 processors. The
static and dynamic delays varied from 0 to 15 ps; it takes

15 -7
0 + spin on read
” * static release

f
10 * backoff rel.

r + static ref.
? + backoff ref.
0 5 + queue

1 5 9 13 17
number of processors

Fig. 3. Principal performance comparison: spin-waiting overhead (seconds)
in executing the benchmark (measured). Each processor loops one million/
P times: acquire lock, do critical section. release lock, and compute.

approximately one microsecond on the Symmetry to execute
the test-and-set instruction. Since the Symmetry does not
support an atomic read-and-increment instruction, queueing
uses an explicit lock (with backoff after each memory
reference) to access the sequence number.

Fig. 3 is the principal performance comparison: spin-
waiting overhead to execute the benchmark used for Fig. 1, as
a function of the number of processors. To isolate the effect of
spinning, we subtract from the elapsed time to execute the
benchmark the “ideal” curve, the time the test would have
taken given free spin-waiting. This leaves just the component
due to spin-waiting overhead. We include spin on read for
comparison.

Fig. 3 confirms our analysis. Although performance varies,
all five methods described in this section have reasonable
performance across the range of conditions. The one processor
time reflects lock latency; queueing has high latency, while all
other alternatives have low latency. Queueing would have
better latency on systems with an atomic read-and-increment
instruction. As the lock approaches saturation, the static delay
alternatives have worse performance, because the delays are
inappropriate for small numbers of spinning processors. The
performance of the backoff alternatives remains close to the
simple spin-waiting methods by adapting to the number of
spinning processors.

When there are high numbers of spinning processors,
backoff performs slightly worse than static delays; some
collisions are necessary to maintain appropriate delays.
Queueing performs best in this case by parallelizing the lock
handoff. Across the entire spectrum, because of the Symme-
try’s invalidation-based coherence, delaying after each refer-
ence is slightly better than delaying after the lock is released.

To demonstrate the potential benefit of backoff relative to
static delays, Fig. 4 compares spin-waiting overhead for the
benchmark as a function of the number of static slots. As can
be seen, small numbers of slots perform better when there are
few spinning processors, while larger numbers of slots
perform better when there are many. This tradeoff becomes
harsher as the maximum number of spinning processors
increases: 64 slots has much worse low load performance than
direct spinning on read, yet that number of slots might be
necessary to avoid poor high load performance in systems with
large numbers of processors. Backoff avoids the tradeoff by
performing well in both situations.

1 5 9 13 17
number of processors

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 1990

spin on read
1 slot
4 slots
16slots
64 sbta

Fig. 4. Spin-waiting overhead (seconds) versus number of slots.

20

z 15
f
2

* spin test&set
0 -+ spin on read
$ 10 + static ref.
z + backoff ref.

[*queue
5

z

OY ’ I . 1 I I

1 5 9 13 17
number of processors

Fig. 5. Spin-waiting overhead in achieving barrier, normalized by the
number of processors (microseconds per processor).

Fig. 5 shows spin-waiting overhead when processors arrive
at a spin lock at the same time. A t imestamp is taken before the
processors are released from a barrier; each processor then
acquires the lock and bumps a counter; and another t imestamp
is taken when the last processor acquires the lock. As in Fig.
3, we subtract the time to execute this test given free spin-
waiting. This result is then normalized by the number of
processors, to yield the average spin-waiting overhead per
execut ion of the critical section. For clarity, we omit the
curves for static and dynamic delays after the lock is released,
as these are everywhere slightly worse than delaying between
each reference.

The results in Fig. 5 are similar to that of Fig. 3. Queueing
has bad latency in the one processor case. W h e n two
processors arrive together, using a static mean delay performs
worst, but all alternatives perform badly because of the initial
contention. As the number of processors increases, the
behavior becomes similar to that of Fig. 3, except that
queueing does not perform well with high numbers of
processors because it uses backoff to arbitrate for the lock
protecting its sequence number.

V. HARDWARE SOLUTIONS

In this section, we consider hardware changes to improve
spin lock performance. As for the software alternatives,
implementing solutions in hardware also poses tradeoffs. For
example, the best cache coherence mechanism for spin locks
may not be the best for normal memory references; some
systems, such as the Balance and the 4D-MP, try to avoid this
di lemma by using one bus with invalidation-based coherence
for normal requests and a separate one with distributed-write
coherence for test-and-set variables. Unfortunately, this dupli-
cation adds expense that is of little benefit to applications that

do not spend significant amounts of time spin-waiting.
Furthermore, if this separate bus is slower than the normal
bus, as on the Balance, lock latency will suffer.

W e consider the quest ion of hardware solutions separately
for multistage network and single bus mult iprocessors.

A. Multistage Interconnection Network Mult iprocessors
Combining networks, by providing parallel access to a

single memory location [21], can improve the per formance of
spinning directly on test-and-set. Requests to the same location
that arrive at the same network switch are combined and
forwarded as a single request; the result is the same as if the
two requests were made sequential ly at the memory module.
For example, two test-and-set requests would result in one
request being forwarded and one request returning immedi-
ately with the value as set; no matter what the current value,
only one will succeed if the two requests are made sequen-
tially. Similarly, a test-and-set and a clear (to release the lock)
would be combined to forward the set, while the test-and-set
request returns having acquired the lock.

Assuming the cycle time of the combining network is the
same as a normal network, combining has good per formance
for any number of spinning processors. W h e n there is no or
little contention, there is little combining, and per formance is
similar to normal spinning on test-and-set. As more processors
spin-wait, combining reduces congest ion due to duplicate test-
and-sets, and since the request to release the lock is likely to be
combined with a test-and-set at an earlier s tage of the network,
the time to pass control of the lock would be reduced.
However, since the complexity of combining switches is likely
to increase their latency, better per formance might be obtained
by a normal network with backoff or queueing.

Hardware queueing at the memory module, like software
queueing, can eliminate polling across the network; it can also
speed passing control of the lock. For this, processors would
issue explicit “enter” and “exit” critical section instructions
to the memory module, which would maintain queues of the
processors waiting for each lock. W h e n a processor’s “enter”
request returns, it has the lock; no polling across the network
is necessary. W ith software queueing on a system with
coherent caches, the processor releasing the lock notifies the
next processor by writing its flag; an invalidation followed by
a read miss is needed before the spinning processor can start
execut ing the critical section. By specially handl ing critical
section requests, hardware queueing eliminates one network
round trip to pass control of the lock. Perhaps most impor-
tantly, lock latency is likely to be better with hardware than
with software queueing; even though hardware queueing
increases complexity at the memory module, it reduces the
number of instructions needed to acquire the lock.

Goodman et al. [121, albeit for a different architecture, have
proposed using caches to hold queue links. Their approach
stores the name of the next processor in the queue directly in
each processor’s cache; when the lock is released, the next
processor can be notified without going through the original
memory module. To enhance flexibility, they have also
proposed that control return to software after the processor is
put on the queue for a critical section; the processor is then

ANDERSON:SPIN LOCKPERFORMANCE

separately notified by the hardware when it gets to the front of
the queue.

B. Single Bus Multiprocessors
One obvious solution to reducing the number of invalida-

tions caused by spinning on a read would be to invalidate only
if the lock value changes. Before starting an atomic instruc-
tion, a processor would acquire the bus and raise a line to
prevent other processors from accessing their potentially
incorrect cache copies. These copies would then be invalidated
only if the value changes. Unfortunately, this solves only one
of the problems with spinning on a read. When the lock is
released, there will still an invalidation, a cache miss by each
spinning processor, followed by some number of failing test-
and-sets; each of these consumes bus bandwidth. The time to
quiesce is reduced but not eliminated. Unlike software
queueing or backoff, performance degrades as more proces-
sors spin.

Rather, we note that more intelligent snooping of bus
activity can reduce the cost of spin-waiting. We have already
seen this in practice. If hardware keeps caches coherent,
processors can spin on a cache copy instead of repeatedly
reading from memory. Similarly, invalidation-based coher-
ence can result in a cascade of read misses, which do not occur
given write-broadcast coherence.

We will present two ways of improving performance by
using information transmitted over the bus. One eliminates
duplicate read requests; the other eliminates redundant test-
and-sets. Simple spin-waiting is expensive because all spin-
ning processors make bus requests to do the same thing, read
or test-and-set, at the same time. This fact can be used to
advantage.

Read broadcast [23], [161 can eliminate duplicate read miss
requests. Each processor’s cache controller monitors the bus;
if a read occurs corresponding to an invalid block in its cache,
it takes the data off the bus and sets the block to valid. Thus,
whenever the cache copies of spinning processors are invali-
dated, the first read will fill all caches. Some spinning
processors, however, will have already seen the cache as
invalid and will be waiting at the bus to do the read; if a
controller with a pending read observes the bus grant a read on
the same location to some other processor, it should simply
wait and take the data returning for that request. This
eliminates the cascade of read misses when spinning on a read,
without implementing full distributed-write coherence.

By specially handling test-and-set requests in the cache and
bus controllers, we can eliminate the need for failing test-and-
sets to use the bus. This way, processors can spin on test-and-
set, acquiring the lock quickly when it is free, without
consuming bus bandwidth when the lock is busy. Provided that
specially handling test-and-sets does not increase the bus or
cache cycle time, its performance would be better than
software backoff or queueing. Fig. 3 shows that neither of
these achieves ideal performance on the Symmetry. As the
critical section becomes a bottleneck, backoff performance
degrades slightly because of the overhead of computing
random delays; the complexity of queueing similarly increases
lock latency.

15

The idea is to not commit to doing the test-and-set over the
bus so long as there is the possibility that it might fail (return
that the lock is busy), and to return immediately without using
the bus whenever the test-and-set would fail if it were the next
to execute.

When a processor issues a test-and-set request, it first
checks the cache. If the lock is not in the cache (because it was
replaced or invalidated), a read miss occurs. Duplicate read
misses can be eliminated using read broadcast. Once the lock
value is in the cache, the test-and-set can return immediately if
the lock is busy. If the lock is free, the controller can then try
to acquire the bus to get the mutual exclusion needed by the
atomic instruction.

While the controller is waiting for the bus, it must monitor
the bus activity to determine if it should continue waiting.
With distributed-write coherence, if some other processor
acquires the bus to do a test-and-set, it will broadcast the new
lock value, and all pending test-and-set requests can be
aborted. If the lock value is invalidated, the processor must
convert the test-and-set request back to a read request to see if
the lock is now busy.

Typically, cache and bus controllers do not know the type of
atomic instruction making a request, since the ALU is
responsible for performing the logic of the instruction. This
information is needed for the cache to be able to abort pending
test-and-sets. When the cache returns control to the processor,
the processor can proceed as if it had exclusive access,
whether or not the test-and-set actually acquired the bus. In one
case, it really has the exclusive access needed to acquire the
lock; in the other, it can proceed because its actions will be
consistent with some serial ordering of atomic instructions.

VI. CONCLUSIONS

In this paper, we have shown that simple methods of spin-
waiting for mutually exclusive access to shared data structures
degrade overall performance as the number of spinning
processors increases. We have proposed and analyzed the
performance of several hardware and software solutions to this
problem.

For multiprocessors without special support for spin-
waiting beyond implementing atomic instructions, we have
shown that software queueing and a variant of Ethernet
backoff have good performance even for large numbers of
spinning processors. Because it is simpler, backoff has better
performance when there is no contention for the lock;
queueing, by parallelizing the lock handoff, performs best
when there are waiting processors.

We have also shown that performance can be further
improved by specially handling spin lock requests. On
multiprocessors with multistage interconnection networks,
explicit hardware queueing of spin-waiting processors,
whether at the memory module or in each cache, can reduce
the time to pass control of the lock to a waiting processor. On
shared bus multiprocessors, failing test-and-sets can be han-
dled with no bus traffic given more intelligent snooping.
Whether real workloads will have significant enough amounts
of spin-waiting to make such additional hardware support
worthwhile remains an open question.

16 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, JANUARY 1990

ACKNOWLEDGMENT u31

The author would like to thank M . Dormer, J . Goodman, D . t141

Keppel, E. Lazowska, D. Wagner, J. Zahorjan, and the
referees for helpful discussions of the issues presented in this [I51

paper. WI

REFERENCES

r11

PI

131

[41

[51

t61
[71

181

[91

UOI

[Ill

VI

A. Agarwal, R. Simoni, J. Hennessey, and M. Horowitz, “An [I71
evaluation of directory schemes for cache coherence,” in Proc. 15th
Intern. Symp. Comput. Architect., June 1988, pp. 280-289. t181
A. Agarwal and M. Cherian, “Adaptive backoff synchronization
techniques, ” in Proc. 16th Intern. Symp. Comput. Architect., June H91
1989, pp. 396-406.
T. E. Anderson, E. D. Lazowska, and H. M. Levy, “The performance
implications of thread management alternatives for shared-memory
multiprocessors,” presented at 1989 ACM SIGMETRJCS and Per-
formance ‘89 Conf. Measurement Modeling Comput. Syst., pp. 49-60,
May 1989.

1201

I211

J. Archibald and J.-L. Baer, “Cache coherence protocols: Evaluation
using a multiprocessor simulation model,” ACM Trans. Comput. t221
Syst., vol. 4, no. 4, Nov. 1986.
F. Baskett, T. Jermoluk, and D. Solomon, “The 4D-MP graphics
superworkstation: Computing + Graphics = 40 MIPS + 40 MFLOPS
and 1OOOOO lighted polygons per second, IEEE Spring COMPCON, 1231
pp. 468-471, 1988.
BBN Laboratories, Butterfly parallel processor overview, 1985.
B. Beck, B. Kasten, and S. Thakkar, “VLSI assist for a multiproces- 124
sor,” in Proc. Second Intern. Conf. Archit. Support for Pro-
gramm. Languages and Operating Systems (ASPLOSE), Oct. 1987,
pp. 10-20. 1251
R. Binder, N. Abrahamson, F. Kuo, A. Okinawa, and D. Wax,
“Aloha packet broadcasting-A retrospective,” AFZPS Conf. Proc.,
1975.
I. Chlamtac, W. Franta, and D. Levin, “BRAM: The broadcast
recognizing access method,” IEEE Trans. Commun., vol. 27, pp.
1183-1190, Aug. 1987.
D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, “CEDAR-A large
scale multiprocessor, ” in Proc. 1983 Intern. Conf. Parallel Process.,
Aug. 1983, pp. 524-529.
J. Goodman and P. Woest, “The Wisconsin Multicubc: A new large-
scale cache-coherent multiprocessor,” in Proc. 15th Annu. Intern.
Symp. Comput. Architect., June 1988, pp. 442-431.
J. Goodman, M. Vernon, and P. Wrest, “A set of efficient
synchronization primitives for a large-scale shared-memory multipro-
cessor,” in Proc. Third Intern. Conf. Architect. Support for
Programm. Languages and Operating Syst. (ASPLOS-III), Apr.
1989.

G. Graunke, Personal communication, 1988.
M. Herlihy, “Impossibility and universality results for wait-free
synchronization,” III Proc. Seventh Annual ACM Symp. Principles
of Distributed Comput., 1988, pp. 276-291.
D. N. Jayasimha, “Parallel access to synchronization variables,” in
Proc. 1987 Intern. Conf Parallel Process., Aug. 1987, pp. 97-100.
A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator,
“Competitive snoopy caching, ” in Proc. 27th Annu. Symp. Founda-
tons of Comput. Sci., Oct. 1986, pp. 244-254.
L. Lamport, “A fast mutual exclusion algorithm,” ACM Trans.
Comput. Syst., vol. 5, no. 1, 1987.
T. Lovett and S. Thakkar, “The Symmetry multiprocessor system,” in
Proc. 1988 Intern. Conf. Parallel Process., Aug. 1988, pp. 303-310.
R. Metcalfe and D. Boggs, “Ethernet: Distributed packet switching for
local computer networks,” Commun. ACM, vol. 19, no. 7, pp. 395-
404, July 1976.
R. Perron and C. Mundie, “The architecture of the Alliant FX/8
computer,” IEEE COMPCON, 1986.
G. Pfster and V. Norton, “Hot-spot contention and combining in
multistage interconnection networks,” ACM Trans. Comput. Syst.,
vol. 3, no. 4, Oct. 1985.
G. Ptister, W. Brantley, D. George, S. Harvey, W. Kleinfelder, K.
McAuliffe, E. Melton, V. Norton, and J. Weise, “The IBM research
parallel processor prototype (RP3): Introduction and architecture,” in
Proc. 1985 Intern. Conf. Parallel Process., Aug. 1985.
Z. Segall and L. Rudolph, “Dynamic decentralized cache schemes for
an MIMD parallel processor,” in Proc. 11th Annu. Intern. Symp.
Comput. Architect., June 1984, pp. 340-347.
C. Thacker, L. Stewart, and E. Satterthwaite, Jr., “Firefly: A
multiprocessor workstation,” IEEE Trans. Comput., vol. 37, no. 8,
pp. 909-920, Aug. 1988.
J. Zahorjan, E. Lazowska, and D. Eager, “Spinning versus blocking in
parallel systems with uncertainty,” in Proc. Intern. Seminar Per-
formance of Distributed and Parallel Syst., North Holland, Dec.
1988.

Thomas E. Anderson received the A.B. degree in
1983 from Harvard University, Cambridge, MA.

Since 1987, he has pursued the doctoral degree in
the Department of Computer Science, University of
Washington, Seattle. His research interests include
multiprocessor operating systems, architecture, and
performance modeling.

Mr. Anderson won an IBM Graduate Fellowship
in 1989.

