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The Performance of Spin Lock Alternatives for 
Shared-Memory Multiprocessors 

THOMAS E. ANDERSON 

Abstract-Most shared-memory multiprocessor architectures provide 
hardware support for making mutually exclusive accesses to shared data 
structures. Thii support usually consists of instructions that atomically 
read and then write a single memory location. These atomic instructions 
are used to manipulate locks; when a processor is accessing a data 
structure, its lock is busy, and other processors needing access must wait. 

For small critical sections, spinning (or “busy-waiting”) for a lock to 
be released is more efficient than relinquishing the processor to do other 
work. Unfortunately, spin-waiting can slow other processors by consum- 
ing communication bandwidth. 

This paper examines the question: are there efficient algorithms for 
software spin-waiting given hardware support for atomic instructions, or 
are more complex kinds of hardware support needed for performance? 

We consider the performance of a number of software spin-waiting 
algorithms. Arbitration for control of a lock is in many ways similar to 
arbitration for control of a network connecting a distributed system. We 
apply several of the static and dynamic arbitration methods originally 
developed for networks to spin locks. 

We also propose a novel method for explicitly queueing spinning 
processors in software by assigning each a unique sequence number when 
it arrives at the lock. Control of the lock can then be passed to the next 
processor in line with minimal effect on other processors. 

Finally, we examine the performance of several hardware solutions that 
reduce the cost of spin-waiting. 

Index Terms-Architecture, cache coherence, locking, multiprocessor, 
and performance. 

I. INTRODUCTION 

M ANY shared-memory multiprocessors have been 
designed in the past few years. The Sequent Symmetry 

[ 181, Alliant FX [20], and the BBN Butterfly [6] are among the 
more commercially successful; research vehicles include the 
DEC SRC Firefly [24], Illinois Cedar [lo], IBM RP3 [22], 
and the Wisconsin Multicube [ll]. 

In shared-memory multiprocessors, each processor can 
directly address memory that can also be addressed by all 
other processors. This uniform access requires some method 
for ensuring mutual exclusion: the logically atomic execution 
of operations (critical sections) on a shared data structure. 
Consistency of the data structure is guaranteed by serializing 
the operations done on it. 
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Since pure software mutual exclusion is expensive [ 171, 
virtually all shared-memory multiprocessors provide some 
form of hardware support for making mutually exclusive 
accesses to shared data structures. This support usually 
consists of instructions that atomically read and then write a 
single memory location. All of the multiprocessors mentioned 
above support atomic instructions, although some, most 
notably the Multicube, also provide other mechanisms [ 121. 

Atomic instructions serve two purposes. First, if the 
operations on the shared data are simple enough, they can be 
encapsulated into single atomic instructions. (Herlihy [14] 
discusses the computational power of atomic instructions for 
building parallel algorithms.) Mutual exclusion is directly 
guaranteed in hardware. If a number of processors simultane- 
ously attempt to update the same location, each waits its turn 
without returning control back to software. 

A lock is needed for critical sections that take more than one 
instruction. Atomic instructions are used to arbitrate between 
simultaneous attempts to acquire the lock, but if the lock is 
busy, waiting is done in software. When a lock is busy, the 
waiting process can either block, relinquishing the processor 
to do other work, or spin (“busy-wait”) until the lock is 
released. Even though spin-waiting wastes processor cycles, it 
is useful in two situations: if the critical section is small, so 
that the expected wait is less than the cost of blocking and 
resuming the process, or if no other work is available. 

This paper examines the question: are there efficient 
algorithms for software spin-waiting for busy locks given 
hardware support for atomic instructions, or are more com- 
plex kinds of hardware support needed for performance? 
(Jayasimha [15] and Agarwal and Cherian [2] have looked at 
the related issue of efficient spin-waiting for data dependen- 
cies .) 

We show that the simple approaches to spin-waiting for 
busy locks have poor performance [3]. Spinning processors 
can slow processors doing useful work, including the one 
holding the lock, by consuming communication bandwidth. 
This performance penalty occurs if processors spin by 
continuously trying to acquire the lock; it also occurs for small 
critical sections if processors spin reading the (cached) lock 
value and try to acquire the lock only when it is released. 

We consider the performance of several software spin- 
waiting alternatives. Although the analogy is not perfect, 
arbitration for control of a lock is in many ways similar to 
arbitration for permission to transmit on carrier-sense multi- 
ple-access (CSMA) networks. In both there is a cost when 
either zero or more than one waiting processor attempts to 
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acquire the resource. A number of arbitration mechanisms 
have been proposed for CSMA networks, including statically 
assigned slots (BRAM [9]), static delays (Aloha [S]), and 
dynamic backoff (Ethernet [ 191); we discuss the performance 
of these methods when applied to spin-waiting. 

We propose a novel method for explicitly queueing spinning 
processors. As processors arrive at a lock, they each acquire a 
unique sequence number specifying the order that they will 
execute the critical section. When the lock is released, control 
can be directly passed to the next processor in line with no 
further synchronization and minimal effect on other proces- 
sors. 

We also examine the performance of several hardware 
solutions. We propose an addition to snoopy cache protocols 
that exploits the semantics of spin lock requests to obtain better 
performance. 

The remainder of this paper discusses these issues in more 
detail. Section II outlines the range of architectures that we 
will consider and how these systems commonly support 
mutual exclusion. Section III analyzes the performance prob- 
lems of simple spin-waiting. Section IV presents new software 
alternatives; Section V considers hardware solutions. Section 
VI summarizes our conclusions. 

II. RANGE OF MULTIPROCESSOR ARCHITECTURES CONSIDERED 

While spinning processors can slow busy processors on any 
multiprocessor where spin-waiting consumes communication 
bandwidth, the precise performance of spin-waiting varies 
along several architectural dimensions: how processors are 
connected to memory, whether or not each processor has a 
hardware-managed coherent private cache, and if so, the 
coherence protocol. This paper will consider six types of 
architectures from within this design space: 

l multistage interconnection network without coherent 
private caches 

l multistage interconnection network with invalidation- 
based cache coherence using remote directories 

l bus without coherent private caches 
l bus with snoopy write-through invalidation-based cache 

coherence 
l bus with snoopy write-back invalidation-based cache 

coherence 
l bus with snoopy distributed-write cache coherence 

(We assume for all of these that processors block when making 
a read request to memory.) While there are clearly some 
shared-memory architectures that are not represented in this 
list, these sample architectures expose most of the interesting 
issues in the performance of spin-waiting. 

A. Common Hardware Support for Mutual Exclusions 
Most architectures support mutual exclusion by providing 

instructions that atomically read, modify, and write memory. 
These atomic instructions are straightforward to implement. 
Conceptually, they require four services that might need inter- 
processor communication: the read and write, some method of 
arbitration between simultaneous requests, and some state that 
prevents further accesses from being granted while the 
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instruction is being executed. Most multiprocessors are able to 
collapse these services into one or two bus or network 
transactions. 

Multistage networks connect multiple processors to multiple 
memory modules. Memory requests are forwarded through a 
series of switches to the correct memory module. When a 
value is read from memory as part of an atomic instruction, 
any cached copies of the location (recorded in the directory 
associated with the memory module) must be invalidated and 
subsequent accesses to that memory module or at least to that 
location must be delayed (or refused and retired) while the new 
value is being computed. To minimize this delay, the 
computation can be done remotely by an ALU attached to each 
memory module. The Butterfly [6] and RP3 [22] implement 
this kind of remote “fetch and op.” 

In single bus multiprocessors, the bus can be used for 
arbitration between simultaneous atomic instructions. Before 
starting an atomic instruction, a processor acquires the bus and 
raises a line (the atomic bus line). This line is held while the 
new memory value is being computed to prevent further 
atomic requests from being started, but the bus can be released 
to allow other normal memory requests to proceed. Waiting 
atomic requests delay and only re-arbitrate for the bus when 
the line is dropped. 

In systems that do not cache shared data, the bus transaction 
used to acquire the atomic bus line can be overlapped with the 
read request for the data. Similarly, with invalidation-based 
coherence [4], even if the lock value is cached, acquiring the 
atomic bus line can be overlapped with the signal to invalidate 
other cache copies. Note that normally the invalidation occurs 
even if the instruction does not change the value of the 
location, because it is done before the instruction executes. 

Write-back invalidation-based coherence avoids an extra 
bus transaction to write the data. In this protocol, the new 
value is temporarily stored in the processor’s cache. When 
another processor needs the value (for instance, as part of an 
atomic instruction), it gets the value at the same time it 
invalidates the first processor’s copy. 

With distributed-write write-back coherence, the initial read 
is usually not needed. Because copies in all caches are updated 
instead of invalidated when a processor changes a memory 
value, the cache block needed by an atomic instruction will 
often already be in the cache. In this case it would be wasteful 
of bus cycles to piggy-back the arbitration mechanism for the 
atomic bus line on top of the arbitration for the bus. For this 
reason, the Firefly, which implements distributed-write cache 
coherence, has a separate arbitration mechanism for its atomic 
bus line [24]. A bus cycle is still usually needed at the end of 
the atomic instruction to update copies in other caches. 

III. THE PERFORMANCE OF SIMPLE APPROACHES TO 
SPIN-WAITING 

Given atomic read-modify-write instructions, it is relatively 
straightforward to develop a correct spin lock. For instance, 
each processor can execute an atomic test-and-set instruction 
to acquire the lock; this instruction reads the old value of the 
lock and sets it to busy. If the read returns that the lock was 
free, the processor has the lock; if the lock was busy, the 
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processor must try again. The lock is released by (atomically) 
clearing the lock value. 

It is more difficult to devise an efficient spin lock; this 
requires balancing several apparently opposing concerns. 
Performance when there is contention for the lock depends on 
minimizing the communication bandwidth used by spinning 
processors, since this can slow processors doing useful work; 
the delay between when a lock is released and when it is re- 
acquired by a spinning processor must also be minimized, 
since no processor is executing the critical section during this 
time. This appears to pose a tradeoff: the more frequently a 
processor tries to acquire a lock, the faster it will be acquired, 
but the more other processors will be disrupted. 

Latency, the time for a processor to acquire a lock in the 
absence of contention, is also important, for instance to 
applications with frequent locking, yet containing no bottle- 
neck lock. A complex algorithm that reduces the cost of spin- 
waiting could degrade overall performance if it takes longer to 
acquire the lock when there is no contention. 

It might seem that the behavior of multiprocessors when 
there is contention for a spin lock is not important. A highly 
parallel application will by definition have no lock with 
significant amounts of contention, since that would imply a 
sequential component. If an application has a lock that is a 
bottleneck, the best alternative would be to redesign the 
application’s algorithms to eliminate the contention. In no case 
does it make sense to add processors to an application if they 
end up only spin-waiting. 

There are, however, several situations where spin lock 
performance when there is contention is important. Poor 
contention performance may prevent an application with a 
heavily utilized lock from reaching its peak performance, 
because the average number of spin-waiting processors will 
become nontrivial as the lock approaches saturation. Further- 
more, if processors arrive at a lock in a burst, queue lengths 
can be temporarily long, resulting in bad short-term perform- 
ance, without the lock being a long-term bottleneck. 

Alternately, it may not always be possible to tune a program 
to use the optimal number of processors. An operating system, 
for instance, has little control over the rate at which users 
make operating system calls. At high load, locks that are 
normally not a problem could become sources of contention. 
Similarly, on a multiprogrammed multiprocessor, a naive user 
can inadvertently ruin performance for all other users by 
combining a bottleneck critical section, lots of processors, and 
an inefficient spin lock. 

In this section, we analyze the performance of two simple 
spin-waiting algorithms; combined measurement results are 
presented at the end of the section. 

A. Spin on Test-and Set 
The simplest spin-waiting algorithm is for each processor to 

repeatedly execute a test-and-set instruction until it succeeds at 
acquiring the lock. Table I lists sample code for this approach. 
Not surprisingly, the performance of spinning on test-and-set 
degrades badly as the number of spinning processors in- 
creases. 

Two factors cause this degradation. First, in order to release 

TABLE I 
SPIN ON TEST-AND-SET 

hit 
Lock 
Unlock 

lock : = CLEAR; 
while (TestAndSet (lock) = BUSY); 
lock : = CLEAR; 

TABLE Il 
SPIN ON READ (TEST-AND-TEST-AND-SET) 

Lock while (lock = BUSY or TestAndSet (lock) = BUSY) 

the lock, the lock holder must contend with spinning proces- 
sors for exclusive access to the lock location. Most multipro- 
cessor architectures have no way of giving priority to the clear 
request of the lock holder, requiring it to wait behind test-and- 
sets of spinning processors, even though these cannot succeed 
until the lock is released. 

Furthermore, on architectures where test-and-set requests 
share the same bus or network as normal memory references, 
the requests of spinning processors can slow accesses to other 
locations by the lock holder or by other busy processors. On 
multistage network architectures, spin-waiting can cause a 
“hot-spot,” delaying accesses to the memory module contain- 
ing the lock location as well as to other modules [21]. On bus- 
structured multiprocessors, each test-and-set consumes at least 
one bus transaction, regardless of whether the lock value is 
changed; these can saturate the bus. 

B. Spin on Read (Test-and-Test-and-Set) 
Intuitively, coherent caches should be able to reduce the 

cost of spin-waiting. Segall and Rudolph [23] propose that 
spinning processors loop reading the value of the lock, and 
only when the lock is free, execute a test-and-set instruction; 
this eliminates the need to repeatedly test-and-set while the 
lock is held. They call this spinning on test-and-test-and-set; 
code for it is listed in Table II. (We assume that Boolean 
expressions are evaluated only if needed; the test-and-set is 
only executed if the lock is not busy.) 

While the lock is busy, spinning is done in the cache without 
consuming bus or network cycles. When the lock is released, 
each copy is updated to the new value (distributed-write) or 
invalidated, causing a cache read miss that obtains the new 
value. The waiting processor sees the change in state and 
performs a test-and-set; if someone acquired the lock in the 
interim, the processor can resume spinning in its cache. 

When the critical section is small, however, spinning on a 
read has almost as much effect on busy processors as spinning 
directly on a test-and-set instruction. The reason is that transient 
behavior can dominate; when the lock is released and reac- 
quired by one of the waiting processors, it takes some time for 
the remaining processors to resume looping in their caches. 
During this time, most spinning processors have pending 
memory requests, delaying requests by busy processors during 
this interim. This behavior is most pronounced for systems with 
invalidation-based cache coherence, but it also occurs with 
distributed-write. 

-- 



ANDERSON: SPIN LOCK PERFORMANCE 

Suppose a number of processors are spinning reading the 
lock value in their caches. When the lock is released, these 
cache copies will all be invalidated; each processor will then 
incur a read miss to fetch the new value back into its cache. 
These read misses will be satisfied serially. Each processor to 
get the new value will then try to execute a test-and-set; these 
requests must compete for the bus or memory module with any 
remaining processors doing read misses. 

The first processor to test-and-set will acquire the lock. Any 
processor who completed its read miss before this, however, 
will have seen the lock as free, proceed to do a test-and-set 
itself, fail, and go back to spinning reading the lock value. 
Unfortunately, each failing test-and-set instruction, because it 
is treated as a memory write, invalidates all cache copies of the 
lock, forcing any processors that had resumed spinning to miss 
again. 

Thus, once the lock has been reacquired, some processors 
have passed the barrier and have a pending test-and-set 
request; the remainder have pending reads, trying to fill their 
cache after the original read miss. (The number of processors 
who have seen the lock as free will be worse on systems with 
multistage networks, because of the greater distance between 
the processors and memory.) Each read miss that is satisfied 
decreases the number of pending requests; that processor 
obtains a cache copy of the lock and resumes looping. Each 
test-and-set request that is satisfied decreases the number of 
processors waiting to test-and-set; however, it also invalidates 
all existing cache copies of the lock, forcing those processors 
that had been spinning in their cache to read miss again. After 
each test-and-set, every processor but the one that did the test- 
and-set must contend for memory. Eventually, the last 
spinning processor does a test-and-set, allowing every other 
spinning processor to do a read miss and then quiesce. 

Before quiescence, each spinning processor spends most of 
its time contending for the bus or memory. After quiescence, 
spinning processors consume no communication resources. 
Thus, a normal memory request will be slowed dramatically if 
it occurs before quiescence and not at all if it occurs 
afterwards. For long critical sections, this initial s lowdown is 
less significant, but for short critical sections, it dominates 
performance. 

Our  discussion so far has assumed random arbitration 
among memory requests. It might seem that spinning on a 
cache copy would perform well given fixed priority bus 
arbitration, as for instance on the Firefly. When a lock is 
released, the highest priority processor will acquire the lock. 
Even if it takes some time for the other processors to quiesce, 
the lock holder would not be slowed since it has higher priority 
than the other processors. However,  if the lock is released 
before quiescence, a low priority processor with a pending 
test-and-set could acquire the lock before higher priority 
processors looping on read. The lock holder might then be 
delayed by these higher priority processors. 

C. Reasons for the Poor Performance of Spin on Read 
There are several factors that cause the performance of 

spinning on a memory read to be worse than expected. 
l There is a separation between detecting that the lock has 
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been released and attempting to acquire it with a test-and-set 
instruction. This separation allows more than one processor to 
notice that the lock has been released, pass by that test, and 
proceed to try a test-and-set. Ideally, if one processor could 
notice the change and acquire the lock before any other 
processor committed to doing a test-and-set, the performance 
would be better. 

l Cache copies of the lock value are invalidated by a test- 
and-set instruction even if the value is not changed. If this 
were not the case, invalidations would occur only when the 
lock is released and then again when it is reacquired. 

l Invalidation-based cache-coherence requires O(P) bus or 
network cycles to broadcast a value to P waiting processors. 
This occurs despite the fact that, after an invalidation, they 
each request exactly the same data. 

While a solution to any of these three problems by itself 
would result in better performance, any single solution would 
still require bus activity that grows linearly with the number of 
processors. 

For example, distributed-write cache coherence eliminates 
invalidations; each processor directly receives all updates to 
the lock value. All reads can therefore be done locally; only 
test-and-sets still require bus traffic. The Sequent Balance [7] 
and the Silicon Graphics 4D-MP [5] both use a separate bus 
for test-and-set variables for just this reason; the bus imple- 
ments distributed-write coherence to reduce bus traffic due to 
spin-waiting. Unfortunately, broadcasting updates makes the 
separation between the test and the test-and-set worse: all 
processors receive the updated lock value at the same time, 
and all therefore proceed to try the test-and-set. The result is 
that P test-and-sets must be performed before quiescence. It is 
unclear whether either the Balance or the 4D-MP has special 
hardware to avoid this problem. 

D. Measurement Results 
To demonstrate the performance of simple spin-waiting, we 

implemented both approaches on a Sequent Symmetry Model 
B shared-memory multiprocessor with 20 80386 (approxi- 
mately 2 MIP) processors. The Symmetry has a shared bus 
and write-back invalidation-based cache coherence; unlike the 
Balance, test-and-set variables are handled on the same bus as 
normal memory references [ 181. Acquiring and releasing a 
lock on the Symmetry normally takes 5.6 ps, less if the cache 
block containing the lock is initially private to the locking 
processor. 

Fig. 1 is the principal performance comparison: the elapsed 
time for various number of processors to cooperatively 
execute a critical section one million times, for the two 
alternatives. Each processor loops: wait for the lock, do the 
critical section once, release the lock, and delay for a time 
randomly selected from a uniform distribution. The mean 
delay is equal to five times the size of the critical section. The 
wait in the loop eliminates any locality effect: each iteration, 
the lock and the shared data accessed by the critical section 
move between caches. The lock and shared data are placed so 
as to fall in separate cache blocks. 

This benchmark simulates the performance of an application 
with a small central critical section. (Similar curves have been 
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Fig. l.Principal performance comparison: elapsed t ime (second) to execute 
benchmark (measured). Each processor loops one mill ion/P times: acquire 
lock, do critical section, release lock, and compute. 

measured using a fixed delay between lock accesses.) It also 
shows spin lock latency and performance with small and large 
amounts of contention. Ideally, performance initially im- 
proves as processors are added, due to increased parallelism, 
but as the critical section becomes a bottleneck, performance 
levels out. The ideal curve in Fig. 1 is the time the test would 
have taken, given free spin-waiting; this was determined by 
simulation from the time to execute the critical section and the 
mean delay between lock accesses. 

Fig. 1 confirms our analysis. Performance degrades badly 
as processors spin on test-and-set; spinning on a read is better, 
but it still has disappointing performance. As the critical 
section becomes a bottleneck, the average number of spin- 
waiting processors increases, significantly slowing the proces- 
sor executing the critical section. As a result, peak ideal 
performance is never reached. Performance with these altema- 
tives is very sensitive to the exact number of processors given 
to an application; adding even a few processors beyond where 
the lock saturates worsens overall performance considerably. 

This behavior can be degenerative [3]. Critical sections, 
since their purpose is to manipulate shared data structures, 
typically have higher memory access rates than noncritical 
sections. As a critical section becomes a bottleneck, the 
spinning processors slow the lock holder’s execution, both in 
absolute terms and relative to noncritical sections, making it 
more of a bottleneck, resulting in more spinning processors. 

As we noted, there is a difference in the effect on memory 
accesses before and after quiescence when processors spin on 
a read. This two-phase behavior allows us to measure the time 
to quiesce on the Symmetry. We construct a critical section 
whose behavior mirrors that of the bus, but in reverse. The 
critical section begins by delaying for some amount of time 
without using the bus at all, then proceeds to use the bus 
heavily before releasing the lock. If the initial delay is longer 
than the time to quiesce the spinning processors, then the 
critical section will run as fast on P processors as on one. If the 
heavy bus usage begins before quiescence, the critical section 
will run slower on P processors. We vary the length of the 
initial delay to find this performance knee; in practice, this 
knee was quite sharp. 

Fig. 2 shows the results of this test. The time to quiesce 
grows steeply but linearly with the number of processors. As a 
result, even a few spinning processors can adversely impact 
the execution speed of a moderate-sized critical section. 

cfuiesce time 

1 5 9 13 17 
number of spinning processors 

Fig. 2. Time to quiesce, spin on read (microseconds). 

TABLE III 
DELAY AFTER SPINNER NOTICES RELEASED LOCK 

Lock while (lock = BUSY or TestAndSet (Lock) = BUSY) 
begin 
while (lock = BUSY) ; 
Delay 0; 
end; 

TABLE IV 
DELAYBETwEENEACHREFERENCE 

Lock while (lock = BUSY or TestAndSet (lock) = BUSY) 
Delay 0; 

IV. N E W  SOF~VARE ALTERNATIVES 

In this section, we first describe five software spin-waiting 
approaches, four based on CSMA network protocols, and one 
using explicit queueing, leaving until afterwards the presenta- 
tion of their combined measurement results. 

A. Delay Alternatives 
We consider four ways of inserting delays into the spin-wait 

loop, defined by two dimensions: where the delay is inserted 
and whether the size of the delay is set statically or 
dynamically. A delay can be inserted after the lock has been 
released or alternatively after every separate access to the 
lock; code for these approaches is listed in Tables III and IV. 
Because processors first try to acquire the lock before 
delaying, lock latency is unaffected. 

1) Delay after Spinning Processor Notices Lock has 
been Released: We can reduce the number of unsuccessful 
test-and-sets when spinning on a read by inserting a delay 
between when a processor reads that the lock is released and 
when it commits to trying the test-and-set. If some other 
processor acquires the lock during this delay, then the 
processor can resume spinning; if not, then the processor can 
try the test-and-set, with a greater likelihood that the lock will 
be acquired. In this way, the number of unsuccessful test-and- 
sets, and thus invalidations, can be reduced. 

Each processor can be statically assigned a separate slot, or 
amount of time to delay, from 0 to P - 1 where P is the 
number of processors. The spinning processor with the 
smallest assigned delay checks the lock, sees that it is free, and 
acquires it. Processors with longer delays then time out, see 
that the lock is busy (enduring another cache miss), and 
resume spinning. By statically assigning delays, we can ensure 
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that at most one processor times out at any instant. Chlamtac et 
al. [9] propose a similar method to arbitrate access to a CSMA 
network. (Slots can also be used to implement priority access 
to the critical section, by assigning lower delays to higher 
priority processes.) 

This algorithm performs well when there are many spinning 
processors. It is likely that some spinning processor will 
have a short delay; when the lock is released, some processor 
will quickly reacquire it. When there is only one spinning 
processor, however, it is unlikely to have a short delay, 
leaving the lock unacquired for a relatively long time, harming 
performance. 

The number of slots can be varied to trade off performance 
between these two cases. When there are few spinning 
processors, using fewer slots improves performance by 
reducing the time to pass control of the lock to a waiting 
processor. When there are many spinning processors, using 
fewer slots worsens performance since more than one proces- 
sor would simultaneously time out and attempt to test-and-set, 
requiring longer to quiesce. 

By varying spinning behavior based on the number of 
waiting processors, we can have good performance in both 
situations. Such an algorithm has already been devised for 
CSMA networks: Ethernet’s exponential backoff [19]. In a 
CSMA network, each processor can detect when the network 
is being used. When the network is unused, a processor can 
acquire the network by beginning to transmit, but if another 
processor simultaneously begins transmitting (‘ ‘collides’ ‘), 
they both fail and must retry. The idea is for each processor to 
use the number of collisions it has experienced to estimate the 
number of spinning processors. 

Initially, an arriving processor assumes that there are no 
other processors waiting to use the network and chooses a 
random delay with a small mean. Whenever it times out, tries 
to acquire the network and fails because some other processor 
timed out at the same time, then, assuming random arrivals, 
there are likely to be many more waiting processors that did 
not collide. Collisions are unlikely if the average delay is at 
least half the number of spinning processors. In Ethernet, 
then, each processor doubles its mean delay after each 
collision. 

Analogously, a processor trying to acquire a spin lock could 
begin by assuming there were no other waiting processors. 
Each time it times out, sees the lock is still free, tries to test- 
and-set and fails, it has “collided” with at least one other 
processor. There are likely to be many other spinning 
processors it did not collide with, and thus it should double its 
mean delay, up to some limit. 

Although Ethernet’s backoff has been shown to have good 
performance [ 191, the performance of backoff for spin locks 
will not be the same as for networks. In a network, a collision 
aborts all processors; there is an equal cost to a collision 
among any number of processors as there is to an empty slot. 
By contrast, a test-and-set collision allows one processor to 
proceed, and the cost depends on how many processors 
collide. The more processors that try to acquire the lock and 
fail, the longer it will take them to quiesce, and the more that 
other processors, including the lock holder, will be slowed. 

11 

In designing a backoff scheme for spin locks, there are a 
number of details that affect performance. Our  first implemen- 
tation got most of these wrong. 

l When a processor detects that the lock has been acquired, 
it should not increase (or decrease) its mean delay. The fact 
that some other processor had a shorter delay does not imply 
much about how many other spinning processors there are. 

l There needs to be a maximum bound on the mean delay. 
Otherwise, if a processor backs off a number of times and then 
becomes the only waiting processor, it will take a long time for 
it to acquire the lock. This bound should be equal to the 
number of proessors, so that backoff has the same perform- 
ance as statically assigned slots when there are many spinning 
processors. 

l The initial delay of an arriving processor should be some 
fraction of its delay the last time at the lock. In a CSMA 
network, an arriving processor can efficiently reestimate the 
number of spinning proessors because collisions are not 
unduly costly. For spin locks, however, the learning curve can 
be expensive. There is no more reason to assume initially that 
there are no other spinning processors than that the number is 
related to past experience. For our measurements, we set the 
initial delay to be half the previous delay. Note that in Table 
III if the lock if free when the processor arrives, it will 
immediately acquire it; backoff is only used if the lock is 
initially busy. 

While the justification for backoff assumes random arrivals 
at the lock, it performs well compared to using static slots even 
when this is not the case. If processors execute for a fixed 
amount of time between lock accesses, they will tend to self- 
schedule so that either there is no contention for the lock or 
there are always the same number of spinning processors. In 
the latter case, backoff would increase the delays until there 
were few collisions, and then the hysteresis would help 
maintain those delays. 

Similarly, both backoff and static slots have performance 
problems when processors repeatedly arrive at a lock in a 
burst. The first time the lock is accessed, all processors choose 
a small delay, time out together, and take a long time to 
quiesce. Eventually the mean delays are increased enough to 
avoid collisions; this initial degradation is largely avoided the 
next iteration. Using static slots also avoids this initial 
performance degradation. However,  since the number of 
waiting processors decreases as more acquire the lock, both 
alternatives are finally left with processors with inappropri- 
ately long delays, making it take longer to pass control of the 
lock. 

Polling for the lock release is only practical for systems with 
per-processor coherent caches. On  other systems, processors 
would consume communication bandwidth if they were to spin 
reading memory waiting for the lock to be released. Some 
multistage network multiprocessors with caches based on 
remote directories limit the number of outstanding copies of a 
location in order to limit the size of the directories [l]; if the 
number of spinning processors exceeds this number, spinning 
on a read degenerates to spinning across the network. 

Even for multiprocessors with snoopy or complete directory 
invalidation-based caches, using exponential backoff or static 
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TABLE V  
QUEUEUSINGATOMICREAD-AND-INCREMENT 

Init 

Lock 

flags[O] : = HAS-LOCK; 
flags[ 1. .P - l] : = MUST-WAIT;  
queueLast : = 0; 
myPlace : = ReadAndIncrement (queueLast); 
while (flags[myPlace mod P] = MUST-WAIT) 

Unlock 
flagsimyplace mod P] : = MUST-WAIT;  
flags[(myPlace + 1) mod P] : = HAS-LOCK; 

slots solves only one of the problems with spinning on a 
memory read. Each spinning processor still requires at least 
two cache read misses per execution of the critical section, one 
when the lock is released and one when the lock is acquired. 
For sufficient numbers of spinning processors, this read miss 
activity can saturate the bus or network. 

Exponential backoff after the lock is released does, how- 
ever, provide scalable performance for multiprocessors with 
distributed-write cache coherence. In these systems, each test- 
and-set requires a single bus cycle to broadcast the new value, 
independent of the number of spinning processors. Exponen- 
tial backoff, in turn, limits the number of unsuccessful test- 
and-sets. 

2) Delay Between Each Memory Reference: An alterna- 
tive approach to reducing the cost of spin-waiting is to insert a 
delay between each memory reference. This can be used on 
architectures without coherent caches or with invalidation- 
based coherence to limit the communication bandwidth con- 
sumed by spinning processors. In the code in Table IV, we 
check if the lock is free before trying to test-and-set since we 
assume that a test-and-set instruction consumes more band- 
width than a simple read. 

The mean delay between each reference can be set statically 
or dynamically, analogous to the Aloha [8] and Ethernet 
network protocols. Most of the tradeoffs outlined above apply 
to these alternatives: more frequent polling improves perfonn- 
ante when there are few spinning processors and worsens 
performance when there are many. Exponential backoff can be 
used to dynamically adapt to varying conditions. 

Delaying between each reference poses special problems, 
however. For instance, the performance of backoff is bad 
when there is a single spinning processor for a moderate-sized 
critical section. The processor will continue to back off the 
delay as long as the lock is held. When the lock is released, the 
spinning processor will be in the midst of a long delay that 
must finish before it noties the change. 

B. Queueing in Shared Memory 
It might seem that shared memory could be used to store 

state to control the activity of spinning processors. This is less 
easy than it appears. For instance, a shared counter could be 
used to directly keep track of the number of spinning 
processors, instead of relying on a backoff algorithm to 
estimate that number. Given atomic increment and decrement 
instructions, the apparent cost of maintaining this state is the 
execution of two extra atomic instructions per critical section. 
However, each spinning processor must read this data to 
compute its delay; on systems without distributed-write 

coherence, this would consume as much bandwidth as directly 
polling the lock. 

Another approach would be to maintain an explicit queue of 
spinning processors. Each arriving processor enqueues itself 
and then spins on a separate flag. When the processor finishes 
with the critical section, it dequeues itself and sets the flag of 
the next processor in the queue. This approach can reduce 
invalidations: if each processor’s flag is kept in a separate 
cache block, then only one cache read miss is needed to notify 
the next processor. Maintaining queues, however, is expen- 
sive; the enqueue and dequeue operations must themselves be 
locked. (Even if there are atomic enqueue and dequeue 
instructions, as on the VAX, these operations are likely to be 
slow since they must modify more than one location.) The 
result is a much worse performance for small critical sections. 
For instance, it would not be reasonable to do this if the critical 
section itself was a queue operation. 

We have developed a method of queueing spin-waiting 
processors that requires only a single atomic operation per 
execution of the critical section. Each arriving processor does 
an atomic read-and-increment to obtain a unique sequence 
number. When a processor finishes with the lock, it taps the 
processor with the next highest sequence number; that 
processor now owns the lock. Since processors are sequenced, 
no atomic read-modify-write instruction is needed to pass 
control of the lock. Table V lists the code for this approach 
(“myplace” is a location private to each processor). Sequent 
[ 131 has independently devised a similar algorithm. 

The best implementation varies somewhat among architec- 
tures. With distributed-write coherence, processors can all 
spin on a single counter. To release the lock, a processor 
simple writes its sequence number into the counter; each 
processor’s cache is updated, directly notifying the next 
processor in line with a single bus transaction. 

With invalidation-based coherence, each processor should 
wait on a flag in a separate cache block. Only two bus or 
network transactions (an invalidation and a read miss) are 
needed to signal the next processor. Similarly, on a multistage 
network without coherent caches, each flag should be placed 
in a separate memory module. Even though processors must 
poll to learn when it is their turn, there can be no more than P 
such polling requests outstanding at a time among P x log P 
switches and P memory modules. 

This approach is less valuable in a system with a bus but no 
cache coherence. Processors must still poll to find out if it is 
their turn; the bus can easily be swamped with this polling. To 
be effective, a delay can be inserted between each poll that 
depends on how close the processor is to the front of the queue 
and on how long it takes to execute the critical section. This 
indicates one way of using fewer than P separate memory 
locations in Table V: if a processor is farther from the front 
than the number of flags, it can poll (rarely) to find out when it 
is close enough to spin on its own flag. 

If an architecture does not support an atomic read-and- 
increment instruction, this operation can itself be locked. 
Since the operation would take at most a few instructions, it 
would not normally become a bottleneck except when used 
with the most trivial of critical sections. When processors 

-- _ _____..--- --.-___- ___-.. 
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arrive in a burst, however, there can be short-term contention 
for this lock. In this case, one of the delay alternatives from 
Section IV-A should be chosen to minimize bus traffic. The 
tradeoffs are slightly different here; a delay in passing control 
over the read-and-increment operation need not impact overall 
performance, provided some backlog of spinning processors 
have already obtained a number. Interestingly, the Symmetry 
supports an atomic increment but not an atomic read-and- 
increment instruction (the original value is not saved). 

Because a spinning processor automatically gets control of 
the critical section when its bit is set, the time between when 
one processor finishes and the next processor starts executing 
the critical section is reduced. In some sense, this exploits 
parallelism: the spinning processor does the time-consuming 
work of the atomic operation before the lock is released, 
decreasing the amount of serial work required to pass control. 
Thus, throughput actually increases as a critical section 
becomes a bottleneck. 

Unfortunately, queueing has some bad aspects. It increases 
lock latency. Each processor must increment a counter, check 
a location, zero that location, and set another location; in the 
other methods, when there is no contention, the first test-and- 
set acquires the lock. Thus, when there is contention, queueing 
is better; when there is no contention, backoff or simple spin- 
waiting is better. 

While processor preemption can yield bad spin-locking 
performance [25], queueing makes this problem more severe. 
Normally, if a process holding a lock is preempted, every 
process spinning on that lock must wait for it to be re- 
scheduled. Good performance requires lock holders to not be 
preempted. With queueing, however, preempting any spin- 
waiting process forces all behind it to wait if it reaches the 
front of the queue before being rescheduled. This can cause 
lock-step behavior if a small critical section is accessed 
frequently. When a process in line is preempted, other 
processes queue up behind it; when it is rescheduled, it uses 
the lock once, but may then have to wait when it reaccesses 
the lock for other processes that have been preempted in the 
interim. One way of avoiding this problem, if a process can be 
notified before it is preempted, is for it to remove itself from 
the queue by notifying the next process in line of that event 
(e.g., by setting a bit). 

Another problem with queueing is that it makes it more 
difficult to wait for multiple events. As the number of 
processors increases, any centralized resource can become a 
bottleneck. One way of increasing throughput is to divide 
control over a resource among several critical sections, so that 
a spinning processor need access only one of the locks to get 
service. It is easy to see how delays could be used in this case; 
each waiting processor could randomly poll a server, and if 
busy, delay before polling another server. It is hard to see how 
queueing could be adapted, however, since a processor would 
only be able to wait in one queue at a time. 

C. Measurement Results 
We implemented the five software alternatives we have 

described on the Symmetry Model B with 20 processors. The 
static and dynamic delays varied from 0 to 15 ps; it takes 
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Fig. 3. Principal performance comparison: spin-waiting overhead (seconds) 
in executing the benchmark (measured). Each processor loops one million/ 
P times: acquire lock, do critical section. release lock, and compute. 

approximately one microsecond on the Symmetry to execute 
the test-and-set instruction. Since the Symmetry does not 
support an atomic read-and-increment instruction, queueing 
uses an explicit lock (with backoff after each memory 
reference) to access the sequence number. 

Fig. 3 is the principal performance comparison: spin- 
waiting overhead to execute the benchmark used for Fig. 1, as 
a function of the number of processors. To isolate the effect of 
spinning, we subtract from the elapsed time to execute the 
benchmark the “ideal” curve, the time the test would have 
taken given free spin-waiting. This leaves just the component 
due to spin-waiting overhead. We include spin on read for 
comparison. 

Fig. 3 confirms our analysis. Although performance varies, 
all five methods described in this section have reasonable 
performance across the range of conditions. The one processor 
time reflects lock latency; queueing has high latency, while all 
other alternatives have low latency. Queueing would have 
better latency on systems with an atomic read-and-increment 
instruction. As the lock approaches saturation, the static delay 
alternatives have worse performance, because the delays are 
inappropriate for small numbers of spinning processors. The 
performance of the backoff alternatives remains close to the 
simple spin-waiting methods by adapting to the number of 
spinning processors. 

When there are high numbers of spinning processors, 
backoff performs slightly worse than static delays; some 
collisions are necessary to maintain appropriate delays. 
Queueing performs best in this case by parallelizing the lock 
handoff. Across the entire spectrum, because of the Symme- 
try’s invalidation-based coherence, delaying after each refer- 
ence is slightly better than delaying after the lock is released. 

To demonstrate the potential benefit of backoff relative to 
static delays, Fig. 4 compares spin-waiting overhead for the 
benchmark as a function of the number of static slots. As can 
be seen, small numbers of slots perform better when there are 
few spinning processors, while larger numbers of slots 
perform better when there are many. This tradeoff becomes 
harsher as the maximum number of spinning processors 
increases: 64 slots has much worse low load performance than 
direct spinning on read, yet that number of slots might be 
necessary to avoid poor high load performance in systems with 
large numbers of processors. Backoff avoids the tradeoff by 
performing well in both situations. 
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Fig. 4. Spin-waiting overhead (seconds) versus number  of slots. 
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Fig. 5. Spin-waiting overhead in achieving barrier, normalized by the 
number  of processors (microseconds per processor). 

Fig. 5  shows spin-waiting overhead when processors arrive 
at a  spin lock at the same time. A t imestamp is taken before the 
processors are released from a  barrier; each  processor then 
acquires the lock and  bumps a  counter;  and  another  t imestamp 
is taken when the last processor acquires the lock. As in Fig. 
3, we subtract the time to execute this test given free spin- 
waiting. This result is then normalized by  the number  of 
processors,  to yield the average spin-waiting overhead per  
execut ion of the critical section. For clarity, we omit the 
curves for static and  dynamic delays after the lock is released, 
as  these are everywhere slightly worse than delaying between 
each reference. 

The  results in Fig. 5  are similar to that of Fig. 3. Queueing 
has  bad  latency in the one  processor case. W h e n  two 
processors arrive together, using a  static mean  delay performs 
worst, but all alternatives perform badly because of the initial 
contention. As the number  of processors increases, the 
behavior  becomes similar to that of Fig. 3, except  that 
queueing does  not perform well with high numbers  of 
processors because it uses backoff  to arbitrate for the lock 
protecting its sequence number.  

V. HARDWARE SOLUTIONS 

In this section, we consider hardware changes  to improve 
spin lock performance. As for the software alternatives, 
implementing solutions in hardware also poses tradeoffs. For 
example, the best cache coherence mechanism for spin locks 
may not be  the best for normal memory references; some 
systems, such as  the Balance and  the 4D-MP, try to avoid this 
di lemma by using one  bus  with invalidation-based coherence 
for normal requests and  a  separate one  with distributed-write 
coherence for test-and-set variables. Unfortunately, this dupli- 
cation adds  expense that is of little benefit to applications that 

do  not spend significant amounts  of time spin-waiting. 
Furthermore, if this separate bus  is slower than the normal 
bus, as  on  the Balance, lock latency will suffer. 

W e  consider the quest ion of hardware solutions separately 
for multistage network and  single bus  mult iprocessors. 

A. Multistage Interconnection Network Mult iprocessors 
Combining networks, by  providing parallel access to a  

single memory location [21], can improve the per formance of 
spinning directly on  test-and-set. Requests  to the same location 
that arrive at the same network switch are combined and  
forwarded as  a  single request;  the result is the same as if the 
two requests were made  sequential ly at the memory module. 
For example, two test-and-set requests would result in one  
request  being forwarded and  one  request  returning immedi- 
ately with the value as  set; no  matter what the current value, 
only one  will succeed if the two requests are made  sequen-  
tially. Similarly, a  test-and-set and  a  clear (to release the lock) 
would be  combined to forward the set, while the test-and-set 
request  returns having acquired the lock. 

Assuming the cycle time of the combining network is the 
same as a  normal network, combining has  good  per formance 
for any  number  of spinning processors.  W h e n  there is no  or 
little contention, there is little combining, and  per formance is 
similar to normal spinning on  test-and-set. As more processors 
spin-wait, combining reduces congest ion due  to duplicate test- 
and-sets, and  since the request  to release the lock is likely to be  
combined with a  test-and-set at an  earlier s tage of the network, 
the time to pass control of the lock would be  reduced.  
However,  since the complexity of combining switches is likely 
to increase their latency, better per formance might be  obtained 
by  a  normal network with backoff  or queueing.  

Hardware queueing at the memory module, like software 
queueing,  can eliminate polling across the network; it can also 
speed passing control of the lock. For this, processors would 
issue explicit “enter” and  “exit” critical section instructions 
to the memory module, which would maintain queues  of the 
processors waiting for each  lock. W h e n  a  processor’s “enter” 
request  returns, it has  the lock; no  polling across the network 
is necessary.  W ith software queueing on  a  system with 
coherent  caches,  the processor releasing the lock notifies the 
next processor by  writing its flag; an  invalidation followed by  
a  read miss is needed  before the spinning processor can start 
execut ing the critical section. By specially handl ing critical 
section requests, hardware queueing eliminates one  network 
round trip to pass control of the lock. Perhaps most impor- 
tantly, lock latency is likely to be  better with hardware than 
with software queueing;  even though hardware queueing 
increases complexity at the memory module, it reduces the 
number  of instructions needed  to acquire the lock. 

Goodman et al. [ 121,  albeit for a  different architecture, have  
proposed using caches to hold queue  links. Their approach 
stores the name of the next processor in the queue  directly in 
each  processor’s cache;  when the lock is released, the next 
processor can be  notified without going through the original 
memory module. To  enhance  flexibility, they have also 
proposed that control return to software after the processor is 
put on  the queue  for a  critical section; the processor is then 
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separately notified by the hardware when it gets to the front of 
the queue. 

B. Single Bus Multiprocessors 
One obvious solution to reducing the number of invalida- 

tions caused by spinning on a read would be to invalidate only 
if the lock value changes. Before starting an atomic instruc- 
tion, a processor would acquire the bus and raise a line to 
prevent other processors from accessing their potentially 
incorrect cache copies. These copies would then be invalidated 
only if the value changes. Unfortunately, this solves only one 
of the problems with spinning on a read. When the lock is 
released, there will still an invalidation, a cache miss by each 
spinning processor, followed by some number of failing test- 
and-sets; each of these consumes bus bandwidth. The time to 
quiesce is reduced but not eliminated. Unlike software 
queueing or backoff, performance degrades as more proces- 
sors spin. 

Rather, we note that more intelligent snooping of bus 
activity can reduce the cost of spin-waiting. We have already 
seen this in practice. If hardware keeps caches coherent, 
processors can spin on a cache copy instead of repeatedly 
reading from memory. Similarly, invalidation-based coher- 
ence can result in a cascade of read misses, which do not occur 
given write-broadcast coherence. 

We will present two ways of improving performance by 
using information transmitted over the bus. One eliminates 
duplicate read requests; the other eliminates redundant test- 
and-sets. Simple spin-waiting is expensive because all spin- 
ning processors make bus requests to do the same thing, read 
or test-and-set, at the same time. This fact can be used to 
advantage. 

Read broadcast [23], [ 161 can eliminate duplicate read miss 
requests. Each processor’s cache controller monitors the bus; 
if a read occurs corresponding to an invalid block in its cache, 
it takes the data off the bus and sets the block to valid. Thus, 
whenever the cache copies of spinning processors are invali- 
dated, the first read will fill all caches. Some spinning 
processors, however, will have already seen the cache as 
invalid and will be waiting at the bus to do the read; if a 
controller with a pending read observes the bus grant a read on 
the same location to some other processor, it should simply 
wait and take the data returning for that request. This 
eliminates the cascade of read misses when spinning on a read, 
without implementing full distributed-write coherence. 

By specially handling test-and-set requests in the cache and 
bus controllers, we can eliminate the need for failing test-and- 
sets to use the bus. This way, processors can spin on test-and- 
set, acquiring the lock quickly when it is free, without 
consuming bus bandwidth when the lock is busy. Provided that 
specially handling test-and-sets does not increase the bus or 
cache cycle time, its performance would be better than 
software backoff or queueing. Fig. 3 shows that neither of 
these achieves ideal performance on the Symmetry. As the 
critical section becomes a bottleneck, backoff performance 
degrades slightly because of the overhead of computing 
random delays; the complexity of queueing similarly increases 
lock latency. 
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The idea is to not commit to doing the test-and-set over the 
bus so long as there is the possibility that it might fail (return 
that the lock is busy), and to return immediately without using 
the bus whenever the test-and-set would fail if it were the next 
to execute. 

When a processor issues a test-and-set request, it first 
checks the cache. If the lock is not in the cache (because it was 
replaced or invalidated), a read miss occurs. Duplicate read 
misses can be eliminated using read broadcast. Once the lock 
value is in the cache, the test-and-set can return immediately if 
the lock is busy. If the lock is free, the controller can then try 
to acquire the bus to get the mutual exclusion needed by the 
atomic instruction. 

While the controller is waiting for the bus, it must monitor 
the bus activity to determine if it should continue waiting. 
With distributed-write coherence, if some other processor 
acquires the bus to do a test-and-set, it will broadcast the new 
lock value, and all pending test-and-set requests can be 
aborted. If the lock value is invalidated, the processor must 
convert the test-and-set request back to a read request to see if 
the lock is now busy. 

Typically, cache and bus controllers do not know the type of 
atomic instruction making a request, since the ALU is 
responsible for performing the logic of the instruction. This 
information is needed for the cache to be able to abort pending 
test-and-sets. When the cache returns control to the processor, 
the processor can proceed as if it had exclusive access, 
whether or not the test-and-set actually acquired the bus. In one 
case, it really has the exclusive access needed to acquire the 
lock; in the other, it can proceed because its actions will be 
consistent with some serial ordering of atomic instructions. 

VI. CONCLUSIONS 

In this paper, we have shown that simple methods of spin- 
waiting for mutually exclusive access to shared data structures 
degrade overall performance as the number of spinning 
processors increases. We have proposed and analyzed the 
performance of several hardware and software solutions to this 
problem. 

For multiprocessors without special support for spin- 
waiting beyond implementing atomic instructions, we have 
shown that software queueing and a variant of Ethernet 
backoff have good performance even for large numbers of 
spinning processors. Because it is simpler, backoff has better 
performance when there is no contention for the lock; 
queueing, by parallelizing the lock handoff, performs best 
when there are waiting processors. 

We have also shown that performance can be further 
improved by specially handling spin lock requests. On  
multiprocessors with multistage interconnection networks, 
explicit hardware queueing of spin-waiting processors, 
whether at the memory module or in each cache, can reduce 
the time to pass control of the lock to a waiting processor. On  
shared bus multiprocessors, failing test-and-sets can be han- 
dled with no bus traffic given more intelligent snooping. 
Whether real workloads will have significant enough amounts 
of spin-waiting to make such additional hardware support 
worthwhile remains an open question. 
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