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The throughput of local area networks is rapidly increasing. For example, the bandwidth of new

ATM networks and FDDI token rings is an order of magnitude greater than that of Ethernets.

Other network technologies promise a bandwidth increase of yet another order of magnitude in a

few years. However, in distributed systems, lowered latency rather than increased throughput is

often of primary concern. This paper examines the system-level effects of newer high-speed

network technologies on low-latency, cross-machine communications.

To evaluate a number of influences, both hardware and software, we designed and imple-

mented a new remote procedure call system targeted at providing low latency. We then ported

this system to several hardware platforms (DECstation and SPARCstation) with several differ-

ent networks and controllers (ATM, FDDI, and Ethernet). Comparing these systems allows us to

explore the performance impact of alternative designs in the communication system with respect

to achieving low latency, e.g., the network, the network controller, the host architecture and

cache system, and the kernel and user-level runtime software.

Our RPC system, which achieves substantially reduced call times (170 pseconds on an ATM

network using DECstation 5000/200 hosts), allow us to isolate those components of next-

generation networks and controllers that still stand in the way of low-latency communication.

We demonstrate that new-generation processor technology and software design can reduce

small-packet RPC times to near network-imposed limits, making network and controller design

more crucial than ever to achieving truly low-latency communication.
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1. IINTRODUCTION

In modern computer systems, slow communication links and software-

processing overheads have imposed a stiff penalty for cross-machine commu-

nication. These high costs limit the extent to which a network of computers

can be used as a solution for either structuring-related or performance-

related problems in applications.

Several recent developments, however, have the potential to change the

way in which networks are used:

—New local area network technologies, such as FDDI [2], and B-ISDN [34]

using Asynchronous Transfer Mode (ATM), offer a 10-fold bandwidth

improvement over Ethernet [23]. Another order-of-magnitude improve-

ment to 1 gigabit per second seems close behind.

—New processor technologies and RISC architectures have already given us

an order-of-magnitude improvement in processing power, with 100 MIPS

performance expected within the year. These processors will be capable of

using the bandwidth that new networks provide.

—Performance-oriented operating system research has led to extremely low

overhead operating system mechanisms [4, 22, 27, 33]. Such low-overhead

mechanisms greatly reduce the software latency that has typically limited

the performance of operating system primitives.

Taken together, these technologies should allow us to produce low-latency

communication systems that can exploit novel distribution schemes that

would not otherwise be possible,

As a motivating example, consider the design of a distributed-memory

server [ 11]. In a cluster of networked workstations, paging to spare memory

lying idle on other nodes could be much faster than paging to disk. A

distributed server could manage the idle memory in the network; on a page

fault, the page fault handler would communicate with the server and transfer

pages to or from remote nodes. The effectiveness of this scheme is highly

influenced by the communication latency between client and server.

As another example, reduced-latency communication would greatly facili-

tate the use of networked workstations as a loosely coupled multiprocessor or

shared virtual-memory system [7, 21]. Such configurations would have signif-

icant cost performance, flexibility, and scalability benefits over tightly cou-

pled systems or over dedicated message-based multiprocessors (e.g., cubes).

These systems are characterized by frequent exchanges of small synchroniza-

tion packets and data transfers—attributes that are well served by low

communication latencies. The common thread in these examples is that

latency and CPU overhead are at least as critical as network throughput.

With the advent of very high-bandwidth networks, the throughput problem is

relatively more tractable, leaving latency as the preeminent issue.

1.1 Paper Organization and Goals

The objectives of this paper are threefold:

(1) To evaluate the fundamental, underlying message costs for small-packet
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communication on new-technology networks, when compared with Ether-

net technology.

(2) To describe and evaluate the design of a new low-latency RPC system in
the face of different networks, controllers, and architectures.

(3) To draw lessons for network and controller design based on our experi-

ence. We believe (as do others) that the new generation of network

controllers are often poorly matched to the demands of modern dis-

tributed systems, particularly in the face of low-overhead RPC systems.

Overall, our objective is to take a system-level view of RPC on new-

generation networks, examining in particular the software and hardware

interface. To do this, we have designed, implemented, and measured a

low-latency RPC on several different network and workstation combinations,

specifically, on the MIPS R3000-based DECstation 5000/200 connected by

Ethernet, FDDI, and ATM local area networks, and on the SparcStation I

connected by an Ethernet network.

We have used Remote Procedure Call (RPC) as the remote communications

model for several reasons: (1) it is a dominant paradigm for distributed

applications; (2) general techniques for achieving good performance are well

known [5, 27]; (3) it is user-to-user, in contrast to kernel-to-kernel memory

communication that tends to underestimate communication latencies signifi-

cantly; and (4) it is close in spirit to other communication models, such as V

[81 or CSP [17], making our observations widely applicable. Our objective is
not to attempt a completely new RPC design, but rather to assess the latency

impact of modern networks, controllers, processors, and software. To do this

required the design and implementation of a new RPC system, because

existing high-performance RPC systems (such as SRC RPC [27]) do not run
on the experimental hardware base we required.

The paper is organized around the objectives listed previously. Section 2

describes the network environments that we used and details the minimum

cost for cross-machine communication in these environments. Section 3 exam-

ines the RPC design principles that make low-latency RPC feasible. Measure-

ment of our RPC system on a variety of controllers indicates how the design

of the controller has a significant influence on efficient cross-machine commu-

nication overheads. Complex controllers and host/controller interfaces on

existing machines appear to add to the overall overhead in two ways—latency

inherent in the controller and latency required by the host software to service

the controller. Finally, Section 4 examines in greater detail the implications

of low-latency communication for networks, controllers, and operating system

abstractions. For example, we show the latency effects of cache management,

interrupt handling, and data transfer techniques.

Our experience demonstrates that new-generation processor technology

and performance-oriented software design can reduce RPC times for small

packets to near network- and architecture-imposed limits. For example, using

DECstation 5000/200 workstations on an ATM network, we achieve a simple

user-to-user round-trip RPC in 170 microseconds. Our experiments suggest

that RPC software overhead contributed by marshaling, stubs, and the
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packet exchange protocol need not be the bottleneck to low-latency remote

communication on modern microprocessors. However, as software overheads

decrease, network controller design becomes more crucial to achieving truly

low-latency communication.

2. LOWER BOUNDS FOR CROSS-MACHINE COMMUNICATION

This section evaluates the overhead added to cross-machine communication

from two important sources: (1) the network hardware (the controller and the

communications link) and (2) the controller, memory, and CPU interfaces.

This allows us to examine our RPC software (the stubs, RPC packet exchange

protocol, and runtime support) relative to the lower-bound message-passing

costs for cross-machine communication on our hardware. Given different

network and processor technologies, the relative importance of these compo-

nents may change; by isolating the components, we can see how the perfor-

mance of each layer scales with technology change.

Similar measurements have been reported in the past [ 18, 27]. However,

we wish to extend those measurements, first to examine newer technology

networks, and second to compare different high-speed networks with each

other and with Ethernet. In the following we briefly characterize our hard-

ware and explain our experimental testbed and measurement methodology.

Then we analyze our performance results and discuss controller and network

issues that specifically impact latency in cross-machine communication.

2.1 Overview of the Networking Environment

This subsection summarizes the various networks we used and the particular

capabilities of the specific network controller used to access each network.

Ethernet. The Ethernet is a 10 Mbit/see CSMA/CD local area network,

which is accessed on our DECstations and SparcStations by a LANCE

controller [1]. However, the controller is packaged differently on the two

machines. On the DECstations, the controller cannot do DMA to or from host

memory; instead, it contains a 128-Kbyte on-board packet buffer memory into

which the host places a correctly formatted packet for transmission [ 14].

Similarly, the controller places incoming packets in its buffer memory for the

host to copy. In the case of the SparcStation, the controller uses DMA to

transfer data to and from host memory. In this case, a cache flush operation

is done on receives to remove old data from the cache. On both machines,

packets are described by special descriptors initialized by either the host (on

send) or the controller (on receive). Descriptors are kept in host memory on

the SparcStations while they are in the special on-board packet memory on

the DECstations. Two message sizes were used in our experiments, a mini-

mum-sized (60 bytes) send and receive, and a maximum-sized (1514 bytes)

send and receive.

FDDI. FDDI is a 100-Mbit/sec fiber token ring, accessed on the DECsta-

tion by the DEC FDDI controller. Like the DECstation Ethernet controller,

the FDDI controller cannot perform DMA from host memory on message
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transmission; instead, it relies on an on-board packet buffer memory. How-

ever, the FDDI controller can perform DMA transfers directly to host memory

on reception of a packet from the network. The controller and host software

share descriptors as described above for the DECstation Ethernet. We used

an unloaded private FDDI ring with two hosts. Thus, the overhead due to

token passing is kept to an absolute minimum; in a more realistic environ-

ment, token-passing delay would have to be added to the overall latency.

Packet sizes of 60 and 1514 bytes were chosen to facilitate direct comparison

with the Ethernet.

ATM. ATM (Asynchronous Transfer Mode) is an international telecom-

munication standard used to implement B-ISDN. In an ATM network, data is

exchanged between entities in fixed-length parcels called cells, usually on the

order of a few tens of bytes. An ATM network typically consists of a set of

hosts connected by a mesh of switches that form the network. In an ATM

network, user-level data is segmented into cells, routed, and then reassem-

bled at the destination using header information contained in the cells.

The particular ATM we used has 140-Mbit/sec fiber optic links and cell

sizes of 53 bytes and is accessed using FORE Systems’ ATM controller [16].

The controllers on the two DECstation hosts were directly connected without

going through a switch; thus there is no switch delay. Unlike the Ethernet

and FDDI controllers, the ATM controller uses two FIFOS, one for transmit

and the other for receive. The controller has no DMA facilities. The host

simply reads/writes complete ATM cells by accessing certain memory loca-

tions that correspond to the FIFOS. The host is notified via interrupt when

cells arrive in the receive FIFO. The host has considerable flexibility in

choosing how often it should be interrupted. Further, the controller does not

provide any segmentation or reassembly of cells; that is the responsibility of

the host software. Each ATM cell carries a payload of 44 bytes; in addition,

there are 9 bytes of ATM and segmentation-related headers and trailers. In

our experiment we chose packet sizes that were an integral number of cells as

well as being close enough to the Ethernet and FDDI packet sizes for

comparison.

2.2 The Testbed and Measurement Methodology

In order to isolate the performance of the controller and the network link, we

built a minimal stand-alone testbed, which simply sends and receives packets

on the network. There is no operating system intervention since only minimal

software is executing on each machine. The testbed hardware consists of two

workstations (either two DE Citations or two SparcStations) connected

through an isolated network. The DECstation uses a 25 MHz MIPS R3000

processor rated at 18.5 SPECmarks, and the SparcStation I uses a Spare

processor rated at 24.4 SPECmarks. The DECstations were connected in turn

to an Ethernet, an FDDI ring, and an ATM network. The SparcStations were

connected to an Ethernet. The DECstation network devices are connected on

the 25 MHz TURBOChannel [13] while SparcStations use the 25 MHz SBUS

[29]. We measured the performance of each configuration in sending a source
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packet from one node to the other and in receiving a packet in response.

Packets are sent and received from host memory, so the cost of moving the

data over the host bus is included in our measurements. Network interrupts

are enabled, so both the sender and the receiving hosts are interrupted on

packet arrival. While it is generally possible to access the network in a

dedicated fashion by disabling network interrupts, conventional time-sharing

access will involve interrupt-processing overheads.

Both the DECstation and the SparcStation have clock chips that can

provide periodic interrupts. These were set to provide interrupts at 4096 Hz

on the DECstations (about once every 244 microseconds) and 1600 Hz on the

SparcStations (once every 625 microseconds). No significant processing is

involved in fielding a timer interrupt. Measurements were averaged over at

least 10,000 successful repetitions.

The component costs for the round trip can be broken up as follows:

—Time on the Wire. This is the transmission time of the packet. We ignore

the propagation time because it is negligible for the length of cable we are

using.

—Controller Latency. This is the sum of two times: (1) the time taken by

the sending controller to begin data transfer to the network once the host

has made the data available to it, and (2) the delay between the arrival of

the data at the receiving controller and the time it is available to the host.

—Control / Data Transfer. Data has to be moved at least once over the

host bus between host memory and the network. Some of our controllers

use DMA to move data over the host bus to the network; thus the CPU

incurs no data transfer overhead. However, the CPU incurs a control

transfer overhead because it has to use special memory descriptors to

describe the location of the data to the controller. With such controllers,

the actual time to do the data transfer is captured in the Controller

Latency item.

—Vectoring the Interrupt. On the receive side, host software must vector
the packet arrival interrupt to the interrupt handler in the device driver.

The overhead involved is a function of the CPU architecture.

—Interrupt Service. On taking an interrupt, host software must perform

some essential controller-specific bookkeeping before the interrupt can be

dismissed.

2.3 Performance Analysls

To determine the latency of the controller itself, we ran separate experiments

between a pair of hosts with interrupts disabled. Each host polled the

controller’s status registers in a loop. As soon as the register indicated arrival

of data, a new transmission was begun. In the cases where the host was
expected to copy data to the controller’s memory before transmission, the host

simply programmed the controller to start the data transfer, without actually

giving it any data. Similarly, when the controller indicated the arrival of new
data for the host to copy, the host ignored the data and began the next
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transfer. In addition, descriptors were prefilled before the data transfer

started. In these circumstances very few machine instructions are executed

by the host per round trip. The time required to execute these as well as the

time spent on the wire was subtracted from the total measured round trip.

This method gives satisfactory results in most cases but has the disadvantage

that it does not account for any pipelining that the controller might perform.

This artifact is particularly visible in the case of our ATM controller when

multicell packets are exchanged. Typically, a controller chip can overlap the

transmission of data between its internal buffer and the network, with the

transmission between host (or on-board memory) and the chip itself. For

instance, in sending a multicelled packet through the ATM controller, the

host can fill the FIFO with a cell while the controller sends the previous cell

from the FIFO onto the network.

Table I shows the cost of round-trip message exchanges on the host/net-

work combinations described above. A few points of clarification are in order

here.

First, in the case of the FDDI controller and the SparcStation controller,

which perform DMA directly to host memory on packet receives, the cost of

flushing the cache after the DMA is included in the Interrupt Service

overhead. While it is true that cache flushes are not strictly necessary if data

from the network is kept in uncached-memory locations, this means that the

higher-level software will eventually pay a performance cost of accessing this

data.

Second, in the case of the ATM network, Table I does not include the cost

for segmenting and reassembling multicell packets. In addition, the controller

was programmed so that it interrupted the host only when a complete packet

had arrived in the FIFO. Thus, in our experiments, each round trip incurs

only two interrupts. The performance reported is therefore a lower bound.

The row named Sum of Components is the sum of the rows above it.

Most of the time, the sum of our component measurements is within 1–9

microseconds (about 270) of the observed round-trip time. The only exception

is in the case of the ATM network in sending multicell packets, where we

have overestimated the round-trip time by about 12%. The most likely cause

is an underestimate of the amount of overlap between the host memory–FIFO

data transfers and the FIFO-network transfer.

2.3.1 Throughput and Latency. It is interesting to compare the ratio

Controller Latency to Time on the Wire. For small packets, this is 0.4 on

the DECstation Ethernet, 0.8 on the SparcStation, 7 for the FDDI controller,

and 3.2 for the ATM network. For larger packets of approximately 1514

bytes, these ratios are respectively 0.02, 0.04, 0.9, and 1.0. While these

numbers are specific to the controllers we use, we believe they are indicative

of a trend: bandwidths are improving dramatically while latencies are not.
The packet exchange times on Ethernet, FDDI, and ATM show the impor-

tant difference between throughput and latency. If low latency for small

packets is the goal, then we can achieve a round-trip 60-byte message

exchange on our DECstation Ethernet in only 253 pseconds; FDDI on similar
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Table I. Hardware-Level Round-Trip Packet Exchange Times in ,useconds

Round-Trip Time (f(seconds)
Component Packet Size in bytes (serrdk’ecv)

Ethernet (DIK) Etbcrnct (Spare) FDD1 (DEC) ATM (DEC)

60/60 1514/1514 60/60 1514/1514 60/60 1514/1514 53/53 1537/1537

Time on the Wue 115 2442 115 2442 13 245 6 176

Controller Latency 51 53 89 103 97 230 16 161

Control/Data Transfer 40 600 6 6 40 253 17 45s

Vecmrmg the Intemupt 25 25 12 12 25 25 25 25

Interrupt Service 26 26 42 42 92 140 9 20

Sum of Components 257 3146 264 2605 267 893 73 840

Measured Round Tnp Time 253 3137 263 2611 263 894 73 7.$6

hardware, despite its 10-fold bandwidth advantage, takes 263 pseconds for

the same operation, which is 4~0 longer. The ATM network is capable of doing

single cell transfers in about 73 ~seconds, However this is an optimistic

lower bound because we have ignored switching delays, and the cost of

checking whether the cell is part of a larger message that needs fragmenta-

tion/reassembly.

On the other hand, the high bandwidth of ATM and FDDI is significant for

large packets. For example, latency for a 1514-byte packet on the DECstation

Ethernet is 4.2 times worse than ATM and 3.5 times worse than FDDI. For

packets even larger than 1514 bytes, the Ethernet situation is relatively

worse, because FDDI will require fewer packet transmissions. The ATM

comparison is slightly more complex; as pointed out earlier, we have ignored

ATM segmentation and reassembly costs in arriving at the figures in Table I.

The particular software implementation of the segmentation/reassembly we

use requires about 11 ~seconds per cell. If this is included, then a 1537-byte

packet (29 cells) takes about 1065 ~seconds, which is about 1.2 times the

FDDI time. The situation further improves in favor of FDDI for packet sizes

beyond this limit.

2.3.2 Controller Structure and Latency. As noted earlier, both the DEC-

station and the SparcStation use the same Ethernet controller. However,

their performance is not identical. Recall that on the SparcStation the

controller uses DMA transfers on the host bus. The overhead for this is

included in Controller Latency; the Control / Data Transfer costs in-

clude only the cost of the instructions to program the controller. The con-

troller is able to overlap the data transfer over the bus with the transfer on

the network. Thus the sum of Controller Latency and Control/ Data

Transfer is relatively unchanged by the packet size. In contrast, the DEC-

station controller incurs a heavy latency overhead because the host first has

to copy the data over the bus before the controller can begin the data

transfer. Consequently, for larger packets, the SparcStation controller perfor-

mance is likely to be better even though for small packets both have compara-

ble round-trip times. Controllers that use on-board packet buffers instead of

DMA or FIFO will generally incur this limitation. However, controllers with

DMA or FIFO are not without problems; we will defer a more detailed

discussion until Section 4.
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It is also interesting to compare the interrupt-servicing latency on the

various controllers. Both the Ethernet controllers have comparable

interrupt-handling times. The SparcStation figure is slightly higher because

a cache flush operation is included in the cost due to the DMA transfer. All

except the ATM controller use descriptor-based interfaces between the host

and the interface. Programming this requires many more accesses to memory

than the simpler FIFO interface on the ATM. The FDDI controller is the most

complex one to service and is 7– 10 times as expensive as the ATM. While this

figure is for a specific pair of controllers, we believe that FIFO-based con-

trollers will in general reduce programming overhead.

Our experiments with low-level message passing seem to suggest that for

lowered latency, simple FIFO-based controllers have some advantages over

the more traditional types of controllers. However, ultimately it is the impact

of controllers on user-to-user cross-machine communication that is crucial. In

the next section, we describe a higher-level communication system based on

RPC and explore the impact of controllers in this context. Unlike low-level

message-passing performance, user-level cross-machine communication has

to be concerned with additional issues like protection and input packet

demultiplexing.

3, THE DESIGN, IMPLEMENTATION, AND PERFORMANCE OF A
LOW-LATENCY RPC

The performance of the hardware and of the low-level message-passing

system are two of the three components of user-level communication latency.

If the performance of the third component, the high-level RPC system, is

poor, this can easily dominate the overall cost. The purpose of this section is

twofold. First, we wish to show that the technology exists for building RPC

systems that are so efficient that the costs described in the previous section

are significant. Second, we wish to outline some of the low-latency techniques

used by higher-level software and how these might interact with the struc-

ture of the network controller.

3.1 Design and Implementation

The RPC system [27] built for the DEC SRC Firefly multiprocessor worksta-

tion [30] has demonstrated the latency-reducing effect of a large number of

optimization. Our RPC system closely follows the SRC design; however,

where performance is a goal, many details in the structure of a communica-

tions system must be dictated by the hardware environment. Thus, our

system differs from SRC RPC in several respects:

(1) We differ in the way stubs are organized and the way marshaling is

performed: we use a scheme that minimizes copying costs without com-

promising protection between kernel and user spaces as is done in SRC
RPC.

(2) Our system differs in the way in which control transfer is done.

(3) We do not use UDP/IP, but instead use network datagrams directly.
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These differences are described in more detail in the following subsections.

Our low-latency RPC system is prototype on the DECstation 5000 run-

ning the Ultrix operating system and on the SparcStation I running SunOS.

The system is integrated into the Ultrix and SunOS operating systems

executing on these machines without impacting other networked or dis-

tributed services.

Our implementation is entirely in C; we have not felt the need to program

in assembly language, because our compilers generate high-quality code. The

RPC system has a runtime component that is linked into the user’s address

space and another component that is integrated into the kernel.

Like other RPC systems, clients and servers can be placed on different

machines; during the runtime binding process, the client imports the inter-

face previously exported by the server. We have specially optimized for the

common case [4] of single-packet transfers between machines with the same

byte order. Multipacket RPCS are handled by a separate code path so as not

to impact the common case. Byte-swapping overhead is reduced by ensuring

that only the client, but not the server, swaps byte order when needed.

The underlying communication in the RPC relies on a simple request and

response packet exchange similar to that described in Section 2. In addition,

however, there are three fundamental aspects to RPC that add overhead

beyond what is required for a simple message exchange: marshaling and

data copying, con trol transfer, and protocol processing. Our system achieves

its low latency by optimizing each of these areas. The optimizations

are somewhat interrelated, and we consider them in turn in the following

subsections.

3.1.1 Marshaling and Data Copying. RPC stubs create the illusion of a

simple procedural interface for the client and server. Stubs are application-

specific and depend on the particular service function that is invoked. These

procedures marshal the call arguments into and out of the message packet.

Even in highly optimized RPC systems such as SRC RPC, marshaling time is

significant. Marshaling overhead depends on the size and complexity of the

arguments. Typically the arguments are simple—integer, booleans, or bytes;

more involved data structures are used less frequently [4]; therefore simple

byte copying is sufficient.

Related to the cost of marshaling is the cost of making the network packet

available to the controller in a form suitable for transmission. A complete

transmission packet contains network and protocol headers, which must be

constructed by the operating system, and user-level message text, which is

assembled by the application and its runtime system. There are several

strategies for assembling the packet for transmission, with the cost depend-

ing on the capability of the controller and the level of protection required in

the kernel. With a controller that does scatter-gather DMA over the bus, like

the SparcStation controller, the data can be first marshaled in host memory

by the host (in one or more locations) and then moved over the bus by the

controller. This is the scheme we use on the SparcStations—the data packet

comes from user space, and the header is taken from kernel space, a tech-
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nique commonly used in such an environment [18, 25]. However, due to the

way SparcStation DMA is architected, the controller performs DMA only to

and from a fixed range of kernel virtual addresses. This necessitates mapping

the user’s data buffer into kernel addresses that are accessible to the con-

troller. Since the cost of using SunOS virtual-memory primitives for this

mapping is more expensive than copying for packet sizes below a threshold,

our RPC design uses mapping only selectively.

One general drawback with a DMA scheme is that it involves at least two

accesses of the data over the bus: once when the host builds the pieces of the

packet and again when the controller transfers the pieces to the network.

Likewise, given a controller with special on-board memory or a FIFO, the

straightforward technique of the user marshaling the data into a buffer and

the kernel copying it over to the controller requires two copies. Another

approach is to relax kernel/user protection and to map the packet buffer into

user space and allow the user direct access. This reduces the number of

copies to one. However, there is an alternative technique that retains all the

benefits of the protection without incurring the cost of two copies.

In an effort to minimize copying of the call arguments, we perform argu-

ment-marshaling in the kernel rather than in the user’s address space, as is

conventional. To do this we synthesize code on the fly, which is then linked

into the kernel and executed. Code synthesis has been used in the past to

generate optimized routines for specific situations to achieve high perfor-

mance [20, 22]. Our focus is slightly different: we are more concerned with

avoiding the copy cost than with generating extremely efficient code for a

special situation.

At bind time, when the client imports the server’s interface, the client calls

into the kernel with a template of the marshaling procedure. The kernel

directly supports simple-valued types such as words, halfwords, bytes, and

pointers to bytes. Using this template the kernel synthesizes a marshaling

procedure. 1 As mentioned earlier, the marshaling is typically simple and

involves only assignments and byte copying. Thus, the task of synthesizing a

procedure is nothing more than assembling the right sequence of primitive

instructions. The marshaling procedure contains code to check the validity of

each input argument passed at runtime. This approach has the benefit that

since the sizes of the request and reply are known in advance, the more

general multipacket code path can be avoided if arguments and results fit in

a single network packet.

The kernel then installs the synthesized procedure as a system call for

subsequent use by this specific client. Thus, the stubs linked into the user’s

address space do not do marshaling; they merely serve as wrappers to trap

into the kernel where the marshaling is done. A client RPC sees a regular

system call interface with all the usual protection rules that go with it. This

approach has the benefit of performing the minimum amount of copying

required without compromising the safety of a “firewall” between the user

1 We do not yet have a template compiler, and so our kernel stubs are currently hand generated.
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and the kernel, or the user and the network controller. Our scheme does

impose the overhead of probing the validity of pointers before data can be

copied, but this is not a significant cost for most RPCS.

In addition to this scheme, which handles most of the common cases, our

RPC system provides another interface that is designed for a more general

case. Instead of calling into a specialized kernel-marshaling procedure, the

client calls into a fixed-kernel entry point, passing an array of data descrip-

tors. Each descriptor describes a primitive data type (including its parameter

type—IN or OUT) that is directly supported. The kernel can use these

descriptors to marshal and unmarshal arguments directly between the user

space and the controller’s memory or FIFO, thereby eliminating extra copy-

ing cost without compromising safety. Unmarshaling on the server side is

done using this general-purpose interface as described above. A server typi-

cally exports several procedures with different types of arguments. The

server provides the kernel with a generic template that applies to all types of

received packets.

We have used kernel-level marshaling and unmarshaling with the DECsta-

tion Ethernets, but a hybrid scheme is used with the FDDI controller. On

transmissions the usual scheme is used, but on receives, the controller’s DMA

engine copies the data over the host bus and hands it to the kernel. The

kernel unmarshals the data either by copying or by virtual-memory mapping

if the alignments are suitable. A similar approach is used with the ATM

controller. In this case, before the RPC layer receives the packet, the device

driver performs reassembly in a page-aligned buffer. Furthermore, the driver

could read only the header from the FIFO and determine if reassembly is

required, and if not let the RPC layer unmarshal the data from the FIFO. In

fact, in a non-ATM network accessed via FIFOS, this would be the preferred

method, but reassembly is such a common and frequent operation on the

ATM that we did not feel justified in making this optimization.

3.1.2 Control Transfer. Researchers have reported that context switching

causes a significant portion of the overhead in RPC [27]; in addition, there is

a substantial impact on processor performance due to cache misses after a

context switch [24]. An RPC call typically requires four context switches:

switching the client out, switching the server in, switching the server out,

and finally switching the client back in. Two of these—switching the client or

the server out—can be overlapped with the transmission of the packet.

Systems with high-performance RPC usually have lightweight processes that
can be context switched at low cost, but unless there is more work to do in the

client and the server, or no work elsewhere, a process context switch usually

occurs.

Both the DECstation and the SparcStation have context-switching times

that can be significant to the latency of a small packet. To reduce the cost of

context switches, our RPC system defers blocking the client thread on the

call. Instead, the client spin-waits for a short period before it is blocked on the

sleep queue. If the service response time is very small, the reply from the

server is received before the client’s spin-waiting period has expired. When

ACM TransactIons on Computer Systems, Vol 11, No 2, May 1993



Low-Latency Communication on High-Speed Networks . 191

there is no other work to be done, i.e., when the run queue is empty, there is

no penalty to spinning the caller indefinitely. When there is useful work to be

done, the caller spins for a short time relative to its round-robin quantum

before blocking.

In most cases the low response time of the server ensures that the process

is never put to sleep. This approach can be improved if estimates of the

round-trip time are available. A simple extension to the current scheme

would be to block the caller without spinning if the expected round trip is

greater than some threshold related to the context switch penalty and to spin

otherwise. An estimate of the round trip could be obtained either statically by

using a user-supplied hint, or dynamically, by using past response times as

an estimate. In general, this technique trades throughput for latency if there

are processes on the run queue waiting their turn.

Additional control transfer overhead arises from protocol layering. The

traditional approach is for each layer to queue the incoming packet on the

input queue of the next higher layer; software interrupts are then used to

wake a thread of control in that layer. This leads to a modular approach but

often with unacceptable performance. In contrast, we try to dispatch the

packet directly from the lowest layer to the destination process. This dispatch

is done directly within the interrupt handler, yielding a path of very low

latency.

3.1.3 Protocol Processing. The overhead of protocol processing can domi-

nate communication costs if general-purpose protocols are used for RPC. In

the usual case of a homogeneous environment, with frequent remote requests

and low service response times, special-purpose protocols can be effectively

employed to optimize the latency.

There are typically two protocol layers in RPC systems: a transport-level

protocol like UDP/IP that provides a basic unreliable transport, and a

specialized RPC protocol to provide a close approximation of conventional

procedure call semantics for RPC.

Several aspects of protocols contribute to RPC latency. As mentioned above,

multiple layers of protocol tend to add to the overhead of RPC in two ways:

increasing the number of context switches and increasing the number of data

copies between layers. Further, the primary cost of using protocols such as

UDP/IP is the cost of checksums. Calculating checksums in the absence of

hardware support involves manipulating a packet as a byte stream; this can

nullify any advantage gained by the controller or host processor in assem-

bling the packet using scatter-gather or wordlength operations. For efficient

RPC implementations, then, the checksum must be either calculated in

hardware or made optional. Most conventional protocol formats do not lend

themselves to the former approach. The latter approach presupposes that the

transmission medium is reliable and that the transport protocol is used only

for routing, not for reliability. These factors argue for the use of a simpler
protocol and hardware checksumming.

Our RPC uses a simple and efficient unreliable transport protocol and

relies on a specialized RPC protocol to provide robustness, which is similar to
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that used by the SRC or Xerox [5] RPC systems. In general, the choice of

protocols reflects a set of assumptions about the location of clients and

servers and the error characteristics of the network. Typically clients and

servers are expected to be on the same local area network. Furthermore, local

area networks have good packet loss characteristics, dropping packets at only

heavy loads due to overruns. In the case when the RPC destination is within

the same LAN, raw network datagrams are used with the checksum provided

by the controller. An erroneous packet is simply dropped by the receiving

controller. If the target is not on the local network, it is a straightforward

extension to use UDP/IP without checksums. The choice can be made at bind

time when the client/server connect is established, and the marshaling code

can be generated to include the appropriate header.

In addition to the overhead imposed by transport-level protocols, the RPC

protocol per se adds to the latency. The primary purpose of RPC protocols is

to provide a natural set of semantics reminiscent of simple procedure call. To

achieve high performance, our protocol was implemented so as not to intrude

on the critical fast-path of the code.

Under normal error-free operation, the server’s response to a call from the

client acknowledges it at the client end. Similarly the next call from the client

acknowledges the previous response. The state of an RPC is maintained by

the client and server using a “call/response” record. Call records are preallo-

cated at the client at bind time. These contain a header, most of whose fields

do not change with each call. These are therefore prefilled so as to minimize

the latency at call time. Similarly, response records are retained at the server

side and contain header information from a previous call that can be reused.

In order to recover from dropped packets, our RPC transport buffers

packets on the client and the server side. On the client side, since the client is

blocked for the duration of the call, retransmission proceeds from the data in

the client address space, as with the original call. Thus no latency is added

due to buffering when the call is first transmitted. On the server side, the

reply is nonblocking; hence a copy of the data has to be made before returning

from the kernel. The copy is overlapped with the transmission on the net-

work. Once again no latency is added to the reply path. One alternative to

this would be to use Copy-on-Write, which would not affect latency but can

potentially save buffer space for large multipacket RPCS.

3.2 RPC Performance Measurements

This section examines the performance of our RPC implementation. Our goal
is to show that structuring techniques, such as those we have used, yield an

RPC software system so effective that the hardware costs shown in Table I

are significant. We gather the data to support our analysis of controller

design in the next section.

Table II shows the time in microseconds for RPC calls on the various

platforms. Two procedures called Minus and MaxArg were timed. Minus

takes two integer arguments and returns an integer result. MaxArg takes

two arguments—an integer parameter and a variable-length array, returning

an integer result. The exact sizes of the packets exchanged varies depending
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Table II. Allocation of RPC Time in Microseconds

II I
Activity fltherr

h4inus

Chen[ Call 28
Controller Latency 26

Time on the WUC for Call 58

Intcrntpt Handhng on Server 25

Server Packet Receipt 39

Server Reply 27

Controller Latency 25

Time on the Wue for Reply 57

Interrupt Handling on CIIcn! 26

Chcnt Reply hcelpl 29

Total Attributed T]mc 340

Measured Time 340

Fim7cr
MaxArg

145

27

1221

25

470

2-1

25

57

26
29

2052

2070

Ethcrrrl

Minus

59

45

58

27

59

46

44

57

27

49

471

496

(Spwc

Maxar

137

54

1221

27

169

46

44

57

27
49

1831

1997

(sccont

Fl)r

Minus

46

48

4

56

42

36

~ 49

5

56
’29

371

380

DEC) All
Maxarg Minus

173 25

+

82 8

122 3

70 17

42 29

36 25

82 8s5 3

56 17

29 29

697 164

693 170

=
DEC)

MaxArg

2

159

44

88

20

347

25

44

3

17

29

776

675

on the network type. Minus causes 60 bytes to be exchanged on the Ethernet,

48 bytes on FDDI, and 53 bytes on the ATM. MaxArg transmits to the server

1514 bytes on Ethernet and FDDI, and 1537 bytes on the ATM. The reply

from the server is 60, 48, and 53 bytes respectively on the three networks.

Measurements were made both in single-user and in multiuser modes. The

times were not significantly different; the times reported in the tables are the

single-user measurements which showed less variance.

The various rows are explained below:

—Client Call. This is the total time required on the client side for sending

out a call packet. It consists of five major components: the time for setting

up the argument to the system call, the time to perform a kernel entry, the

time to validate the arguments, the time spent in the marshaling proce-

dure, and the time for setting up the controller to do a transmit.

—Controller Latency. This figure represents the controller’s latency in

getting the packet to and from the wire. This is computed as in Section 2.

—Time on the Wire for Call. An estimate of the packet transmission time

based on the bandwidth of the network.

—Interrupt Handling on Server. This is a sum of the times to vector the

network interrupt to the interrupt handler in the device driver, the time in

the handler, and to return after the interrupt is dismissed.

—Server Call Receipt. This is the time spent on the server machine when

the call packet arrives before it is handed to user code. It consists of two

major parts: the cost of examining the packet and kernel data structures to

locate the correct server and dispatch the packet, and the time spent in

unmarshaling and copying/mapping data into the server’s address space.

The cost of this component varies depending on the capabilities of the

controller.

—Server Reply. This is quite similar to Client Call. This includes the time

needed to call the correct server procedure and to set up the results for the

system call, the time spent in the kernel in checking the arguments, and

the time to set up the controller for transmit.
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—Client Reply Receipt. This is the counterpart of the Server Call Re-

ceipt and takes place on the client side.

—Total Attributed Time. This is the total of the components. It is the time

we have been able to attribute to the various activities, either by direct

measurements or by estimating from functional specifications.

A few points about Table II are in order here. First, though the SparcSta-

tion and the DECstationv 5000 have similar CPU performance and use

identical Ethernet controllers, the software cost for doing comparable tasks

varies. In general, our experience has been that SunOS extracts a higher

penalty than Ultrix. We believe this is primarily due to the richer SunOS

virtual-memory architecture rather than to the SparcStation’s architectural

peculiarities such as register windows. Second, in the case of MaxArg on the

ATM network, 29 cells are sent to the server. The cost of segmenting the user

packet into 29 cells at the sender is included in the row entitled Client Call.

Similarly, the cost of reassembling the cells is included in the Server Packet

Receipt row. In the case of single-cell transmission, the segmentation and

reassembly code is completely bypassed. Finally, we exploited the flexible

interrupt structure of the ATM controller to ensure that in the normal case

only the last cell in a multicell packet caused a host interrupt. In comparing

the Total Attributed Time with the Measured Time we note that as in

Section 2, in all cases except one, the difference is within experimental error,

in the range of 1–8Y0. The only exception is in the case of a multicell packet

on the ATM, where for the reasons mentioned earlier in Section 2, we have

overestimated the total time required.

Overall, as we can see by comparing the FDDI and the DECstation

Ethernet tables, the latency for the small Minus RPC request on FDDI is

12% higher than for Ethernet. On the other hand, as expected, the much

higher bandwidth on FDDI becomes evident for the larger packet sizes; the

MaxArg RPC request takes nearly three times longer on Ethernet than on

FDDI. Comparing the performance on the ATM network with the others, we

see how effective a simple controller design is for reducing latency for small

packets. However, for larger packets, the software fragmentation/reassembly

is a factor in reducing performance. ATM controllers that perform fragmenta-

tion and reassembly either in hardware or by dedicated on-board processors

are being built [12, 32]. It would be interesting to compare the latency

characteristics of these controllers with the simpler approach taken in the

FORE controller we use.
As noted earlier in Section 2, for small packets, the cost of “doing business”

(i.e., controller latency) on the network has increased with FDDI. However,
compared to the low-level software latency imposed by the packet exchange,

the higher-level RPC functions (stubs, context switching, and protocol over-

head) add only 87 pseconds for Ethernet, 117 ~seconds for FDDI, and 97

pseconds for ATM.

Higher-level RPC functions cost more on FDDI for two reasons, both

relating to the controller/host interface. First, because of the more complex

DMA interface the high-level cost of dispatching the server process and data
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management is greater for the DEC FDDI. Second, for both FDDI and

Ethernet, the code path required for RPC for these controllers is slightly

different from that used for a simple packet exchange. Thus, there is an

inherent overhead added by RPC. However, the overhead is more in the case

of FDDI than for the Ethernet because of some of the characteristics of the

controller/host interface.

While the absolute increase contributed by RPC functions is comparable for

both ATM and Ethernet, as a percentage, RPC adds about 130% to the cost of

low-level messages. Part of this overhead is due to architectural features like

traps and context switching that may not scale with processor speeds.

However, the bulk of the overhead can be reduced with increasing CPU

speeds. A significant factor in achieving this reduction is to keep the over-

heads of memory copying to a minimum.

The main factors that contribute to the system’s performance are (1) the

use of preallocation, (2) overlapping computation and network transmission,

(3) exploiting the peculiarities of the network controller, optimizing for the

simple and common case, and (4) the speed of the host processors.

4. IMPLICATIONS FOR CONTROLLER AND NETWORK DESIGN

Our experience with low-latency RPC on a variety of controllers indicates

that the design of the controller has a significant influence on efficient

cross-machine communication overheads. Similarly, different network access

protocols also determine the latency experienced by an RPC. Our measure-

ments in Tables I and II reinforce the fact that a faster network does not

necessarily imply a lower latency. In this section, we discuss the effects of

both the controller and the network on latency.

4.1 DMA versus Programmed I / O

Our experiments, which included controllers that are capable of scatter-gather

DMA, ordinary DMA, and no DMA, allow us to examine some of the essential

latency-impacting tradeoffs between these different controller types. There

are basically two issues to be considered in choosing between controllers that

provide DMA and those that support programmed 1/0 (PIO) (i.e., the proces-

sor moves the data to and from the bus, usually without using a block

transfer primitive). These issues are (1) the cost of servicing the device and

(2) the overhead of transferring the data to the user. We discuss each of these
in more detail below.

4.1.1 Data Transfer. The details of moving data on the system bus vary

depending on the capabilities of the controller. Certain combinations of

features make it difficult to restrict the number of data movements to one,

the minimum achievable. Excessive and unnecessary data movement im-

posed by the lower levels of the system can lead to bad overall performance of
the communication system. We discuss below the interaction between con-

troller types and copying costs.

Table III summarizes the number of copies that the controller, the kernel,

and the user need to perform, respectively, for each type of device: PIO, DMA,
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Table III. Number of Copies for Various Controller Types

Number of Copies (Device/KemelAJser)

Fragment PIO (KM) I PIO I DMA I DMA (S-G)

Send

Header otlm Ollp I/lp lPIO
Data 0/1/0 0/1/1 1/0/1 lPIO

Receive

Header OIIP 0/1/0 1/1/0 1/0/0
Data OIIP 0/1/1 Ip/1 lPP

and DMA with scatter-gather. The column PIO (KM) represents PIO with

some form of kernel-level marshaling as described in Section 3, for instance,

FRPC running on the ATM controller with its FIFOS. The column DMA S-G

represents scatter-gather DMA,

Certain implicit assumptions made in the table are clarified below. First,

we are ignoring the cost of copies that might occur between the network and

the controller’s internal buffer. Typically this cost can be made negligible

either by using video RAMs or some similar technique. Second, we assume

that with PIO, the on-board memory, or FIFO, cannot be reliably mapped

into multiple user spaces, while with DMA, user data is mapped (instead of

copied) to be adjacent to the header in kernel memory, so that the DMA can

use a contiguous set of addresses. Finally, we assume that with scatter-gather

DMA, the controller is capable of transferring arbitrarily small amounts of

data over the bus and that on scatter DMA, the controller can perform

address demultiplexing so that incoming data goes to the correct destination.

Ideally, one would like to minimize the number of times data is moved on

the host bus between the network and the host memory. With PIO and

kernel-level marshaling it is possible to keep the number of copies to one

without compromising protection. With DMA this would not be possible, in

general, because application-level data could be located in multiple noncon-

tiguous locations in memory. Most scatter-gather controllers (e.g., LANCE)

have minimum size requirements for each segment and a maximum number

of allowable segments. Thus, the user will have to marshal the data into one

(or a few) location(s), and then have the controller move it. While it is

possible to build controllers to overcome this restriction. Using several small
segments to gather data comes at a price, because the controller has to set up

multiple DMA transfers. A similar situation is true on the receiving side as

well.

As shown in Table III, using PIO with kernel-level marshaling allows the

data-copying cost to be kept to the minimum possible. However, one aspect of

copying that is not captured in the table is the different rate at which data is

z the Autonet controller being built at DEC SRC; personal communication, Charles P. Thacker,

Sept. 1991.
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moved over the bus for PIO and DMA. Typically, word-at-a-time PIO accesses

over the bus are slower than block DMA accesses; this is the case on both the

DECstation TURBOChannel bus and the SparcStation SBUS. While PIO

versus DMA is of limited concern for short packets, there is a break-even

point beyond which PIO will be slower than DMA. Thus, unless the processor

is required to touch each byte of the data for reasons other than moving it

across the bus (for instance, to generate a checksum in software), it is usually

more efficient to use DMA beyond a certain size.

4.1.2 Cache and TLB Effects. While Table 111 seems to indicate that PIO

and scatter-gather DMA can perform the same number of copies, very often

with current architectures the interaction of the memory subsystem with

DMA might extract a heavier overall penalty than PIO. This subsection

describes this effect in more detail.

In addition to the copying costs outlined above, without adequate support

from the memory and processor subsystem, controller-initiated data transfers

could be a source of overhead due to cache effects. If the cache does not snoop

on 1/0 operations, cache blocks could be left incoherent as a result of the

DMA operation to memory, requiring cache flushes. If the cache is write-back,

dirty entries may need to be purged before a DMA operation from memory.

Table IV shows the contribution of the cache flush cost as a percentage of

the total interrupt-handling cost of our DMA controllers. The total interrupt-

handling cost is the sum of cache flush costs and the essential controller-

related bookkeeping overhead. The cache flush cost is simply the time taken

to execute the instructions required by the host architecture to flush the

cache lines corresponding to the data that was transferred. As is evident from

Table IV, cache flushes are a serious penalty on current memory architec-

tures. However, the situation is even worse than the table suggests, because

in addition to the costs of executing additional cache flush instructions, cache

flushes have a negative impact on performance by destroying locality.

Newer processor/cache designs recognize this problem and provide mem-

ory coherence for DMA [15]. In the absence of snooping caches, the usual

“solution” to this problem is to allocate buffers temporarily in uncached

memory before they are copied to user space. This approach, used in the stock

SunOS Ethernet driver, either incurs an extra copy overhead or loses the

benefit of cached accesses to frequently used data.

Another cost of DMA is the manipulation of page tables that is often

necessary. On packet arrival, the controller stores the data on a page;

however, there is generally no way to guarantee that the page is mapped into

the correct destination address space. Thus the kernel is faced with the

option of either remapping or performing an extra copy. On a multiprocessor,

this remapping can require an explicit and expensive TLB coherency opera-

tion [6].

To summarize our experience with the various controllers, we believe that
DMA capabilities without adequate support from the cache and memory

subsystem can be bad for performance in modern RISC processors. We also

believe that controllers that have simpler interfaces to the host have the

ACM Transactions on Computer Systems, Vol. 11, No. 2, May 1993.



198 . C. A. Thekkathand H. M Levy

Table IV. Cache Flush Cost

Received Packet Size in bytes

Ethernet (Spare) FDDI (DEC) ‘

60 1514 60 1514

Total Interrupt Time 21 21 46 70

Cache Flush Time 3 10 7 30

Percentage Overhead 14 48 15 43
,

potential for reducing overheads. The next subsection argues for the use of

simple controller/host interfaces.

4.2 Host / Controller Memory Interface

There are two common ways of transferring data between the host and the

controller. One way is to designate a range (possibly all) of host memory to be

used as a packet buffer and have the controller and the host share descriptors

in memory. The other alternative is to use a simple FIFO for transmits and

receives and have the host access it directly. A significant overhead in

interfacing the controller to the processor system is the cost of servicing an

interrupt and getting the data to the user. We have already discussed the

role of data movement overhead and shall therefore restrict ourselves to

interrupt-handling costs of different controller types.

Our experiments with the two types of controllers mentioned above indi-

cate that the interrupt-handling overhead can be significantly reduced

by using a FIFO. Interrupt-handling cost is composed of two components:

(1) the CPU-dependent cost of vectoring the interrupt and (2) the controller-
dependent cost of servicing the interrupt. Previous research has studied

interrupt-vectoring costs on RISC processors [3, 26], and so we shall examine

only the second component. Our objective is to compare a simple FIFO

interface such as that found in the ATM with a more elaborate descriptor

interface such as that found in the Ethernet or the FDDI controllers.

We reproduce some of the measurements from Section 2 in Table V. The

table shows the cost of servicing the interrupt and transferring the data

through a copy or a remapping operation, as appropriate. Since our intent

here is to compare the interfaces and not the network, we have ignored the

reassembly overhead on the ATM controller.

As the table indicates, for transferring small amounts of data to the user,

the overhead of the FIFO-based controller (10 ~seconds) is less than half that
of the best-case descriptor-based controller (24 ~seconds for the DEC Ether-

net). For larger packets, the balance is in favor of controllers that allow the

kernel to perform page-mapping operations, because the copying cost domi-

nates the interrupt-handling cost. The ability to map data into user spaces at

low cost is one alternative to kernel-level marshaling with PIO, which retains

the benefits of protection and reduced data movement without the need to

synthesize code. A typical limitation with FIFO-based controllers, such as the

FORE ATM, is that there is no easy way to map the memory in a protected

manner simultaneously into multiple user spaces.
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Table V. Interrupt-Handling Cost
r

Ethernet (DEC) Ethernet (Spare) FDDI (DEC)
60

ATM (DEC) “

1514 60 1514 60 1514 53 1537

Intenupt Time 13 13 21 21 46 70 5 10
Copy/Mapin Time 11 201 9 39 10 10 5 138

Toral 24 214 30 60 56 80 10 148

In contrast, with descriptor-based packet memory, it is possible in principle

to support address mapping irrespective of DMA support. However, typically,

on descriptor-based PIO controllers, the existence of a small amount of

on-board buffer memory makes it difficult to provide address-mapping sup-

port, because that memory is a scarce resource that must be managed

sparingly. For instance, the DECstation’s Ethernet controller has only 128

Kbytes of buffer memory to be used for both send and receive buffers.

Mapping pages of the buffer memory into user space would be costly, because

the smallest units that can be individually mapped are 4-Kbyte pages.

Reducing the number of available buffers this way could lead to delays due to

dropped packets during periods of high load. On the other hand, conserva-

tively managing the scarce buffer resource results in the kernel making an

extra copy of the data from user space into the packet buffer.

With a trivial amount of controller hardware support, it is possible to solve

the protection granularity problem, providing a larger number of individually

protected buffers in controller memory. The basic idea is to populate only a

fraction of each virtual page that refers to controller memory. As a concrete

example, we consider an alternative design to a DEC Ethernet controller.

Figure 1 shows the sketch of the design. Controller memory is organized as

2-Kbyte buffers, each of which will hold an Ethernet packet; this would allow

us to have 64 buffers in our 128-Kbyte controller. To allow user processes to

write directly to controller memory without sacrificing protection, the con-

troller ignores the high-order bit of the page-offset and concatenates it with

the physical page number (PFN) field of each physical address presented by

the TLB. This has the effect of causing each 2-Kbyte physical page of

controller memory to be doubly mapped into both the top half and the bottom

half of a 4-Kbyte process virtual page.

Our experience with host/controller interfaces leads us to believe that

while simple FIFO-based controllers are ideally suited for small packets,

larger packets would be better served with a more conventional descriptor-

based packet buffer. Thus, it might be beneficial to support both forms on the

same controllers. To our knowledge, the only controller that has multiple host

interfaces on board is the VMP-NAB [19]. Our experiments also suggest that

in the absence of memory system support, DMA may incur the cost of

additional copies and/or cache-flushing overheads. In such cases, it would be

advantageous to use PIO with a descriptor-based packet memory that the

host CPU can either copy or map into user space. This could be done either by

providing enough buffers or with hardware support (e.g., as mentioned

above). The decision to copy or map in will depend on whether the processor

is required to touch every byte of the packet or not. For instance, if it is
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Fig. 1. Address mappmgfor Ethernet buffers.

necessary to calculate a software checksum, then an integrated copy and

checksum loop (as proposed in [9] and [ 10]) would suggest that mapping is of

limited benefit. This consideration will be even more important with future

memory subsystem designs that will provide support for I/O-initiated data

transfers. If the processor does need to mediate the transfer, then 1/’0-

initiated data moves would be of benefit if the memory system provides

adequate support for cache consistency.

4.3 Network Types

Compared to an Ethernet, a high-speed token ring like FDDI offers greater

bandwidth. However, token rings have a latency that increases with the

number of stations on the network. Consider a network where the offered

load is quite small. That is, on the average, only a few nodes have data to

transmit at a given time. As stations are added to the network, the Ethernet

latency remains practically constant while the latency of a token ring will

increase linearly due to the delay introduced by each node in reinserting

tokens. This implies that even on a lightly loaded, moderately-sized token

network, achieving low-latency cross-machine communication is difficult. As

an example, if each station introduces a one-microsecond token rotation

delay, a network of 100 stations would make it infeasible to provide low-

latency communication. As load is increased, both the Ethernet and the FDDI

token ring will experience greater Iatencies, with the FDDI reaching an

asymptotic value [32]. Thus, on balance, it appears that low-latency commu-

nications are not well served by a token ring, despite high bandwidth. We
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should point out that in our experiments with RPC, token rotation latency

was not a problem because we used a private ring with two nodes on it.

However, if we added more nodes to the ring, we would expect to see a

degradation in the latency of RPC.

ATM-style networks that fragment and interleave packets have to incur

the delay of fragmenting and reassembly of medium-sized packets. For

instance, our experience indicates that with software reassembly, latency

begins to be impacted with packet sizes in the range of 1500 bytes. It is not

immediately clear how adding fragmentation and reassembly support in

hardware or in an on-board processor, as provided in [12] and [31], will affect

overall latency, even though fragmentation/reassembly is fast.

5. SUMMARY AND CONCLUSIONS

Modern distributed systems require both high throughput and low latency.

While faster processors help to improve both throughput and latency, it is

high throughput, and not low latency, that has been the target of most newer

networks and controllers.

In this paper we have explored avenues for achieving low-latency communi-

cations on new-generation networks (specifically, FDDI and ATM). We have

implemented a low-latency RPC system using techniques from previous

designs in addition to our own. Using newer RISC processors and perfor-

mance-oriented software structures, our system achieves small-packet,

round-trip, user-to-user RPC times of 170 pseconds on ATM, 340–496 ~sec-

onds on Ethernet, and 380 ~seconds on FDDI. Our RPC system demonstrates

that it is possible to build an RPC system whose overhead is only 1.5 times

the bare hardware cost of communication for small packets.

Our experiments indicate that controllers play an increasingly crucial role

in determining the overall latency in cross-machine communications and can

often be the bottleneck. However, we believe that there are alternatives to

controller design that can provide lowered latency, facilitating software tech-

niques that achieve excellent performance. Specifically, our experience leads

us to believe that FIFO-based network interfaces are well suited for small

packets and that DMA- and descriptor-based controllers may have many

hidden costs depending on the memory system architecture. Hybrid con-

trollers that provide multiple host interfaces appear to be an attractive

alternative to current designs. Of course, the network itself is an important

factor for performance. For instance, both of our high-throughput networks

have some peculiarities that could affect latency of packets: e.g., the token

rotation latency in FDDI network and the fragmentation and reassembly in

the ATM network.

Finally, we believe that with careful design at all levels of the communica-

tion system, communications latencies can be substantially reduced, enabling

entirely new approaches and applications for distributed systems.
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