501 Midterm 2
Nov 7, 2022

Start each problem on a new page.
You may use major theorems from class without proof.
In all problems $\Sigma = \{a, b, c\}$.

1. (20+10%)
(a) Construct a Turing transducer M over Σ that doubles the first letter of the input (and leaves input ϵ unchanged). For example, for input ba the output is bbb, and for input bba the output is bba.
You may give a modular presentation of M.
\textbf{Solution.}

\begin{align*}
S & \xrightarrow{\sigma(+) \sigma} S \\
S & \xrightarrow{\sigma(+) \tau} I_{\sigma} \quad (\sigma \in \Sigma) \\
I_{\sigma} & \xrightarrow{\tau(\sigma)} N_{\tau} \quad (\sigma, \tau \in \Sigma) \\
N_{\tau} & \xrightarrow{\sigma(+) \sigma} I_{\tau} \quad (\sigma, \tau \in \Sigma) \\
I_{\sigma} & \xrightarrow{\mu(\sigma)} P \quad (\sigma \in \Sigma)
\end{align*}

(b) Give the computation-trace of M for input acb.
\textbf{Solution.}

\begin{align*}
(S, >acb) & \Rightarrow (I_c, >aab) \\
\Rightarrow (S, >acb) & \Rightarrow (N_b, >aac) \\
\Rightarrow (N_a, >acb) & \Rightarrow (I_b, >aac\mu) \\
\Rightarrow (I_a, >acb) & \Rightarrow (P, >aacb) \\
\Rightarrow (N_c, >aab)
\end{align*}

2. (10+10+10)
(a) Construct a PDA M recognizing the language $L = \{a^i b^j \mid i < j\}$. You may use a stack-bottom marker, but no other auxiliary symbol.
\textbf{Solution.} Initial state s and accept state f.

\begin{align*}
s & \xrightarrow{\epsilon(\rightarrow s)} q \\
q & \xrightarrow{a(\rightarrow a)} q \\
q & \xrightarrow{b(\rightarrow s)} p \quad \text{one } b \text{ is freely amortized from input} \\
p & \xrightarrow{b(\rightarrow e)} p \\
p & \xrightarrow{\epsilon(\rightarrow s)} f \quad \text{extra } b \text{'s may be freely amortized}
\end{align*}

(b) Give a CFG G generating L.
\textbf{Solution.} Initial non-terminal S.
\begin{align*}
S & \rightarrow aSb \mid Sb \mid b.
\end{align*}
(c) Using the algorithm for converting CFGs to equivalent PDAs obtain from G another PDA N recognizing L.

Solution. Initial state s and accept state f.

$$
\begin{align*}
&s \xrightarrow{\epsilon \rightarrow S} c \\
&q \xrightarrow{a(a \rightarrow \epsilon)} q \\
&q \xrightarrow{b(b \rightarrow \epsilon)} q \\
&q \xrightarrow{\epsilon (S \rightarrow aSb)} q \\
&q \xrightarrow{\epsilon (S \rightarrow Sb)} q \\
&q \xrightarrow{\epsilon (S \rightarrow b)} q \\
&q \xrightarrow{\epsilon (\epsilon \rightarrow \epsilon)} a
\end{align*}
$$

3. (15%) For $w \in \Sigma^*$ let $w^{-\epsilon}$ be the result of eliminating in w all occurrences of c; for example $w = abccac$ then $w^{-\epsilon} = aba$. For $L \subseteq \Sigma^*$ let $L^{-\epsilon} = \{ w^{-\epsilon} \mid w \in L \}$.

Show that if L is a CFL then so is $L^{-\epsilon}$. You may either convert a CFG G generating L into a CFG G' generating $L^{-\epsilon}$, or convert a PDA M recognizing L into a PDA M' recognizing $L^{-\epsilon}$. You need not prove that your conversion works.

Solution. Using CFGs: Given a CFG G generating L let G' be obtained from G by replacing in productions c by ϵ. Then if D is a derivation of G of a string X (allowing both terminals and non-terminals) then $D^{-\epsilon}$ is a derivation of $G^{-\epsilon}$ of $X^{-\epsilon}$. In particular $L(G') = L^{-\epsilon}$. (Equivalently: Take c to be a non-terminal, and add to G the production $c \rightarrow \epsilon$.)

4. (25%) Show that the following language is not CF.

$L = \{ a^i b^j c^i \mid i < j \}$.

Solution. We show that L fails the Dual-Clipping Property.

Given $k > 0$, let $w = a^k b^{k+1} c^k$. Then $w \in L$ and $|w| \geq k$. If p is any substring of w of length $\leq k$ then p cannot have both a's and c's.

Let w' be the result of clipping off of w some letters in p. If some a is clipped then no c is clipped, in which case w' cannot have an equal number of a's and c's, thus $\notin L$. Similarly if some c is clipped we obtain $w' \notin L$. Finally, if only b's are clipped then $\#_a(w') = k \geq \#_a(w')$ and also $\notin L$.

Since $w' \notin L$ for any clipping within p it follows that L does not satisfy the Dual-Clipping Property, and is not CF.