
SYMBOLIC COMPUTING

Rewrite rules

• Symbolic computing :

Strings over an alphabet, jointly represent data and action.

There are no states.

• The operational engine (analogous to Turing’s transition func-

tion)

is the set of rewrite-rules, also called productions.

Rewrite rules

• Symbolic computing :

Strings over an alphabet, jointly represent data and action.

There are no states.

• The operational engine (analogous to Turing’s transition func-

tion)

is the set of rewrite-rules, also called productions.

• A rewrite-rule is of the form z → yz → yz → y

where z, yz, yz, y are strings.

• zzz is the source of the production, and yyy its target.

• A finite set of rewrite rules is a rewrite system.

F24 2

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

0 ∨ 00 ∨ 00 ∨ 0 →→→ 000

0 ∨ 10 ∨ 10 ∨ 1 →→→ 111

1 ∨ 01 ∨ 01 ∨ 0 →→→ 111

1 ∨ 11 ∨ 11 ∨ 1 →→→ 111

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

0 ∨ 00 ∨ 00 ∨ 0 →→→ 000

0 ∨ 10 ∨ 10 ∨ 1 →→→ 111

1 ∨ 01 ∨ 01 ∨ 0 →→→ 111

1 ∨ 11 ∨ 11 ∨ 1 →→→ 111

−0−0−0 →→→ 111

−1−1−1 →→→ 000

A familiar example of rewriting

0 ∧ 00 ∧ 00 ∧ 0 →→→ 000

0 ∧ 10 ∧ 10 ∧ 1 →→→ 000

1 ∧ 01 ∧ 01 ∧ 0 →→→ 000

1 ∧ 11 ∧ 11 ∧ 1 →→→ 111

0 ∨ 00 ∨ 00 ∨ 0 →→→ 000

0 ∨ 10 ∨ 10 ∨ 1 →→→ 111

1 ∨ 01 ∨ 01 ∨ 0 →→→ 111

1 ∨ 11 ∨ 11 ∨ 1 →→→ 111

−0−0−0 →→→ 111

−1−1−1 →→→ 000

(0)(0)(0) →→→ 000

(1)(1)(1) →→→ 111

F24 3

Reductions and derivations

• Given a rewrite system RRR,

we say that www reduces to w′w′w′ , and write w ⇒R w′w ⇒R w′w ⇒R w′ ,

if w′w′w′ is www with substring uuu replaced by u′u′u′ ,

here u → u′u → u′u → u′ is a rule.

We omit the subscript RRR when clear.

• Reductions are analogous to the yield relation

between machine’s configurations.

Reductions and derivations

• Given a rewrite system RRR,

we say that www reduces to w′w′w′ , and write w ⇒R w′w ⇒R w′w ⇒R w′ ,

if w′w′w′ is www with substring uuu replaced by u′u′u′ ,

here u → u′u → u′u → u′ is a rule.

We omit the subscript RRR when clear.

• Reductions are analogous to the yield relation

between machine’s configurations.

• A derivation in RRR is a sequence

w0, w1, w2, ...wkw0, w1, w2, ...wkw0, w1, w2, ...wk

where wi ∈ Γwi ∈ Γwi ∈ Γ and wi ⇒R wi+1wi ⇒R wi+1wi ⇒R wi+1 for i < ki < ki < k.

This derivation is of wkwkwk from w0w0w0 .

Reductions and derivations

• Given a rewrite system RRR,

we say that www reduces to w′w′w′ , and write w ⇒R w′w ⇒R w′w ⇒R w′ ,

if w′w′w′ is www with substring uuu replaced by u′u′u′ ,

here u → u′u → u′u → u′ is a rule.

We omit the subscript RRR when clear.

• Reductions are analogous to the yield relation

between machine’s configurations.

• A derivation in RRR is a sequence

w0, w1, w2, ...wkw0, w1, w2, ...wkw0, w1, w2, ...wk

where wi ∈ Γwi ∈ Γwi ∈ Γ and wi ⇒R wi+1wi ⇒R wi+1wi ⇒R wi+1 for i < ki < ki < k.

This derivation is of wkwkwk from w0w0w0 .

• Derivations are analogous to computation traces of machines.

F24 4

Recap: The reflexive-transitive closure

• If R : A −→ AR : A −→ AR : A −→ A then the reflexive-transitive closure of RRR

is the mapping R∗ : A → AR∗ : A → AR∗ : A → A defined by: xR∗zxR∗zxR∗z iff x = y0 (R) y1 (x = y0 (R) y1 (x = y0 (R) y1 (

Recap: The reflexive-transitive closure

• If R : A −→ AR : A −→ AR : A −→ A then the reflexive-transitive closure of RRR

is the mapping R∗ : A → AR∗ : A → AR∗ : A → A defined by: xR∗zxR∗zxR∗z iff x = y0 (R) y1 (x = y0 (R) y1 (x = y0 (R) y1 (

• A generative definition of R∗R∗R∗ :

◮ x (R∗) xx (R∗) xx (R∗) x

◮ If x (R) yx (R) yx (R) y and y (R∗) zy (R∗) zy (R∗) z then x (R∗) zx (R∗) zx (R∗) z.

Recap: The reflexive-transitive closure

• If R : A −→ AR : A −→ AR : A −→ A then the reflexive-transitive closure of RRR

is the mapping R∗ : A → AR∗ : A → AR∗ : A → A defined by: xR∗zxR∗zxR∗z iff x = y0 (R) y1 (x = y0 (R) y1 (x = y0 (R) y1 (

• A generative definition of R∗R∗R∗ :

◮ x (R∗) xx (R∗) xx (R∗) x

◮ If x (R) yx (R) yx (R) y and y (R∗) zy (R∗) zy (R∗) z then x (R∗) zx (R∗) zx (R∗) z.

• So wkwkwk is derived from w0w0w0 as above

exactly when w0 ⇒∗ wkw0 ⇒∗ wkw0 ⇒∗ wk.

F24 5

Example

A derivation in our boolean rewrite-system:

((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)

⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)

⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)

⇒ (0) ∨ (1)⇒ (0) ∨ (1)⇒ (0) ∨ (1)

⇒ 0 ∨ (1)⇒ 0 ∨ (1)⇒ 0 ∨ (1)

⇒ 0 ∨ 1⇒ 0 ∨ 1⇒ 0 ∨ 1

⇒ 1⇒ 1⇒ 1

Example

A derivation in our boolean rewrite-system:

((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)((0) ∧ (1)) ∨ (1)

⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)⇒ (0 ∧ (1)) ∨ (1)

⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)⇒ (0 ∧ 1) ∨ (1)

⇒ (0) ∨ (1)⇒ (0) ∨ (1)⇒ (0) ∨ (1)

⇒ 0 ∨ (1)⇒ 0 ∨ (1)⇒ 0 ∨ (1)

⇒ 0 ∨ 1⇒ 0 ∨ 1⇒ 0 ∨ 1

⇒ 1⇒ 1⇒ 1

• Here we ended up with the irreducible string 111 , which cannot

be reduced further.

F24 6

Grammars

• Rewrite systems can be transducers, acceptors, or generators.

• A rewrite system that generates a language is a grammar.

• A grammar consists of

Grammars

• Rewrite systems can be transducers, acceptors, or generators.

• A rewrite system that generates a language is a grammar.

• A grammar consists of

◮ An input alphabet ΣΣΣ . (We say that GGG is over ΣΣΣ).

◮ A finite set VVV of fresh symbols (not in ΣΣΣ),

dubbed variables . (We write ΓΓΓ for Σ ∪ VΣ ∪ VΣ ∪ V .)

◮ A distinguished initial-variable . Default: SSS.

Grammars

• Rewrite systems can be transducers, acceptors, or generators.

• A rewrite system that generates a language is a grammar.

• A grammar consists of

◮ An input alphabet ΣΣΣ . (We say that GGG is over ΣΣΣ).

◮ A finite set VVV of fresh symbols (not in ΣΣΣ),

dubbed variables . (We write ΓΓΓ for Σ ∪ VΣ ∪ VΣ ∪ V .)

◮ A distinguished initial-variable . Default: SSS.

◮ A finite set RRR of rewrite rules, called productions.

These are of the form w → tw → tw → t

where www has at least one non-terminal.

F24 7

Examples

Take Σ = {a,b}Σ = {a,b}Σ = {a,b} and V = {S}V = {S}V = {S}.

1. Two productions: S → aS → aS → a and S → bbS → bbS → bb .

Examples

Take Σ = {a,b}Σ = {a,b}Σ = {a,b} and V = {S}V = {S}V = {S}.

1. Two productions: S → aS → aS → a and S → bbS → bbS → bb .

2. Two productions: S → εS → εS → ε and S → aSS → aSS → aS

Examples

Take Σ = {a,b}Σ = {a,b}Σ = {a,b} and V = {S}V = {S}V = {S}.

1. Two productions: S → aS → aS → a and S → bbS → bbS → bb .

2. Two productions: S → εS → εS → ε and S → aSS → aSS → aS

3. A non-example: rewrite rules a → aba → aba → ab and b → bab → bab → ba.

F24 8

Each grammar generates a language

• Let G = (Σ, V, S, R)G = (Σ, V, S, R)G = (Σ, V, S, R) be a grammar.

w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is derived in GGG if

it is derived from SSS .

• The language generated by GGG is

L(G) = {w ∈ Σ∗ | S ⇒∗ w}L(G) = {w ∈ Σ∗ | S ⇒∗ w}L(G) = {w ∈ Σ∗ | S ⇒∗ w}

F24 9

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

• L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b).

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

• L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b).

• How to formally prove this?

Examples

• Grammar GGG has productions S → aS → aS → a and S → bS → bS → b.

L(G) = {a,b}L(G) = {a,b}L(G) = {a,b}.

• Grammar GGG has productions S → aSS → aSS → aS and S → bS → bS → b.

• Some derivations:

S ⇒ bS ⇒ bS ⇒ b

S ⇒ aS ⇒ abS ⇒ aS ⇒ abS ⇒ aS ⇒ ab

S ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aabS ⇒ aS ⇒ aaS ⇒ aab

• L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b)L(G) = {an · b | n > 0} = L(a∗ · b).

◮ By induction every string ananan is generated.

◮ By induction S ⇒n+1
G wS ⇒n+1
G wS ⇒n+1
G w implies that www

is either anbanbanb or an+1San+1San+1S.

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) =?L(G) =?L(G) =?

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

• Some derivations:

S ⇒ εS ⇒ εS ⇒ ε

S ⇒ aSb ⇒ abS ⇒ aSb ⇒ abS ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

• Some derivations:

S ⇒ εS ⇒ εS ⇒ ε

S ⇒ aSb ⇒ abS ⇒ aSb ⇒ abS ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

• L(G) = ?L(G) = ?L(G) = ?

More examples

• GGG’s productions are S → aSS → aSS → aS, S → SbS → SbS → Sb and S → εS → εS → ε.

• L(G) = L(a∗b∗)L(G) = L(a∗b∗)L(G) = L(a∗b∗)

• S → aSbS → aSbS → aSb and S → εS → εS → ε .

• Some derivations:

S ⇒ εS ⇒ εS ⇒ ε

S ⇒ aSb ⇒ abS ⇒ aSb ⇒ abS ⇒ aSb ⇒ ab

S ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabbS ⇒ aSb ⇒ aaSbb ⇒ aabb

S ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbbS ⇒ aSb ⇒ aaSbb ⇒ aaaSbbb ⇒ aaabbb

• L(G) = {anbn | n > 0}L(G) = {anbn | n > 0}L(G) = {anbn | n > 0}. A non-regular language!

F24 11

CONTEXT FREE GRAMMARS

Context-free grammars

• A context-free grammar (CFG) is a grammar where

every source is a single non-terminal .

• All grammars we’ve seen so far are context-free.

• A language generated by a CFG is a context-free language (CFL).

• Context-free grammars are also called inductive grammars.

• A convention: bundle rules with a common source

as in S → aS b | εS → aS b | εS → aS b | ε.

The vertical line abbreviates “or”.

F24 13

Example: palindromes

• Let PPP be the initial non-terminal.

• Productions:

P → aPaP → aPaP → aPa

P → bPbP → bPbP → bPb

P → aP → aP → a

P → bP → bP → b

P → εP → εP → ε

• In BNF format: P → aPa | bPb | a | b | εP → aPa | bPb | a | b | εP → aPa | bPb | a | b | ε

F24 14

• Similar grammar for palindromes over the entire Latin alphabet.

We have then 2 · 26 + 1 = 532 · 26 + 1 = 532 · 26 + 1 = 53 productions.

• Using the more economical grammar

P → L P L | L | εP → L P L | L | εP → L P L | L | ε

L → a | b | · · · | zL → a | b | · · · | zL → a | b | · · · | z

is wrong, because the two LLL’s in LPSLPSLPS should be the same.

• But we can use a modular description of the correct grammar

above:

P → σ Pσ | σ | εP → σ Pσ | σ | εP → σ Pσ | σ | ε (σ ∈ Σσ ∈ Σσ ∈ Σ)

F24 15

CFLs for natural languages

• The bone ate the dog is grammatically correct English

The dog the bone ate is not

• There is a context-free grammar that generates

exactly the grammatically correct sentences in English!

• Not 100% for all languages, more sophisticated formalisms are

needed.

F24 16

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

• Nonterminals:

S for sentences,

P for noun-phrases

N for nouns

V for verbs

A for adjectives.

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

• The productions are SSS →→→ PV PPV PPV P

PPP →→→ N | APN | APN | AP

NNN →→→ dog | appledog | appledog | apple

VVV →→→ eats | loveseats | loveseats | loves

AAA →→→ big | greenbig | greenbig | green

• This grammar generates big dog eats green apple

and big green big apple loves green dog

but not eats big dog apple loves.

An example for English

• Alphabet Σ consists of the six “symbols”:

dog, apple, eats, loves, big, and green.

• The productions are SSS →→→ PV PPV PPV P

PPP →→→ N | APN | APN | AP

NNN →→→ dog | appledog | appledog | apple

VVV →→→ eats | loveseats | loveseats | loves

AAA →→→ big | greenbig | greenbig | green

• This grammar generates big dog eats green apple

and big green big apple loves green dog

but not eats big dog apple loves.

F24 17

The CF-Factoring Theorem

• Intuitively clear: context-free productions guarantee a separa-

tion

between descendents of one occurrence of a variable

and descendents of another.

• That is:

CF-Factoring Theorem.

Let G = (Σ, N, S, R)G = (Σ, N, S, R)G = (Σ, N, S, R) be a CFG, Γ = Σ ∪ NΓ = Σ ∪ NΓ = Σ ∪ N .

For strings u0, u1 ∈ Γ∗u0, u1 ∈ Γ∗u0, u1 ∈ Γ∗ , if u0 · u1 ⇒∗ vu0 · u1 ⇒∗ vu0 · u1 ⇒∗ v

then v = v0 · v1v = v0 · v1v = v0 · v1 where u0 ⇒∗ v0u0 ⇒∗ v0u0 ⇒∗ v0 and u1 ⇒∗ v1u1 ⇒∗ v1u1 ⇒∗ v1.

• We prove by induction on nnn that if u0 · u1 ⇒n vu0 · u1 ⇒n vu0 · u1 ⇒n v

then the conclusion above holds.

F24 18

Symmetries in CFL

• CFGs often generate languages with symmetries (eg palindromes!).

• The language of balanced parentheses, e.g. (())()(())()(())() is balanced,

(()((()((()(is not.

• The alphabet: just left- and right-parentheses: (((and))),

• Productions: S → SS | (S) | εS → SS | (S) | εS → SS | (S) | ε

F24 19

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX.

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX.

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX.

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX.

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

◮ The productions of Ga=bGa=bGa=b are

S → ε | aB | bAS → ε | aB | bAS → ε | aB | bA

A → aS | bA AA → aS | bA AA → aS | bA A

B → bS | aB BB → bS | aB BB → bS | aB B

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX.

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

◮ The productions of Ga=bGa=bGa=b are

S → ε | aB | bAS → ε | aB | bAS → ε | aB | bA

A → aS | bA AA → aS | bA AA → aS | bA A

B → bS | aB BB → bS | aB BB → bS | aB B

◮ L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}

A CFG is a generative definition

• Each CFG describes a generative process:

A variable XXX names the language generated from XXX.

• Here’s a CFG Ga=bGa=bGa=b that generates {w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}{w ∈ Σ∗ | #a(w) = #b(w)}

◮ Let AAA name {w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1}{w ∈ Σ∗ | #a(w) = #b(w) + 1},

and BBB name {w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}{w ∈ Σ∗ | #b(w) = #a(w) + 1}.

◮ The productions of Ga=bGa=bGa=b are

S → ε | aB | bAS → ε | aB | bAS → ε | aB | bA

A → aS | bA AA → aS | bA AA → aS | bA A

B → bS | aB BB → bS | aB BB → bS | aB B

◮ L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}L(Ga=b) = {w ∈ Σ∗ | #a(w) = #b(w)}

• Exercise: The grammar with productions S → b | aSSS → b | aSSS → b | aSS

generates the strings with #b > #a#b > #a#b > #a but #b 6 #a#b 6 #a#b 6 #a for all

proper-prefixes.

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }

is not CF.

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }

is not CF.

• Consider the grammar

S → ε | SABCS → ε | SABCS → ε | SABC

A → aA → aA → a, B → bB → bB → b, C → cC → cC → c

• It generates the strings (abc)n(abc)n(abc)n .

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }

is not CF.

• Consider the grammar

S → ε | SABCS → ε | SABCS → ε | SABC

A → aA → aA → a, B → bB → bB → b, C → cC → cC → c

• It generates the strings (abc)n(abc)n(abc)n .

• Add the productions AB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CB.

BA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BC.

Yes, these are not context-free!

A grammar that is not context-free

• Let Σ = {a,bc}.Σ = {a,bc}.Σ = {a,bc}. We shall see later that

La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }La=b=c = {w ∈ Σ∗ | #a(w) = #b(w) = #c(w) }

is not CF.

• Consider the grammar

S → ε | SABCS → ε | SABCS → ε | SABC

A → aA → aA → a, B → bB → bB → b, C → cC → cC → c

• It generates the strings (abc)n(abc)n(abc)n .

• Add the productions AB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CBAB → BA, AC → CA BC → CB.

BA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BCBA → AB, CA → AC CB → BC.

Yes, these are not context-free!

• This extended grammar generates La=b=cLa=b=cLa=b=c

F24 21

Multiple symmetries

• {anbnck | n, k > 0}{anbnck | n, k > 0}{anbnck | n, k > 0}

• {anbnakbk | n, k > 0}{anbnakbk | n, k > 0}{anbnakbk | n, k > 0}

• {anbn+kak | n, k > 0}{anbn+kak | n, k > 0}{anbn+kak | n, k > 0}

• {anbkcn+k | n, k > 0}{anbkcn+k | n, k > 0}{anbkcn+k | n, k > 0}

• {anbkakbn | n, k > 0}{anbkakbn | n, k > 0}{anbkakbn | n, k > 0}

• {anbn+kck+mdm | n, k, m > 0}{anbn+kck+mdm | n, k, m > 0}{anbn+kck+mdm | n, k, m > 0}

F24 22

REGULAR LANGUAGES ARE CONTEXT-FREE

• We use the generative definition of the strictly regular languages.

Their definition as strictly-regular languages is simplifying this.

• We use the generative definition of the strictly regular languages.

Their definition as strictly-regular languages is simplifying this.

• Recall that the strictly-regular languages over ΣΣΣ

are generated by:

1. The trivial languages ∅, {ε}, {σ} (σ ∈ Σ)∅, {ε}, {σ} (σ ∈ Σ)∅, {ε}, {σ} (σ ∈ Σ) are regular.

2. The union, concatenation, and star of regular languages

are regular.

• We use the generative definition of the strictly regular languages.

Their definition as strictly-regular languages is simplifying this.

• Recall that the strictly-regular languages over ΣΣΣ

are generated by:

1. The trivial languages ∅, {ε}, {σ} (σ ∈ Σ)∅, {ε}, {σ} (σ ∈ Σ)∅, {ε}, {σ} (σ ∈ Σ) are regular.

2. The union, concatenation, and star of regular languages

are regular.

• We use the generative definition of the strictly regular languages.

Their definition as strictly-regular languages is simplifying this.

• Recall that the strictly-regular languages over ΣΣΣ

are generated by:

1. The trivial languages ∅, {ε}, {σ} (σ ∈ Σ)∅, {ε}, {σ} (σ ∈ Σ)∅, {ε}, {σ} (σ ∈ Σ) are regular.

2. The union, concatenation, and star of regular languages

are regular.

• So by induction on the collection of regular languages

they are all CF.

F24 24

The regular languages are CF

• ∅∅∅ :

The regular languages are CF

• ∅∅∅ : Generated by the CFG S → SS → SS → S.

• {ε}{ε}{ε} :

The regular languages are CF

• ∅∅∅ : Generated by the CFG S → SS → SS → S.

• {ε}{ε}{ε} : Generated by S → εS → εS → ε.

• {a}{a}{a} :

F24 25

Closure under union, concatenation, star

Refer to CFGs and the languages they generated:

L0 = L(G0)L0 = L(G0)L0 = L(G0) and L1 = L(G1)L1 = L(G1)L1 = L(G1) where Gi = (Σ, Vi, Si, Ri)Gi = (Σ, Vi, Si, Ri)Gi = (Σ, Vi, Si, Ri).

We may assume that G0G0G0 and G1G1G1 have no variable in common:

renaming a grammar’s variables

does not change the language generated.

F24 26

Closure under union

• L0 ∪ L1L0 ∪ L1L0 ∪ L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)

where SSS is a fresh nonterminal

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 | S1S → S0 | S1S → S0 | S1

Closure under union

• L0 ∪ L1L0 ∪ L1L0 ∪ L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)

where SSS is a fresh nonterminal

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 | S1S → S0 | S1S → S0 | S1

• GGG generates each w ∈ L0 ∪ L1w ∈ L0 ∪ L1w ∈ L0 ∪ L1.

Closure under union

• L0 ∪ L1L0 ∪ L1L0 ∪ L1 is generated by (Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)(Σ, V ∪ V ′ + S, S, R)

where SSS is a fresh nonterminal

and RRR is R0 ∪ R1R0 ∪ R1R0 ∪ R1 augmented with the production S → S0 | S1S → S0 | S1S → S0 | S1

• GGG generates each w ∈ L0 ∪ L1w ∈ L0 ∪ L1w ∈ L0 ∪ L1.

• Conversely, a derivation DDD in GGG for S ⇒G wS ⇒G wS ⇒G w

must start with S → S0S → S0S → S0 or S → S1S → S1S → S1 and proceed with

either a derivation in G0G0G0 or a derivation in G1G1G1 ,

since V0 ∩ V1 = ∅V0 ∩ V1 = ∅V0 ∩ V1 = ∅.

F24 27

Closure under concatenation

• In this section we let L0, L1L0, L1L0, L1 be CFLs generated by

CFGs G0 = (Σ, N0, S0, R0)G0 = (Σ, N0, S0, R0)G0 = (Σ, N0, S0, R0) and G1 = (Σ, N1, S1, R1)G1 = (Σ, N1, S1, R1)G1 = (Σ, N1, S1, R1) respec-

tively,

with no non-terminals in common (N0 ∩ N1 = ∅N0 ∩ N1 = ∅N0 ∩ N1 = ∅).

• Let NNN be N0 ∪ N1N0 ∪ N1N0 ∪ N1 + a fresh nonterminal SSS.

Closure under concatenation

• In this section we let L0, L1L0, L1L0, L1 be CFLs generated by

CFGs G0 = (Σ, N0, S0, R0)G0 = (Σ, N0, S0, R0)G0 = (Σ, N0, S0, R0) and G1 = (Σ, N1, S1, R1)G1 = (Σ, N1, S1, R1)G1 = (Σ, N1, S1, R1) respec-

tively,

with no non-terminals in common (N0 ∩ N1 = ∅N0 ∩ N1 = ∅N0 ∩ N1 = ∅).

• Let NNN be N0 ∪ N1N0 ∪ N1N0 ∪ N1 + a fresh nonterminal SSS.

• A grammar generating L0 ∪ L1L0 ∪ L1L0 ∪ L1 :

(Σ, N, S, R)(Σ, N, S, R)(Σ, N, S, R) where RRR is R0 ∪ R0R0 ∪ R0R0 ∪ R0 augmented with the pro-

duction S → S0 | S1S → S0 | S1S → S0 | S1.

Closure under concatenation

• In this section we let L0, L1L0, L1L0, L1 be CFLs generated by

CFGs G0 = (Σ, N0, S0, R0)G0 = (Σ, N0, S0, R0)G0 = (Σ, N0, S0, R0) and G1 = (Σ, N1, S1, R1)G1 = (Σ, N1, S1, R1)G1 = (Σ, N1, S1, R1) respec-

tively,

with no non-terminals in common (N0 ∩ N1 = ∅N0 ∩ N1 = ∅N0 ∩ N1 = ∅).

• Let NNN be N0 ∪ N1N0 ∪ N1N0 ∪ N1 + a fresh nonterminal SSS.

• A grammar generating L0 ∪ L1L0 ∪ L1L0 ∪ L1 :

(Σ, N, S, R)(Σ, N, S, R)(Σ, N, S, R) where RRR is R0 ∪ R0R0 ∪ R0R0 ∪ R0 augmented with the pro-

duction S → S0 | S1S → S0 | S1S → S0 | S1.

• A grammar generating L0 · L1L0 · L1L0 · L1 : (Σ, N, S, R)(Σ, N, S, R)(Σ, N, S, R) where RRR is R0 ∪ R0R0 ∪ R0R0 ∪ R0

augmented with the production S → S0S1S → S0S1S → S0S1.

F24 28

Regular languages are context-free

• The trivial finite languages are CF.

• The CFLs are closed under union, concatenation and star.

• By induction on the definition of regular languages:

Theorem. Every regular language is CF

• But not every CFL is regular: {anbn | n > 0}{anbn | n > 0}{anbn | n > 0} is CF.

F24 29

DERIVATIONS AND REPETITIONS

Parse-trees

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• A derivation for the string ()(())()(())()(()):

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• Represented as a tree with terminals for leaves

and variables for internal nodes:

(S)

S

S S

(S)

S)(

ε

ε

• This is a derivation tree of www in GGG (aka parse tree).

F24 32

Leftmost-derivations

• Derivations for the same parse-tree are said to be equivalent.

• Example:

In addition to S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

we also have S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• The latter is the leftmost derivation for the tree.

• Generally: The leftmost derivation for a parse-tree

expands at each step the leftmost variable.

F24 33

Example

• GGG is

S → AAS | ε, A → bA | Ab | aS → AAS | ε, A → bA | Ab | aS → AAS | ε, A → bA | Ab | a

• Here is a derivation of baabbaabbaab :
SSS ⇒G AA⇒G AA⇒G AA

⇒G bAA⇒G bAA⇒G bAA

⇒G bAAb⇒G bAAb⇒G bAAb

⇒G bAab⇒G bAab⇒G bAab

⇒G baab⇒G baab⇒G baab

• The corresponding parse-tree is

a

S

b A

A A

bA

a

• The leftmost derivation for this tree is

SSS ⇒G AA⇒G AA⇒G AA ⇒G bAA⇒G bAA⇒G bAA ⇒G baA⇒G baA⇒G baA ⇒G baAb⇒G baAb⇒G baAb ⇒G baab⇒G baab⇒G baab

• A different parse-tree for the same string:
S

b A A

b

a

Aa

The leftmost derivation for that tree:

S ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G bAA ⇒G baA ⇒G baAb ⇒G baab

F24 35

Ambiguous grammars

• A parse-tree usually represents several derivations.

Can a grammar have different parse-trees for the same string?

• We have already seen one: S → SS | (S) | ε.

)

(

ε

)

ε

S

S

S

S)

S

(S

S

(S

ε
(

ε

)

ε

S

(S

ε

S

S

S)

S

(S

S

)

• And natural languages are full of ambiguities:

Jane welcomed the man with a dog

Jane welcomed the man with a dog

F24 36

Inherently ambiguous CFLs

• There are non-ambiguous grammars to generate the above.

• A CFL is inherently ambiguous if

all grammars generating it are ambiguous.

• Example (no proof):

{anbnck | n, k > 0} ∪ {akbncn | n, k > 0}{anbnck | n, k > 0} ∪ {akbncn | n, k > 0}{anbnck | n, k > 0} ∪ {akbncn | n, k > 0}

• Any grammar generating this language has at least two deriva-

tions

for, say, aabbcc

• Remark: The intersection is not CF at all.

F24 38

Parse-trees

• Computation traces capture the nature of procedural computing

by a mathematical machine.

• But a formal derivation by a grammar GGG

conveys an order that is not part of the intended generative

process.

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• A derivation for the string ()(())()(())()(()) :

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• A derivation for the string ()(())()(())()(()) :

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• Represented as a tree with terminals for leaves

and variables for internal nodes:

(S)

S

S S

(S)

S)(

ε

ε

• Recall CFG for balanced parentheses: S → ε | SS | (S)S → ε | SS | (S)S → ε | SS | (S)

• A derivation for the string ()(())()(())()(()) :

S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• Represented as a tree with terminals for leaves

and variables for internal nodes:

(S)

S

S S

(S)

S)(

ε

ε

• This is a parse-tree, or pars-tree

(of the grammar GGG for the string www).

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree represents the essential features of a derivation,

abstracting away from the sequential listing of the steps.

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree represents the essential features of a derivation,

abstracting away from the sequential listing of the steps.

• This is analogous to a set {a1, . . . ak}{a1, . . . ak}{a1, . . . ak} , which abstracts away

from the order of the list a1 . . . , aka1 . . . , aka1 . . . , ak.

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree represents the essential features of a derivation,

abstracting away from the sequential listing of the steps.

• This is analogous to a set {a1, . . . ak}{a1, . . . ak}{a1, . . . ak} , which abstracts away

from the order of the list a1 . . . , aka1 . . . , aka1 . . . , ak.

• This is why parse-trees are also called “abstract syntax-trees”.

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree represents the essential features of a derivation,

abstracting away from the sequential listing of the steps.

• Different derivations for the same tree are equivalent.

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree represents the essential features of a derivation,

abstracting away from the sequential listing of the steps.

• Different derivations for the same tree are equivalent.

• E.g. besides S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

we also have S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• The parse-tree can be built using the derivation above:

S

()S

S

S S

S

S S

(S) (S)

S

S S

(S)

(S)

S

S S

(S)

S)(

(S)

S

S S

(S)

S)(

ε

εε

(S)

S

S S

ε

• The parse-tree represents the essential features of a derivation,

abstracting away from the sequential listing of the steps.

• Different derivations for the same tree are equivalent.

• E.g. besides S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ S(S) ⇒ (S)(S) ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

we also have S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())S ⇒ SS ⇒ (S)S ⇒ ()S ⇒ ()(S) ⇒ ()((S)) ⇒ ()(())

• The latter is the leftmost-derivation for the tree,

obtained by repeatedly expanding the leftmost variable.

Example

• Grammar GGG : S → AA | bAA, A → bA | Ab | aS → AA | bAA, A → bA | Ab | aS → AA | bAA, A → bA | Ab | a

• A derivation of baabbaabbaab :

S ⇒G AA ⇒G bAA ⇒G bAAb ⇒G b Aa b ⇒G baabS ⇒G AA ⇒G bAA ⇒G bAAb ⇒G b Aa b ⇒G baabS ⇒G AA ⇒G bAA ⇒G bAAb ⇒G b Aa b ⇒G baab

• The corresponding parse-tree:

a

S

b A

A A

bA

a

• The leftmost derivation for this is

S ⇒G AA ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G AA ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G AA ⇒G bAA ⇒G baA ⇒G baAb ⇒G baab

A different parse-tree for the same string:
S

b A A

b

a

Aa

The leftmost derivation for this parse-tree:

S ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G bAA ⇒G baA ⇒G baAb ⇒G baabS ⇒G bAA ⇒G baA ⇒G baAb ⇒G baab

F24 44

Ambiguous grammars

• A parse-tree usually represents several derivations.

Can a grammar have different parse-trees for the same string?

• We have already seen one: S → SS | (S) | εS → SS | (S) | εS → SS | (S) | ε .

)

(

ε

)

ε

S

S

S

S)

S

(S

S

(S

ε
(

ε

)

ε

S

(S

ε

S

S

S)

S

(S

S

)

• And natural languages are full of ambiguities:

Jane welcomed the speaker with a smile

Jane welcomed the speaker with a smile

F24 45

Inherently ambiguous CFLs

• There are non-ambiguous grammars to generate the above.

That’s good!

• A CFL is inherently ambiguous

if all grammars generating it are ambiguous.

ıExample (no proof):

{anbnck | n, k > 0} ∪ {akbncn | n, k > 0}{anbnck | n, k > 0} ∪ {akbncn | n, k > 0}{anbnck | n, k > 0} ∪ {akbncn | n, k > 0}

• Any grammar for this language will have at least two derivations

for every string anbncnanbncnanbncn.

F24 46

REPEATED PARSING PATTERNS

Dual-clipping in CFLs

• The Clipping Theorem is based on the observation that if MMM is

a kkk -state DFA then any trace of MMM of length > k> k> k has some

state qqq repeating.

Dual-clipping in CFLs

• The Clipping Theorem is based on the observation that if MMM is

a kkk -state DFA then any trace of MMM of length > k> k> k has some

state qqq repeating.

• This does not work as stated for for CFLs. Why?

Dual-clipping in CFLs

• The Clipping Theorem is based on the observation that if MMM is

a kkk -state DFA then any trace of MMM of length > k> k> k has some

state qqq repeating.

• This does not work as stated for for CFLs. Why?

• A DFA accepts a string www by a textual scan, but a CFG gener-

ates www by a parse-tree for it.

Here the repetition is “vertical”:

A variable repeats on a branch of the parse-tree.

S

A

A

w

F24 49

Dual-Clipping for CFLs

• The portions of the parse-tree generated by the upper A,

but not the lower one, can be “clipped-off” the tree:

Tx

S

A

A

x

0 1T

0y
1

y

T

F24 50

Dual-Clipping for CFLs

• The portion generated from the lower A remains:

Tx

A

A

x

0 1T

0y
1

y

T

S

F24 51

Dual-Clipping for CFLs

• The lower A can be identified with the upper one,

by lifting the subtree it generates:
S

A

Tx

A

x

Dual-Clipping for CFLs

• The lower A can be identified with the upper one,

by lifting the subtree it generates:
S

A

Tx

A

x

F24 52

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

• We’ll also need to

1. Give conditions that guarantee such a repetition

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

• We’ll also need to

1. Give conditions that guarantee such a repetition

2. Ensure that the clipping obtained is non-empty

Dual-clipping: The framework

• Dual-clipping Theorem for CFLs (informal summary)

If LLL is a CFL then

every sufficiently long w ∈ Lw ∈ Lw ∈ L has two disjoint substrings,

not both empty, and not too far apart,

that can be clipped off www to yield a string w′ ∈ Lw′ ∈ Lw′ ∈ L.

• Core idea: variable repeating on a branch.

• We’ll also need to

1. Give conditions that guarantee such a repetition

2. Ensure that the clipping obtained is non-empty

3. Obtain two clipped substrings that are “not too far apart”.

F24 53

A repeated variable on a branch

• Suppose TTT is a parse-tree of a CFG GGG for www

with variable AAA repeating on a branch.

Tx

S

A

A

x

• The lower occurrence of AAA generates a substring xxx.

F24 54

Tx

S

A

A

x

0T 1T

0y
1

y

• The upper occurrence of AAA generates a substring y0 x y1y0 x y1y0 x y1.

F24 55

Tx

S

A

A

x

• Eliminating y0y0y0 and y1y1y1 yields a parse-tree

except for the branch-segment between the two occurrences

of AAA .

F24 56

Tx

A

x

S

A

• So lifting the derivation from the lower occurrence of AAA ...

F24 57

Tx

x

S

A

• ... results in a parse-tree for the input string

with the substrings y0y0y0 and y1y1y1 clipped off.

F24 58

S

A

Tx

x

wwo 1

• Naming the “outer” substrings of the input w0w0w0 and w1w1w1 ,

the input www is w0 · y0 · x · y1 · · · w1w0 · y0 · x · y1 · · · w1w0 · y0 · x · y1 · · · w1 for some w0, w1w0, w1w0, w1,

and the resulting (clipped) string, w0 · x · w1,w0 · x · w1,w0 · x · w1, is also in LLL.

F24 59

Ensuring a repeated variable

• Let mmm be the number of variables of GGG .

• So there are at least m + 1m + 1m + 1 variables on the branch

for just mmm different variables in GGG.

• Some variable must be repeating!

F24 60

Deriving a long string requires repetition

• Say that a production X → σ1 · · · σℓX → σ1 · · · σℓX → σ1 · · · σℓ has length ℓℓℓ and that

the degree of a grammar is the maximal length of its pro-

ductions.

• A binary tree of height hhh has 6 2h6 2h
6 2h leaves.

Generally, a tree of degree ddd has 6 dh6 dh
6 dh leaves.

• For a grammar of degree ddd and mmm variables

any string with a parse-tree of height 6 m6 m6 m is dmdmdm.

• So a parse-tree for a string of length > dm> dm> dm must have a branch

with > m> m> m variables, which therefore has a variable repeating.

F24 61

Ensuring non-vacuous clipping

• What if the clipped y0, y1y0, y1y0, y1 are both empty?

• Then we obtained a smaller parse-tree for www !

• If we just start with a parse-tree of GGG for www

with a minimal number of nodes (no smaller parse-tree for www)

then at least one of y0, y1y0, y1y0, y1 is non-empty.

F24 62

Bounding y0 · x · y1y0 · x · y1y0 · x · y1

• Claim: There must be a y0 · x · y1y0 · x · y1y0 · x · y1 of length 6 dm6 dm
6 dm.

• Take a lower-most pair of a variable repeating:

then no nonterminal repeats on a branch under the upper AAA.

No repetition along
 any branch here

S

A

A

x0y
1

y

• Then |y0 · x · y1| 6 k|y0 · x · y1| 6 k|y0 · x · y1| 6 k.

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

• Theorem. Let GGG be a CFG over ΣΣΣ with mmm variables

and of degree ddd (= all targets of length 6 d6 d6 d).

◮ If w ∈ L(G)w ∈ L(G)w ∈ L(G) has length > k = dm> k = dm
> k = dm

◮ then it has a substring ppp of length 6 k6 k6 k ,

with disjoint substrings y0, y1y0, y1y0, y1 not both empty,

s.t. w′w′w′ obtained from www by removing y0y0y0 and y1y1y1

is also in LLL.

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

• Theorem. Let GGG be a CFG over ΣΣΣ with mmm variables

and of degree ddd (= all targets of length 6 d6 d6 d).

◮ If w ∈ L(G)w ∈ L(G)w ∈ L(G) has length > k = dm> k = dm
> k = dm

◮ then it has a substring ppp of length 6 k6 k6 k ,

with disjoint substrings y0, y1y0, y1y0, y1 not both empty,

s.t. w′w′w′ obtained from www by removing y0y0y0 and y1y1y1

is also in LLL.

• Stated explicitly:

www has some partition w = w0 · y0 · x · y1 · w1w = w0 · y0 · x · y1 · w1w = w0 · y0 · x · y1 · w1 ,

with y0, y1y0, y1y0, y1 not both empty and |y0 · x · y1| 6 k|y0 · x · y1| 6 k|y0 · x · y1| 6 k ,

s.t. w0 · x · w1 ∈ Lw0 · x · w1 ∈ Lw0 · x · w1 ∈ L .

F24 64

A Dual-clipping Property

• We rephrase the Dual-clipping Theorem in terms of a language

property.

• Say that a language LLL has the Dual-clipping Property if

there is a kkk such that

every w ∈ Lw ∈ Lw ∈ L of length > k> k> k

has a substring y0 · x · y1y0 · x · y1y0 · x · y1 of length 6 k6 k6 k with y0y1 6= εy0y1 6= εy0y1 6= ε,

for which the string w′w′w′ obtained from www

by removing y0y0y0 and y1y1y1 is also in LLL .

A Dual-clipping Property

• We rephrase the Dual-clipping Theorem in terms of a language

property.

• Say that a language LLL has the Dual-clipping Property if

there is a kkk such that

every w ∈ Lw ∈ Lw ∈ L of length > k> k> k

has a substring y0 · x · y1y0 · x · y1y0 · x · y1 of length 6 k6 k6 k with y0y1 6= εy0y1 6= εy0y1 6= ε,

for which the string w′w′w′ obtained from www

by removing y0y0y0 and y1y1y1 is also in LLL .

• The Dual-Clipping Theorem for CFLs states that

every CFL has the Dual-Clipping Property.

• Consequently, if a language LLL fails this property,

then it is not CF.

F24 65

Failing Dual-Clipping

• LLL fails the Dual-clipping Property when

◮ For every kkk there is a w ∈ Lw ∈ Lw ∈ L of length > k> k> k s.t.

for every substring y0 · x · h1y0 · x · h1y0 · x · h1 of www of length 6 k6 k6 k with y0y1 6= εy0y1 6= εy0y1 6= ε

the string w′w′w′ obtained from www by removing y0y0y0 and y1y1y1

is not in LLL.

F24 66

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Let L = L(G)L = L(G)L = L(G) , GGG a CFG with clipping constant kkk .

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Let L = L(G)L = L(G)L = L(G) , GGG a CFG with clipping constant kkk .

• Take w = akbkck ∈ Lw = akbkck ∈ Lw = akbkck ∈ L . We have w ∈ Lw ∈ Lw ∈ L with |w| > k|w| > k|w| > k .

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Let L = L(G)L = L(G)L = L(G) , GGG a CFG with clipping constant kkk .

• Take w = akbkck ∈ Lw = akbkck ∈ Lw = akbkck ∈ L . We have w ∈ Lw ∈ Lw ∈ L with |w| > k|w| > k|w| > k .

• By Dual-Clipping we can clip off www some y0, y1y0, y1y0, y1

within a kkk-long substring ppp of www , getting w′ ∈ Lw′ ∈ Lw′ ∈ L.

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Let L = L(G)L = L(G)L = L(G) , GGG a CFG with clipping constant kkk .

• Take w = akbkck ∈ Lw = akbkck ∈ Lw = akbkck ∈ L . We have w ∈ Lw ∈ Lw ∈ L with |w| > k|w| > k|w| > k .

• By Dual-Clipping we can clip off www some y0, y1y0, y1y0, y1

within a kkk-long substring ppp of www , getting w′ ∈ Lw′ ∈ Lw′ ∈ L.

• But this is impossible:

Since |p| 6 k|p| 6 k|p| 6 k it cannot have more than 2 of the 3 letters,

so w′w′w′ cannot have an equal number of letters.

Example: an-bn-cn

• Let L = {anbncn | n > 0}L = {anbncn | n > 0}L = {anbncn | n > 0}.

We show that LLL is not CF.

• Let L = L(G)L = L(G)L = L(G) , GGG a CFG with clipping constant kkk .

• Take w = akbkck ∈ Lw = akbkck ∈ Lw = akbkck ∈ L . We have w ∈ Lw ∈ Lw ∈ L with |w| > k|w| > k|w| > k .

• By Dual-Clipping we can clip off www some y0, y1y0, y1y0, y1

within a kkk-long substring ppp of www , getting w′ ∈ Lw′ ∈ Lw′ ∈ L.

• But this is impossible:

Since |p| 6 k|p| 6 k|p| 6 k it cannot have more than 2 of the 3 letters,

so w′w′w′ cannot have an equal number of letters.

• Conclusion: LLL is not CF.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-

tion:

1. GGG is given to us, with its clipping constant.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-

tion:

1. GGG is given to us, with its clipping constant.

2. We can choose a w ∈ Lw ∈ Lw ∈ L of length > k> k> k.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-

tion:

1. GGG is given to us, with its clipping constant.

2. We can choose a w ∈ Lw ∈ Lw ∈ L of length > k> k> k.

3. Substring ppp and its factorization py0 · x · y1py0 · x · y1py0 · x · y1 are unknown,

i.e. given to us.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-

tion:

1. GGG is given to us, with its clipping constant.

2. We can choose a w ∈ Lw ∈ Lw ∈ L of length > k> k> k.

3. Substring ppp and its factorization py0 · x · y1py0 · x · y1py0 · x · y1 are unknown,

i.e. given to us.

4. We must show that whatever they are

the resulting string w′w′w′ is 6∈ L6∈ L6∈ L.

F24 68

Same proof articulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

Same proof articulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

Same proof articulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

• Then given to us that an unknown substring

p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 of length 6 k6 k6 k

we observe that it can have at most two of a,b,ca,b,ca,b,c .

Same proof articulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

• Then given to us that an unknown substring

p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 of length 6 k6 k6 k

we observe that it can have at most two of a,b,ca,b,ca,b,c .

• So removing y0y0y0 and y1y1y1 yields a string not in LLL.

Same proof articulated as failures

We can articulate proofs like this directly by

showing failure of Dual-Clipping,

• Given to us an unknown k > 0k > 0k > 0 ,

we choose w = akbkckw = akbkckw = akbkck . We have w ∈ Lw ∈ Lw ∈ L and |w| > k|w| > k|w| > k.

• Then given to us that an unknown substring

p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 of length 6 k6 k6 k

we observe that it can have at most two of a,b,ca,b,ca,b,c .

• So removing y0y0y0 and y1y1y1 yields a string not in LLL.

• Since LLL fails the Dual-clipping Property, it is not CF.

F24 69

The intersection of CFLs

Now that we have a non-CF language,

we can show that the intersection of CFL need not be CF!!

•
LabLabLab === {anbnck | n, k > 0}{anbnck | n, k > 0}{anbnck | n, k > 0} is CF

LbcLbcLbc === {akbncn | n, k > 0}{akbncn | n, k > 0}{akbncn | n, k > 0} is CF

• But their intersection

Lab ∩ Lbc = {anbncn | n > 0}Lab ∩ Lbc = {anbncn | n > 0}Lab ∩ Lbc = {anbncn | n > 0}

is not CF.

F24 70

The complement of a CFL

The complement of a CFL need not be CF .

• Reason: The collection of CFLs is closed under union.

If it were closed under complement then it would be closed

under intersection.

• −(A ∩ B) = −A ∪ −B−(A ∩ B) = −A ∪ −B−(A ∩ B) = −A ∪ −B so A ∩ B = −(−A ∪ −B)A ∩ B = −(−A ∪ −B)A ∩ B = −(−A ∪ −B)

• Specific example: The Mahi-mahi Language is not CF.

But its complement is!

F24 71

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

• If p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 is a substring, y1y1z 6= εy1y1z 6= εy1y1z 6= ε

let w′w′w′ be obtained from www by removing y0, y1y0, y1y0, y1 .

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

• If p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 is a substring, y1y1z 6= εy1y1z 6= εy1y1z 6= ε

let w′w′w′ be obtained from www by removing y0, y1y0, y1y0, y1 .

• Since ppp can span at most two adjacent blocks,

removing y0, y1y0, y1y0, y1 deletes some letter (a,b,c, or d)

without deleting any corresponding one (c, d, a, or b, respec-

tively).

• So w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

Example: Alternating equals

• {aibjci | i, j > 0}{aibjci | i, j > 0}{aibjci | i, j > 0} is CF. So is {aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}{aibjcjdi | i, j > 0}

• But L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0}L = {aibjcidj | i, j > 0} is not.

• Given k > 0k > 0k > 0 take w = akbkckdk ∈ Lw = akbkckdk ∈ Lw = akbkckdk ∈ L. w ∈ L, |w| > kw ∈ L, |w| > kw ∈ L, |w| > k.

• If p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1 is a substring, y1y1z 6= εy1y1z 6= εy1y1z 6= ε

let w′w′w′ be obtained from www by removing y0, y1y0, y1y0, y1 .

• Since ppp can span at most two adjacent blocks,

removing y0, y1y0, y1y0, y1 deletes some letter (a,b,c, or d)

without deleting any corresponding one (c, d, a, or b, respec-

tively).

• So w′ 6∈ Lw′ 6∈ Lw′ 6∈ L.

• LLL fails the dual-clipping property, and cannot be CF.

F24 72

The mahi-mahi language

• We already proved that the language L = {r · r | r ∈ {a,b}∗}L = {r · r | r ∈ {a,b}∗}L = {r · r | r ∈ {a,b}∗}

is not regular. We now prove that it is not even CF.

• Let LLL is generated by a CFG GGG with clipping constant k = dmk = dmk = dm.

• Try w = akbakbw = akbakbw = akbakb.

• Not working! since we might have

y0y0y0 in the first block of aaa’s

and y1y1y1 in the second!

• Solution: Push the two blocks apart: w = akbkakbk ∈ Lw = akbkakbk ∈ Lw = akbkakbk ∈ L.

• By Dual-clipping, www has a substring of length 6 k6 k6 k

of the form y0 · x · y1y0 · x · y1y0 · x · y1 with y0y1 6= εy0y1 6= εy0y1 6= ε

s.t. www with y0y0y0 and y1y1y1 removed is still in LLL.

• Cases for p = y0 · x · y1p = y0 · x · y1p = y0 · x · y1:

1. ppp in first half of www.

Then w′ = aibjakbkw′ = aibjakbkw′ = aibjakbk with i + j < 2ki + j < 2ki + j < 2k.

First half of w′w′w′ ends with aaa, second with bbb. w′ 6∈ Lw′ 6∈ Lw′ 6∈ L !

2. ppp in second half of www.

Then w′ = akbkaibjw′ = akbkaibjw′ = akbkaibj with i + j < 2ki + j < 2ki + j < 2k.

First half of w′w′w′ starts with aaa, second with bbb.

w′ 6∈ Lw′ 6∈ Lw′ 6∈ L !

3. ppp in bkakbkakbkak. Then w′ = akbiajbkw′ = akbiajbkw′ = akbiajbk with i + j < 2ki + j < 2ki + j < 2k.

First half of w′w′w′ has more aaa ’s than the second,

or second half has more bbb ’s than the first (or both).

w′ 6∈ Lw′ 6∈ Lw′ 6∈ L !

• In any case w′ 6∈ Lw′ 6∈ Lw′ 6∈ L. So LLL is not CF.

F24 74

SPECIAL TYPES OF CFGs

Regular grammars

• Regular languages are generated by regular grammars, a spe-

cial type of CFGs.

• Regular grammars have only productions of the forms

A → εA → εA → ε

A → σA → σA → σ (σ ∈ Σ)

A → σBA → σBA → σB

• Simulate a DFA M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ)M = (Σ, Q, s, A, δ) by a CFG GGG:

– GGG ’s nonterminals are the states of MMM (let’s underline them).

– Its initial nonterminal is sss.

– A transition-rule q σ→ pq σ→ pq σ→ p

becomes the production q → σpq → σpq → σp.

– Acceptance by MMM becomes releasing an output by GGG:

a → εa → εa → ε for each a ∈ Aa ∈ Aa ∈ A .

• Above are right-regular (aka right-linear) grammars.

Left-regular grammars have A → BσA → BσA → Bσ instead.

F24 77

Expanding grammars

• We’ll say that a CFG is spreading if its productions are all of

one of two forms.

◮ Terminal: A → σA → σA → σ, or

◮ Spread: A → zA → zA → z where |z| > 2|z| > 2|z| > 2.

F24 78

• Observation. Suppose GGG is a spreading CFG,

nd DDD is a derivation in GGG of a string x ∈ Γ∗x ∈ Γ∗x ∈ Γ∗.

Then DDD has at most c(x) = |x| + #Σ(x)c(x) = |x| + #Σ(x)c(x) = |x| + #Σ(x) steps,

where #Σ(x)#Σ(x)#Σ(x) is the number of terminals in xxx.

• In particular, if x ∈ Σx ∈ Σx ∈ Σ (i.e. all terminals), then c(x) = 2 · |x|c(x) = 2 · |x|c(x) = 2 · |x|.

• Example: Let GGG be the spreading CFG S → QS | b, Q → aS → QS | b, Q → aS → QS | b, Q → a.

Consider the derivation S ⇒ QS ⇒ QQS ⇒ QQb → aQbS ⇒ QS ⇒ QQS ⇒ QQb → aQbS ⇒ QS ⇒ QQS ⇒ QQb → aQb, which

has 4 steps.

Here xxx is aQbaQbaQb, a string of length 3 with 2 non-terminals.

And indeed c(x) = |x| + #Σ(x) = 3+2 = 5 > 4c(x) = |x| + #Σ(x) = 3+2 = 5 > 4c(x) = |x| + #Σ(x) = 3+2 = 5 > 4 .

• Observation’s proof by induction on the length of DDD: For spread-

ing CFG GGG , if x ⇒G yx ⇒G yx ⇒G y then c(y) < c(x)c(y) < c(x)c(y) < c(x).

F24 79

Conversion to spreading CFGs

• Lemma. Every CFG GGG that does not generate εεε

can be converted into an equivalent spreading CFG.

• Need to eliminate productions of the form

◮ Q → εQ → εQ → ε (εεε productions) and

◮ Q → RQ → RQ → R (Stagnant productions)

• Let’s eliminate first all ε-productions.

F24 81

Eliminating εεε-productions

• To drop Q → εQ → εQ → ε must be compensated

so as to preserve equivalence w/ GGG.

• For each production R → zR → zR → z and each z′z′z′

obtained from zzz by deleting some QQQ ’s,

add the production R → z′R → z′R → z′.

• Example 1: To R → QaQR → QaQR → QaQ add

R → aQR → aQR → aQ, R → QaR → QaR → Qa and R → QR → QR → Q.

• Example 2: To R → QR → QR → Q add R → εR → εR → ε

• We might add new εεε -productions and stagnant-productions.

• But for now we don’t worry about stagnant productions,

and we won’t need to return to Q → εQ → εQ → ε .

So process repeated 6 m =6 m =6 m = number of non-terminals.

F24 83

Eliminating stagnant-productions

• To drop Q → PQ → PQ → P must compensate to preserve equival with GGG.

• εεε -productions no longer present.

• For each production P → zP → zP → z add Q → zQ → zQ → z .

• Example 1: To P → PQP → PQP → PQ add Q → PQQ → PQQ → PQ.

• Example 2: to P → RP → RP → R add Q → RQ → RQ → R.

• No εεε-prods are generated: none to start with.

• New stagnant prods are possible, but we wont return to Q → PQ → PQ → P .

So process repeated 6 m26 m2
6 m2 times.

F24 84

Decision algorithm for spreading grammars

• Theorem. If GGG is an spreading grammar,

then there is an algorithm that for input w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

tells whether www is derived in GGG .

• Algorithm: Go through all the possible derivations of length 6 2 · |w|6 2 · |w|6 2 · |w|

and check if one of them yields www .

• Little problem: This takes time exponential in the size of the

input.

F24 85

Chomsky grammars

• A Chomsky grammar is a special type of spreading grammar,

using only very special Spread productions.

• Only productions allowed:

◮ Terminal: A → σA → σA → σ

◮ Split: A → BCA → BCA → BC

• Theorem: Every CFG GGG not generating εεε

can be converted to an equivalent Chomsky grammar.

• We only need to show this for spreading GGG.

• We’ll use fresh non-terminals.

F24 86

Spreads converted to Splits

• First covert to a grammar with no terminals in Spreads:

• Replace a Spread production like Q → abRQ → abRQ → abR by three: Q → âb̂RQ → âb̂RQ → âb̂R,

â → aâ → aâ → a and b̂ → bb̂ → bb̂ → b .

Here σ̂̂σ̂σ is a fresh nonterminal (“promising to convert to σσσ”)

◮ Now eliminate spreads with long targets:

◮ Replace a Spread like Q → PRTQ → PRTQ → PRT by

Q → PMRTQ → PMRTQ → PMRT and MRT → RTMRT → RTMRT → RT .

Here MRTMRTMRT is a fresh nonterminal (“promising to convert to

RTRTRT ”)

• So Q → PRTUQ → PRTUQ → PRTU is replaced by

MRTU → RMTUMRTU → RMTUMRTU → RMTU and MTU → TUMTU → TUMTU → TU .

• This completes the proof Chomsky’s Theorem.

What about εεε ?

• If a CFL LLL contains εεε then L − {ε}L − {ε}L − {ε} is also CF (we’ll see).

• Now L − {ε}L − {ε}L − {ε} is generated by a Chomsky grammar GGG.

• Use a fresh start on-terminal S ′S ′S ′ ,

and add to GGG the production S ′ → ε | SS ′ → ε | SS ′ → ε | S,

obtaining an “almost-Chomsky” grammar G′G′G′ generating LLL.

• G′G′G′ does not have S ′S ′S ′ in any target!

F24 89

A memoization algorithm

• Given a Chomsky grammar C over Σ,

we give a cubic-time memoization algorithm A to decide L(G).

• That is, our algorithm decides, given w = σ1 · · · σn ∈ Σ∗,

whether G generates w.

This is known as the Cocke-Younger-Kasami (CYK) Algo-

rithm.

• Actual credits:

◮ Itiro Sakai (1961)

◮ Tadao Kasami (1965)

◮ Daniel Younger (1967)

◮ John Cocke and Jacob Schwartz (1970)

F24 91

The CYK Algorithm

• A generates lists ℓ0 . . . ℓn,

ℓi is the list of pairs (A, u), with |u| = i, A ⇒∗
G u.

• ℓ0 is {ε} if Empty is a production of G, and is ∅ o.w.

• ℓ1 is given by the Terminal productions of G.

• Obtain ℓi for i > 2:

for each substring u, with |u| = i (< n such strings)

and each split u = x · y (< n such splits)

and each production A → BC (constant number of such pro-

ductions)

check whether (B, x) ∈ ℓ|x|, (C, y) ∈ ℓ|y|.

(constant time assuming random access into the lists).

• w ∈ L(G) iff (S, w) ∈ ℓn.

F24 93

Example of CYK

Generating apcbp+qcaq:

S → LR

L → aLb | c

R → bRa | c

An equivalent Chomsky grammar:

S → LR L → AM | c

M → LB

R → BN | c

N → RA

A → a

B → b

Decide whether acbbca is generated.

ℓ1 : A ⇒ a, B ⇒ b, L ⇒ c, R ⇒ c

ℓ2 : M→ LB ⇒∗ cb

N→ RA ⇒∗ ca

ℓ3 : L→ AM ⇒∗ acb

R→ BN ⇒∗ bca

ℓ4 : M→ LB ⇒∗ acbb

ℓ5 : ∅

ℓ6 : S→ LR ⇒∗ acbbca

F24 95

EMPTINESS: Another application of Chomsky

• Design an algorithm that, given a device M ,

determine whether L(M) = ∅.

• EMPTINESS for automata is decidable:

For automaton with k states check all w with |w| 6 k.

• This is exponential time. Can we do better?

• Generate in linear time states that “accept something”.

• For CFGs we get an Emptiness algorithm by Chomsky gram-

mars:

Generate variables that “generate something”.

• The construction is virtually the same as for CYK.

F24 96

NONDETERMINISTIC STACK ACCEPTORS

A missing computation model

generative REG CFL

operational DFA

DFA = Deterministic Finite Acceptor

A missing computation model

generative REG CFL

operational NFA

NFA = Nondeterministic Finite Acceptor

A missing computation model

generative REG CFL

operational NFA ???

A missing computation model

generative REG CFL

operational NFA PDA

PDA = Push-Down Automata, i.e. nondeterministic fi-
nite acceptor

A missing computation model

generative REG CFL

operational NFA

F24 99

Why this matters

• The primary computational characterization of:

– regular languages: by a machine model (DFA)

– context-free languages: by a symbolic model (CFG)

• But parsing for CFLs is important,

and needs a machine model.

• Next: a characterization of CFLs by a machine model.

• Unfortunately, non-determinism is essential here.

F24 100

Cautious extension of memory

• Approach: extend automata with an external memory.

• Limiting the space used gives us LBA (and other).

• This turns out to be too powerful.

• Alternative: limit external memory to “single-use”.

F24 101

Stacks

• A stack is read from the top!

• It is unbounded (like the Turing string)

• But access destroys stored information (single use).

F24 102

Traditional stack operations

• Push a symbol: w 7→ σww 7→ σww 7→ σw

• Pop a symbol: σw 7→ wσw 7→ wσw 7→ w

• Represent a stack by a string:

edcbaedcbaedcba is the stack with eee at the top, aaa at the bottom.

• The empty string εεε represents the empty stack.

F24 103

A combined stack-operation

• Generalize push to a string v0v0v0 :

w 7→ v0 · ww 7→ v0 · ww 7→ v0 · w

• And pop to a conditional string-pop u0u0u0:

u0 · w 7→ wu0 · w 7→ wu0 · w 7→ w

If the top of the stack matches u0u0u0 then pop that top.

• Combined to a single operation of Replacing a Top segment of

stack:

u0 · x 7→ v0 · xu0 · x 7→ v0 · xu0 · x 7→ v0 · x

• Meaning:

if u0u0u0 matches a top portion of the stack

then replace it by v0v0v0 else skip

• Notation: u0 →v0u0 →v0u0 →v0.

• Examples:
ε → 2ε → 2ε → 2 2 → ε2 → ε2 → ε 1 → 21 → 21 → 2 1 → 231 → 231 → 23

12 → 22112 → 22112 → 221 ε → 23ε → 23ε → 23 12 → ε12 → ε12 → ε

F24 105

A stack automaton (PDA) over an alphabet Σ

is a device M = (Σ, Q, s, A, Γ, ∆)M = (Σ, Q, s, A, Γ, ∆)M = (Σ, Q, s, A, Γ, ∆) where

• QQQ is a set, dubbed states

• s ∈ Qs ∈ Qs ∈ Q is distinguished state, dubbed initial state

• A ⊆ QA ⊆ QA ⊆ Q , the set of accepting states

• Γ ⊇ ΣΓ ⊇ ΣΓ ⊇ Σ is the extended alphabet

• ∆∆∆ is a finite set of transition rules of the form

q
σ (β→γ)

−−−−→ pq
σ (β→γ)

−−−−→ pq
σ (β→γ)

−−−−→ p where

q, p ∈ Qq, p ∈ Qq, p ∈ Q

σ ∈ Σǫ = Σ ∪ {ε}σ ∈ Σǫ = Σ ∪ {ε}σ ∈ Σǫ = Σ ∪ {ε}

β, γ ∈ Γ∗β, γ ∈ Γ∗β, γ ∈ Γ∗

F24 106

Using stack as memory: an example

• Task: recognize strings anbnanbnanbn (n > 1n > 1n > 1).

• Initially the stack is empty.

• Phase 1:

As input is read, aaa’s are pushed on the stack.

• Phase 2:

When bbb is encountered, start popping aaa’s.

• Termination:

Input accepted if stack is empty when input scan completed.

F24 107

Using a bottom-marker

• Our PDAs do not recognize an empty stack

(some varieties of PDAs do!)

• The intent of an empty stack is obtained

by reserving a symbol as bottom-of-stack marker, say $.

• A PDA as above starts by pushing $ on the stack,

and accepts the input if $ is at the top of the stack

when completing the scan.

F24 108

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = pop-

ping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = pop-

ping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

• If $$$ is read while some bbb’s unread (#b > #a#b > #a#b > #a)

then reading is incomplete, so no acceptance.

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = pop-

ping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

• If popping is not completed (#a > #b#a > #b#a > #b)

then $$$ is not reach, so no accept state.

A PDA for {anbn | n > 0}{anbn | n > 0}{anbn | n > 0}

• States: initial sss, accepting fff , q =q =q = pushing phase, p =p =p = pop-

ping phase

• Transitions:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (push $$$)

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q (reading aaa’s push them)

q
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ pq
b (a→ǫ)

−−−−→ p (on bbb pop aaa & switch state)

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p (reading bbb’s pop aaa’s)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (if $ tops stack accept)

• If a bbb is followed by aaa

then computation aborts: no production for ppp reading aaa.

F24 109

Semantics of PDAs

• The semantics of an NFA was given by the transition mapping,

i.e. the collection of single-transitions q σ→ pq σ→ pq σ→ p,

where p, q ∈ Qp, q ∈ Qp, q ∈ Q and σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ.

• A PDA P = (Σ, Q, s, a, Γ, δ)P = (Σ, Q, s, a, Γ, δ)P = (Σ, Q, s, a, Γ, δ) is an NFA equipped with a stack.

An extended-state of PPP is a pair (q, α)(q, α)(q, α) where q ∈ Qq ∈ Qq ∈ Q and

α ∈ Γ∗α ∈ Γ∗α ∈ Γ∗.

ααα is the contents of the stack, represented (from top to bot-

tom) as a string,

Semantics of PDAs

• The semantics of an NFA was given by the transition mapping,

i.e. the collection of single-transitions q σ→ pq σ→ pq σ→ p,

where p, q ∈ Qp, q ∈ Qp, q ∈ Q and σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ.

• A PDA P = (Σ, Q, s, a, Γ, δ)P = (Σ, Q, s, a, Γ, δ)P = (Σ, Q, s, a, Γ, δ) is an NFA equipped with a stack.

An extended-state of PPP is a pair (q, α)(q, α)(q, α) where q ∈ Qq ∈ Qq ∈ Q and

α ∈ Γ∗α ∈ Γ∗α ∈ Γ∗.

ααα is the contents of the stack, represented (from top to bot-

tom) as a string,

• Transition rules q σ→ pq σ→ pq σ→ p can be extended to w→w→w→ for arbitrary

w ∈ Σ∗
ǫw ∈ Σ∗
ǫw ∈ Σ∗
ǫ :

If q σ (α→β)σ (α→β)σ (α→β)
−−−−→ pq σ (α→β)σ (α→β)σ (α→β)
−−−−→ pq σ (α→β)σ (α→β)σ (α→β)
−−−−→ p is a transition-rule,

and (p, β · γ) w→ (r, η)(p, β · γ) w→ (r, η)(p, β · γ) w→ (r, η) then and (q, α · γ) σw→ (r, η)(q, α · γ) σw→ (r, η)(q, α · γ) σw→ (r, η) .

F24 112

Accepted strings and recognized languages

• An input string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is accepted by a PDA MMM

if (s, ε) w→ (a, γ)(s, ε) w→ (a, γ)(s, ε) w→ (a, γ) for some γ ∈ Γ∗γ ∈ Γ∗γ ∈ Γ∗.

Accepted strings and recognized languages

• An input string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ is accepted by a PDA MMM

if (s, ε) w→ (a, γ)(s, ε) w→ (a, γ)(s, ε) w→ (a, γ) for some γ ∈ Γ∗γ ∈ Γ∗γ ∈ Γ∗.

• The language recognized by MMM , denoted L(M)L(M)L(M),

is the set of strings accepted by MMM .

F24 113

Example: Palindromes around ccc

• Construct a PDA to recognize {w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}

Example: Palindromes around ccc

• Construct a PDA to recognize {w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}

• Algorithm: Push successive input symbols.

When reading ccc switch to a new state,

match subsequent input symbols with the top of the stack,

popping the top.

Example: Palindromes around ccc

• Construct a PDA to recognize {w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}{w · c · wR | w ∈ {a, b}∗}

• Algorithm: Push successive input symbols.

When reading ccc switch to a new state,

match subsequent input symbols with the top of the stack,

popping the top.

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q (place a marker $ on the stack)

q
σ (ǫ→σ)

−−−−→ qq
σ (ǫ→σ)

−−−−→ qq
σ (ǫ→σ)

−−−−→ q (push next letter)

q
c (ǫ→ǫ)

−−−−→ pq
c (ǫ→ǫ)

−−−−→ pq
c (ǫ→ǫ)

−−−−→ p (if ccc , switch to state ppp)

p
σ (σ→ǫ)

−−−−→ pp
σ (σ→ǫ)

−−−−→ pp
σ (σ→ǫ)

−−−−→ p (if letter matches stack-op pop it, else abort)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f (accept if top is $$$)

F24 114

And if the center is absent?

• {w · wR | w ∈ {a, b}∗}{w · wR | w ∈ {a, b}∗}{w · wR | w ∈ {a, b}∗}.

• Use nondeterminism!

• Replace q c (ǫ→ǫ)c (ǫ→ǫ)c (ǫ→ǫ)
−−−→ pq c (ǫ→ǫ)c (ǫ→ǫ)c (ǫ→ǫ)
−−−→ pq c (ǫ→ǫ)c (ǫ→ǫ)c (ǫ→ǫ)
−−−→ p by q ǫ (ǫ→ǫ)ǫ (ǫ→ǫ)ǫ (ǫ→ǫ)

−−−→ pq ǫ (ǫ→ǫ)ǫ (ǫ→ǫ)ǫ (ǫ→ǫ)
−−−→ pq ǫ (ǫ→ǫ)ǫ (ǫ→ǫ)ǫ (ǫ→ǫ)
−−−→ p.

• The resulting PDA:

s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
σ (ǫ→σ)

−−−−→ q (σ = a,b)q
σ (ǫ→σ)

−−−−→ q (σ = a,b)q
σ (ǫ→σ)

−−−−→ q (σ = a,b)

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
σ (σ→ǫ)

−−−−→ p (σ = a,b)p
σ (σ→ǫ)

−−−−→ p (σ = a,b)p
σ (σ→ǫ)

−−−−→ p (σ = a,b)

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f

F24 116

Repeated use of nondeterminism

• Consider {an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}

• What stack algorithm would work?

F24 118

Repeated use of nondeterminism

• {an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}{an bm ∈ Σ∗ | m 6 n 6 2m}

• What stack algorithm would work?

• Use four states s, q, p, fs, q, p, fs, q, p, f , sss initial, s, fs, fs, f accepting.

• Transition rules: s
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ qs
ǫ (ǫ→$)

−−−−→ q

q
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ qq
a (ǫ→a)

−−−−→ q

q
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ pq
ǫ (ǫ→ǫ)

−−−−→ p

p
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ pp
b (a→ǫ)

−−−−→ p

p
b (aa→ǫ)

−−−−→ pp
b (aa→ǫ)

−−−−→ pp
b (aa→ǫ)

−−−−→ p

p
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ fp
ǫ ($→ǫ)

−−−−→ f

• MMM pushes the aaa ’s being read,

switches nondeterministically to a “bbb-reading state” ppp

which empties the stack while reading bbb’s,

popping either a single aaa or two ttattatta’s at a time.

F24 119

From CFGs to PDAs

• THEOREM. Every CFL is recognized by some PDA.

• For each CFG GGG we construct a PDA MMM , so that L(G) = L(M)L(G) = L(M)L(G) = L(M).

• Example:

GGG is S → aSb | εS → aSb | εS → aSb | ε.

• Initial idea:

generate on the stack a random string xxx,

then compare xxx to the input www.

• A marker $$$ used for stack bottom,

and completion is then detectable.

• What’s wrong here?

F24 121

Alternating between generation and consumption

• What’s wrong? We’d need to apply ggg’s productions deep down

the stack.

• But there is no need to wait:

We can compare the (randomly) generate string

as soon as feasible.

•

Input Stack

aabb SSS$
generate

aabb aSbaSbaSb$
compare

abb SbSbSb$
generate

abb aSbb$aSbb$aSbb$
compare

bb SbbSbbSbb$
generate

bb bbbbbb$
compare

b bbb$
compare

ε $$$

F24 126

Every CFL is recognized by a PDA

• Let G = (Σ, S, R)G = (Σ, S, R)G = (Σ, S, R) be a CFG.

We define a PDA MMM that recognizes L(G)L(G)L(G).

Every CFL is recognized by a PDA

• Let G = (Σ, S, R)G = (Σ, S, R)G = (Σ, S, R) be a CFG.

We define a PDA MMM that recognizes L(G)L(G)L(G).

• States: Just three, say sss , qqq and fff .

sss initial, fff accepting.

• Auxiliary symbols: Nonterminals of GGG and fresh $$$.

F24 127

Transition rules of the PDA

• Initializing the stack:

s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

Transition rules of the PDA

• Initializing the stack:

s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

◮ For each production A → αA → αA → α of GGG:

q
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ q

I.e., if stack-top is AAA, may apply this production of GGG.

Transition rules of the PDA

• Initializing the stack:

s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

◮ For each production A → αA → αA → α of GGG:

q
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ qq
ǫ(A→α)

−−−−→ q

I.e., if stack-top is AAA, may apply this production of GGG.

• For each σ ∈ Σσ ∈ Σσ ∈ Σ: q σ (σ→ǫ)σ (σ→ǫ)σ (σ→ǫ)
−−−−→ qq σ (σ→ǫ)σ (σ→ǫ)σ (σ→ǫ)
−−−−→ qq σ (σ→ǫ)σ (σ→ǫ)σ (σ→ǫ)
−−−−→ q.

I.e., if stack-top is σσσ matching current input symbol,

then σσσ is read off input, and popped off the stack.

• Acceptance: q ǫ($→ǫ)ǫ($→ǫ)ǫ($→ǫ)
−−−→ fq ǫ($→ǫ)ǫ($→ǫ)ǫ($→ǫ)
−−−→ fq ǫ($→ǫ)ǫ($→ǫ)ǫ($→ǫ)
−−−→ f .

F24 128

Example

• Grammar GGG: S → aSb | εS → aSb | εS → aSb | ε

• The PDA obtained:

s
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ qs
ǫ(ǫ→S$)

−−−−→ q

q
ǫ(S→aSb)

−−−−−→ qq
ǫ(S→aSb)

−−−−−→ qq
ǫ(S→aSb)

−−−−−→ q

q
ǫ(S→ǫ)

−−−−→ qq
ǫ(S→ǫ)

−−−−→ qq
ǫ(S→ǫ)

−−−−→ q

q
a(a→ǫ)

−−−−→ qq
a(a→ǫ)

−−−−→ qq
a(a→ǫ)

−−−−→ q

q
b(b→ǫ)

−−−→ qq
b(b→ǫ)

−−−→ qq
b(b→ǫ)

−−−→ q

q
ǫ($→ǫ)

−−−−→ fq
ǫ($→ǫ)

−−−−→ fq
ǫ($→ǫ)

−−−−→ f

F24 129

• Here is a derivation of aabbaabbaabb in GGG :

S → aSb → aaSbb → aabbS → aSb → aaSbb → aabbS → aSb → aaSbb → aabb

• And here is the corresponding trace of PPP :

(s, ε)(s, ε)(s, ε) ǫ→ǫ→ǫ→ (q, S$)(q, S$)(q, S$)
ǫ→ǫ→ǫ→ (q,aSb$)(q,aSb$)(q,aSb$)
a→a→a→ (q, Sb$)(q, Sb$)(q, Sb$)
ǫ→ǫ→ǫ→ (q,aSbb$)(q,aSbb$)(q,aSbb$)
a→a→a→ (q, Sbb$)(q, Sbb$)(q, Sbb$)
ǫ→ǫ→ǫ→ (q,bb$)(q,bb$)(q,bb$)
b→b→b→ (q,b$)(q,b$)(q,b$)
b→b→b→ (q, $)(q, $)(q, $)
$→$→$→ (f, ε)(f, ε)(f, ε)

F24 130

Converting PDAs to CFGs:

Reminder of NFA ⇒ RegExp

• Given an NFA N = (Σ, Q, s, A, δ)N = (Σ, Q, s, A, δ)N = (Σ, Q, s, A, δ),

for each q, p ∈ Qq, p ∈ Qq, p ∈ Q and I ⊂ QI ⊂ QI ⊂ Q

w considered the regular language ZqpTZqpTZqpT of strings leading

NNN from qqq to ppp using only intermediate states in TTT .

• The visual algorithm we defined is akin to calculating

LqpILqpILqpI for larger and larger III ,

and for q, p 6∈ Iq, p 6∈ Iq, p 6∈ I.

• Consider now a PDA P = (Σ, Q, s, A, Γ, δ)P = (Σ, Q, s, A, Γ, δ)P = (Σ, Q, s, A, Γ, δ).

We are again interested, for q, p ∈ Qq, p ∈ Qq, p ∈ Q,

in the language of strings leading PPP from qqq to ppp .

• Except that in a PDA a configuration is not just a state,

but a pair (state,stack), i.e. (q, α)(q, α)(q, α) where q ∈ Qq ∈ Qq ∈ Q and α ∈ Γ∗α ∈ Γ∗α ∈ Γ∗.

• Problem: No evident bound on stack size.

• Luckily, it suffices to consider the extended-states (q, ε)(q, ε)(q, ε) , i.e.

the ones where the stack is empty!

F24 132

Preparing the ground

• For pairs (q, p)(q, p)(q, p) of states let EqpEqpEqp consist of

the strings www leading PPP from (q, ε)(q, ε)(q, ε) to (p, ε)(p, ε)(p, ε):

Eqp = {w ∈ Σ∗ | (q, ε) w→ (p, ε) }Eqp = {w ∈ Σ∗ | (q, ε) w→ (p, ε) }Eqp = {w ∈ Σ∗ | (q, ε) w→ (p, ε) }

• Note that if (q, ε) w→ (p, ε)(q, ε) w→ (p, ε)(q, ε) w→ (p, ε) then (q, α) w→ (p, α)(q, α) w→ (p, α)(q, α) w→ (p, α) for any

stack ααα, without even referring to the contents ααα of the stack.

• For this approach to succeed, we’d need to assume that

◮ PPP uses just single-letter push and pop.

◮ PPP accepts only when the stack is empty.

• A PDA PPP can be converted into an equivalent one satisfying

(1)

by breaking compound u0 → v0u0 → v0u0 → v0 into single-letter push and

pop.

• Moreover, we guarantee empty stack on acceptance by

augmenting PPP with transitions that empty the stack

before actually reaching a (new) accepting state.

F24 134

Generating the languages EqpEqpEqp

• Given the PDA we define a CFG GGG over ΣΣΣ :

• Non-terminals for the “journeys”:

JqpJqpJqp (for each pair q, p ∈ Qq, p ∈ Qq, p ∈ Q),

with the intent that JqpJqpJqp generates the language EqpEqpEqp.

• Initial non-terminal: JsaJsaJsa

• We should have for each q ∈ Qq ∈ Qq ∈ Q that ε ∈ Lqqε ∈ Lqqε ∈ Lqq .

So GGG includes for each q ∈ Qq ∈ Qq ∈ Q the production Aqq → εAqq → εAqq → ε.

F24 135

Splicing journeys

• If (q, ε) u→ (r, ε) v→ (p, ε)(q, ε) u→ (r, ε) v→ (p, ε)(q, ε) u→ (r, ε) v→ (p, ε) then (q, ε) u·v→ (p, ε)(q, ε) u·v→ (p, ε)(q, ε) u·v→ (p, ε).

• In other words, if we know that

Jqr ⇒∗ uJqr ⇒∗ uJqr ⇒∗ u and Jrp ⇒∗ vJrp ⇒∗ vJrp ⇒∗ v ,

then we should have Jqp ⇒∗ u · vJqp ⇒∗ u · vJqp ⇒∗ u · v.

• So we include in GGG the production Jqp → Jqr JrpJqp → Jqr JrpJqp → Jqr Jrp

states:
q r p

Stack

Time

qp

J

J

Jqr rp

• We include this production for each combination of q, r, pq, r, pq, r, p.

Productions for stack operations

• Our productions so far are unrelated to the transitions of PPP .

• Suppose (q, ε) w→ (p, ε)(q, ε) w→ (p, ε)(q, ε) w→ (p, ε).

If the trace has an empty stack along the way,

i.e. w = u · vw = u · vw = u · v with (q, ε) u→ (r, ε) v→ (p, ε)(q, ε) u→ (r, ε) v→ (p, ε)(q, ε) u→ (r, ε) v→ (p, ε) then we already

have the production Jqp → Jqr JrpJqp → Jqr JrpJqp → Jqr Jrp.

• If not, then we have

q

Stack

Time
pstates:

• The first move in this trace must read a symbol σ ∈ Σǫσ ∈ Σǫσ ∈ Σǫ,

and push some symbol θθθ on the stack.

• Last move reads some τ ∈ Σǫτ ∈ Σǫτ ∈ Σǫ

causing PPP to pop that θθθ

(undisturbed throughout: the stack does not empty).

• That is, for some states r, tr, tr, t:

(q, ε) σ→ (r, θ)(q, ε) σ→ (r, θ)(q, ε) σ→ (r, θ) and (t, θ) τ→ (p, ε)(t, θ) τ→ (p, ε)(t, θ) τ→ (p, ε)
Stack

Time

input symbols:

rtJ

θ θ
rq

σ
t p
τ

states:

• This is conveyed in GGG by the production Jqp → σJrtτJqp → σJrtτJqp → σJrtτ .

F24 140

• In general, whenever PPP has transition-rules

q
σ (ǫ→θ

−−−−→ rq
σ (ǫ→θ

−−−−→ rq
σ (ǫ→θ

−−−−→ r and t
τ (θ→ǫ)

−−−−→ pt
τ (θ→ǫ)

−−−−→ pt
τ (θ→ǫ)

−−−−→ p

with the same θθθ in both,

the grammar GGG includes the production Jqp → σJrtτJqp → σJrtτJqp → σJrtτ .

F24 142

Proof concluded

• By induction on trace-length in MMM

we obtain that, for all q, p ∈ Qq, p ∈ Qq, p ∈ Q,

Jqp ⇒∗
G σxτJqp ⇒∗
G σxτJqp ⇒∗
G σxτ IFF (q, ε) σxτσxτσxτ−→ (p, ε)(q, ε) σxτσxτσxτ−→ (p, ε)(q, ε) σxτσxτσxτ−→ (p, ε)

• When q, pq, pq, p are the initial and accepting states s, fs, fs, f

Jsf ⇒∗ wJsf ⇒∗ wJsf ⇒∗ w (GGG generates www)

IFF

(s, ε) www−→ (f, ε)(s, ε) www−→ (f, ε)(s, ε) www−→ (f, ε) (PPP accepts www)

F24 143

Example

• Let MMM over {a,b,c}{a,b,c}{a,b,c} have the following transition rules.

1. s
ǫ (ǫ→$

−−−→ qs
ǫ (ǫ→$

−−−→ qs
ǫ (ǫ→$

−−−→ q
2. q

a (ǫ→a
−−−−→ qq
a (ǫ→a

−−−−→ qq
a (ǫ→a

−−−−→ q
3. q

c (ǫ→b
−−−→ pq
c (ǫ→b

−−−→ pq
c (ǫ→b

−−−→ p

4. p
ǫ (b→ǫ

−−−→ rp
ǫ (b→ǫ

−−−→ rp
ǫ (b→ǫ

−−−→ r
5. b (a→ǫ

−−−→ r
b (a→ǫ

−−−→ r
b (a→ǫ

−−−→ r
6. ?

ǫ ($→ǫ
−−−→ f?
ǫ ($→ǫ

−−−→ f?
ǫ ($→ǫ

−−−→ f

• The construction above yields the following grammar

(with initial nonterminal AsfAsfAsf)

Att → εAtt → εAtt → ε (all states ttt)

Atu → Atv AvuAtu → Atv AvuAtu → Atv Avu (all states t, u, vt, u, vt, u, v)

Aqr → aAqr bAqr → aAqr bAqr → aAqr b (pushing and popping aaa, rules 2 and 5)

Aqr → cApp εAqr → cApp εAqr → cApp ε (pushing and popping bbb, rules 3 and 4)

Asf → ε Aqr εAsf → ε Aqr εAsf → ε Aqr ε (pushing and popping $$$, rules 1 and 6)

F24 144

Little puzzles about PDAs

• Suppose MMM is a PDA that does not use its stack.

What does MMM recognize?

• Suppose MMM is a PDA that uses its stack only up to depth 1000.

What sort of language does MMM recognize?

• Suppose MMM is a super-PDA, that uses two stacks.

What sort of language does MMM recognize?

Little puzzles about PDAs

• For a DFA MMM recognizing L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗,

we obtained an automaton M̄̄M̄M recognizing L̄ = Σ∗−LL̄ = Σ∗−LL̄ = Σ∗−L

by flipping accepting and non-accepting states.

For PDAs we can’t, since the complement of a CFL need not be

CF.

What’s wrong with the same sort of flipping for PDAs?

Little puzzles about PDAs

• For DFAs M, NM, NM, N we constructed a product DFA

that recognizes L(M) ∩ L(N)L(M) ∩ L(N)L(M) ∩ L(N).

Why can’t we use the same idea to build,

for PDAs M, NM, NM, N a PDA that recognizes L(M) ∩ L(N)L(M) ∩ L(N)L(M) ∩ L(N) ?

F24 146

The intersection of a CFL

and a regular language

• But what if NNN does not use its stack?

• Theorem. The intersection of a CFL and a regular language is

CF.

F24 147

Examples of intersecting CF with Reg

1. L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }

We have {anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗) So LLL cannot

be CF.

Examples of intersecting CF with Reg

1. L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }

We have {anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗) So LLL cannot

be CF.

2. If LLL is a CFL, and FFF is finite,

then L − FL − FL − F is CF. Why? Where did we already use that?

Examples of intersecting CF with Reg

1. L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }L = {w ∈ {a, b, c} | #a(w) = #b(w) = #c(w) }

We have {anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗){anbncn | n > 0} = L ∩ L(a∗ · b∗ · c∗) So LLL cannot

be CF.

2. If LLL is a CFL, and FFF is finite,

then L − FL − FL − F is CF. Why? Where did we already use that?

3. Suppose L ⊆ Γ∗L ⊆ Γ∗L ⊆ Γ∗ is recognized by a PDA.

If Σ ⊂ ΓΣ ⊂ ΓΣ ⊂ Γ, what about the set of Σ-strings in LLL?

F24 148

The Chomsky Hierarchy

So far: two classes of languages

LANGUAGE CLASS: Regular Context-free

GRAMMARS: regular grammars CF grammars

MACHINES: DFA=NFA PDA

MEMORY: internal stack

no-write

ACCESS: on-line on-line + stack

F24 151

A non-CF grammar

• The following general grammar generates anbncnanbncnanbncn ,

which is not CF.

S → ε | SABCS → ε | SABCS → ε | SABC

C → c cA → Ac cB → BcC → c cA → Ac cB → BcC → c cA → Ac cB → Bc

B → b bA → AbB → b bA → AbB → b bA → Ab

A → aA → aA → a

A non-CF grammar

• The following general grammar generates anbncnanbncnanbncn ,

which is not CF.

S → ε | SABCS → ε | SABCS → ε | SABC

C → c cA → Ac cB → BcC → c cA → Ac cB → BcC → c cA → Ac cB → Bc

B → b bA → AbB → b bA → AbB → b bA → Ab

A → aA → aA → a

• This grammar has production-sources of length > 1> 1> 1,

so is not CF.

A non-CF grammar

• The following general grammar generates anbncnanbncnanbncn ,

which is not CF.

S → ε | SABCS → ε | SABCS → ε | SABC

C → c cA → Ac cB → BcC → c cA → Ac cB → BcC → c cA → Ac cB → Bc

B → b bA → AbB → b bA → AbB → b bA → Ab

A → aA → aA → a

• Sample derivation:
S ⇒ SABC ⇒ SABCSABC ⇒2 ABCABCS ⇒ SABC ⇒ SABCSABC ⇒2 ABCABCS ⇒ SABC ⇒ SABCSABC ⇒2 ABCABC

⇒2 ABcABc ⇒ ABAcBc ⇒ ABABcc⇒2 ABcABc ⇒ ABAcBc ⇒ ABABcc⇒2 ABcABc ⇒ ABAcBc ⇒ ABABcc

⇒2 AbAbcc ⇒2 AAbbcc⇒2 AbAbcc ⇒2 AAbbcc⇒2 AbAbcc ⇒2 AAbbcc

⇒2 aabbcc⇒2 aabbcc⇒2 aabbcc

Context-sensitive grammars

• A production (of a general grammar) is context-sensitive

if it is of the form uAv → uxvuAv → uxvuAv → uxv

where x 6= εx 6= εx 6= ε.

uuu and vvv are any strings of terminals and/or nonterminals.

• Think of such a production as being A → xA → xA → x

subject to the “context” of uuu and vvv , i.e. where AAA is preceded

by uuu and succeeded by vvv. We’ll say that AAA is the core-source

and xxx the core-target

• A grammar is context-sensitive if all its productions are context-

sensitive.

F24 153

Context-sensitive languages

• A context-sensitive grammar cannot generate εεε ,

because its core-targets cannot be empty.

A simple remedy is similar to that for Chomsky grammars:

A context-sensitive language (CSL)

is a language LLL generated by a CSG, possibly with εεε added.

• Theorem.

A language is context-sensitive iff it is recognized by an LBA.

F24 154

Non-contracting languages

• Identifying CSGs for CSLs is often hard,

so it is useful to refer to grammars that are

less restrictive than CSGs yet still generate only CSLs.

Non-contracting languages

• Identifying CSGs for CSLs is often hard,

so it is useful to refer to grammars that are

less restrictive than CSGs yet still generate only CSLs.

• A non-contracting grammar

has no production whose target is shorter than its source.

Non-contracting languages

• Identifying CSGs for CSLs is often hard,

so it is useful to refer to grammars that are

less restrictive than CSGs yet still generate only CSLs.

• A non-contracting grammar

has no production whose target is shorter than its source.

• Our previous grammar generating { anbncn | n > 0 }{ anbncn | n > 0 }{ anbncn | n > 0 }

fails to be non-contracting, since it has S → εS → εS → ε .

Non-contracting languages

• Identifying CSGs for CSLs is often hard,

so it is useful to refer to grammars that are

less restrictive than CSGs yet still generate only CSLs.

• A non-contracting grammar

has no production whose target is shorter than its source.

• Our previous grammar generating { anbncn | n > 0 }{ anbncn | n > 0 }{ anbncn | n > 0 }

fails to be non-contracting, since it has S → εS → εS → ε .

• A non-contracting language is a language generated

by a non-contrasting grammar, possibly with εεε added.

F24 155

Dealing with εεε

• L = { anbncn | n > 0 }L = { anbncn | n > 0 }L = { anbncn | n > 0 }

cannot be generated by a non-contracting grammar

but {anbncn | n > 0 }{anbncn | n > 0 }{anbncn | n > 0 } can:

Dealing with εεε

• L = { anbncn | n > 0 }L = { anbncn | n > 0 }L = { anbncn | n > 0 }

cannot be generated by a non-contracting grammar

but {anbncn | n > 0 }{anbncn | n > 0 }{anbncn | n > 0 } can:

• Replace in the grammar for the former

the production S → εS → εS → ε by S → ABCS → ABCS → ABC !

Dealing with εεε

• L = { anbncn | n > 0 }L = { anbncn | n > 0 }L = { anbncn | n > 0 }

cannot be generated by a non-contracting grammar

but {anbncn | n > 0 }{anbncn | n > 0 }{anbncn | n > 0 } can:

• Replace in the grammar for the former

the production S → εS → εS → ε by S → ABCS → ABCS → ABC !

• In general, if L = L(G) ∪ {ε}L = L(G) ∪ {ε}L = L(G) ∪ {ε} where GGG is non-contracting

then L = L(G′)L = L(G′)L = L(G′) where G′G′G′ is

GGG with a fresh initial nonterminal S0S0S0

and new productions S0 → S | εS0 → S | εS0 → S | ε (SSS is the initial of GGG).

F24 156

Context-sensitive equivalent to non-contracting

• The productions of a CSG have the form

uAv → uxvuAv → uxvuAv → uxv with x 6= εx 6= εx 6= ε .

So they are non-contracting.

Context-sensitive equivalent to non-contracting

• The productions of a CSG have the form

uAv → uxvuAv → uxvuAv → uxv with x 6= εx 6= εx 6= ε .

So they are non-contracting.

• Conversely, every non-contracting production can be obtained

using context-sensitive productions.

F24 157

• Example: ABC → DEFABC → DEFABC → DEF is equivalent to

the following set of context-sensitive productions:

B → Ḃ C → ĊB → Ḃ C → ĊB → Ḃ C → Ċ

AḂĊ → ḊḂĊAḂĊ → ḊḂĊAḂĊ → ḊḂĊ ḊḂĊ → ḊĖĊḊḂĊ → ḊĖĊḊḂĊ → ḊĖĊ DĖĊ → DĖFDĖĊ → DĖFDĖĊ → DĖF

Ḋ → DḊ → DḊ → D Ė → EĖ → EĖ → E

• Example: ABC → DEFABC → DEFABC → DEF is equivalent to

the following set of context-sensitive productions:

B → Ḃ C → ĊB → Ḃ C → ĊB → Ḃ C → Ċ

AḂĊ → ḊḂĊAḂĊ → ḊḂĊAḂĊ → ḊḂĊ ḊḂĊ → ḊĖĊḊḂĊ → ḊĖĊḊḂĊ → ḊĖĊ DĖĊ → DĖFDĖĊ → DĖFDĖĊ → DĖF

Ḋ → DḊ → DḊ → D Ė → EĖ → EĖ → E

• Ḃ, Ċ, ḊḂ, Ċ, ḊḂ, Ċ, Ḋ and Ė̇ĖE prevent these productions

from interacting with possible other productions for B, C, D, EB, C, D, EB, C, D, E .

F24 158

LANGUAGE CLASS: Regular Context-free Context-sensitive

GRAMMARS: regular Context-free Context-sensitive

MACHINES: DFA=NFA NFA + stack LBA

MEMORY: internal stack on-site

ACCESS: on-line on-line + stack two-way

NEW: a∗a∗a∗ anbnanbnanbn anbncnanbncnanbncn

