SYMBOLIC COMPUTING

Rewrite rules

» | Symbolic computing|

Strings over an alphabet, jointly represent data and action.
There are no states.

» The operational engine (analogous to Turing’s transition func-
tion)
IS the set of rewrite-rules, also called productions.

Rewrite rules

« | Symbolic computing:

Strings over an alphabet, jointly represent data and action.
There are no states.

» The operational engine (analogous to Turing’s transition func-
tion)
IS the set of rewrite-rules, also called productions.

* A |rewrite-rule|is of the form z — y
where z,y are strings.

* z is the [source] of the production, and y its |farget.

* A finite set of rewrite rules is a | rewrite system.

F24 2

A familiar example of rewriting

OA0O— 0
OA1 —0
1N0O— 0
iNnl1—>1

A familiar example of rewriting

OA0O— 0 Ovo—0
OA1 —0 oOvli—1
1N0O— 0 ivo—1

iNnl1—>1 ivi—>1

A familiar example of rewriting

OA0O— 0
OA1 —0
1N0O— 0
iNnl1—>1

Ovo—0 —-0—>1
oOvli—1 —-1—->0
ivo—1

ivi—>1

A familiar example of rewriting

F24

OA0O— 0
OA1 —0
1N0O— 0
iNnl1—>1

Ovo—0 —-0—>1
oOvli—1 —-1—->0
ivo—1

ivi—>1

(0) = 0
(1) = 1

Reductions and derivations

« Given a rewrite system R,

we say that w

reduces to

w’, and write

w=pw

if w' is w with substring u replaced by «’,
here u — ' is arule.
We omit the subscript R when clear.

» Reductions are analogous to the yield relation
between machine’s configurations.

Reductions and derivations

« Given a rewrite system R,

we say that w

reduces to

w’, and write

w=>pw

if w' is w with substring u replaced by «’,
here u — ' is arule.
We omit the subscript R when clear.

» Reductions are analogous to the yield relation
between machine’s configurations.

* A | derivation|in R is a sequence
wo, U, Wy, ... W

where w; € I' and w; =, w;y; for i < k.

This derivation is of w;. from wy.

Reductions and derivations

« Given a rewrite system R,

we say that w

reduces to

w’, and write

w=>pw

if w' is w with substring u« replaced by «’,
here u — v’ is a rule.
We omit the subscript R when clear.

» Reductions are analogous to the yield relation
between machine’s configurations.

» A |derivation|in R is a sequence
wo, U, W, .. W

where w; € I' and w; =g w;yq for @ < k.

This derivation is of w;. from wy.

« Derivations are analogous to computation traces of machines.

F24

Recap: The reflexive-transitive closure

eIf R: A— A thenthe|reflexive-transitive closure|of R
isthemapping R*: A— A definedby: xR*z2 iff = =1y (R) v

Recap: The reflexive-transitive closure

eIf R: A— A thenthe|reflexive-transitive closure|of R
isthemapping R*: A— A definedby: xR*z2 iff = =1y (R) v

* A generative definition of R*:
» z (RY) z
» If z(R)y and y (R*) z then z (R*) z.

Recap: The reflexive-transitive closure

eIf R: A— A thenthe|reflexive-transitive closure|of R
isthemapping R*: A— A definedby: xR*z2 iff = =1y (R) v

* A generative definition of R*:
» z (RY) z
» If z(R)y and y (R*) z then z (R*) z.

* So w;. is derived from wy as above
exactly when wy, =* wy.

F24 5

Example

A derivation in our boolean rewrite-system:

(0)A (1) V(1)
0A(1) V(1)
(OA1) V(1)
(0) v (1)

oV (1)

ovi

1

L A R

Example

A derivation in our boolean rewrite-system:

(0)A (1) V(1)
0A(1) V(1)
(OA1) V(1)
(0) v (1)

oV (1)

ovi

1

L A R

» Here we ended up with the |irreducible|string 1, which cannot
be reduced further.

F24 6

Grammars

» Rewrite systems can be transducers, acceptors, or generators.

A rewrite system that generates a language is a grammar.

« A[grammar] consists of

Grammars

» Rewrite systems can be transducers, acceptors, or generators.

A rewrite system that generates a language is a grammar.

A

grammar| consists of

» An input alphabet ¥. (We say that G is over).

» A finite set V' of fresh symbols (notin ¥),
dubbed | variables|. (We write T for YU V.)

» A distinguished |initial-variable|. Default: S.

Grammars

» Rewrite systems can be transducers, acceptors, or generators.

A rewrite system that generates a language is a grammar.

« A[grammar] consists of

» An input alphabet ¥. (We say that G is over).

» A finite set V' of fresh symbols (notin ¥),
dubbed | variables|. (We write T for YU V.)

» A distinguished |initial-variable|. Default: S.

» A finite set R of rewrite rules, called | productions.
These are of the form w — ¢

where w has at least one non-terminal.

F24

Examples

Take ¥ ={a,b} and V = {S}.

1. Two productions: S —+a and S — bb..

Examples

Take ¥ ={a,b} and V = {S}.
1. Two productions: S —+a and S — bb..

2. Two productions: S —+¢ and S — aS

Examples

Take ¥ ={a,b} and V = {S}.
1. Two productions: S —+a and S — bb..
2. Two productions: S —+ ¢ and S — aS

3. A non-example: rewrite rules a —+ ab and b — ba.

F24

Each grammar generates a language

«Let G=(%,V,S, R) be agrammar.
w € X' is|derived|in G if
it is derived from S.

* The

F24

language generated by G |is

L(G) = {wex |8 =*w)

Examples

« Grammar G has productions S —+aand S — b.
L(G) = {a,b}.

Examples

« Grammar G has productions S —+aand S — b.
L(G) = {a,b}.

« Grammar G has productions S —aS and S — b.

« Some derivations:

S=Db
S=aS= ab
S = alS = aaS = aab

Examples

« Grammar G has productions S —+aand S — b.
L(G) = {a,b}.

« Grammar G has productions S —aS and S — b.

« Some derivations:

S=Db
S=aS = ab
S = alS = aaS = aab

L(G)={a"-b|n >0} = L(a-Db).

Examples

« Grammar G has productions S —+aand S — b.
L(G) = {a,b}.

« Grammar G has productions S —aS and S — b.

« Some derivations:

S=Db
S=aS= ab
S = alS = aaS = aab

L(G)={a"-b|n >0} = L(a-Db).

* How to formally prove this?

Examples

« Grammar G has productions S —+aand S — b.
L(G) = {a,b}.

« Grammar G has productions S —aS and S —b.

« Some derivations:

S=Db
S=aS= ab
S = aS = aaS = aab

+ L(G)={a"-b|n>0} = L(a*-D).

» By induction every string a" is generated.

» By induction S =% w implies that w
is either a"b or a"*'S.

More examples

* (G’s productionsare S —aS, S—Sb and S —e.

More examples

* G's productionsare S —aS, S—Sb and S —e.
* L(G) =7

More examples

* G's productionsare S —aS, S—Sb and S —e.
* L(G) = L(a*b*¥)

More examples

* G’s productionsare S —+aS, S—Sb and S —=e.
* L(G) = L(a*b*¥)
«S—aSb and S —e¢

More examples

* G's productionsare S —aS, S—Sb and S —e.
* L(G) = L(a*b*¥)
«S—aSb and S —e¢

« Some derivations:

S=¢
S = aSb = ab
S = aSb = aaSbb = aabb
S = aSb = aaSbb = aaaSbbb = aaabbb

More examples

* G's productionsare S —aS, S—Sb and S —e.
* L(G) = L(a*b*¥)
«S—aSb and S —e¢

« Some derivations:

S=¢
S = aSb = ab
S = aSb = aaSbb = aabb
S = aSb = aaSbb = aaaSbbb = aaabbb

¢ L(G) =7

More examples

* G’s productionsare S —+aS, S—Sb and S —=e.
* L(G) = L(a*b*¥)
«S—aSb and S —e¢

« Some derivations:

S=¢
S = aSb = ab
S = aSb = aaSbb = aabb
S = aSb = aaSbb => aaaSbbb = aaabbb

* L(G) ={a"™" | n = 0}. A non-regular language!

F24

11

CONTEXT FREE GRAMMARS

Context-free grammars

F24

» A |context-free grammar (CFG)|is a grammar where
every source is a single non-terminal.

« All grammars we’ve seen so far are context-free.

» A language generated by a CFGis a

» Context-free grammars are also called | inductive grammars.

context-free language (CFL).

* A convention: bundle rules with a common source

asin S — aSb | e.

The vertical line abbreviates “or”.

13

Example: palindromes

e Let P be the initial non-terminal.

* Productions:

P — aPa
P — DbPDb
P — a
P — Db
P — ¢

* In BNF format: P — aPa|bPb|a|b]|e

F24

14

« Similar grammar for palindromes over the entire Latin alphabet.
We have then 2-26 +1 = 53 productions.

» Using the more economical grammar
P —- LPL | L|e
L - a|b]|---]z
is wrong, because the two L’sin LPS should be the same.

» But we can use a modular description of the correct grammar
above:

P — oPo|o|e (c€eX)

F24 15

CFLs for natural languages

« The bone ate the dog is grammatically correct English
The dog the bone ate is not

» There is a context-free grammar that generates
exactly the grammatically correct sentences in English!

* Not 100% for all languages, more sophisticated formalisms are
needed.

F24 16

An example for English

* Alphabet . consists of the six “symbols”:
dog, apple, eats, loves, big, and green.

An example for English

* Alphabet . consists of the six “symbols”:
dog, apple, eats, loves, big, and green.

* Nonterminals:
S for sentences,
P for noun-phrases
N for nouns
V' for verbs
A for adjectives.

An example for English

* Alphabet . consists of the six “symbols”:
dog, apple, eats, loves, big, and green.

» The productions are S —- PVP
P — N|AP
N — dog | apple
V — eats|loves
A — big| green

 This grammar generates big dog eats green apple
and big green big apple loves green dog
but not eats big dog apple loves.

An example for English

* Alphabet . consists of the six “symbols”:
dog, apple, eats, loves, big, and green.

» The productions are S —- PVP
P — N|AP
N — dog | apple
V — eats|loves
A — big| green

 This grammar generates big dog eats green apple
and big green big apple loves green dog
but not eats big dog apple loves.

F24

17

The CF-Factoring Theorem

* Intuitively clear: context-free productions guarantee a separa-
tion
between descendents of one occurrence of a variable
and descendents of another.

 That is:

CF-Factoring Theorem.
Let G=(X,N,S,R) beaCFG, T=XUN.
For strings wug,uy € I'* |, if wug-u; =*v
then wv=vy-v; WwWhere uy=*vy and wu; =*uv;.

 We prove by induction on n thatif wug-u, ="v
then the conclusion above holds.

F24 18

Symmetries in CFL

» CFGs often generate languages with symmetries (eg palindromes!).

 The language of balanced parentheses, e.g. (())() is balanced,
(()(is not.
 The alphabet: just left- and right-parentheses: (and),

* Productions: S — SS | (S) | ¢

F24 19

A CFG is a generative definition

« Each CFG describes a generative process:
A variable X names the language generated from X.

A CFG is a generative definition

« Each CFG describes a generative process:
A variable X names the language generated from X.

* Here’s a CFG G,—, thatgenerates {w € ¥* | #.(w) = #4(w)}

A CFG is a generative definition

« Each CFG describes a generative process:
A variable X names the language generated from X.

* Here’s a CFG G,—, thatgenerates {w € ¥* | #.(w) = #4(w)}

» Let A name {w € X | #.(w) = #p(w) + 1},
and B name {w € X* | #y(w) = #4(w) + 1}.

A CFG is a generative definition

« Each CFG describes a generative process:
A variable X names the language generated from X.

* Here’s a CFG G,—, thatgenerates {w € ¥* | #.(w) = #4(w)}

» Let A name {w € Z* | #.(w) = #p(w) + 1},
and B name {w € X* | #y(w) = #.(w) + 1}.
» The productions of G,—, are
S — €| aB | bA
A — aS | bAA
B — bS|aBB

A CFG is a generative definition

« Each CFG describes a generative process:
A variable X names the language generated from X.

* Here’s a CFG G,—, thatgenerates {w € ¥* | #.(w) = #4(w)}

» Let A name {w € X | #.(w) = #p(w) + 1},
and B name {w € X* | #y(w) = #4(w) + 1}.

» The productions of G,—, are
S — €| aB | bA
A —- aS | bAA
B —» bS|aBB

» L(Ga=p) = {w € X" | #a(w) = #(w)}

A CFG is a generative definition

« Each CFG describes a generative process:
A variable X names the language generated from X.

« Here’s a CFG G,—, thatgenerates {w € ¥* | #.(w) = #4(w)}
» Let A name {w € ¥ | #.(w) = #(w) + 1},
and B name {w € X* | #y(w) = #4(w) + 1}.
» The productions of G,—;, are
S —- e | aB | bA
A — aS | bAA
B — bS|aBB

> L(Go=p) = {w € X7 | #a(w) = #p(w)}

 Exercise: The grammar with productions S — b |aSS
generates the strings with #, > #, but #, < #, for all
proper-prefixes.

A grammar that is not context-free

«Let ¥ ={a,bc}. We shall see later that

Lo—p—c = {w € I | #4(w) = #(w) = #c(w) }
is not CF.

A grammar that is not context-free

«Let ¥ ={a,bc}. We shall see later that

a—b—c {w e X | #a(w) #b(w) - #c(w) }
is not CF.

» Consider the grammar

S — e | SABC
A— a, B — b, C—c

« It generates the strings (abc)” .

A grammar that is not context-free

«Let ¥ ={a,bc}. We shall see later that

a—b—c {w e X | #a(w) #b(w) - #c(w) }
is not CF.

» Consider the grammar
S — e | SABC
A — a, B — b, C —c
* It generates the strings (abc)" .

» Add the productions AB — BA, AC — CA BC — CB.
BA - AB, CA— AC CB — BC.
Yes, these are not context-free!

A grammar that is not context-free

*Let ¥ ={a,bc}. We shall see later that

Lo—p—c = {w € T* | #a(w) = #p(w) = #.(w) }
is not CF.

» Consider the grammar

S — e | SABC
A— a, B — b, C—c

* It generates the strings (abc)” .

» Add the productions AB — BA, AC — CA
BA — AB, CA— AC CB — BC.
Yes, these are not context-free!

 This extended grammar generates L,—)—.

F24

BC — CB.

21

Multiple symmetries

° {anbn-l-kck—l-mdm | n, k} m 2 O}

F24 22

REGULAR LANGUAGES ARE CONTEXT-FREE

» We use the generative definition of the strictly regular languages.
Their definition as strictly-regular languages is simplifying this.

» We use the generative definition of the strictly regular languages.
Their definition as strictly-regular languages is simplifying this.

 Recall that the strictly-regular languages over %
are generated by:

1. The trivial languages 0, {e}, {o} (0 € ¥) are regular.

2. The union, concatenation, and star of regular languages
are regular.

» We use the generative definition of the strictly regular languages.
Their definition as strictly-regular languages is simplifying this.

 Recall that the strictly-regular languages over %
are generated by:

1. The trivial languages 0, {e}, {o} (0 € ¥) are regular.

2. The union, concatenation, and star of regular languages
are regular.

» We use the generative definition of the strictly regular languages.
Their definition as strictly-regular languages is simplifying this.

 Recall that the strictly-regular languages over %
are generated by:

1. The trivial languages 0, {e}, {o} (0 € ¥) are regular.

2. The union, concatenation, and star of regular languages
are regular.

» So by induction on the collection of regular languages
they are all CF.

F24 24

The regular languages are CF

«(:

The regular languages are CF

* () : Generated by the CFG S — S.
* {e}:

The regular languages are CF

* () : Generated by the CFG S — S.
«{¢} : Generated by S — e.

- {a}:

F24

25

Closure under union, concatenation, star

Refer to CFGs and the languages they generated:
Lo = c(Go) and L, = L(Gl) where G; = (Z, %, S@‘, R@)

We may assume that G, and G; have no variable in common:
renaming a grammar’s variables
does not change the language generated.

F24

26

Closure under union

« LoUL, isgeneratedby (X, VUV'+ S, S, R)
where S is a fresh nonterminal
and Ris RyUR; augmentedwiththeproduction S — Sy | S

Closure under union

« LoUL, isgeneratedby (X, VUV'+ S, S, R)
where S is a fresh nonterminal
and Ris RyUR; augmentedwiththeproduction S — Sy | S

* G generates each w € LyU L.

Closure under union

« LoUL, isgeneratedby (X, VUV'+ S, S, R)
where S is a fresh nonterminal
and Ris RyUR; augmentedwiththeproduction S — Sy | S

* G generates each w € LyU L.

» Conversely, a derivation D in G for S =¢w
must start with S — 5y, or S — S; and proceed with
either a derivation in Gy or a derivation in G, ,
since VonNV; = 0.

F24 27

Closure under concatenation

* In this section we let Ly, L; be CFLs generated by
CFGs Gy= (X, Ny, S0, Ry) and G;= (X, Ny, S1, Ry) respec-

tively,
with no non-terminals in common (Ny N N; = 0).

Let N be NoUN; + afresh nonterminal S.

Closure under concatenation

* In this section we let Ly, L; be CFLs generated by
CFGs Gy= (X, Ny, S0, Ry) and G;= (X, Ny, S1, Ry) respec-

tively,
with no non-terminals in common (Ny N N; = 0).

Let N be NoUN; + afresh nonterminal S.

« A grammar generating LoU L; :
(X,N,S,R) where R is RyU R, augmented with the pro-

duction S — Sy | Si.

Closure under concatenation

* In this section we let Ly, L; be CFLs generated by
CFGs Gy= (X, Ny, S0, Ry) and G;= (X, Ny, S1, Ry) respec-
tively,
with no non-terminals in common (Ny N N; = 0).

Let N be NoUN; + afresh nonterminal S.

« A grammar generating LoU L; :

(X,N,S,R) where R is RyU R, augmented with the pro-

duction S — Sy | Si.

« Agrammar generating Ly- L, : (X, N, S, R) where R is RyU Ry
augmented with the production S — 5,5;.

F24 28

Regular languages are context-free

 The trivial finite languages are CF.
 The CFLs are closed under union, concatenation and star.

By induction on the definition of regular languages:
Theorem. Every regular language is CF

 But not every CFL is regular: {a"b" | n > 0} is CF.

F24

29

DERIVATIONS AND REPETITIONS

Parse-trees

 Recall CFG for balanced parentheses: S — ¢ | SS| (5)
« A derivation for the string ()(()):

S =588= 5(S)=(9)(8) = ()(S) = 0((S)) = ()

* Represented as a tree with terminals for leaves
and variables for internal nodes:

F24

* Thisis a

derivation tree

of w Iin G (aka

parse tree)).

N

32

Leftmost-derivations

« Derivations for the same parse-tree are said to be | equivalent.

« Example:

Inadditionto S = SS = S(S) = (S)(S) = ()(S) = ()((S)) = ()
wealsohave S = S55=(5)S=()S=(S)= 0(S)) = 0O)

* The latter is the

leftmost derivation

for the tree.

» Generally: The leftmost derivation for a parse-tree
expands at each step the leftmost variable.

F24

33

Example

e(7 IS
S — AAS | ¢, A—DbA|Ab|a
* Here is a derivation of baab :
S =g AA
=q bAA
=a bAAD

=G bAab
= baab

» The corresponding parse-tree is
A —) \A
SN,

a a

AN

b

F24

* The leftmost derivation for this tree is
S =¢ AA =¢ bAA =5 baA =35 baAb =g baab

« A different parse-tree for the same string:
7N

The leftmost derivation for that tree:

S =>¢ bAA =g baA =¢ baAb =¢ baab

35

Ambiguous grammars

A parse-tree usually represents several derivations.
Can a grammar have different parse-trees for the same string?

« We have already seenone: S — SS | (9) | e.

Py T
/\ /\ /\S /\
8 /\/\ /\/S\ |
\ \ \

S S € €

» And natural languages are full of ambiguities:

Jane welcomed the man with a dog
Jane welcomed the man with a dog

F24

36

Inherently ambiguous CFLs

» There are non-ambiguous grammars to generate the above.

« ACFL s

inherently ambiguous

if

all grammars generating it are ambiguous.

« Example (no proof):
{a"o"ck | n,k > 0} U {a*b"c" | n,k > 0}

« Any grammar generating this language has at least two deriva-

tions

for, say, aabbcc

 Remark: The intersection is not CF at all.

F24

38

Parse-trees

« Computation traces capture the nature of procedural computing
by a mathematical machine.

 But a formal derivation by a grammar G
conveys an order that is not part of the intended generative
process.

 Recall CFG for balanced parentheses: S —¢|SS|(9)

 Recall CFG for balanced parentheses: S —¢e|SS|(S5)

» A derivation for the string ()(()) :
§ = 85 = 5(5) = (5)(5) = ((5) = 0((5)) = 0(0)

 Recall CFG for balanced parentheses: S —¢e|SS|(S5)

* A derivation for the string ()(()) :
S = 55 = 5(5) = (5)(S) = ()(5) = (0((5)) = 0(0)

* Represented as a tree with terminals for leaves
and variables for internal nodes:

S
S/ S
I
(s‘) s)
€

~
(/ \
(/ \)

S

€

 Recall CFG for balanced parentheses: S —¢e|SS|(S5)
« A derivation for the string ()(()) :
S = 55=5(5) = (5)(5) = ((S) = 0((5)) = ((0)

* Represented as a tree with terminals for leaves
and variables for internal nodes:

T
AN S
(/

S‘ S
(T) s)
E

N\
\)

S

€

» This is a | parse-iree, |or | pars-tree
(of the grammar G for the string w).

» The parse-tree can be built using the derivation above:

’ /\ /\ /\
NN AN

/\ /\ /\ /\ /\ /\
| \ /\ | (/\)

€ €

€

» The parse-tree can be built using the derivation above:

’ /\ /\ /\
NN AN

/\ /\ /\ /\ /\ /\
s | /\ | /\

€

» The parse-tree represents the essential features of a derivation,
abstracting away from the sequential listing of the steps.

» The parse-tree can be built using the derivation above:

’ /\ /\ /\
NN AN

/\ /\ /\ /\ /\ /\
s | /\ | /\

€

» The parse-tree represents the essential features of a derivation,
abstracting away from the sequential listing of the steps.

* This is analogous to a set {a,,...ax}, which abstracts away
from the order of the list a,...,a.

» The parse-tree can be built using the derivation above:

) /\ /\ /\
SN N TN

/\ /\ /\ /\ /\ /\
s s / \ | / \

» The parse-tree represents the essential features of a derivation,
abstracting away from the sequential listing of the steps.

* This is analogous to a set {a,,...ax}, which abstracts away
from the order of the list a,...,a.

 This is why parse-trees are also called “abstract syntax-trees’.

» The parse-tree can be built using the derivation above:

’ /\ /\ /\
NN AN

/\ /\ /\ /\ /\ /\
s | /\ | /\

€

» The parse-tree represents the essential features of a derivation,
abstracting away from the sequential listing of the steps.

« Different derivations for the same tree are | equivalent.

» The parse-tree can be built using the derivation above:

) /\ /\ /\
SN N TN

/\ /\ /\ /\ /\ /\
e s / \ | / \

€

» The parse-tree represents the essential features of a derivation,
abstracting away from the sequential listing of the steps.

« Different derivations for the same tree are | equivalent.

« E.g.besides S = S55= 5(5)= (S)(S)=(OS)= 0OS)) = 0O0)
wealsohave S = S55=(S5)S=()S=()S)=0(S)) = 0O)

» The parse-tree can be built using the derivation above:

’ /\ /\ /\
NN AN

/\ /\ /\ /\ /\ /\
8 | /\ | /\

€

» The parse-tree represents the essential features of a derivation,
abstracting away from the sequential listing of the steps.

« Different derivations for the same tree are | equivalent.

« E.g.besides S = S5 = S5(5)= (5)(S)= (S = ((S)) =)
wealsohave S = S5S5S= (5)S=()S=(S)= 0S) = 0)

» The latter is the | leftmosit-derivation| for the tree,
obtained by repeatedly expanding the leftmost variable.

Example

« Grammar G: S — AA|DbAA, A—DbA|Ab|a

* A derivation of baab :
S =q AA =¢ bAA =g bAAb =ab Aab =g baab

» The corresponding parse-tree:
A/S\A
N N\

a a

* The leftmost derivation for this is

S =>¢ AA =¢ bAA = baA =¢ baAb =¢ baab

F24

A different parse-tree for the same string:
A/ \b

a

The leftmost derivation for this parse-tree:
S =¢ bAA =¢ baA = baAb =¢ baab

44

Ambiguous grammars

A parse-tree usually represents several derivations.
Can a grammar have different parse-trees for the same string?

« We have already seenone: S — SS|(S) | e.
/S\ /S\
/ N / N, N N\

I N AN N N
| | |

3 3 € €

* And natural languages are full of ambiguities:

Jane welcomed the speaker with a smile
Jane welcomed the speaker with a smile

F24 45

Inherently ambiguous CFLs

« There are non-ambiguous grammars to generate the above.

That’s good!

« ACFL is

if all grammars generating it are ambiguous.

inherently ambiguous

IExample (no proof):

« Any grammar for this language will have at least two derivations

{a"b"c* | n,k >0} U {a*b"c" | n,k > 0}

for every string a"b"c".

F24

REPEATED PARSING PATTERNS

Dual-clipping in CFLs

» The Clipping Theorem is based on the observation that if M is
a k-state DFA then any trace of M of length > k£ has some
state ¢ repeating.

Dual-clipping in CFLs

» The Clipping Theorem is based on the observation that if M is
a k-state DFA then any trace of M of length > k£ has some
state ¢ repeating.

 This does not work as stated for for CFLs. Why?

Dual-clipping in CFLs

» The Clipping Theorem is based on the observation that if M is
a k-state DFA then any trace of M of length > k£ has some
state ¢ repeating.

 This does not work as stated for for CFLs. Why?

» A DFA accepts a string w by a textual scan, but a CFG gener-
ates w by a parse-tree for it.
Here the repetition is “vertical”:
A variable repeats on a branch of the parse-tree.

F24

49

Dual-Clipping for CFLs

» The portions of the parse-tree generated by the upper A,

but not the lower one, can be “clipped-off” the tree:
S

F24

50

Dual-Clipping for CFLs

» The portion generated from the lower A remains:

S\
VRN
/ \

F24

51

Dual-Clipping for CFLs

» The lower A can be identified with the upper one,

by lifting the subtree it generates:
S

\
.
.
.
.
~ ~
.
e
)
;
.

Dual-Clipping for CFLs

» The lower A can be identified with the upper one,

by lifting the subtree it generates:
S

\
.
.
.
.
~ ~
.
e
)
;
.

F24

52

Dual-clipping: The framework

 Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long w € L has two disjoint substrings,
not both empty, and not too far apart,
that can be clipped off w to yield a string w' € L.

Dual-clipping: The framework

 Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long w € L has two disjoint substrings,
not both empty, and not too far apart,
that can be clipped off w to yield a string w' € L.

« Core idea: variable repeating on a branch.

Dual-clipping: The framework

 Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long w € L has two disjoint substrings,
not both empty, and not too far apart,
that can be clipped off w to yield a string w' € L.

« Core idea: variable repeating on a branch.
« We'll also need to

1. Give conditions that guarantee such a repetition

Dual-clipping: The framework

* Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long w € L has two disjoint substrings,
not both empty, and not too far apart,
that can be clipped off w to yield a string w' € L.

« Core idea: variable repeating on a branch.
« We'll also need to

1. Give conditions that guarantee such a repetition
2. Ensure that the clipping obtained is non-empty

Dual-clipping: The framework

* Dual-clipping Theorem for CFLs (informal summary)

If L is a CFL then
every sufficiently long w € L has two disjoint substrings,
not both empty, and not too far apart,
that can be clipped off w to yield a string w' € L.

« Core idea: variable repeating on a branch.
« We'll also need to

1. Give conditions that guarantee such a repetition
2. Ensure that the clipping obtained is non-empty

3. Obtain two clipped substrings that are “not too far apart”.

F24

53

A repeated variable on a branch

» Suppose 7' is a parse-tree of a CFG G for w

with variable A repeating on a branch.
S\

» The lower occurrence of A generates a substring z.

F24

54

\

’
’
’
\
\esssssnssnnnnnnnns

X y1

» The upper occurrence of A generates a substring yo x y;.

F24

55

F24

« Eliminating yo and v, yields a parse-tree
except for the branch-segment between the two occurrences
of A.

56

F24

 So lifting the derivation from the lower occurrence of A ...

57

F24

e ... results in a parse-tree for the input string
with the substrings ¥, and w; clipped off.

58

F24

’
 — — A — —

W, W

« Naming the “outer” substrings of the input w, and w, ,
the input w is wg-yo- -y ---w; for some wy, ws,
and the resulting (clipped) string, wg - « - w,, is alsoin L.

59

Ensuring a repeated variable

 Let m be the number of variables of G .

* So there are at least m + 1 variables on the branch
for just m different variables in G.

« Some variable must be repeating!

F24

60

Deriving a long string requires repetition

» Say that a production X — o, ---0, has length ¢ and that

the

degree

ductions.

of a grammar is the maximal length of its pro-

» A binary tree of height h has < 2" leaves.
Generally, a tree of degree d has < d" leaves.

* For a grammar of degree d and m variables
any string with a parse-tree of height < m is d™.

» SO a parse-tree for a string of length > d™ must have a branch
with > m variables, which therefore has a variable repeating.

F24

61

Ensuring non-vacuous clipping

« What if the clipped wo,7: are both empty?
» Then we obtained a smaller parse-tree for w !

« If we just start with a parse-tree of G for w
with a minimal number of nodes (no smaller parse-tree for w)
then at least one of gy, % is non-empty.

F24 62

Bounding vy, - x - 1

« Claim: There mustbe a 1y, -z -y; of length < d™.

 Take a lower-most pair of a variable repeating:
then no nonterminal repeats on a branch under the upper A.

S
A\ \\
No repetition along
any branch here
A
yo X Y

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

« Theorem. Let G be a CFG over ¥ with m variables
and of degree d (= all targets of length < d).

» If we L(G) haslength > k =d™

» then it has a substring p of length <k,
with disjoint substrings 1y, 1 not both empty,
s.t. w’' obtained from w by removing y, and
Isalsoin L.

The Dual-clipping Theorem

Dual-clipping Theorem for CFLs (Formal statement)

« Theorem. Let G be a CFG over ¥ with m variables
and of degree d (= all targets of length < d).

» If we L(G) haslength > k=d™

» then it has a substring p of length < k&,
with disjoint substrings 1y, not both empty,
s.t. w’ obtained from w by removing y, and
Isalsoin L.

« Stated explicitly:
w has some partition w = wqy -y - -y - wy
with vy, not both empty and |yo-z - 1| <k,
S.t. wo-x-w € L.

F24 64

A Dual-clipping Property

» We rephrase the Dual-clipping Theorem in terms of a language
property.

« Say that a language L has the | Dual-clipping Property | if
there is a k£ such that
every w € L of length > k
has a substring v, -z -y of length < k with yyy, # &,
for which the string w’ obtained from w
by removing 1, and v, is alsoin L.

A Dual-clipping Property

» We rephrase the Dual-clipping Theorem in terms of a language
property.

« Say that a language L has the | Dual-clipping Property | if
there is a k such that
every w € L of length > k
has a substring 1y, -z - y; of length < k with yoy; # &,
for which the string w’ obtained from w
by removing 1, and v, is alsoin L.

» The Dual-Clipping Theorem for CFLs states that
every CFL has the Dual-Clipping Property.

» Consequently, if a language L fails this property,
then it is not CF.

F24 65

Failing Dual-Clipping

« L fails the Dual-clipping Property when

» Forevery k thereisa w € L of length > k s.t.
for every substring vy, - « - hy of w oflength < k with yyy, # ¢
the string w' obtained from w by removing 1y, and
is notin L.

F24 66

Example: an-bn-cn

«Let L ={a"pb"c"|n = 0}.
We show that L is not CF.

Example: an-bn-cn

«Let L ={a"pb"c"|n = 0}.
We show that L is not CF.

*Let L =L(G), G a CFG with clipping constant k.

Example: an-bn-cn

«Let L ={a"pb"c"|n = 0}.
We show that L is not CF.

*Let L =L(G), G a CFG with clipping constant k.
 Take w = afbFc* € L. We have w € L with |w| > k.

Example: an-bn-cn

«Let L ={a"pb"c"|n = 0}.
We show that L is not CF.

*Let L =L(G), G a CFG with clipping constant k.
 Take w = afbFc* € L. We have w € L with |w| > k.

By Dual-Clipping we can clip off w some g,y
within a k-long substring p of w, getting w' € L.

Example: an-bn-cn

«Let L ={a"pb"c"|n = 0}.
We show that L is not CF.

*Let L =L(G), G a CFG with clipping constant k.
 Take w = afbFc* € L. We have w € L with |w| > k.

By Dual-Clipping we can clip off w some g,y
within a k-long substring p of w, getting w' € L.

 But this is impossible:
Since |p| < k it cannot have more than 2 of the 3 letters,
so w’ cannot have an equal number of letters.

Example: an-bn-cn

«Let L ={a"pb"c"|n = 0}.
We show that L is not CF.

*Let L =L(G), G a CFG with clipping constant k.
 Take w = afbFc* € L. We have w € L with |w| > k.

By Dual-Clipping we can clip off w some g,y
within a k-long substring p of w, getting w' € L.

 But this is impossible:
Since |p| < k it cannot have more than 2 of the 3 letters,
so w’ cannot have an equal number of letters.

e Conclusion: L is not CF.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-
tion:

1. G is given to us, with its clipping constant.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-
tion:

1. G is given to us, with its clipping constant.

2. We can choose a w € L of length > k.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-
tion:

1. G is given to us, with its clipping constant.
2. We can choose a w € L of length > k.

3. Substring p and its factorization py, - x - y; are unknown,
l.e. given to us.

Steps in the contrarian game

Note the order of choices in this “contrarian” proof by contradic-
tion:

1. G is given to us, with its clipping constant.
2. We can choose a w € L of length > k.

3. Substring p and its factorization py, - x - y; are unknown,
l.e. given to us.

4. We must show that whatever they are
the resulting string v’ is & L.

F24 68

Same proof articulated as failures

We can articulate proofs like this directly by
showing failure of Dual-Clipping,

Same proof articulated as failures

We can articulate proofs like this directly by
showing failure of Dual-Clipping,

» Given to us an unknown k£ > 0,
we choose w = a*b*cF. We have w € L and |w| > k.

Same proof articulated as failures

We can articulate proofs like this directly by
showing failure of Dual-Clipping,

» Given to us an unknown k£ > 0,
we choose w = a*b*cF. We have w € L and |w| > k.

 Then given to us that an unknown substring
p=1yo-x-y; oflength <k
we observe that it can have at most two of a,b, c.

Same proof articulated as failures

We can articulate proofs like this directly by
showing failure of Dual-Clipping,

» Given to us an unknown k£ > 0,
we choose w = a*b*cF. We have w € L and |w| > k.

 Then given to us that an unknown substring
p=1yo-x-y; oflength <k
we observe that it can have at most two of a,b, c.

« So removing 1y, and y; Yields a string notin L.

Same proof articulated as failures

We can articulate proofs like this directly by
showing failure of Dual-Clipping,

» Given to us an unknown k£ > 0,
we choose w = a*b*cF. We have w € L and |w| > k.

 Then given to us that an unknown substring
p=1yo-x-y; oflength <k
we observe that it can have at most two of a,b, c.

« So removing 1y, and y; Yields a string notin L.

» Since L fails the Dual-clipping Property, it is not CF.

F24 69

The intersection of CFLs

Now that we have a non-CF language,
we can show that the intersection of CFL need not be CF!!

Ly = {a"o"cF | n,k >0} is CF
Ly. = {afp"c" | n,k >0} is CF
» But their intersection
Lay N Ly, = {a™v"c™ | n > 0}
is not CF.

F24 70

The complement of a CFL

The complement of a CFL need not be CF.

* Reason: The collection of CFLs is closed under union.
If it were closed under complement then it would be closed
under intersection.

«e—(ANB)=-AU-B so ANB=-—-(-AU-B)

» Specific example: The Mahi-mahi Language is not CF.
But its complement is!

F24 71

Example: Alternating equals

- {a'b/c’|i,7 =0} isCF Sois {a'b/c/d'|i,j =0}

Example: Alternating equals

- {a'b/c’|i,7 =0} isCF Sois {a'b/c/d'|i,j =0}
«But L ={a'v/c'd’|i,j >0} isnot.

Example: Alternating equals

- {a'b/c’|i,7 =0} isCF Sois {a'b/c/d'|i,j =0}
«But L ={a'v/c'd’|i,j >0} isnot.
- Given k > 0 take w = a*bfcFd* e L. welL, |w|>k

Example: Alternating equals

- {a'b/c’|i,7 =0} isCF Sois {a'b/c/d'|i,j =0}
«But L ={a'v/c'd’|i,j >0} isnot.
- Given k> 0 take w = a*b*ctd* e L. welL, |wl >k

e If p=1yo-2x-y; isasubstring, yiy1z #¢
let w' be obtained from w by removing o, 11 .

Example: Alternating equals

- {a'b/c’|i,7 =0} isCF Sois {a'b/c/d'|i,j =0}
«But L ={a'v/c'd’|i,j >0} isnot.
« Given k > 0 take w = a*b*ctd* e L. welL, |w| >k

e If p=1yo-2x-y; isasubstring, yiy1z #¢
let w' be obtained from w by removing o, 11 .

» Since p can span at most two adjacent blocks,
removing 1w, y: deletes some letter (a,b,c, or d)
without deleting any corresponding one (c, d, a, or b, respec-
tively).

«So w' ¢ L.

Example: Alternating equals

- {a'b/c’|i,7 =0} isCF Sois {a'b/c/d'|i,j =0}
«But L={a'b/c'd’|i,j =0} isnot.
 Given k > 0 take w = a*b*c*d* e L. we L, |w|>k.

eIf p=1yo-2x-1y; isasubstring, yiyhz #¢
let w' be obtained from w by removing o, 11 .

« Since p can span at most two adjacent blocks,
removing ,y: deletes some letter (a,b,c, or d)
without deleting any corresponding one (c, d, a, or b, respec-
tively).

«So w' ¢ L.
L fails the dual-clipping property, and cannot be CF.

F24 72

The mahi-mahi language

« We already proved thatthe language L= {r-r|r € {a,b}*}
is not regular. We now prove that it is not even CF.

» Let L is generated by a CFG G with clipping constant k& = d™.
e Try w = a*ba’p.

» Not working! since we might have
Yo in the first block of a’s
and y; in the second!

» Solution: Push the two blocks apart: w = a*b*a*p* € L.

« By Dual-clipping, w has a substring of length < &
of the form - 2 -y, with yoy1 # ¢
s.t. w with ¢, and y; removed is still in L.

F24

« Casesfor p=yp-2x-1:

1. p in first half of w.
Then w' = a'b/a*v* with i+ j < 2k.
First half of w’ ends with a, second with b. w’ & L !
2. p in second half of w.
Then w' = afp*a’b! with i+ j < 2k.
First half of v’ starts with a, second with b.
w &L !
3.p in b*a*. Then o' = a*b'a/bF with i+ j < 2k.
First half of w’ has more a’s than the second,

or second half has more b’s than the first (or both).

w &L |

* Inany case w' & L. So L is not CF.

74

SPECIAL TYPES OF CFGs

Regular grammars

» Reqgular languages are generated by regular grammars, a spe-
cial type of CFGs.

| Regular grammars| have only productions of the forms

A — ¢
A — o (0€e)
A — oB

« Simulate aDFA M = (£,Q, s, A,4) by a CFG G-

— G'’s nonterminals are the states of M (let's underline them).
— Its initial nonterminal is s.

F24

— A transition-rule ¢ % p
becomes the production g — op.

— Acceptance by M becomes releasing an output by G:

a— ¢ foreachae A.

« Above are right-regular (aka right-linear) grammars.
Left-regular grammars have A — Bo instead.

77

Expanding grammars

« We'll say that a CFG is spreading if its productions are all of
one of two forms.

» Terminal: A — o, or
» Spread: A — =z where |z| > 2.

F24 78

« Observation. Suppose G is a spreading CFG,
nd D is a derivation in G of a string = € I'".
Then D has at most ¢(z) = || + #x(x) steps,

where #s(z) is the number of terminals in z.

* In particular, if z € ¥ (i.e. all terminals), then c¢(z) =2 - |z|.

« Example: Let G be the spreading CFG S — QS | b, Q — a.
Consider the derivation S = QS = QQS = QQb — aQb, which

has 4 steps.
Here zis a@b, a string of length 3 with 2 non-terminals.

And indeed c(z) = |z| + #x(2) =34+2=5> 4.

» Observation’s proof by induction on the length of D: For spread-
ing CFG G, if z =¢y then ¢(y) < ¢(x).

F24

79

Conversion to spreading CFGs

« Lemma. Every CFG G that does not generate ¢

can be converted into an equivalent spreading CFG.

* Need to eliminate productions of the form

» (Q — ¢ (e productions) and
») -+ R (Stagnant productions)

* Let’s eliminate first all e-productions.

F24

81

Eliminating s-productions

« Todrop Q — ¢ must be compensated
SO as to preserve equivalence w/ G.

 For each production R — z and each 2/
obtained from 2z by deleting some @ 's,
add the production R — 2’

« Example 1: To R — Qa() add
R— a@), R— Qa and R— Q.

« Example2: To R —+ (¢ add R — ¢

« We might add new ¢ -productions and stagnant-productions.

F24

 But for now we don’t worry about stagnant productions,
and we won't need to returnto @@ — <.
So process repeated < m = number of non-terminals.

83

Eliminating stagnant-productions

« Todrop @ — P must compensate to preserve equival with G.
* £ -productions no longer present.

» For each production P — z add @ — z.

« Example 1: To P — PQ add @ — PQ.

« Example 2:to P —+ R add @ — R.

* No e-prods are generated: none to start with.

* New stagnant prods are possible, but we wont returnto @ — P .
So process repeated < m? times.

F24 84

Decision algorithm for spreading grammars

« Theorem. If G Is an spreading grammar,
then there is an algorithm that for input w € ¥*
tells whether w is derived in G'.

« Algorithm: Go through all the possible derivations of length < 2 - |w)|
and check if one of them yields w.

« Little problem: This takes time exponential in the size of the
input.

F24 85

Chomsky grammars

« A|Chomsky grammar|is a special type of spreading grammar,
using only very special Spread productions.

 Only productions allowed:

» Terminal: A — o
» Split: A — BC

» Theorem: Every CFG G not generating ¢
can be converted to an equivalent Chomsky grammar.

« We only need to show this for spreading G.

« We’'ll use fresh non-terminals.

F24

86

Spreads converted to Splits

« First covert to a grammar with no terminals in Spreads:

- Replace a Spread production like Q — abR by three: Q — 4bR,

4d—aand b—b.
Here & is a fresh nonterminal (“promising to convert to ¢”)

» Now eliminate spreads with long targets:

» Replace a Spread like Q —+ PRT by
Q - PMpr and Mgy — RT.
Here Mpgr is a fresh nonterminal (“promising to convert to

RT”)
* S0 Q — PRTU s replaced by

inja[T] ——>‘}giV7577 and foij —TU

» This completes the proof Chomsky’s Theorem.

What about = ?

* If a CFL L contains € then L — {¢} is also CF (we’ll see).
 Now L — {e} is generated by a Chomsky grammar G.

« Use a fresh start on-terminal S’
and add to G the production S’ — ¢ | S,
obtaining an “almost-Chomsky” grammar G’ generating L.

« G' does not have S’ in any target!

F24 89

A memoization algorithm

» Given a Chomsky grammar C over %,
we give a cubic-time memoization algorithm A to decide £(G).

» That is, our algorithm decides, given w =01 ---0, € 27,
whether GG generates w.
This is known as the | Cocke-Younger-Kasami (CYK)| Algo-
rithm.

» Actual credits:

» Itiro Sakai (1961)
» Tadao Kasami (1965)
» Daniel Younger (1967)

F24

» John Cocke and Jacob Schwartz (1970)

91

The CYK Algorithm

» A generates lists ¢ ... 4,
¢; is the list of pairs (A, u), with |u| =7, A =, u.

« {yis {e} if Empty is a production of GG, and is () o.w.
* (1 is given by the Terminal productions of G.

e Obtain ¢, for i > 2:
for each substring u, with |u| = ¢ (< n such strings)
and each split u = x - y (< n such splits)
and each production A — BC' (constant number of such pro-
ductions)
check whether (B, z) € £, (C,y) € {).
(constant time assuming random access into the lists).

F24

cw e L(G)

Iff

(S,w) € £,.

93

Example of CYK

Generating a’cb?™cal:

S — LR
L — alb|c
R — bRa|c

An equivalent Chomsky grammar:

S —-LR L — AM|c R — BN|c
M — LB N — RA

Decide whether acbbca is generated.

A — a
B —Db

F24

. A=a, B=Db, L=c¢, R=c
. M— LB =*cb

N— RA =% ca

- L— AM =* acb

R— BN =*bca

- M— LB =" acbb
()
- S— LR =* acbbca

95

EMPTINESS: Another application of Chomsky

 Design an algorithm that, given a device M,
determine whether L(M) = 0.

« EMPTINESS for automata is decidable:
For automaton with k states check all w with |w| < k.

* This is exponential time. Can we do better?
» Generate in linear time states that “accept something”.

» For CFGs we get an Emptiness algorithm by Chomsky gram-
mars:
Generate variables that “generate something”.

» The construction is virtually the same as for CYK.

F24

96

NONDETERMINISTIC STACK ACCEPTORS

A missing computation model

generative REG

operational DFA

DFA = Deterministic Finite Acceptor

A missing computation model

generative REG

operational NFA

NFA = Nondeterministic Finite Acceptor

A missing computation model

generative

REG

CFL

operational

NFA

277

A missing computation model

generative REG CFL

operational NFA PDA

PDA = Push-Down Automata, i.e. nondeterministic fi-
nite acceptor

A missing computation model

F24

generative

REG

CFL

operational

NFA

99

Why this matters

« The primary computational characterization of:

— regular languages: by a machine model (DFA)
— context-free languages: by a symbolic model (CFQG)

 But parsing for CFLs is important,
and needs a machine model.

* Next: a characterization of CFLs by a machine model.

» Unfortunately, non-determinism is essential here.

F24 100

Cautious extension of memory

» Approach: extend automata with an external memory.

* Limiting the space used gives us LBA (and other).

* This turns out to be too powerful.

« Alternative: limit external memory to “single-use”.

F24 101

Stacks

* A stack is read from the top!
* It is unbounded (like the Turing string)

» But access destroys stored information (single use).

F24 102

Traditional stack operations

* Push a symbol: w — ocw
* Pop a symbol: ocw +— w

* Represent a stack by a string:
edcba is the stack with e at the top, a at the bottom.

» The empty string represents the empty stack.

F24 103

A combined stack-operation

» Generalize push to a string vy :
w— vy W

* And pop to a conditional string-pop wuy:
Uy W H— W
If the top of the stack matches u, then pop that top.

« Combined to a single operation of Replacing a Top segment of
stack:
U X +— Y&
* Meaning:
if 4y matches a top portion of the stack
then replace it by v, else skip

* Notation: wuy— vp.

« Examples:
£ — 2 2—>¢ 1—2 1—23

125221 e—23 12—>¢

F24 105

A | stack automaton (PDA)| over an alphabet X
is a device M = (3,Q,s,A,T',A) where
* () Is a set, dubbed states

* s € () is distinguished state, dubbed initial state
« A C (@, the set of accepting states
« ['D XY isthe extended alphabet

A is a finite set of transition rules of the form

q,p € Q
oc€X.=XU{e}

B,y eI

F24

106

Using stack as memory: an example

 Task: recognize strings a"b" (n > 1).
* Initially the stack is empty.

* Phase 1:
As input is read, a’s are pushed on the stack.

* Phase 2:
When b is encountered, start popping a’s.

» Termination:
Input accepted if stack is empty when input scan completed.

F24 107

Using a bottom-marker

« Our PDAs do not recognize an empty stack
(some varieties of PDAs do!)

» The intent of an empty stack is obtained
by reserving a symbol as bottom-of-stack marker, say $.

« A PDA as above starts by pushing $ on the stack,
and accepts the input if $ is at the top of the stack
when completing the scan.

F24 108

A PDA for {a"ov" | n > 0}

» States: initial s, accepting f, g = pushing phase, p = pop-
ping phase

* Transitions:

e(e—)$) push $)

g (
g 229, a(€—>a> ¢ (reading a’s push them)
g 2@=9 ., (on b pop a & switch state)
p (
(

bla=9, (reading b's pop a’s)
p 629, f($—>e) f if $ tops stack accept)

A PDA for {a"ov" | n > 0}

» States: initial s, accepting f, g = pushing phase, p = pop-
ping phase

* Transitions:

6(6—)$) push $)

g |
g 229, a(ﬁ@ ¢ (reading a’s push them)
blaz9) (on b pop a & switch state)
p (reading b’'s pop a’s)
p M f (if $ tops stack accept)

qQ —

b (a—)é)

* If $ is read while some b’s unread (#, > #.)
then reading is incomplete, so no acceptance.

A PDA for {a"ov" | n > 0}

» States: initial s, accepting f, g = pushing phase, p = pop-
ping phase

* Transitions:

6(6—)$) push $)

g |
g 229, a(ﬁ@ ¢ (reading a’s push them)
blaz9) (on b pop a & switch state)
p (reading b’'s pop a’s)
p M f (if $ tops stack accept)

qQ —

b (a—)é)

« If popping is not completed (#., > #)
then $ is not reach, so no accept state.

A PDA for {a"ov" | n > 0}

» States: initial s, accepting f, g = pushing phase, p = pop-
ping phase

* Transitions:

6(6—)$) push $)

g |

g =% 4 (reading a’s push them)

g 2@=9 ., (on b pop a & switch state)
blazd, ., (reading b’'s pop @’s)

p M f (if $ tops stack accept)

a (e—)a)

 If a b is followed by a
then computation aborts: no production for p reading a.

Fo4 109

Semantics of PDAs

» The semantics of an NFA was given by the transition mapping,
i.e. the collection of single-transitions ¢ % p,
where p,q € Q and o € %..

«APDA P=(%,Q,s,a,T',6) is an NFA equipped with a stack.

An

extended-state

aeTI™.
a is the contents of the stack, represented (from top to bot-
tom) as a string,

of P is a pair (¢,a) where g€ @ and

Semantics of PDAs

» The semantics of an NFA was given by the transition mapping,
i.e. the collection of single-transitions ¢ % p,
where p,q € Q and o € %..

«APDA P=(%,Q,s,a,T',6) is an NFA equipped with a stack.

An

extended-state

aeTI™.
a is the contents of the stack, represented (from top to bot-
tom) as a string,

of P is a pair (¢,a) where g€ @ and

« Transition rules ¢ % p can be extendedto = for arbitrary
w € X7:

F24

|f
and

g 2= pis a transition-rule,
(p,B-7) = (r,n) thenand

(g,a-7v) = (r,n)

112

Accepted strings and recognized languages

* An input string w € ¥* is|accepted|by a PDA M
if (s,e) = (a,7) for some v eI,

Accepted strings and recognized languages

* An input string w € ¥* is|accepted|by a PDA M
if (s,e) = (a,7) for some v eI,

« The | language recognized|by M, denoted L(M),
IS the set of strings accepted by M.

F24 113

Example: Palindromes around c

» Construct a PDA to recognize {w-c-w" | w € {a,b}*}

Example: Palindromes around c

- Construct a PDA to recognize {w - c-w® | w € {a,b}*}

* Algorithm: Push successive input symbols.
When reading ¢ switch to a new state,
match subsequent input symbols with the top of the stack,

popping the top.

Example: Palindromes around c

- Construct a PDA to recognize {w - c - w® | w € {a,b}*}

* Algorithm: Push successive input symbols.
When reading ¢ switch to a new state,
match subsequent input symbols with the top of the stack,
popping the top.
s 8 . (place a marker $ on the stack)

g 29, o (push next letter)

q M} (if ¢, switch to state p)

p 229, (if letter matches stack-op pop it, else abort)
€629, ¢ (accept if top is §)

F24

114

And if the center is absent?

e {w-w?|we {ab}}.
» Use nondeterminism!

*Replace g¢q <9, p by gq <9 p.
 The resulting PDA:
€ (e—9)
5 o—

€ (e—e)

qQ —Dp

p € ($—e) f

F24

116

Repeated use of nondeterminism

« Consider {a"b™ € ¥* | m < n < 2m}

» What stack algorithm would work?

F24

118

Repeated use of nondeterminism

« {a"b™ e X |m < n<2m}
» What stack algorithm would work?

» Use four states s, q,p, f, s initial, s, f accepting.

. € (e—9) b (a—e)
e Transition rules: § —— ¢ p——Dp
a(e—a) b (aa—¢)
qQ — ¢q p
€ (e—e) € ($—e)
q ——p p—— f

M pushes the a’s being read,
switches nondeterministically to a “b-reading state” p
which empties the stack while reading b’s,
popping either a single a or two tta’s at a time.

F24 119

From CFGs to PDAs

« THEOREM. Every CFL is recognized by some PDA.
 For each CFG G we construct a PDA M, so that £(G) = L(M).

« Example:
G is S— aSb | e.

* Initial idea:
generate on the stack a random string z,
then compare z to the input w.

« A marker $ used for stack bottom,
and completion is then detectable.

« What’s wrong here?

F24 121

Alternating between generation and consumption

» What's wrong? We’d need to apply ¢’s productions deep down
the stack.

» But there is no need to wait:
We can compare the (randomly) generate string
as soon as feasible.

Input Stack
aabb S$
generate
aabb asSb$
compare
abb Sb$
generate
abb aSbb$
compare
bb Sbb$
generate
bb bb$
compare
b b$
compare

$

F24 126

Every CFL is recognized by a PDA

Let G=(%,S,R) beaCFG.
We define a PDA M that recognizes L(G).

Every CFL is recognized by a PDA

Let G=(%,S,R) beaCFG.
We define a PDA M that recognizes L(G).

« States: Just three, say s, ¢ and f.
s initial, f accepting.

« Auxiliary symbols: Nonterminals of G and fresh §.

F24 127

Transition rules of the PDA

* Initializing the stack:
e(e—S9)
5§ —

Transition rules of the PDA

* Initializing the stack:
e(e—S9)
5§ —

» For each production A — «a of G:

e(A—a)
qQ — ¢4

l.e., if stack-top is A, may apply this production of G.

Transition rules of the PDA

* Initializing the stack:
e(e—S$)
—

» For each production A — «a of G-

e(A—a)
qQ — ¢

l.e., if stack-top is A, may apply this production of G.

«Foreach o € 3: ¢ 2l=9, q.
l.e., if stack-top is & matching current input symbol,
then o is read off input, and popped off the stack.

« Acceptance: ¢ €529, f.

F24 128

Example

« Grammar G: S — aSb|e¢

e(e—S8$) a(a—e)

q g —— ¢

» The PDA obtained: g 529, g 229,
e(S—e) e($—e)

—q g — f

F24 129

* Here is a derivation of aabb in G :
S — aSb — aaSbb — aabb

* And here is the corresponding trace of P:

(s,€) (g, S%)

(g, aSb$)
(g, Sb$)
(q,aSbb$)
(q, Sbb$)
(g, bb$)
(g, b3)

(g, %)

(f,€)

F24 130

bl dedo bbb b b

Converting PDAs to CFGs:
Reminder of NFA = RegExp

« Givenan NFA N = (£,Q, s, A,),
foreach ¢,pe @ and I C Q)
w considered the regular language Z,,r of strings leading
N from ¢q to p using only intermediate states in T'.

 The visual algorithm we defined is akin to calculating
L, forlarger and larger I,
and for q,p & 1.

« Consider now a PDA P = (%,Q,s, A, T,).

We are again interested, for q,p € Q,
in the language of strings leading P from ¢ to p.

« Except that in a PDA a configuration is not just a state,
but a pair (state,stack), i.e. (¢,a) where ¢ € @Q and a €I,

* Problem: No evident bound on stack size.

« Luckily, it suffices to consider the extended-states (q,¢) , i.e.
the ones where the stack is empty!

F24 132

Preparing the ground

» For pairs (q,p) of states let E,, consist of
the strings w leading P from (q,e) to (p,e):

Ep={weX*|(g,e) = (pe)}

* Note thatif (q,e) = (p,e) then (q,a) = (p,a) forany
stack a, without even referring to the contents a of the stack.

* For this approach to succeed, we'd need to assume that

» P uses just single-letter push and pop.
» P accepts only when the stack is empty.

« A PDA P can be converted into an equivalent one satisfying

(1)

by breaking compound uy — vy into single-letter push and
POp.

« Moreover, we guarantee empty stack on acceptance by
augmenting P with transitions that empty the stack
before actually reaching a (new) accepting state.

F24 134

Generating the languages E,,

» Given the PDA we define a CFG G over ¥

* Non-terminals for the “journeys”:
Jyp (for each pair ¢,p € @),
with the intent that J,, generates the language E,,.

e Initial non-terminal: J,,

» We should have for each ¢ € Q that € € L, .
So G includes for each ¢ € @ the production A, — «.

F24 135

Splicing journeys

If (g,e) = (r,e) = (p,e) then (q,e) =% (p,e).

* In other words, if we know that
Jp ="uw and J, =% v,
then we should have J, =" u-v.

* So we include in G the production J,, = J,; J,,

Stack

Time

states: 9 r P

» We include this production for each combination of ¢, r, p.

Productions for stack operations

» Qur productions so far are unrelated to the transitions of P.

« Suppose (gq,) = (p,e).
If the trace has an empty stack along the way,
i.e. w=wu-v with (g,e) = (r,e) = (p,e) then we already
have the production J,, = Jyr Jyp.

* If not, then we have

Stack

Time

states: q P

 The first move in this trace must read a symbol ¢ € %,
and push some symbol # on the stack.

» Last move reads some 1 € 3,
causing P to pop that ¢
(undisturbed throughout: the stack does not empty).

* That is, for some states r,t:
(¢,€) = (r,6) and (t,0) = (p,e)

Stack
0 0 :
states: qr tp Time
input symbols: © T
Jrt

* This is conveyed in G by the production J,, = oJ.T.

F24 140

* In general, whenever P has transition-rules
o (e—0 - and + T (0—e) P

with the same @ in both,
the grammar G includes the production J,, — oJT.

F24 142

Proof concluded

* By induction on trace-length in M
we obtain that, for all ¢,p € Q,

Jp =6 oxT IFF (g,6) 225 (p,¢)

 When ¢, p are the initial and accepting states s, f

Jsf =" w (G generates w)
IFF

(s,e) 2y (f,e) (P accepts w)

F24

143

Example

«Let M over {a,b,c} have the following transition rules.

1. S € (e—9$ q 4. P € (b—e -
2. o aleza 0 B blooe

3. q c (e—b P 6. 2 € ($—e f

» The construction above yields the following grammar
(with initial nonterminal A;y)

Ay — € (all states t)

Apy — Ay Ay (all states £, u, v)

A, - aA,Db (pushing and popping a, rules 2 and 5)
A, — cAye (pushing and popping b, rules 3 and 4)
A — e Aye (pushing and popping $, rules 1 and 6)

F24 144

Little puzzles about PDAs

» Suppose M is a PDA that does not use its stack.
What does M recognize?

» Suppose M is a PDA that uses its stack only up to depth 1000.
What sort of language does M recognize?

» Suppose M is a super-PDA, that uses two stacks.
What sort of language does M recognize?

Little puzzles about PDAs

« For a DFA M recognizing L C ¥¥,
we obtained an automaton M recognizing L = 2*—L
by flipping accepting and non-accepting states.
For PDAs we can’t, since the complement of a CFL need not be

CF.
What’s wrong with the same sort of flipping for PDAs?

Little puzzles about PDAs

« For DFAs M, N we constructed a product DFA
that recognizes L£(M)N L(N).

Why can’t we use the same idea to build,
for PDAs M, N a PDA that recognizes L(M)N L(N)?

F24 146

The intersection of a CFL
and a regular language

 But what if N does not use its stack?

* Theorem. The intersection of a CFL and a regular language is
CF.

Fo4 147

Examples of intersecting CF with Reg

1. L={we{ab,c} | #aw)=#(w) =#(w) }
We have {a"b"c"|n>0}=L N L(a*-b*-c*) So L cannot
be CF.

Examples of intersecting CF with Reg

1. L={we{ab,c} | #aw)=#(w) =#(w) }
We have {a"b"c"|n>0}=L N L(a*-b*-c*) So L cannot
be CF.

2.I1f L isa CFL, and F' is finite,
then L — F' is CF. Why? Where did we already use that?

Examples of intersecting CF with Reg

1. L={we{ab,c} | #iw)=#(w)=#c(w) }
We have {a"b"c"|n>0}=L N L(a*-b*-c*) So L cannot
be CF.
2. 1f L isa CFL, and F' is finite,
then L — F' is CF. Why? Where did we already use that?

3. Suppose L CI'* is recognized by a PDA.
If ¥ C I', what about the set of X-strings in L?

F24 148

The Chomsky Hierarchy

So far: two classes of languages

LANGUAGE CLASS:

Regular

Context-free

GRAMMARS: regular grammars | CF grammars
MACHINES: DFA=NFA PDA
MEMORY: internal stack
no-write
ACCESS: on-line on-line + stack

F24

151

A non-CF grammar

* The following general grammar generates a"b"c",
which is not CF.
S — ¢ | SABC
C = c cA = Ac cB — Bc

B —- Db bA — Ab
A — a

A non-CF grammar

* The following general grammar generates a"b"c",
which is not CF.
S — ¢ | SABC
C = c cA = Ac cB — Bc

B —- b bA — Ab
A — a

 This grammar has production-sources of length > 1,
so is not CF.

A non-CF grammar

 The following general grammar generates a"b"c",
which is not CF.
S — e | SABC

C —- c cA — Ac cB — Bc

B —- Db bA — Ab
A — a

« Sample derivation:
S = SABC = SABCSABC =? ABCABC

=2 ABcABc = ABAcBc = ABABcc
=2 AbAbcc =2 AAbbcc
=2 aabbcc

Context-sensitive grammars

A production (of a general grammar) is context-sensitive

if it is of the form

where z #e.

uAv — uxv

u and v are any strings of terminals and/or nonterminals.

 Think of such a production as being A — 2«
subject to the “context” of v and v, i.e. where A is preceded
by v and succeeded by v. We'll say that A is the core-source
and x the core-target

« Agrammar is
sensitive.

F24

context-sensitive

iIf all its productions are context-

153

Context-sensitive languages

A context-sensitive grammar cannot generate ¢,
because its core-targets cannot be empty.
A simple remedy is similar to that for Chomsky grammars:
A | context-sensitive language (CSL)
is a language L generated by a CSG, possibly with £ added.

* Theorem.
A language is context-sensitive iff it is recognized by an LBA.

F24 154

Non-contracting languages

« Identifying CSGs for CSLs is often hard,
so it is useful to refer to grammars that are
less restrictive than CSGs yet still generate only CSLs.

Non-contracting languages

« Identifying CSGs for CSLs is often hard,
so it is useful to refer to grammars that are
less restrictive than CSGs yet still generate only CSLs.

* A|non-contracting grammar
has no production whose target is shorter than its source.

Non-contracting languages

« Identifying CSGs for CSLs is often hard,
so it is useful to refer to grammars that are
less restrictive than CSGs yet still generate only CSLs.

* A|non-contracting grammar
has no production whose target is shorter than its source.

« Our previous grammar generating { a"b"c" | n >0 }
fails to be non-contracting, sinceithas S — ¢

Non-contracting languages

* Identifying CSGs for CSLs is often hard,
so it is useful to refer to grammars that are
less restrictive than CSGs yet still generate only CSLs.

A

non-contracting grammar

has no production whose target is shorter than its source.

« Our previous grammar generating { a"b"c" | n >0 }
fails to be non-contracting, sinceithas S — ¢

A

F24

non-contracting language

is a language generated

by a non-contrasting grammar, possibly with £ added.

155

Dealing with ¢

eL={a""c" | n>0}
cannot be generated by a non-contracting grammar
but {a"b"c" | n >0} can:

Dealing with ¢

eL={a""c" | n>0}
cannot be generated by a non-contracting grammar
but {a"b"c" | n >0} can:

* Replace in the grammar for the former
the production S —¢ by S — ABC'!

Dealing with ¢

eL={a""c" | n>0}
cannot be generated by a non-contracting grammar
but {a"b"c" | n >0} can:

* Replace in the grammar for the former
the production S —¢ by S — ABC'!

* In general, if L =L(G)U{e} where G is non-contracting
then L = L(G') where G’ is
G with a fresh initial nonterminal Sy
and new productions Sy — S | £ (S is the initial of G).

F24

156

Context-sensitive equivalent to non-contracting

 The productions of a CSG have the form
wAv — uxv with x #«¢.
So they are non-contracting.

Context-sensitive equivalent to non-contracting

 The productions of a CSG have the form
wAv — uxv with x #«¢.
So they are non-contracting.

« Conversely, every non-contracting production can be obtained
using context-sensitive productions.

F24 157

« Example: ABC — DFEF is equivalent to
the following set of context-sensitive productions:

B—sB C-=C
ABC — DBC DBC — DEC DEC — DEF
DD E — E

« Example: ABC — DFEF is equivalent to
the following set of context-sensitive productions:

BB C—=C
ABC = D BC — DE C — DEF
DD E—>E
« B,C,D and E prevent these productions
from interacting with possible other productions for B,C, D, E .

F24 158

Lancuace CLass: | Regular | Context-free | Context-sensitive
GRAMMARS: regular | Context-free | Context-sensitive
MACHINES: DFA=NFA| NFA + stack LBA

MEMORY: internal stack on-site
ACGESS: on-line |on-line + stack two-way
NEW: a* a"b" a"b"c"

