LIMITS OF COMPUTABILITY

Decidable problems

 Recall: An algorithmic decision problem is decidable

if it has a decision algorithm.

* Thatis, alanguage L C ¥* is

(Turing-) decidable

if it is recognized by some

Turing-decider,

that is

a Turing acceptor that terminates for every input.

* A decision problem is Turing-decidable if

its textual representation is.

 Given the Turing-Church Thesis we

identify informal algorithms with Turing machines!

F24

Decidability preserved under set operations

*Let P and O be problems referring to the same instances,
decided by algorithms Ap and Ag respectively.

- The complement of P is decidable: to decide w € P
run Ap on input w and flip the answer.

Decidability preserved under set operations

*Let P and O be problems referring to the same instances,
decided by algorithms Ap and Ag respectively.

- The complement of P is decidable: to decide w € P
run Ap on input w and flip the answer.

* The intersection of P and O is decidable:
to decide we PN O

» run Ap on w, if it rejects, reject; if it accepts

» run Agp on w, if it rejects, reject; if it accepts accept.
* The union of P and Q is decidable:

» run Ap on w, if it accepts, accept; if it rejects,

» run Agp on w, if it accepts, accept; if it rejects reject.

F24

UNDECIDABILITY

An undecidable problem

 The problem “Self non-accept” (SNA):
Instances: Turing-acceptors M
Property: M does not accept M.

An undecidable problem

 The problem “Self non-accept” (SNA):
Instances: Turing-acceptors M
Property: M does not accept M.

» We show that SNA is not recognized, let alone decidabile.

An undecidable problem

 The problem “Self non-accept” (SNA):
Instances: Turing-acceptors M
Property: M does not accept M.

» We show that SNA is not recognized, let alone decidabile.

» Suppose we had an acceptor D recognizing SNA, that is:
D accepts M# iff M does not accept M#

An undecidable problem

 The problem “Self non-accept” (SNA):
Instances: Turing-acceptors M
Property: M does not accept M.

» We show that SNA is not recognized, let alone decidabile.

» Suppose we had an acceptor D recognizing SNA, that is:
D accepts M# iff M does not accept M#

 Taking for M the particular acceptor D :
D accepts D#* iff D does not accept D#

An undecidable problem

 The problem “Self non-accept” (SNA):
Instances: Turing-acceptors M
Property: M does not accept M.

» We show that SNA is not recognized, let alone decidabile.

» Suppose we had an acceptor D recognizing SNA, that is:
D accepts M# iff M does not accept M#

 Taking for M the particular acceptor D :
D accepts D#* iff D does not accept D#

» Contradiction!
There can be no acceptor D for SNA !

F24

Analogy with Russell’s Paradox

* Recall Russell’s Paradox:
Define R =4 {z |z aset,z&ux}

That is: for any set 2 zeR Iff z¢&z.
e In particular taking R for z: ReR iff R&R

R is a collection of sets, which cannot be admitted as a “set.”

Core of the problem:
Objects = are both objects and sets.

* SNA is a set of acceptors, which cannot be recognized by an acceptor.

Core of the problem:
An acceptor M is both a string M# and a language L£(M).

F24

ACCEPT is undecidable

* SNA is a contrived decision problem,
designed to bootstrap our exploration of undecidability.

« ACCEPT is a natural and important problem:
Instances: Pairs (M,w), M an acceptor, w a string.
Property: M accepts w.

« Theorem: ACCEPT is undecidable.

* Proof: If ACCEPT were decidable,
then so would be its complement NON-ACCEPT.

» But then NSA would also be decidable:
To determine whether M accepts M#
just ask whether NON-ACCEPT says “yes” for input (M, M#).

F24

SEMI-DECIDABLE PROBLEMS

Semi-decidable problems

* ACCEPT is undecidable,
but it is recognized by an acceptor: the universal interpreter!

» That’'s more than we can say about NSA,
which is not recognized even allowing acceptors that are not deciders.

Semi-decidable problems

* ACCEPT is undecidable,
but it is recognized by an acceptor: the universal interpreter!

» That’'s more than we can say about NSA,

which is not recognized even allowing acceptors that are not deciders.

* A problem is

semi-decidable (SD)

(i.e. half-decidable)

if it is recognized (as a language) by a Turing-acceptor.

“Semi-decidable” and “recognized” are synonymous!

Semi-decidable problems

 ACCEPT is undecidable,

but it is recognized by an acceptor: the universal interpreter!

» That’'s more than we can say about NSA,

which is not recognized even allowing acceptors that are not deciders.

A problem is | semi-decidable (SD)

(i.e. half-decidable)

if it is recognized (as a language) by a Turing-acceptor.

“Semi-decidable” and “recognized” are synonymous!

 Every decidable problem is SD, of course.

» But not conversely: ACCEPT is SD but not decidable.

« And NSA is not even SD.

F24

Disregarding rejection

* A decision algorithm for problem P
identifies correctly both yes and no instances.

* A recognition (semi-decision) algorithm for P
identifies correctly the yes instances,
but might loop for some (or all) no instances.

yes yes

DECISION SEMI-DECISION

F24

10

Two levels of “computable” problems

» Since some problems are undecidable but SD (eg. ACCEPT)
we have two levels of problems that are “computationally solvable”.

* It make sense to make sure we understand better SD (the “weak” level).

* So we’'ll consider two characterizations of SD,
adding to our original definition SD=recognized.

Two levels of “computable” problems

» Since some problems are undecidable but SD (eg. ACCEPT)
we have two levels of problems that are “computationally solvable”.

* It make sense to make sure we understand better SD (the “weak” level).

* So we’'ll consider two characterizations of SD,
adding to our original definition SD=recognized.

» The first characterization refers to certification,
and suggests that a problem is SD iff it becomes decidable
when we are given a “hint” for each instance.

Two levels of “computable” problems

» Since some problems are undecidable but SD (eg. ACCEPT)
we have two levels of problems that are “computationally solvable”.

* It make sense to make sure we understand better SD (the “weak” level).

* So we’'ll consider two characterizations of SD,
adding to our original definition SD=recognized.

» The first characterization refers to certification,
and suggests that a problem is SD iff it becomes decidable
when we are given a “hint” for each instance.

» The other characterization is based on enumeration,
and states that a problem is SD
just in case it is generated by a computable process.

F24 11

CHARACTERIZATIONS OF SD

Certificates

» Many decision problems are of the form
Given an instance X is there an object ¢ such that ... ?

Certificates

» Many decision problems are of the form
Given an instance X is there an object ¢ such that ... ?

Examples:

1. Given a graph X,
is there a cycle c¢ visiting each edge once?

Certificates

» Many decision problems are of the form
Given an instance X is there an object ¢ such that ... ?

Examples:
1. Given a graph X,
is there a cycle c¢ visiting each edge once?

2. Given a natural number X , does it have a divisor ¢ > 1.

Certificates

» Many decision problems are of the form
Given an instance X is there an object ¢ such that ... ?

Examples:
1. Given a graph X,
is there a cycle c¢ visiting each edge once?

2. Given a natural number X , does it have a divisor ¢ > 1.

» We say that c is a | certificate|for X € P.

Certificates

» Many decision problems are of the form
Given an instance X is there an object ¢ such that ... ?

Examples:

1. Given a graph X,
is there a cycle c¢ visiting each edge once?

2. Given a natural number X , does it have a divisor ¢ > 1.

» We say that c is a | certificate|for X € P.

* If the ¢ is provided somehow,
it only remains to check that it actually works:
an appropriate cycle for (a),
a divisor for (b).

Certification defined

* Let P be a decision-problem.

A

certification for P

from finite discrete objects to instances of P.

eckH X saysthat
c IS a certificate that X satisfies P.

- Thatis, X eP iff

F24

is a mapping

ck X forsome c.

14

Examples of certifications

* COMPOSITE;
A certification is the relation = where
ckn iff n>2 and ¢ is a divisor of n.

Examples of certifications

* INT-POLYNOMIALS:
A certification is the relation + where
ckpley ...z, iff
plzi ...z is a polynomial with integer coefficients
and variables among z;...x
and c is alist z,..., 2. of integers

s.t. plz, ..., 2] = 0.

Examples of certifications

* The INT-PARTITION Problem asks whether a finite S C N]
has a subset P st. =P =(x5)/2.

A certification is the relation = where
PrFS iff SCN isfinite, P C S,
and =P =(x85)/2.

Examples of certifications

* VALIDITY: Given a first-order formula ¢, is it valid,
i.e. true in all structures.

A certification is the relation - where
m F ¢ holds iff 7 is a first-order proof of ¢.

This is a certification of the Validity Problem because
a formula ¢ is valid iff it has a proof.

F24

15

Decidable certifications

» A certification for a problem P is|decidable

if it is decidable as a set:
There is an algorithm deciding, given ¢ and instance X,
whether ¢ X .

Decidable certifications

» A certification for a problem P is|decidable

if it is decidable as a set:
There is an algorithm deciding, given ¢ and instance X,
whether ¢ X .

« Example: ACCEPT has the certification F
where ¢+ (M,w) iff ¢ is an accepting trace of M for input w.

Decidable certifications

» A certification - for a problem P is
if it is decidable as a set:

There is an algorithm deciding, given ¢ and instance X,

whether ¢+ X .

decidable

« Example: ACCEPT has the certification F

where ct (M,w) iff ¢ is an accepting trace of M for input w.

* This certification is decidable:

Given string ¢ and instance (M# w) of ACCEPT

it is tedious but easy to check that ¢ is

an accepting trace of M for input w .

F24

16

Decidable certification = semi-decidable

« Theorem. L is recognized by an acceptor
iff it has a decidable certification.

Decidable certification = semi-decidable

« Theorem. L is recognized by an acceptor
iff it has a decidable certification.
—>: Suppose L = L(M).
Let ¢+ w iff ¢ is atrace of M that accepts w.

Decidable certification = semi-decidable

« Theorem. L is recognized by an acceptor
iff it has a decidable certification.

—: Suppose L = L(M).
Let ¢+ w iff ¢ is atrace of M that accepts w.

» I is a certification for L, since M recognizes L.

Decidable certification = semi-decidable

« Theorem. L is recognized by an acceptor
iff it has a decidable certification.
—: Suppose L = L(M).
Let ¢+ w iff ¢ is atrace of M that accepts w.

» I is a certification for L, since M recognizes L.

» | is decidable:
Check c’s first cfg is M ’s initial cfg for input w.
Check that successive transitions in ¢ are correct for M.
Check that ¢’s last cfg is accepting for M.

Decidable certification = semi-decidable

« Theorem. L is recognized by an acceptor
iff it has a decidable certification.

—:
Suppose I is a decidable certification for L.
Here is an algorithm that recognizes L:

Decidable certification = semi-decidable

« Theorem. L is recognized by an acceptor
iff it has a decidable certification.

—:
Suppose I is a decidable certification for L.
Here is an algorithm that recognizes L:

» Given w € L check successive strings ¢
(in size+lexicographic order) whether ¢ w.

Decidable certification = semi-decidable

« Theorem. L is recognized by an acceptor
iff it has a decidable certification.

—:
Suppose I is a decidable certification for L.
Here is an algorithm that recognizes L:

» Given w € L check successive strings ¢

(in size+lexicographic order) whether ¢ w.

» Accept w if and when such a ¢ is found.

F24

17

Computably enumerated problems

« A problem L C¥* is|computably-enumerated (CE)

if there is a computable function f: N — ¥* with image L

Computably enumerated problems

« A problem L C¥* is|computably-enumerated (CE)

if there is a computable function f: N — ¥* with image L

« Thatis, L={f(0),f(1),...} isalistingof L.
We say that f enumerates L.

F24

SD < computably enumerated

Theorem.
A non-empty language is SD
iff it is computably enumerated.

F24

19

SD — computably enumerated

» Given a non-empty SD language L C ¥*,
let wy € L
and let I be a decidable certification for L.

SD — computably enumerated

» Given a non-empty SD language L C ¥*,
let wy € L
and let I be a decidable certification for L.

« Consider a listing (¢, wy), (¢, ws), ... of all pairs
(c,w) where ¢ is a potential-certificate and w € £* .
(Say the listing is by size-lexicographic order.)

* Now define f(n) =w, if ¢, Fw,
but f(n) =w, otherwise.

SD — computably enumerated

» Given a non-empty SD language L C ¥*,
let wy € L
and let I be a decidable certification for L.

 Consider a listing (c1,w1), (¢2,ws), ... of all pairs
(c,w) where c¢ is a potential-certificate and w € £* .
(Say the listing is by size-lexicographic order.)

* Now define f(n) =w, if ¢, F w,
but f(n) =w, otherwise.

» Since is decidable, f is computable.

» And since the enumeration above includes all pairs in -,
the image of f is L.

F24

20

SD < computably enumerated

« Suppose L is enumerated by a computable f: N — ¥*.

« L=L(M) where M is the acceptor that
on input w calculates f(0), f(1), f(2)...,
and accepts w if and when it is obtained as output of f.

F24

21

Orderly-enumerations

* A problem L C ¥* is|orderly-enumerated

if it is computably-enumerated by some f which is

» Injective

» Non-contracting: |f(n)| < |f(n+1)| forall n > 0.

Orderly-enumerations

* A problem L C ¥* is|orderly-enumerated

if it is computably-enumerated by some f which is

» Injective

» Non-contracting: |f(n)| < |f(n+1)| forall n > 0.

« Thatis, L={f(0),f(1),...} isalistingof L
without repetition and in non-contracting order.

F24

Decidable < orderly-enumerated

* Theorem.
An infinite language L is decidable iff it is orderly-enumerated.

* |.e. a language is decidable iff it is finite or orderly-enumerated.

F24

23

Decidable —> orderly enumerated

Suppose L is recognized by a decider M.

Decidable —> orderly enumerated

Suppose L is recognized by a decider M.

» Referring to size-lexicographic ordering:
L is orderly-enumerated by

f(0) = first w accepted by M
f(n+1) = first w after f(n) accepted by M

Decidable —> orderly enumerated

Suppose L is recognized by a decider M.

» Referring to size-lexicographic ordering:
L is orderly-enumerated by

f(0) = first w accepted by M
f(n+1) = first w after f(n) accepted by M

» Since L is infinite, f is a total function.

Decidable —> orderly enumerated

Suppose L is recognized by a decider M.

» Referring to size-lexicographic ordering:
L is orderly-enumerated by

f(0) = first w accepted by M
f(n+1) = first w after f(n) accepted by M

» Since L is infinite, f is a total function.

» f is @ non-contracting injection by dfn,
and is computable since M is a decider.

F24

24

Decidable <— orderly enumerated

» Suppose L is orderly-enumerated by f: N — ¥*.

*« Then L = L(M), where M implements the following algorithm:
on input w compute f(n) for successive n’s,
accept if w is reached, stop and reject if |w| is exceeded.

M is a decider because f is
total, injective, and non-contracting.

F24

25

Decidability in terms of semi-decidability

» We characterized SD in terms of decidability:
L is SD iff it has a decidable certification.

» We now characterize decidability in terms of semi-decidability.

Decidability in terms of semi-decidability

» We characterized SD in terms of decidability:
L is SD iff it has a decidable certification.

» We now characterize decidability in terms of semi-decidability.

» Motivation:
A decision algorithm answers yes/no correctly.
A semi-decision algorithm answers just the yes cases.

» Decidability of L is like having two semi-decision algorithms:
one for L and the other for L .

Decidability in terms of semi-decidability

» We characterized SD in terms of decidability:
L is SD iff it has a decidable certification.

» We now characterize decidability in terms of semi-decidability.

 Theorem.
A language L C ¥* is decidable iff
both L and its complement L =%* — L are SD.

Decidability in terms of semi-decidability

» We characterized SD in terms of decidability:
L is SD iff it has a decidable certification.

» We now characterize decidability in terms of semi-decidability.

 Theorem.
A language L C ¥* is decidable iff
both L and its complement L =%* — L are SD.

* A problem whose complement is SD is said to be | co-SD.

So the Theorem states that
a problem is decidable iff it is both SD and co-SD.

F24

26

Decidable —> SD and co-SD

If L is decidable, then so is its complement.
Every decidable language is trivially SD, so both L and L are SD.

F24

27

Decidable <— SD and co-SD

- Suppose that L and L are both SD.

Decidable <— SD and co-SD

- Suppose that L and L are both SD.

« If one of them is empty, then they are both trivially decidable.

Decidable <— SD and co-SD

- Suppose that L and L are both SD.
« If one of them is empty, then they are both trivially decidable.

» Suppose that neither is empty.

Decidable <— SD and co-SD

- Suppose that L and L are both SD.
« If one of them is empty, then they are both trivially decidable.

» Suppose that neither is empty.

» L is SD, so it is the image of a computable f*: N — ¥,

» L is also SD, so it too is the image of a computable f~: N — 2*.

Decidable <— SD and co-SD

- Suppose that L and L are both SD.
« If one of them is empty, then they are both trivially decidable.
» Suppose that neither is empty.

» L is SD, so it is the image of a computable f*: N — ¥,

» L is also SD, so it too is the image of a computable f~: N — 2*.

« To decide w € L calculate f7(0), f(0), f*(1), f~(1)...
until w is obtained as an output.
If it is an output of f* thenw € L,
if of f~ then we L .

Decidable <— SD and co-SD

- Suppose that L and L are both SD.
« If one of them is empty, then they are both trivially decidable.

» Suppose that neither is empty.

» L is SD, so it is the image of a computable f*: N — ¥,

» L is also SD, so it too is the image of a computable f~: N — 2*.

« To decide w € L calculate f7(0), f(0), f*(1), f~(1)...
until w is obtained as an output.
If it is an output of f* thenw € L,
if of f~ then we L .

« So L is decidable.

F24

28

Summary of characterizations

Let L C ¥*

 The following are equivalent:

a)L is

semi-decidable, |i.e. recognized by an acceptor

b) L is computably-enumerated

(@) L is

(
(
(c) L has a decidable certification
T

he following are equivalent:

decidable, |i.e. recognized by a terminating acceptor

(b) L is orderly-enumerated
(c) L is both SD and co-SD

* (a) are characterizations in terms of machine acceptors,

(b) in terms of generators,

(c) decidability and decidability in terms of each other.

F24

SD is closed under intersection

« Suppose L,K C ¥* are SD,
recognized by acceptors A; and Aj.

« We show that L N K is SD.

The proof is similar to that for closure of decidable languages:

» An acceptor A for LN K simulates, on input w,
Ay, and if and when Aj; accepts w it simulates Ay.

« If either of the two processes does not terminate,
then neither does A.

F24

30

SD is closed under union

e The union LU K is also SD.

» Here we cannot run A; followed by Ay,
because A; may fail to terminate, whereas Ayx accepts.

SD is closed under union

e The union LU K is also SD.

» Here we cannot run A; followed by Ay,
because A; may fail to terminate, whereas Ayx accepts.

L, K are SD, so they have decidable certifications +; and kg .

SD is closed under union

e The union LU K is also SD.

» Here we cannot run A; followed by Ay,
because A; may fail to terminate, whereas Ayx accepts.

L, K are SD, so they have decidable certifications +; and kg .

e Let Frux be FrURK .

SD is closed under union

e The union LU K is also SD.

» Here we cannot run A; followed by Ay,
because A; may fail to terminate, whereas Ayx accepts.

L, K are SD, so they have decidable certifications +; and kg .
e Let Frux be FrURK .

* Then ;i is a decidable certification for L U K :
weLUK iff welL orwe K
iff ckpw or ekxgw forsome ¢ since +; and kg are certifi
iff ¢k, w forsome e by the dfn of Frux

F24 31

SD is not closed under complement!

« We saw that ACCEPT is SD but not decidable.

« If L is any undecidable SD language,
such as ACCEPT, then its complement is not SD,
or else L would be both SD and co-SD,
and therefore decidable.

F24

32

REDUCTIONS BETWEEN PROBLEMS

Using other problems’ solution

» We often fulfill tasks using tools for other tasks.

» To match two decks of card, first sort them.
Matching unsorted card-decks reduces to matching sorted decks.

» To use biased coins when a fair coin is needed
use a biased coin in double-rounds:
take HT as “head,” TH as “tail,” discard HH and TT.
Fair-coin is reduced to double-round biased-coin.

» A calculator with squaring but no multiplication:

Define multiplication:

z-y=(x+y?—(r—y)? /2/2

Multiplying is reduced to squaring and halving.

Reduction between decision problems

» A | reduction | between decision problems means

solving problem P by converting its instances
into instances of a problem O.

« If that mapping is relatively easy,
then a solution to © vyields a solution for P.

F24

36

Example: EULER-CYCLE reduces to EVEN-DEGREE

* A| cycle|in a multi-graph G

is a list vy, ...,v, = vy of vertices
where every two consecutive ones are adjacent in G.

Example: EULER-CYCLE reduces to EVEN-DEGREE

* A| cycle|in a multi-graph G

is a list vy, ...,v, = vy of vertices
where every two consecutive ones are adjacent in G.

» An| Euler-cycle|visits every edge exactly once.

Example: EULER-CYCLE reduces to EVEN-DEGREE

A

cycle|in a multi-graph G

is a list vy, ...,v, = vy of vertices

where every two consecutive ones are adjacent in G.

* An

Euler-cycle

EULER-CYCLE:

visits every edge exactly once.

Given a graph G, does it have an Euler-cycle?

A

Example: EULER-CYCLE reduces to EVEN-DEGREE

* A| cycle|in a multi-graph G

is a list vy, ...,v, = vy of vertices
where every two consecutive ones are adjacent in G.

» An| Euler-cycle|visits every edge exactly once.

EULER-CYCLE:
Given a graph G, does it have an Euler-cycle?

A B

* Theorem:
G has an Euler-cycle iff every vertex has even degree.

Example: INTEGER-PARTITION and EXACT-SUM

e INTEGER-PARTITION:
Instances: Finite S C N
Property: Exists P C S s.t. =P =3x5/2.

« Examples: For S = {1,2,3} the answer is no.
For S ={1,3,4,6} it’s yes.

Example: INTEGER-PARTITION and EXACT-SUM

e INTEGER-PARTITION:
Instances: Finite S C N
Property: Exists P C S s.t. =P =3x5/2.

« Examples: For S = {1,2,3} the answer is no.
For S ={1,3,4,6} it’s yes.

* EXACT-SUM:
Instances: Finite S C N and atarget t € N
Property: Exists PC S s.t. =P =1

Example: INTEGER-PARTITION and EXACT-SUM

e INTEGER-PARTITION:
Instances: Finite S C N
Property: Exists P C S s.t. =P =3x5/2.

« Examples: For S = {1,2,3} the answer is no.
For S ={1,3,4,6} it’s yes.

* EXACT-SUM:
Instances: Finite S C N and atarget t € N
Property: Exists PC S s.t. =P =1

* Reduction p:
Map each instance S of INTEGER-PARTITION to

F24

(8, (£5)/2)

38

Example: CLIQUE and INDEP-SET

 Clique in graph G : set of pairwise-adjacent vertices.

e CLIQUE: Given G and t € N
does G have a clique of size > t?

 Independent set in G : set of pairwise non-adjacent vertices.

* INDEP-SET: Given G and t € N
does G have an independent-set of size > t?

F24

39

CLIQUE reduces to INDEP-SET

Reduction by a “reverse-video” mapping:

(V,E)

/?

\

E

A blue graph

o C

Missing edges are in
{A,B,D} a clique of size 3

F24

A red graph
Missing edges are in blue
{A,B,D} an ind set of size 3

40

Dfn of reductions between problems

» A| reduction| of a decision-problem P to a problem © is a function

p: {lInstances of P} — {Instances of Q}

suchthat X eP iff p(X)e Q.

Thatis, if X € P then p(X) € O
andif X ¢ P then p(X) ¢ Q.

Dfn of reductions between problems

» A| reduction| of a decision-problem P to a problem © is a function

p: {lInstances of P} — {Instances of Q}

suchthat X eP iff p(X)e Q.

Thatis, if X € P then p(X) € O
andif X ¢ P then p(X) ¢ Q.

 We write then p: P < O.

Dfn of reductions between problems

» A| reduction| of a decision-problem P to a problem © is a function

p: {lInstances of P} — {Instances of Q}

suchthat X eP iff p(X)e Q.

Thatis, if X € P then p(X) € Q
andif X ¢ P then p(X) ¢ Q.

 We write then p: P < O.

* A reduction p is helpful when it's easier
to compute the output p(X) than to decide whether X € P.

« When p is computable we write p: P <. O

and say that P | computably-reduces|to Q.

F24

ACCEPT <. e-ACCEPT

« Map instance (M,w) of ACCEPT to instance M, of e-ACCEPT
so that M accepts w iff M, accepts «.

ACCEPT <. e-ACCEPT

« Map instance (M,w) of ACCEPT to instance M, of e-ACCEPT
so that M accepts w iff M, accepts «.

» Define M,, to be the acceptor that on input =
runs M on w as input, and accepts = if and when M accepts w.

ACCEPT <. e-ACCEPT

« Map instance (M,w) of ACCEPT to instance M, of e-ACCEPT
so that M accepts w iff M, accepts «.

» Define M,, to be the acceptor that on input =
runs M on w as input, and accepts = if and when M accepts w.

« If M accepts w then M,, accepts every string.
Otherwise M,, accepts no string.

* l.e. M accepts w iff M,, = p(M,w) accepts ¢.

ACCEPT <. e-ACCEPT

« Map instance (M,w) of ACCEPT to instance M, of e-ACCEPT
so that M accepts w iff M, accepts «.

» Define M,, to be the acceptor that on input =
runs M on w as input, and accepts = if and when M accepts w.

« If M accepts w then M,, accepts every string.
Otherwise M,, accepts no string.

* l.e. M accepts w iff M,, = p(M,w) accepts ¢.

» p is computable: It is a simple syntactic construction
of algorithm AM,, from algorithm M + string w .

F24

42

Composing reductions

« If functions f,q: ¥X*—Y* are computable, the so is f o g.
* Proof. The output of f is fedto g as input.

 Theorem
If p: P<.Q and p': Q<. R then pop': P<. R.

« pop’ is computable.
It is a reduction:
x €P iff p(x) e Q (since p is a reduction)
iff p'(p(x)) € R (since p’ is a reduction)

F24

43

Reductions preserve decidability

* Theorem. Suppose p: P <. Q. If Q is decidable then so is P .

* Proof. To decide whether X € P
compute p(X) and run the decider for Q@ on p(X) as input.

» Consequence: Show that a problem P is not decidable
by defining p: O <.P foran undecidable O.

F24

44

Proving decidability via computable reductions

» Consider the PDA-ACCEPT Problem:
Given a PDA P over ¥ and a string w € ¥*,
does P accept w?

» We developed an algorithm that converts a PDA P
to a CFG Gp equivalentto P.

» So the PDA-ACCEPT problem computably reduces to the problem:

» CFG-GENERATE:
Given a CFG G over ¥, and a string w € ¥*,
does G generate w?

» We have a decision algorithm (CYK) deciding CFG-GENERATE,
so we have a decision algorithm for PDA-ACCEPT.

F24

45

Proving SD via computable reductions

» We know that the problem accept, referring to Turing acceptors, is SD.
» There is an algorithm for transforming Turing acceptors M
to equivalent general grammars G, that is such that (G) = L(M) .

So the following problem is also SD.
CFG-GENERATE:
Given a grammar G and a string w does G generate w.

F24 46

SCOPE PROPERTIES OF COMPUTING DEVICES

Decision problems about Turing machines

 Properties of Turing acceptors may be decidable:

Runs more than 4 steps on input 001
Has more than 4 states
The accept state is the only terminal state

* These refer to the inner workings of the Turing machine
not to the language it recognizes.

» The £-accept problem is different:

It is about the language L recognized, not the recognizing device.

» The answer yes/no would be the same for any acceptor for L.

F24

48

Scope-properties of machines

* Many important properties of computing devices M

are

scope-properties

how it does it.

, in that they are about what M does, and not about

« So a scope-property of acceptors M

is a property of the language that M recognizes, i.e. L(M).

* If two acceptors recognize the same language

then they share every scope-property.

Scope-properties of machines

* Many important properties of computing devices M

are

scope-properties

how it does it.

, in that they are about what M does, and not about

« So a scope-property of acceptors M

is a property of the language that M recognizes, i.e. L(M).

* If two acceptors recognize the same language

then they share every scope-property.

 Similarly, a scope-property of transducers M

is a property of the partial-function that it computes.

« If two transducers compute the same partial-function

then they share every scope-property.

Examples of scope-properties of Turing-acceptors

F24

« L(M) is finite.
« L(M) is infinite.

 Accepts at least two strings, i.e. L(M) > 2 elements.

 Every string accepted by M has even length.

« L(M) is a regular language.
This does not mean that M is a DFA.

« For some n >0 M accepts every string of length n.

* Forevery n >0 M accepts some string of length n.

50

Examples for scope-properties of Turing-transducers M

« Computes a total function.

» Undefined for input ¢.

« Define for all input of even length.

» Undefined for all input of even length.

» Constant (same output for all input

* Increasing: If |z| < |y| then |f(z)| < |f(y)|

« Bounded: Thereisan n € N s.t. |f(z)| <n forall z.

« Unbounded: For every n there is some z s.t. |f(z)| >n.

* Inflationary: |f(z)| = |z| for all x.

F24

51

Non-scope properties of Turing machines

» Has more than 100 states.

» Reads every input to its end.

» For some input visits every state during computation
« Never runs more than n? steps for input of size < n

* Is a decider
(but “recognizes a deciable language” is a scope-property!)

F24

52

Rice’s Theorem

A property is | trivial|for a language L

if it is either true of every w € L or false for every w.

« Example: The property L(M) is SD
is always true: it just conveys the definition of SD.
» Theorem. (Henry Rice, 1951).

There is no decidable scope-property of Turing-acceptors,
other than the trivial ones.

* Proof idea:
If P is non-trivial, then e-ACCEPT <. P.
So P is undecidable.

F24

Proof of Rice’s Theorem

» Let P be a non-trivial scope-property of Turing acceptors.
Fix some acceptor E recognizing 0.
Assume E ¢ P (it won’t matter).
Also, P is non-trivial, so it is true of some acceptor A.

Note: F and A are on opposite sides of P!

Proof of Rice’s Theorem

» Let P be a non-trivial scope-property of Turing acceptors.
Fix some acceptor E recognizing 0.
Assume E ¢ P (it won’t matter).
Also, P is non-trivial, so it is true of some acceptor A.

Note: F and A are on opposite sides of P!
» Define p: E-ACCEPT <. P

« The acceptor p(M), call it M],
initially disregards its input z and runs M on e.
If and when M accepts £, M’ fires A on z.

Proof of Rice’s Theorem

» Let P be a non-trivial scope-property of Turing acceptors.
Fix some acceptor E recognizing 0.
Assume E ¢ P (it won’t matter).
Also, P is non-trivial, so it is true of some acceptor A.

Note: F and A are on opposite sides of P!
» Define p: E-ACCEPT <. P

« The acceptor p(M), call it M],
initially disregards its input z and runs M on e.
If and when M accepts £, M’ fires A on z.
*«So L(M')=if M accepts € then L(A)
else 0, i.e. L(E)

« l.e. M accepts € justin case M' = p(M) € P.

Proof of Rice’s Theorem

» Let P be a non-trivial scope-property of Turing acceptors.
Fix some acceptor E recognizing 0.
Assume E ¢ P (it won’t matter).
Also, P is non-trivial, so it is true of some acceptor A.

Note: F and A are on opposite sides of P!
» Define p: E-ACCEPT <. P

« The acceptor p(M), call it M],
initially disregards its input z and runs M on e.
If and when M accepts £, M’ fires A on z.
*«So L(M')=if M accepts € then L(A)
else 0, i.e. L(E)

« l.e. M accepts € justin case M' = p(M) € P.

F24

» The reduction p merely tinkers with algorithms’ sytax,
so it is computable.

55

More examples of scope problems

All problems below are non-trivial scope problems,
and are therefore undecidable, bu Rice’s Theorem.

* FINITE: L(M) is finite.

* INFINITE: L(M) is infinite.

* NOT-SINGLETON L(M) has at least two elements.
« EVEN Every w € L(M) has even length.

* REGULAR: L(M) is a regular language.
(Note: M here can be any acceptor)

* FILLED-LENGTH: For some n >0 M accepts all strings of length n.
Thatis L(M) D> X" for some n.

* NO-EMPTY-LENGTH: Forevery n > 0 M accepts some string of length n.
Thatis L(M)NE"#0 forall n.

F24

56

