LIMITS OF COMPUTABILITY

Decidable problems

- Recall: An algorithmic decision problem is *decidable* if it has a decision algorithm.
- That is, a language $L \subseteq \Sigma^*$ is *(Turing-) decidable* if it is recognized by some *Turing-decider,* that is a Turing acceptor that *terminates for every input.*
- A decision problem is *Turing-decidable if its textual representation is.*
- Given the Turing-Church Thesis we identify informal algorithms with Turing machines!

Decidability preserved under set operations

- Let \mathcal{P} and \mathcal{Q} be problems referring to the same instances, decided by algorithms A_P and A_Q respectively.
- The *complement* of \mathcal{P} is decidable: to decide $w \in \overline{\mathcal{P}}$ run A_P on input w and flip the answer.

Decidability preserved under set operations

- Let \mathcal{P} and \mathcal{Q} be problems referring to the same instances, decided by algorithms A_P and A_Q respectively.
- The *complement* of \mathcal{P} is decidable: to decide $w \in \overline{\mathcal{P}}$ run A_P on input w and flip the answer.
- The *intersection* of \mathcal{P} and \mathcal{Q} is decidable: to decide $w \in \mathcal{P} \cap \mathcal{Q}$
 - run A_P on w, if it rejects, reject; if it accepts
 - run A_Q on w, if it rejects, reject; if it accepts accept.
- The **union** of \mathcal{P} and \mathcal{Q} is decidable:
 - run A_P on w, if it accepts, accept; if it rejects,
 - run A_Q on w, if it accepts, accept; if it rejects reject.

UNDECIDABILITY

 The problem "Self non-accept" (SNA): Instances: Turing-acceptors M Property: M does not accept M[#].

 The problem "Self non-accept" (SNA): Instances: Turing-acceptors M Property: M does not accept M[#].

• We show that **SNA** is not recognized, let alone decidable.

- The problem "Self non-accept" (SNA): Instances: Turing-acceptors M Property: M does not accept M[#].
- We show that **SNA** is not recognized, let alone decidable.
- Suppose we had an acceptor *D* recognizing SNA, that is:
 - D accepts $M^{\#}$ iff M does not accept $M^{\#}$

- The problem "Self non-accept" (SNA): Instances: Turing-acceptors M
 Property: M does not accept M[#].
- We show that **SNA** is not recognized, let alone decidable.
- Suppose we had an acceptor D recognizing SNA, that is: D accepts $M^{\#}$ iff M does not accept $M^{\#}$
- Taking for M the particular acceptor D:
 - **D** accepts $D^{\#}$ iff **D** does not accept $D^{\#}$

- The problem "Self non-accept" (SNA): Instances: Turing-acceptors M
 Property: M does not accept M[#].
- We show that **SNA** is not recognized, let alone decidable.
- Suppose we had an acceptor D recognizing SNA, that is:

D accepts $M^{\#}$ iff M does not accept $M^{\#}$

• Taking for M the particular acceptor D:

D accepts $D^{\#}$ iff **D** does not accept $D^{\#}$

Contradiction!

There can be no acceptor D for SNA !

Analogy with Russell's Paradox

• Recall Russell's Paradox:

Define $\mathcal{R} =_{df} \{x \mid x \text{ a set}, x \notin x\}$

That is: for any set $z \qquad z \in \mathcal{R}$ iff $z \notin z$.

- In particular taking \mathcal{R} for z: $\mathcal{R} \in \mathcal{R}$ iff $\mathcal{R} \notin \mathcal{R}$
- *R* is a collection of sets, which cannot be admitted as a "set."
 Core of the problem:

Objects x are both objects and sets.

SNA is a set of acceptors, which cannot be recognized by an acceptor.
 Core of the problem:

An acceptor M is both a string $M^{\#}$ and a language $\mathcal{L}(M)$.

• SNA is a contrived decision problem,

designed to bootstrap our exploration of undecidability.

- ACCEPT is a natural and important problem: Instances: Pairs (M, w), M an acceptor, w a string. Property: M accepts w.
- **Theorem:** ACCEPT is undecidable.
- **Proof:** If **ACCEPT** were decidable,

then so would be its complement **NON-ACCEPT**.

• But then **NSA** would also be decidable:

To determine whether M accepts $M^{\#}$

just ask whether **NON-ACCEPT** says "yes" for input $(M, M^{\#})$.

SEMI-DECIDABLE PROBLEMS

Semi-decidable problems

- ACCEPT is undecidable,
 - but it is *recognized* by an acceptor: the *universal interpreter!*
- That's more than we can say about NSA,
 - which is not recognized even allowing acceptors that are not deciders.

• ACCEPT is undecidable,

but it is *recognized* by an acceptor: the *universal interpreter!*

• That's more than we can say about NSA,

which is not recognized even allowing acceptors that are not deciders.

A problem is semi-decidable (SD) (i.e. half-decidable) if it is recognized (as a language) by a Turing-acceptor.
 "Semi-decidable" and "recognized" are synonymous!

• ACCEPT is undecidable,

but it is *recognized* by an acceptor: the *universal interpreter!*

• That's more than we can say about NSA,

which is not recognized even allowing acceptors that are not deciders.

- A problem is semi-decidable (SD) (i.e. half-decidable) if it is recognized (as a language) by a Turing-acceptor.
 "Semi-decidable" and "recognized" are synonymous!
- Every decidable problem is SD, of course.
- But not conversely: **ACCEPT** is SD but not decidable.
- And NSA is not even SD.

Disregarding rejection

- A *decision* algorithm for problem *P* identifies correctly both *yes* and *no* instances.
- A *recognition* (semi-decision) algorithm for *P* identifies correctly the *yes* instances, but might loop for some (or all) *no* instances.

Two levels of "computable" problems

- Since some problems are undecidable but SD (eg. ACCEPT) we have two levels of problems that are "computationally solvable".
- It make sense to make sure we understand better SD (the "weak" level).
- So we'll consider two characterizations of SD, adding to our original definition SD=recognized.

Two levels of "computable" problems

- Since some problems are undecidable but SD (eg. ACCEPT) we have two levels of problems that are "computationally solvable".
- It make sense to make sure we understand better SD (the "weak" level).
- So we'll consider two characterizations of SD, adding to our original definition SD=recognized.
 - The first characterization refers to *certification*, and suggests that a problem is SD iff it becomes decidable when we are given a "hint" for each instance.

Two levels of "computable" problems

- Since some problems are undecidable but SD (eg. ACCEPT) we have two levels of problems that are "computationally solvable".
- It make sense to make sure we understand better SD (the "weak" level).
- So we'll consider two characterizations of SD, adding to our original definition SD=recognized.
 - The first characterization refers to *certification*, and suggests that a problem is SD iff it becomes decidable when we are given a "hint" for each instance.
 - The other characterization is based on *enumeration*, and states that a problem is SD just in case it is generated by a computable process.

CHARACTERIZATIONS OF SD

• Many decision problems are of the form

Given an instance X is there an object c such that ... ?

• Many decision problems are of the form

Given an instance X is there an object c such that ...?

Examples:

1. Given a graph X,

is there a cycle *c* visiting each edge once?

• Many decision problems are of the form

Given an instance X is there an object c such that ... ?

Examples:

1. Given a graph X,

is there a cycle *c* visiting each edge once?

2. Given a natural number X, does it have a divisor c > 1.

• Many decision problems are of the form

Given an instance X is there an object c such that ... ?

Examples:

1. Given a graph X,

is there a cycle *c* visiting each edge once?

- 2. Given a natural number X, does it have a divisor c > 1.
- We say that c is a **certificate** for $X \in \mathcal{P}$.

Many decision problems are of the form

Given an instance X is there an object c such that ...?

Examples:

1. Given a graph X,

is there a cycle *c* visiting each edge once?

- 2. Given a natural number X, does it have a divisor c > 1.
- We say that c is a **certificate** for $X \in \mathcal{P}$.
- If the *c* is provided somehow,

it only remains to check that it actually works:

an appropriate cycle for (a),

a divisor for (b).

Certification defined

- Let \mathcal{P} be a decision-problem.
 - A certification for 𝒫 is a mapping ⊢
 from finite discrete objects to instances of 𝒫.
- $c \vdash X$ says that
 - c is a *certificate* that X satisfies \mathcal{P} .
- That is, $X \in \mathcal{P}$ iff $c \vdash X$ for some c.

Examples of certifications

• COMPOSITE:

A certification is the relation \vdash where

 $c \vdash n$ iff n > 2 and c is a divisor of n.

Examples of certifications

• INT-POLYNOMIALS:

A certification is the relation \vdash where $c \vdash p[x_1 \dots x_n]$ iff $p[x_1 \dots x_k]$ is a polynomial with integer coefficients and variables among $x_1 \dots x_k$ and c is a list z_1, \dots, z_k of integers s.t. $p[z_1, \dots, z_k] = 0$.

- The INT-PARTITION Problem asks whether a finite $S \subset \mathbb{N}$] has a subset P s.t. $\Sigma P = (\Sigma S)/2$.
 - A certification is the relation \vdash where
 - $P \vdash S$ iff $S \subset \mathbb{N}$ is finite, $P \subset S$,

and $\Sigma P = (\Sigma S)/2$.

Examples of certifications

• VALIDITY: Given a first-order formula φ , is it valid,

i.e. true in all structures.

A certification is the relation \vdash where

 $\pi \vdash \varphi$ holds iff π is a first-order proof of φ .

This is a certification of the Validity Problem because a formula φ is valid iff it has a proof.

Decidable certifications

A certification ⊢ for a problem *P* is *decidable* if it is decidable as a set:
 There is an algorithm deciding, given *c* and instance *X*,

whether $c \vdash X$.

Decidable certifications

- A certification ⊢ for a problem *P* is *decidable* if it is decidable as a set:
 There is an algorithm deciding, given *c* and instance *X*, whether *c* ⊢ *X*.
- Example: ACCEPT has the certification \vdash where $c \vdash (M, w)$ iff c is an accepting trace of M for input w.

Decidable certifications

- A certification ⊢ for a problem *P* is *decidable* if it is decidable as a set:
 There is an algorithm deciding, given *c* and instance *X*, whether *c* ⊢ *X*.
- Example: ACCEPT has the certification \vdash where $c \vdash (M, w)$ iff c is an accepting trace of M for input w.
- This certification is decidable:

Given string c and instance $(M^{\#}, w)$ of ACCEPT it is tedious but easy to check that c is an accepting trace of M for input w. • Theorem. *L* is recognized by an acceptor iff it has a decidable certification.

• **Theorem.** *L* is recognized by an acceptor iff it has a decidable certification.

 \implies : Suppose $L = \mathcal{L}(M)$.

Let $c \vdash w$ iff c is a trace of M that accepts w.
\implies : Suppose $L = \mathcal{L}(M)$.

Let $c \vdash w$ iff c is a trace of M that accepts w.

• Is a certification for L, since M recognizes L.

 \implies : Suppose $L = \mathcal{L}(M)$.

Let $c \vdash w$ iff c is a trace of M that accepts w.

- If is a certification for L, since M recognizes L.
- ► Is decidable:

Check *c*'s first cfg is *M*'s initial cfg for input *w*.
Check that successive transitions in *c* are correct for *M*.
Check that *c*'s last cfg is accepting for *M*.

⇐:

Suppose \vdash is a decidable certification for *L*. Here is an algorithm that recognizes *L*:

⇐:

Suppose \vdash is a decidable certification for *L*. Here is an algorithm that recognizes *L*:

• Given $w \in L$ check successive strings c(in size+lexicographic order) whether $c \vdash w$.

⇐=:

Suppose \vdash is a decidable certification for *L*. Here is an algorithm that recognizes *L*:

- Given $w \in L$ check successive strings c(in size+lexicographic order) whether $c \vdash w$.
- Accept w if and when such a c is found.

Computably enumerated problems

• A problem $L \subseteq \Sigma^*$ is **computably-enumerated (CE)**

if there is a computable function $f: \mathbb{N} \to \Sigma^*$ with image L

Computably enumerated problems

- A problem $L \subseteq \Sigma^*$ is *computably-enumerated (CE)* if there is a computable function $f : \mathbb{N} \to \Sigma^*$ with image L
- That is, $L = \{f(0), f(1), \ldots\}$ is a listing of L.

We say that *f* enumerates *L*.

$SD \iff computably enumerated$

Theorem.

A non-empty language is **SD** iff it is **computably enumerated**. • Given a non-empty SD language $L \subseteq \Sigma^*$,

let $w_0 \in L$

and let \vdash be a decidable certification for *L*.

• Given a non-empty SD language $L \subseteq \Sigma^*$, let $w_0 \in L$

and let \vdash be a decidable certification for *L*.

- Consider a listing (c_1, w_1) , (c_2, w_2) ,... of all pairs (c, w) where c is a potential-certificate and $w \in \Sigma^*$. (Say the listing is by size-lexicographic order.)
- Now define $f(n) = w_n$ if $c_n \vdash w_n$ but $f(n) = w_0$ otherwise.

• Given a non-empty SD language $L \subseteq \Sigma^*$, let $w_0 \in L$

and let \vdash be a decidable certification for *L*.

- Consider a listing (c₁, w₁), (c₂, w₂),... of all pairs
 (c, w) where c is a potential-certificate and w ∈ Σ*.
 (Say the listing is by size-lexicographic order.)
- Now define $f(n) = w_n$ if $c_n \vdash w_n$ but $f(n) = w_0$ otherwise.
- Since \vdash is decidable, f is computable.
- And since the enumeration above includes all pairs in ⊢, the image of *f* is *L*.

- Suppose *L* is enumerated by a computable $f : \mathbb{N} \to \Sigma^*$.
- L = L(M) where M is the acceptor that on input w calculates f(0), f(1), f(2)..., and accepts w if and when it is obtained as output of f.

Orderly-enumerations

- A problem $L \subseteq \Sigma^*$ is **orderly-enumerated** if it is computably-enumerated by some f which is
 - ► Injective
 - ► *Non-contracting*: $|f(n)| \leq |f(n+1)|$ for all $n \geq 0$.

Orderly-enumerations

- A problem $L \subseteq \Sigma^*$ is *orderly-enumerated* if it is computably-enumerated by some f which is
 - ► Injective
 - ▶ *Non-contracting*: $|f(n)| \leq |f(n+1)|$ for all $n \geq 0$.
- That is, $L = \{f(0), f(1), \ldots\}$ is a listing of L without repetition and in non-contracting order.

Decidable \iff orderly-enumerated

• Theorem.

An infinite language *L* is *decidable* iff it is *orderly-enumerated*.

• I.e. a language is decidable iff it is finite or orderly-enumerated.

Suppose L is recognized by a decider M.

Suppose L is recognized by a decider M.

- Referring to size-lexicographic ordering:
 - *L* is orderly-enumerated by

f(0) = first w accepted by Mf(n+1) = first w after f(n) accepted by M

Suppose L is recognized by a decider M.

- Referring to size-lexicographic ordering:
 - *L* is orderly-enumerated by

f(0) = first w accepted by Mf(n+1) = first w after f(n) accepted by M

• Since L is infinite, f is a total function.

Suppose L is recognized by a decider M.

- Referring to size-lexicographic ordering:
 - *L* is orderly-enumerated by

f(0) = first w accepted by Mf(n+1) = first w after f(n) accepted by M

- Since L is infinite, f is a total function.
- *f* is a non-contracting injection by dfn, and is computable since *M* is a decider.

Decidable ← orderly enumerated

- Suppose *L* is orderly-enumerated by $f : \mathbb{N} \to \Sigma^*$.
- Then L = L(M), where M implements the following algorithm: on input w compute f(n) for successive n's, accept if w is reached, stop and reject if |w| is exceeded.
- *M* is a decider because *f* is total, injective, and non-contracting.

- We characterized SD in terms of decidability:
 - *L* is SD iff it has a decidable certification.
- We now characterize decidability in terms of semi-decidability.

- We characterized SD in terms of decidability:
 - *L* is SD iff it has a decidable certification.
- We now characterize decidability in terms of semi-decidability.

Motivation:

- A decision algorithm answers yes/no correctly.
- A semi-decision algorithm answers just the yes cases.
- Decidability of L is like having two semi-decision algorithms: one for L and the other for \overline{L} .

- We characterized SD in terms of decidability:
 - *L* is SD iff it has a decidable certification.
- We now characterize decidability in terms of semi-decidability.

• Theorem.

A language $L \subseteq \Sigma^*$ is decidable iff both *L* and its complement $\overline{L} = \Sigma^* - L$ are SD.

- We characterized SD in terms of decidability:
 - *L* is SD iff it has a decidable certification.
- We now characterize decidability in terms of semi-decidability.
- Theorem.
 - A language $L \subseteq \Sigma^*$ is decidable iff both *L* and its complement $\overline{L} = \Sigma^* - L$ are SD.
- A problem whose complement is SD is said to be *co-SD*.
 So the Theorem states that

a problem is decidable iff it is both SD and co-SD.

Decidable \implies SD and co-SD

If L is decidable, then so is its complement.

Every decidable language is trivially SD, so both L and \overline{L} are SD.

• Suppose that L and \overline{L} are both SD.

- Suppose that L and \overline{L} are both SD.
- If one of them is empty, then they are both trivially decidable.

$Decidable \iff SD and co-SD$

- Suppose that L and \overline{L} are both SD.
- If one of them is empty, then they are both trivially decidable.
- Suppose that neither is empty.

- Suppose that L and \overline{L} are both SD.
- If one of them is empty, then they are both trivially decidable.
- Suppose that neither is empty.
 - *L* is SD, so it is the image of a computable $f^+ : \mathbb{N} \to \Sigma^*$.
 - \overline{L} is also SD, so it too is the image of a computable $f^-: \mathbb{N} \to \Sigma^*$.

- Suppose that L and \overline{L} are both SD.
- If one of them is empty, then they are both trivially decidable.
- Suppose that neither is empty.
 - *L* is SD, so it is the image of a computable $f^+ : \mathbb{N} \to \Sigma^*$.
 - \overline{L} is also SD, so it too is the image of a computable $f^-: \mathbb{N} \to \Sigma^*$.
- To decide $w \in L$ calculate $f^+(0), f^-(0), f^+(1), f^-(1)...$

until w is obtained as an output. If it is an output of f^+ then $w \in L$, if of f^- then $w \in \overline{L}$.

- Suppose that L and \overline{L} are both SD.
- If one of them is empty, then they are both trivially decidable.
- Suppose that neither is empty.
 - *L* is SD, so it is the image of a computable f^+ : $\mathbb{N} \to \Sigma^*$.
 - \overline{L} is also SD, so it too is the image of a computable $f^-: \mathbb{N} \to \Sigma^*$.
- To decide $w \in L$ calculate $f^+(0), f^-(0), f^+(1), f^-(1)...$

until w is obtained as an output. If it is an output of f^+ then $w \in L$, if of f^- then $w \in \overline{L}$.

• So *L* is decidable.

Summary of characterizations

Let $L \subseteq \Sigma^*$

• The following are equivalent:

(a) *L* is *semi-decidable,* i.e. recognized by an acceptor

- (b) L is computably-enumerated
- (c) L has a decidable certification
- The following are equivalent:

(a) *L* is *decidable*, i.e. recognized by a terminating acceptor

(b) *L* is orderly-enumerated

(c) L is both SD and co-SD

- (a) are characterizations in terms of machine acceptors,
 - (b) in terms of generators,
 - (c) decidability and decidability in terms of each other.

SD is closed under intersection

- Suppose $L, K \subseteq \Sigma^*$ are SD, recognized by acceptors A_L and A_k .
- We show that $L \cap K$ is SD.

The proof is similar to that for closure of decidable languages:

• An acceptor A for $L \cap K$ simulates, on input w,

 A_L , and if and when A_L accepts w it simulates A_k .

 If either of the two processes does not terminate, then neither does *A*.

30

SD is closed under union

- The union $L \cup K$ is also SD.
- Here we cannot run A_L followed by A_K ,

because A_L may fail to terminate, whereas A_K accepts.

SD is closed under union

- The union $L \cup K$ is also SD.
- Here we cannot run A_L followed by A_K ,

because A_L may fail to terminate, whereas A_K accepts.

• L, K are SD, so they have decidable certifications \vdash_L and \vdash_K .

SD is closed under union

- The union $L \cup K$ is also SD.
- Here we cannot run A_L followed by A_K , because A_L may fail to terminate, whereas A_K accepts.
- L, K are SD, so they have decidable certifications \vdash_L and \vdash_K .
- Let $\vdash_{L \cup K}$ be $\vdash_L \cup \vdash_K$.
SD is closed under union

- The union $L \cup K$ is also SD.
- Here we cannot run A_L followed by A_K ,

because A_L may fail to terminate, whereas A_K accepts.

- L, K are SD, so they have decidable certifications \vdash_L and \vdash_K .
- Let $\vdash_{L \cup K}$ be $\vdash_L \cup \vdash_K$.
- Then $\vdash_{L\cup K}$ is a decidable certification for $L \cup K$: $w \in L \cup K$ iff $w \in L$ or $w \in K$ iff $c \vdash_L w$ or $c \vdash_K w$ for some c since \vdash_L and \vdash_K are certificities iff $c \vdash_{L\cup K} w$ for some c by the dfn of $\vdash_{L\cup K}$

SD is not closed under complement!

- We saw that **ACCEPT** is SD but not decidable.
- If *L* is any undecidable SD language, such as ACCEPT, then its complement is not SD, or else *L* would be both SD and co-SD, and therefore decidable.

REDUCTIONS BETWEEN PROBLEMS

Using other problems' solution

- We often fulfill tasks using tools for other tasks.
 - To match two decks of card, first sort them.
 Matching unsorted card-decks reduces to matching sorted decks.
 - To use biased coins when a fair coin is needed use a biased coin in double-rounds: take HT as "head," TH as "tail," discard HH and TT. Fair-coin is reduced to double-round biased-coin.
 - A calculator with squaring but no multiplication:
 Define multiplication:

$$x \cdot y = (x+y)^2 - (x-y)^2 /2 /2$$

Multiplying is reduced to squaring and halving.

Reduction between decision problems

- A *reduction* between decision problems means solving problem *P* by converting its instances into instances of a problem *Q*.
- If that mapping is relatively easy,
 then a solution to *Q* yields a solution for *P*.

• A cycle in a multi-graph G

is a list $v_0, \ldots, v_n = v_0$ of vertices

where every two consecutive ones are adjacent in G.

- A cycle in a multi-graph G
 - is a list $v_0, \ldots, v_n = v_0$ of vertices

where every two consecutive ones are adjacent in G.

• An *Euler-cycle* visits every *edge* exactly once.

• A cycle in a multi-graph G

is a list $v_0, \ldots, v_n = v_0$ of vertices

where every two consecutive ones are adjacent in G.

• An *Euler-cycle* visits every *edge* exactly once.

EULER-CYCLE:

Given a graph \mathcal{G} , does it have an Euler-cycle?

• A cycle in a multi-graph G

is a list $v_0, \ldots, v_n = v_0$ of vertices

where every two consecutive ones are adjacent in G.

• An *Euler-cycle* visits every *edge* exactly once.

EULER-CYCLE:

Given a graph \mathcal{G} , does it have an Euler-cycle?

• Theorem:

 \mathcal{G} has an Euler-cycle iff every vertex has even degree.

• INTEGER-PARTITION:

Instances: Finite $S \subseteq \mathbb{N}$

Property: Exists $P \subset S$ s.t. $\Sigma P = \Sigma S/2$.

• Examples: For $S = \{1, 2, 3\}$ the answer is **no**. For $S = \{1, 3, 4, 6\}$ it's **yes**. • INTEGER-PARTITION:

Instances: Finite $S \subseteq \mathbb{N}$

Property: Exists $P \subset S$ s.t. $\Sigma P = \Sigma S/2$.

- Examples: For $S = \{1, 2, 3\}$ the answer is **no**. For $S = \{1, 3, 4, 6\}$ it's **yes**.
- EXACT-SUM:

Instances: Finite $S \subset \mathbb{N}$ and a target $t \in \mathbb{N}$ Property: Exists $P \subset S$ s.t. $\Sigma P = t$ • INTEGER-PARTITION:

Instances: Finite $S \subseteq \mathbb{N}$

Property: Exists $P \subset S$ s.t. $\Sigma P = \Sigma S/2$.

- Examples: For $S = \{1, 2, 3\}$ the answer is **no**. For $S = \{1, 3, 4, 6\}$ it's **yes**.
- EXACT-SUM:

Instances: Finite $S \subset \mathbb{N}$ and a target $t \in \mathbb{N}$

Property: Exists $P \subset S$ s.t. $\Sigma P = t$

• Reduction ρ :

Map each instance S of INTEGER-PARTITION to $(S, (\Sigma S)/2)$

- *Clique* in graph *G* : set of pairwise-adjacent vertices.
- CLIQUE: Given \mathcal{G} and $t \in \mathbb{N}$

does \mathcal{G} have a clique of size $\geq t$?

- Independent set in G : set of pairwise non-adjacent vertices.
- INDEP-SET: Given \mathcal{G} and $t \in \mathbb{N}$

does \mathcal{G} have an independent-set of size $\geq t$?

CLIQUE reduces to INDEP-SET

Reduction by a "reverse-video" mapping:

A blue graph Missing edges are in pink {A,B,D} a clique of size 3 A red graph Missing edges are in blue {A,B,D} an ind set of size 3

Dfn of reductions between problems

• A **reduction** of a decision-problem \mathcal{P} to a problem \mathcal{Q} is a function

 $\rho: \{ \text{Instances of } \mathcal{P} \} \rightarrow \{ \text{Instances of } \mathcal{Q} \}$

such that $X \in \mathcal{P}$ iff $\rho(X) \in \mathcal{Q}$. That is, if $X \in \mathcal{P}$ then $\rho(X) \in \mathcal{Q}$ and if $X \notin \mathcal{P}$ then $\rho(X) \notin \mathcal{Q}$.

Dfn of reductions between problems

• A *reduction* of a decision-problem \mathcal{P} to a problem \mathcal{Q} is a function

 $\rho: \{ \text{Instances of } \mathcal{P} \} \rightarrow \{ \text{Instances of } \mathcal{Q} \}$

such that $X \in \mathcal{P}$ iff $\rho(X) \in \mathcal{Q}$. That is, if $X \in \mathcal{P}$ then $\rho(X) \in \mathcal{Q}$ and if $X \notin \mathcal{P}$ then $\rho(X) \notin \mathcal{Q}$.

• We write then $\rho: \mathcal{P} \leq \mathcal{Q}$.

Dfn of reductions between problems

• A **reduction** of a decision-problem \mathcal{P} to a problem \mathcal{Q} is a function

 $\rho: \{ \text{Instances of } \mathcal{P} \} \rightarrow \{ \text{Instances of } \mathcal{Q} \}$

such that $X \in \mathcal{P}$ iff $\rho(X) \in \mathcal{Q}$.

That is, if $X \in \mathcal{P}$ then $\rho(X) \in \mathcal{Q}$ and if $X \notin \mathcal{P}$ then $\rho(X) \notin \mathcal{Q}$.

• We write then $\rho: \mathcal{P} \leq \mathcal{Q}$.

- A reduction ρ is helpful when it's easier to compute the output $\rho(X)$ than to decide whether $X \in \mathcal{P}$.
- When ρ is computable we write $\rho : \mathcal{P} \leq_c \mathcal{Q}$ and say that \mathcal{P} **computably-reduces** to \mathcal{Q} .

• Map instance (M, w) of ACCEPT to instance M_w of ε -ACCEPT so that M accepts w iff M_w accepts ε .

ACCEPT $\leq_c \varepsilon$ -ACCEPT

- Map instance (M, w) of ACCEPT to instance M_w of ε -ACCEPT so that M accepts w iff M_w accepts ε .
- Define M_w to be the acceptor that on input xruns M on w as input, and accepts x if and when M accepts w.

ACCEPT $\leq_c \varepsilon$ -ACCEPT

- Map instance (M, w) of ACCEPT to instance M_w of ε -ACCEPT so that M accepts w iff M_w accepts ε .
- Define M_w to be the acceptor that on input xruns M on w as input, and accepts x if and when M accepts w.
- If M accepts w then M_w accepts every string. Otherwise M_w accepts no string.
- I.e. *M* accepts *w* iff $M_w = \rho(M, w)$ accepts ε .

ACCEPT $\leq_c \varepsilon$ -ACCEPT

- Map instance (M, w) of ACCEPT to instance M_w of ε -ACCEPT so that M accepts w iff M_w accepts ε .
- Define M_w to be the acceptor that on input xruns M on w as input, and accepts x if and when M accepts w.
- If M accepts w then M_w accepts every string. Otherwise M_w accepts no string.
- I.e. *M* accepts *w* iff $M_w = \rho(M, w)$ accepts ε .
- ρ is computable: It is a simple syntactic construction of algorithm M_w from algorithm M + string w.

Composing reductions

- If functions $f, g: \Sigma^* \to \Sigma^*$ are computable, the so is $f \circ g$.
- **Proof.** The output of f is fed to g as input.
- Theorem

If $\rho : \mathcal{P} \leq_c \mathcal{Q}$ and $\rho' : \mathcal{Q} \leq_c \mathcal{R}$ then $\rho \circ \rho' : \mathcal{P} \leq_c \mathcal{R}$.

• $\rho \circ \rho'$ is computable.

It is a reduction:

 $x \in \mathcal{P}$ iff $\rho(x) \in \mathcal{Q}$ (since ρ is a reduction) iff $\rho'(\rho(x)) \in \mathcal{R}$ (since ρ' is a reduction)

Reductions preserve decidability

- Theorem. Suppose ρ : $\mathcal{P} \leq_{c} \mathcal{Q}$. If \mathcal{Q} is decidable then so is \mathcal{P} .
- Proof. To decide whether $X \in \mathcal{P}$ compute $\rho(X)$ and run the decider for \mathcal{Q} on $\rho(X)$ as input.
- Consequence: Show that a problem \mathcal{P} is *not decidable* by defining $\rho: \mathcal{Q} \leq_c \mathcal{P}$ for an undecidable \mathcal{Q} .

Proving decidability via computable reductions

- Consider the PDA-ACCEPT Problem:
 Given a PDA *P* over Σ and a string *w* ∈ Σ*,
 does *P* accept *w*?
- We developed an algorithm that converts a PDA P to a CFG G_P equivalent to P.
- So the **PDA-ACCEPT** problem computably reduces to the problem:

► CFG-GENERATE:

Given a CFG G over Σ , and a string $w \in \Sigma^*$,

does G generate w?

• We have a decision algorithm (CYK) deciding CFG-GENERATE, so we have a decision algorithm for PDA-ACCEPT.

Proving SD via computable reductions

- We know that the problem accept, referring to Turing acceptors, is SD.
- There is an algorithm for transforming Turing acceptors *M* to equivalent general grammars *G*, that is such that (*G*) = *L*(*M*). So the following problem is also SD.
 CFG-GENERATE:

Given a grammar G and a string w does G generate w.

SCOPE PROPERTIES OF COMPUTING DEVICES

Decision problems about Turing machines

- Properties of Turing acceptors may be decidable: *Runs more than 4 steps on input* 001
 Has more than 4 states The accept state is the only terminal state
- These refer to the inner workings of the Turing machine not to the language it recognizes.
- The *ε*-accept problem is different:

It is about the language *L* recognized, not the recognizing device.

• The answer yes/no would be the same for any acceptor for *L*.

Scope-properties of machines

• Many important properties of computing devices *M*

are **scope-properties**, in that they are about **what** M does, and not about **how** it does it.

• So a scope-property of *acceptors* M

is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.

 If two acceptors recognize the same language then they share every scope-property.

Scope-properties of machines

Many important properties of computing devices *M*

are **scope-properties**, in that they are about **what** M does, and not about **how** it does it.

• So a scope-property of *acceptors* M

is a property of the language that M recognizes, i.e. $\mathcal{L}(M)$.

- If two acceptors recognize the same language then they share every scope-property.
- Similarly, a scope-property of *transducers M* is a property of the partial-function that it computes.
- If two transducers compute the same partial-function then they share every scope-property.

Examples of scope-properties of Turing-acceptors

- $\mathcal{L}(M)$ is finite.
- $\mathcal{L}(M)$ is infinite.
- Accepts at least two strings, i.e. $\mathcal{L}(M) \ge 2$ elements.
- Every string accepted by M has even length.
- $\mathcal{L}(M)$ is a regular language.

This does *not* mean that M is a DFA.

- For some n > 0 *M* accepts every string of length *n*.
- For every $n \ge 0$ *M* accepts some string of length *n*.

- Computes a total function.
- Undefined for input ε .
- Define for all input of even length.
- Undefined for all input of even length.
- Constant (same output for all input
- Increasing: If |x| < |y| then |f(x)| < |f(y)|
- Bounded: There is an $n \in \mathbb{N}$ s.t. $|f(x)| \leq n$ for all x.
- Unbounded: For every *n* there is some x s.t. |f(x)| > n.
- Inflationary: $|f(x)| \ge |x|$ for all x.

Non-scope properties of Turing machines

- Has more than 100 states.
- Reads every input to its end.
- For some input visits every state during computation
- Never runs more than n^2 steps for input of size $\leq n$
- Is a decider

(but "recognizes a deciable language" *is* a scope-property!)

Rice's Theorem

- A property is **trivial** for a language Lif it is either true of every $w \in L$ or false for every w.
- Example: The property $\mathcal{L}(M)$ is SD

is always true: it just conveys the definition of SD.

• Theorem. (Henry Rice, 1951).

There is no decidable scope-property of Turing-acceptors, other than the trivial ones.

- Proof idea:
 - If \mathcal{P} is non-trivial, then ε -ACCEPT $\leq_{c} \mathcal{P}$.

So \mathcal{P} is undecidable.

Proof of Rice's Theorem

Let *P* be a non-trivial scope-property of Turing acceptors.
Fix some acceptor *E* recognizing Ø.
Assume *E* ∉ *P* (it won't matter).
Also, *P* is non-trivial, so it is true of some acceptor *A*.

Note: E and A are on opposite sides of \mathcal{P} !

Proof of Rice's Theorem

- Let *P* be a non-trivial scope-property of Turing acceptors. Fix some acceptor *E* recognizing Ø. Assume *E* ∉ *P* (it won't matter). Also, *P* is non-trivial, so it is true of some acceptor *A*. Note: *E* and *A* are on opposite sides of *P* !
- Define $\rho: \mathcal{E}$ -ACCEPT $\leq_c \mathcal{P}$:
- The acceptor ρ(M), call it M], initially disregards its input x and runs M on ε. If and when M accepts ε, M' fires A on x.
Proof of Rice's Theorem

- Let *P* be a non-trivial scope-property of Turing acceptors. Fix some acceptor *E* recognizing Ø. Assume *E* ∉ *P* (it won't matter). Also, *P* is non-trivial, so it is true of some acceptor *A*. Note: *E* and *A* are on opposite sides of *P* !
- Define $\rho: \mathcal{E}$ -ACCEPT $\leq_c \mathcal{P}$:
- The acceptor ρ(M), call it M], initially disregards its input x and runs M on ε.
 If and when M accepts ε, M' fires A on x.
- So $\mathcal{L}(M') = \text{if } M \text{ accepts } \varepsilon \text{ then } \mathcal{L}(A)$ else \emptyset , i.e. $\mathcal{L}(E)$
- I.e. *M* accepts ε just in case $M' = \rho(M) \in \mathcal{P}$.

Proof of Rice's Theorem

- Let *P* be a non-trivial scope-property of Turing acceptors. Fix some acceptor *E* recognizing Ø. Assume *E* ∉ *P* (it won't matter). Also, *P* is non-trivial, so it is true of some acceptor *A*. Note: *E* and *A* are on opposite sides of *P* !
- Define $\rho: \mathcal{E}$ -ACCEPT $\leq_c \mathcal{P}$:
- The acceptor ρ(M), call it M], initially disregards its input x and runs M on ε.
 If and when M accepts ε, M' fires A on x.
- So $\mathcal{L}(M') = \text{if } M \text{ accepts } \varepsilon \text{ then } \mathcal{L}(A)$ else \emptyset , i.e. $\mathcal{L}(E)$
- I.e. *M* accepts ε just in case $M' = \rho(M) \in \mathcal{P}$.

 The reduction *ρ* merely tinkers with algorithms' sytax, so it is computable.

More examples of scope problems

All problems below are non-trivial scope problems, and are therefore undecidable, bu Rice's Theorem.

- FINITE: $\mathcal{L}(M)$ is finite.
- INFINITE: $\mathcal{L}(M)$ is infinite.
- NOT-SINGLETON $\mathcal{L}(M)$ has at least two elements.
- EVEN Every $w \in \mathcal{L}(M)$ has even length.
- **REGULAR**: $\mathcal{L}(M)$ is a regular language. (Note: *M* here can be any acceptor)
- FILLED-LENGTH: For some n > 0 *M* accepts all strings of length *n*. That is $\mathcal{L}(M) \supseteq \Sigma^n$ for some *n*.
- NO-EMPTY-LENGTH: For every $n \ge 0$ *M* accepts some string of length *n*. That is $\mathcal{L}(M) \cap \Sigma^n \neq \emptyset$ for all *n*.

F24