
LIMITS OF COMPUTABILITY

Decidable problems

• Recall: An algorithmic decision problem is decidable

if it has a decision algorithm.

• That is, a language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is (Turing-) decidable

if it is recognized by some Turing-decider, that is

a Turing acceptor that terminates for every input.

• A decision problem is Turing-decidable if

its textual representation is.

• Given the Turing-Church Thesis we

identify informal algorithms with Turing machines!

F24 2

Decidability preserved under set operations

• Let PPP and QQQ be problems referring to the same instances,

decided by algorithms APAPAP and AQAQAQ respectively.

• The complement of PPP is decidable: to decide w ∈ P̄w ∈ P̄w ∈ P̄

run APAPAP on input www and flip the answer.

Decidability preserved under set operations

• Let PPP and QQQ be problems referring to the same instances,

decided by algorithms APAPAP and AQAQAQ respectively.

• The complement of PPP is decidable: to decide w ∈ P̄w ∈ P̄w ∈ P̄

run APAPAP on input www and flip the answer.

• The intersection of PPP and QQQ is decidable:

to decide w ∈ P ∩ Qw ∈ P ∩ Qw ∈ P ∩ Q

◮ run APAPAP on www, if it rejects, reject; if it accepts

◮ run AQAQAQ on www, if it rejects, reject; if it accepts accept.

• The union of PPP and QQQ is decidable:

◮ run APAPAP on www, if it accepts, accept; if it rejects,

◮ run AQAQAQ on www, if it accepts, accept; if it rejects reject.

F24 3

UNDECIDABILITY

An undecidable problem

• The problem “Self non-accept” (SNASNASNA):

Instances: Turing-acceptors MMM

Property: MMM does not accept M#M#M#.

An undecidable problem

• The problem “Self non-accept” (SNASNASNA):

Instances: Turing-acceptors MMM

Property: MMM does not accept M#M#M#.

• We show that SNASNASNA is not recognized, let alone decidable.

An undecidable problem

• The problem “Self non-accept” (SNASNASNA):

Instances: Turing-acceptors MMM

Property: MMM does not accept M#M#M#.

• We show that SNASNASNA is not recognized, let alone decidable.

• Suppose we had an acceptor DDD recognizing SNASNASNA, that is:

DDD accepts M#M#M# iff MMM does not accept M#M#M#

An undecidable problem

• The problem “Self non-accept” (SNASNASNA):

Instances: Turing-acceptors MMM

Property: MMM does not accept M#M#M#.

• We show that SNASNASNA is not recognized, let alone decidable.

• Suppose we had an acceptor DDD recognizing SNASNASNA, that is:

DDD accepts M#M#M# iff MMM does not accept M#M#M#

• Taking for MMM the particular acceptor DDD :

DDD accepts D#D#D# iff DDD does not accept D#D#D#

An undecidable problem

• The problem “Self non-accept” (SNASNASNA):

Instances: Turing-acceptors MMM

Property: MMM does not accept M#M#M#.

• We show that SNASNASNA is not recognized, let alone decidable.

• Suppose we had an acceptor DDD recognizing SNASNASNA, that is:

DDD accepts M#M#M# iff MMM does not accept M#M#M#

• Taking for MMM the particular acceptor DDD :

DDD accepts D#D#D# iff DDD does not accept D#D#D#

• Contradiction!

There can be no acceptor DDD for SNASNASNA !

F24 5

Analogy with Russell’s Paradox

• Recall Russell’s Paradox:

Define R =df {x | xR =df {x | xR =df {x | x a set, x 6∈ x}x 6∈ x}x 6∈ x}

That is: for any set zzz z ∈ Rz ∈ Rz ∈ R iff z 6∈ zz 6∈ zz 6∈ z.

• In particular taking RRR for zzz : R ∈ RR ∈ RR ∈ R iff R 6∈ RR 6∈ RR 6∈ R

• RRR is a collection of sets, which cannot be admitted as a “set.”

Core of the problem:

Objects xxx are both objects and sets.

• SNASNASNA is a set of acceptors, which cannot be recognized by an acceptor.

Core of the problem:

An acceptor MMM is both a string M#M#M# and a language L(M)L(M)L(M).

F24 6

ACCEPTACCEPTACCEPT is undecidable

• SNASNASNA is a contrived decision problem,

designed to bootstrap our exploration of undecidability.

• ACCEPTACCEPTACCEPT is a natural and important problem:

Instances: Pairs (M, w)(M, w)(M, w) , MMM an acceptor, www a string.

Property: MMM accepts www.

• Theorem: ACCEPTACCEPTACCEPT is undecidable.

• Proof: If ACCEPTACCEPTACCEPT were decidable,

then so would be its complement NON-ACCEPTNON-ACCEPTNON-ACCEPT.

• But then NSANSANSA would also be decidable:

To determine whether MMM accepts M#M#M#

just ask whether NON-ACCEPTNON-ACCEPTNON-ACCEPT says “yes” for input (M, M#)(M, M#)(M, M#).

F24 7

SEMI-DECIDABLE PROBLEMS

Semi-decidable problems

• ACCEPTACCEPTACCEPT is undecidable,

but it is recognized by an acceptor: the universal interpreter!

• That’s more than we can say about NSANSANSA,

which is not recognized even allowing acceptors that are not deciders.

Semi-decidable problems

• ACCEPTACCEPTACCEPT is undecidable,

but it is recognized by an acceptor: the universal interpreter!

• That’s more than we can say about NSANSANSA,

which is not recognized even allowing acceptors that are not deciders.

• A problem is semi-decidable (SD) (i.e. half-decidable)

if it is recognized (as a language) by a Turing-acceptor.

“Semi-decidable” and “recognized” are synonymous!

Semi-decidable problems

• ACCEPTACCEPTACCEPT is undecidable,

but it is recognized by an acceptor: the universal interpreter!

• That’s more than we can say about NSANSANSA,

which is not recognized even allowing acceptors that are not deciders.

• A problem is semi-decidable (SD) (i.e. half-decidable)

if it is recognized (as a language) by a Turing-acceptor.

“Semi-decidable” and “recognized” are synonymous!

• Every decidable problem is SD, of course.

• But not conversely: ACCEPTACCEPTACCEPT is SD but not decidable.

• And NSANSANSA is not even SD.

F24 9

Disregarding rejection

• A decision algorithm for problem PPP

identifies correctly both yes and no instances.

• A recognition (semi-decision) algorithm for PPP

identifies correctly the yes instances,

but might loop for some (or all) no instances.

noyes yes

DECISION SEMI−DECISION

F24 10

Two levels of “computable” problems

• Since some problems are undecidable but SD (eg. ACCEPTACCEPTACCEPT)

we have two levels of problems that are “computationally solvable”.

• It make sense to make sure we understand better SD (the “weak” level).

• So we’ll consider two characterizations of SD,

adding to our original definition SD=recognized.

Two levels of “computable” problems

• Since some problems are undecidable but SD (eg. ACCEPTACCEPTACCEPT)

we have two levels of problems that are “computationally solvable”.

• It make sense to make sure we understand better SD (the “weak” level).

• So we’ll consider two characterizations of SD,

adding to our original definition SD=recognized.

◮ The first characterization refers to certification,

and suggests that a problem is SD iff it becomes decidable

when we are given a “hint” for each instance.

Two levels of “computable” problems

• Since some problems are undecidable but SD (eg. ACCEPTACCEPTACCEPT)

we have two levels of problems that are “computationally solvable”.

• It make sense to make sure we understand better SD (the “weak” level).

• So we’ll consider two characterizations of SD,

adding to our original definition SD=recognized.

◮ The first characterization refers to certification,

and suggests that a problem is SD iff it becomes decidable

when we are given a “hint” for each instance.

◮ The other characterization is based on enumeration,

and states that a problem is SD

just in case it is generated by a computable process.

F24 11

CHARACTERIZATIONS OF SD

Certificates

• Many decision problems are of the form

Given an instance XXX is there an object ccc such that ... ?

Certificates

• Many decision problems are of the form

Given an instance XXX is there an object ccc such that ... ?

Examples:

1. Given a graph XXX ,

is there a cycle ccc visiting each edge once?

Certificates

• Many decision problems are of the form

Given an instance XXX is there an object ccc such that ... ?

Examples:

1. Given a graph XXX ,

is there a cycle ccc visiting each edge once?

2. Given a natural number XXX , does it have a divisor c > 1c > 1c > 1.

Certificates

• Many decision problems are of the form

Given an instance XXX is there an object ccc such that ... ?

Examples:

1. Given a graph XXX ,

is there a cycle ccc visiting each edge once?

2. Given a natural number XXX , does it have a divisor c > 1c > 1c > 1.

• We say that ccc is a certificate for X ∈ PX ∈ PX ∈ P.

Certificates

• Many decision problems are of the form

Given an instance XXX is there an object ccc such that ... ?

Examples:

1. Given a graph XXX ,

is there a cycle ccc visiting each edge once?

2. Given a natural number XXX , does it have a divisor c > 1c > 1c > 1.

• We say that ccc is a certificate for X ∈ PX ∈ PX ∈ P.

• If the ccc is provided somehow,

it only remains to check that it actually works:

an appropriate cycle for (a),

a divisor for (b).

Certification defined

• Let PPP be a decision-problem.

A certification for PPP is a mapping ⊢⊢⊢

from finite discrete objects to instances of PPP.

• c ⊢ Xc ⊢ Xc ⊢ X says that

ccc is a certificate that XXX satisfies PPP.

• That is, X ∈ PX ∈ PX ∈ P iff c ⊢ Xc ⊢ Xc ⊢ X for some ccc.

F24 14

Examples of certifications

• COMPOSITECOMPOSITECOMPOSITE:

A certification is the relation ⊢⊢⊢ where

c ⊢ nc ⊢ nc ⊢ n iff n > 2n > 2n > 2 and ccc is a divisor of nnn.

Examples of certifications

• INT-POLYNOMIALSINT-POLYNOMIALSINT-POLYNOMIALS:

A certification is the relation ⊢⊢⊢ where

c ⊢ p[x1 . . . xn]c ⊢ p[x1 . . . xn]c ⊢ p[x1 . . . xn] iff

p[x1 . . . xk]p[x1 . . . xk]p[x1 . . . xk] is a polynomial with integer coefficients

and variables among x1 . . . xkx1 . . . xkx1 . . . xk

and ccc is a list z1, . . . , zkz1, . . . , zkz1, . . . , zk of integers

s.t. p[z1, ..., zk] = 0p[z1, ..., zk] = 0p[z1, ..., zk] = 0.

Examples of certifications

• The INT-PARTITIONINT-PARTITIONINT-PARTITION Problem asks whether a finite S ⊂ NS ⊂ NS ⊂ N]

has a subset PPP s.t.
∑

P = (
∑

S)/2
∑

P = (
∑

S)/2
∑

P = (
∑

S)/2.

A certification is the relation ⊢⊢⊢ where

P ⊢ SP ⊢ SP ⊢ S iff S ⊂ NS ⊂ NS ⊂ N is finite, P ⊂ SP ⊂ SP ⊂ S,

and
∑

P = (
∑

S)/2
∑

P = (
∑

S)/2
∑

P = (
∑

S)/2.

Examples of certifications

• VALIDITYVALIDITYVALIDITY: Given a first-order formula ϕϕϕ, is it valid,

i.e. true in all structures.

A certification is the relation ⊢⊢⊢ where

π ⊢ ϕπ ⊢ ϕπ ⊢ ϕ holds iff πππ is a first-order proof of ϕϕϕ.

This is a certification of the Validity Problem because

a formula ϕϕϕ is valid iff it has a proof.

F24 15

Decidable certifications

• A certification ⊢⊢⊢ for a problem PPP is decidable

if it is decidable as a set:

There is an algorithm deciding, given ccc and instance XXX ,

whether c ⊢ Xc ⊢ Xc ⊢ X .

Decidable certifications

• A certification ⊢⊢⊢ for a problem PPP is decidable

if it is decidable as a set:

There is an algorithm deciding, given ccc and instance XXX ,

whether c ⊢ Xc ⊢ Xc ⊢ X .

• Example: ACCEPTACCEPTACCEPT has the certification ⊢⊢⊢

where c ⊢ (M, w)c ⊢ (M, w)c ⊢ (M, w) iff ccc is an accepting trace of MMM for input www.

Decidable certifications

• A certification ⊢⊢⊢ for a problem PPP is decidable

if it is decidable as a set:

There is an algorithm deciding, given ccc and instance XXX ,

whether c ⊢ Xc ⊢ Xc ⊢ X .

• Example: ACCEPTACCEPTACCEPT has the certification ⊢⊢⊢

where c ⊢ (M, w)c ⊢ (M, w)c ⊢ (M, w) iff ccc is an accepting trace of MMM for input www.

• This certification is decidable:

Given string ccc and instance (M#, w)(M#, w)(M#, w) of ACCEPTACCEPTACCEPT

it is tedious but easy to check that ccc is

an accepting trace of MMM for input www .

F24 16

Decidable certification = semi-decidable

• Theorem. LLL is recognized by an acceptor

iff it has a decidable certification.

Decidable certification = semi-decidable

• Theorem. LLL is recognized by an acceptor

iff it has a decidable certification.

=⇒=⇒=⇒ : Suppose L = L(M)L = L(M)L = L(M).

Let c ⊢ wc ⊢ wc ⊢ w iff ccc is a trace of MMM that accepts www.

Decidable certification = semi-decidable

• Theorem. LLL is recognized by an acceptor

iff it has a decidable certification.

=⇒=⇒=⇒ : Suppose L = L(M)L = L(M)L = L(M).

Let c ⊢ wc ⊢ wc ⊢ w iff ccc is a trace of MMM that accepts www.

◮ ⊢⊢⊢ is a certification for LLL, since MMM recognizes LLL.

Decidable certification = semi-decidable

• Theorem. LLL is recognized by an acceptor

iff it has a decidable certification.

=⇒=⇒=⇒ : Suppose L = L(M)L = L(M)L = L(M).

Let c ⊢ wc ⊢ wc ⊢ w iff ccc is a trace of MMM that accepts www.

◮ ⊢⊢⊢ is a certification for LLL, since MMM recognizes LLL.

◮ ⊢⊢⊢ is decidable:

Check ccc ’s first cfg is MMM ’s initial cfg for input www.

Check that successive transitions in ccc are correct for MMM .

Check that ccc ’s last cfg is accepting for MMM .

Decidable certification = semi-decidable

• Theorem. LLL is recognized by an acceptor

iff it has a decidable certification.

⇐=⇐=⇐= :

Suppose ⊢⊢⊢ is a decidable certification for LLL.

Here is an algorithm that recognizes LLL:

Decidable certification = semi-decidable

• Theorem. LLL is recognized by an acceptor

iff it has a decidable certification.

⇐=⇐=⇐= :

Suppose ⊢⊢⊢ is a decidable certification for LLL.

Here is an algorithm that recognizes LLL:

◮ Given w ∈ Lw ∈ Lw ∈ L check successive strings ccc

(in size+lexicographic order) whether c ⊢ wc ⊢ wc ⊢ w.

Decidable certification = semi-decidable

• Theorem. LLL is recognized by an acceptor

iff it has a decidable certification.

⇐=⇐=⇐= :

Suppose ⊢⊢⊢ is a decidable certification for LLL.

Here is an algorithm that recognizes LLL:

◮ Given w ∈ Lw ∈ Lw ∈ L check successive strings ccc

(in size+lexicographic order) whether c ⊢ wc ⊢ wc ⊢ w.

◮ Accept www if and when such a ccc is found.

F24 17

Computably enumerated problems

• A problem L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is computably-enumerated (CE)

if there is a computable function f : N → Σ∗f : N → Σ∗f : N → Σ∗ with image LLL

Computably enumerated problems

• A problem L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is computably-enumerated (CE)

if there is a computable function f : N → Σ∗f : N → Σ∗f : N → Σ∗ with image LLL

• That is, L = {f(0), f(1), . . .}L = {f(0), f(1), . . .}L = {f(0), f(1), . . .} is a listing of LLL .

We say that fff enumerates LLL.

F24 18

SD ⇐⇒⇐⇒⇐⇒ computably enumerated

Theorem.

A non-empty language is SD

iff it is computably enumerated.

F24 19

SD =⇒=⇒=⇒ computably enumerated

• Given a non-empty SD language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ ,

let w0 ∈ Lw0 ∈ Lw0 ∈ L

and let ⊢⊢⊢ be a decidable certification for LLL.

SD =⇒=⇒=⇒ computably enumerated

• Given a non-empty SD language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ ,

let w0 ∈ Lw0 ∈ Lw0 ∈ L

and let ⊢⊢⊢ be a decidable certification for LLL.

• Consider a listing (c1, w1), (c2, w2), ...(c1, w1), (c2, w2), ...(c1, w1), (c2, w2), ... of all pairs

(c, w)(c, w)(c, w) where ccc is a potential-certificate and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ .

(Say the listing is by size-lexicographic order.)

• Now define f(n) = wnf(n) = wnf(n) = wn if cn ⊢ wncn ⊢ wncn ⊢ wn

but f(n) = w0f(n) = w0f(n) = w0 otherwise.

SD =⇒=⇒=⇒ computably enumerated

• Given a non-empty SD language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ ,

let w0 ∈ Lw0 ∈ Lw0 ∈ L

and let ⊢⊢⊢ be a decidable certification for LLL.

• Consider a listing (c1, w1), (c2, w2), ...(c1, w1), (c2, w2), ...(c1, w1), (c2, w2), ... of all pairs

(c, w)(c, w)(c, w) where ccc is a potential-certificate and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ .

(Say the listing is by size-lexicographic order.)

• Now define f(n) = wnf(n) = wnf(n) = wn if cn ⊢ wncn ⊢ wncn ⊢ wn

but f(n) = w0f(n) = w0f(n) = w0 otherwise.

• Since ⊢⊢⊢ is decidable, fff is computable.

• And since the enumeration above includes all pairs in ⊢⊢⊢ ,

the image of fff is LLL.

F24 20

SD ⇐=⇐=⇐= computably enumerated

• Suppose LLL is enumerated by a computable f : N → Σ∗f : N → Σ∗f : N → Σ∗.

• L = L(M)L = L(M)L = L(M) where MMM is the acceptor that

on input www calculates f(0), f(1), f(2) . . .f(0), f(1), f(2) . . .f(0), f(1), f(2) . . .,

and accepts www if and when it is obtained as output of fff .

F24 21

Orderly-enumerations

• A problem L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is orderly-enumerated

if it is computably-enumerated by some fff which is

◮ Injective

◮ Non-contracting: |f(n)| 6 |f(n + 1)||f(n)| 6 |f(n + 1)||f(n)| 6 |f(n + 1)| for all n > 0n > 0n > 0.

Orderly-enumerations

• A problem L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is orderly-enumerated

if it is computably-enumerated by some fff which is

◮ Injective

◮ Non-contracting: |f(n)| 6 |f(n + 1)||f(n)| 6 |f(n + 1)||f(n)| 6 |f(n + 1)| for all n > 0n > 0n > 0.

• That is, L = {f(0), f(1), . . .}L = {f(0), f(1), . . .}L = {f(0), f(1), . . .} is a listing of LLL

without repetition and in non-contracting order.

F24 22

Decidable ⇐⇒⇐⇒⇐⇒ orderly-enumerated

• Theorem.

An infinite language LLL is decidable iff it is orderly-enumerated .

• I.e. a language is decidable iff it is finite or orderly-enumerated.

F24 23

Decidable =⇒=⇒=⇒ orderly enumerated

Suppose LLL is recognized by a decider MMM .

Decidable =⇒=⇒=⇒ orderly enumerated

Suppose LLL is recognized by a decider MMM .

◮ Referring to size-lexicographic ordering:

LLL is orderly-enumerated by

f(0)f(0)f(0) === first www accepted by MMM

f(n + 1)f(n + 1)f(n + 1) === first www after f(n)f(n)f(n) accepted by MMM

Decidable =⇒=⇒=⇒ orderly enumerated

Suppose LLL is recognized by a decider MMM .

◮ Referring to size-lexicographic ordering:

LLL is orderly-enumerated by

f(0)f(0)f(0) === first www accepted by MMM

f(n + 1)f(n + 1)f(n + 1) === first www after f(n)f(n)f(n) accepted by MMM

◮ Since LLL is infinite, fff is a total function.

Decidable =⇒=⇒=⇒ orderly enumerated

Suppose LLL is recognized by a decider MMM .

◮ Referring to size-lexicographic ordering:

LLL is orderly-enumerated by

f(0)f(0)f(0) === first www accepted by MMM

f(n + 1)f(n + 1)f(n + 1) === first www after f(n)f(n)f(n) accepted by MMM

◮ Since LLL is infinite, fff is a total function.

◮ fff is a non-contracting injection by dfn,

and is computable since MMM is a decider.

F24 24

Decidable ⇐=⇐=⇐= orderly enumerated

• Suppose LLL is orderly-enumerated by f : N → Σ∗f : N → Σ∗f : N → Σ∗.

• Then L = L(M)L = L(M)L = L(M), where MMM implements the following algorithm:

on input www compute f(n)f(n)f(n) for successive nnn’s,

accept if www is reached, stop and reject if |w||w||w| is exceeded.

• MMM is a decider because fff is

total, injective, and non-contracting.

F24 25

Decidability in terms of semi-decidability

• We characterized SD in terms of decidability:

LLL is SD iff it has a decidable certification.

• We now characterize decidability in terms of semi-decidability.

Decidability in terms of semi-decidability

• We characterized SD in terms of decidability:

LLL is SD iff it has a decidable certification.

• We now characterize decidability in terms of semi-decidability.

• Motivation:

A decision algorithm answers yes/noyes/noyes/no correctly.

A semi-decision algorithm answers just the yesyesyes cases.

• Decidability of LLL is like having two semi-decision algorithms:

one for LLL and the other for L̄̄L̄L .

Decidability in terms of semi-decidability

• We characterized SD in terms of decidability:

LLL is SD iff it has a decidable certification.

• We now characterize decidability in terms of semi-decidability.

• Theorem.

A language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is decidable iff

both LLL and its complement L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L are SD.

Decidability in terms of semi-decidability

• We characterized SD in terms of decidability:

LLL is SD iff it has a decidable certification.

• We now characterize decidability in terms of semi-decidability.

• Theorem.

A language L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is decidable iff

both LLL and its complement L̄ = Σ∗ − LL̄ = Σ∗ − LL̄ = Σ∗ − L are SD.

• A problem whose complement is SD is said to be co-SD.

So the Theorem states that

a problem is decidable iff it is both SD and co-SD.

F24 26

Decidable =⇒=⇒=⇒ SD and co-SD

If LLL is decidable, then so is its complement.

Every decidable language is trivially SD, so both LLL and L̄̄L̄L are SD.

F24 27

Decidable ⇐=⇐=⇐= SD and co-SD

• Suppose that LLL and L̄̄L̄L are both SD.

Decidable ⇐=⇐=⇐= SD and co-SD

• Suppose that LLL and L̄̄L̄L are both SD.

• If one of them is empty, then they are both trivially decidable.

Decidable ⇐=⇐=⇐= SD and co-SD

• Suppose that LLL and L̄̄L̄L are both SD.

• If one of them is empty, then they are both trivially decidable.

• Suppose that neither is empty.

Decidable ⇐=⇐=⇐= SD and co-SD

• Suppose that LLL and L̄̄L̄L are both SD.

• If one of them is empty, then they are both trivially decidable.

• Suppose that neither is empty.

◮ LLL is SD, so it is the image of a computable f+ : N → Σ∗f+ : N → Σ∗f+ : N → Σ∗.

◮ L̄̄L̄L is also SD, so it too is the image of a computable f− : N → Σ∗f− : N → Σ∗f− : N → Σ∗.

Decidable ⇐=⇐=⇐= SD and co-SD

• Suppose that LLL and L̄̄L̄L are both SD.

• If one of them is empty, then they are both trivially decidable.

• Suppose that neither is empty.

◮ LLL is SD, so it is the image of a computable f+ : N → Σ∗f+ : N → Σ∗f+ : N → Σ∗.

◮ L̄̄L̄L is also SD, so it too is the image of a computable f− : N → Σ∗f− : N → Σ∗f− : N → Σ∗.

• To decide w ∈ Lw ∈ Lw ∈ L calculate f+(0), f−(0), f+(1), f−(1)...f+(0), f−(0), f+(1), f−(1)...f+(0), f−(0), f+(1), f−(1)...

until www is obtained as an output.

If it is an output of f+f+f+ then w ∈ Lw ∈ Lw ∈ L ,

if of f−f−f− then w ∈ L̄w ∈ L̄w ∈ L̄ .

Decidable ⇐=⇐=⇐= SD and co-SD

• Suppose that LLL and L̄̄L̄L are both SD.

• If one of them is empty, then they are both trivially decidable.

• Suppose that neither is empty.

◮ LLL is SD, so it is the image of a computable f+ : N → Σ∗f+ : N → Σ∗f+ : N → Σ∗.

◮ L̄̄L̄L is also SD, so it too is the image of a computable f− : N → Σ∗f− : N → Σ∗f− : N → Σ∗.

• To decide w ∈ Lw ∈ Lw ∈ L calculate f+(0), f−(0), f+(1), f−(1)...f+(0), f−(0), f+(1), f−(1)...f+(0), f−(0), f+(1), f−(1)...

until www is obtained as an output.

If it is an output of f+f+f+ then w ∈ Lw ∈ Lw ∈ L ,

if of f−f−f− then w ∈ L̄w ∈ L̄w ∈ L̄ .

• So LLL is decidable.

F24 28

Summary of characterizations

Let L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗

• The following are equivalent:

(a) LLL is semi-decidable, i.e. recognized by an acceptor

(b) LLL is computably-enumerated

(c) LLL has a decidable certification

• The following are equivalent:

(a) LLL is decidable, i.e. recognized by a terminating acceptor

(b) LLL is orderly-enumerated

(c) LLL is both SD and co-SD

• (a) are characterizations in terms of machine acceptors,

(b) in terms of generators,

(c) decidability and decidability in terms of each other.

F24 29

SD is closed under intersection

• Suppose L, K ⊆ Σ∗L, K ⊆ Σ∗L, K ⊆ Σ∗ are SD,

recognized by acceptors ALALAL and AkAkAk.

• We show that L ∩ KL ∩ KL ∩ K is SD.

The proof is similar to that for closure of decidable languages:

• An acceptor AAA for L ∩ KL ∩ KL ∩ K simulates, on input www ,

ALALAL , and if and when ALALAL accepts www it simulates AkAkAk .

• If either of the two processes does not terminate,

then neither does AAA .

F24 30

SD is closed under union

• The union L ∪ KL ∪ KL ∪ K is also SD.

• Here we cannot run ALALAL followed by AKAKAK ,

because ALALAL may fail to terminate, whereas AKAKAK accepts.

SD is closed under union

• The union L ∪ KL ∪ KL ∪ K is also SD.

• Here we cannot run ALALAL followed by AKAKAK ,

because ALALAL may fail to terminate, whereas AKAKAK accepts.

• L, KL, KL, K are SD, so they have decidable certifications ⊢L⊢L⊢L and ⊢K⊢K⊢K .

SD is closed under union

• The union L ∪ KL ∪ KL ∪ K is also SD.

• Here we cannot run ALALAL followed by AKAKAK ,

because ALALAL may fail to terminate, whereas AKAKAK accepts.

• L, KL, KL, K are SD, so they have decidable certifications ⊢L⊢L⊢L and ⊢K⊢K⊢K .

• Let ⊢L∪K⊢L∪K⊢L∪K be ⊢L ∪ ⊢K⊢L ∪ ⊢K⊢L ∪ ⊢K .

SD is closed under union

• The union L ∪ KL ∪ KL ∪ K is also SD.

• Here we cannot run ALALAL followed by AKAKAK ,

because ALALAL may fail to terminate, whereas AKAKAK accepts.

• L, KL, KL, K are SD, so they have decidable certifications ⊢L⊢L⊢L and ⊢K⊢K⊢K .

• Let ⊢L∪K⊢L∪K⊢L∪K be ⊢L ∪ ⊢K⊢L ∪ ⊢K⊢L ∪ ⊢K .

• Then ⊢L∪K⊢L∪K⊢L∪K is a decidable certification for L ∪ KL ∪ KL ∪ K :

w ∈ L ∪ Kw ∈ L ∪ Kw ∈ L ∪ K iff w ∈ Lw ∈ Lw ∈ L or w ∈ Kw ∈ Kw ∈ K

iff c ⊢L wc ⊢L wc ⊢L w or c ⊢K wc ⊢K wc ⊢K w for some ccc since ⊢L⊢L⊢L and ⊢K⊢K⊢K are certifications

iff c ⊢L∪K wc ⊢L∪K wc ⊢L∪K w for some ccc by the dfn of ⊢L∪K⊢L∪K⊢L∪K

F24 31

SD is not closed under complement!

• We saw that ACCEPTACCEPTACCEPT is SD but not decidable.

• If LLL is any undecidable SD language,

such as ACCEPTACCEPTACCEPT, then its complement is not SD,

or else LLL would be both SD and co-SD,

and therefore decidable.

F24 32

REDUCTIONS BETWEEN PROBLEMS

Using other problems’ solution

• We often fulfill tasks using tools for other tasks.

◮ To match two decks of card, first sort them.

Matching unsorted card-decks reduces to matching sorted decks.

◮ To use biased coins when a fair coin is needed

use a biased coin in double-rounds:

take HT as “head,” TH as “tail,” discard HH and TT.

Fair-coin is reduced to double-round biased-coin.

◮ A calculator with squaring but no multiplication:

Define multiplication:

x · y = (x + y)2 − (x − y)2 /2 /2x · y = (x + y)2 − (x − y)2 /2 /2x · y = (x + y)2 − (x − y)2 /2 /2

Multiplying is reduced to squaring and halving.

Reduction between decision problems

• A reduction between decision problems means

solving problem PPP by converting its instances

into instances of a problem QQQ.

• If that mapping is relatively easy,

then a solution to QQQ yields a solution for PPP.

F24 36

Example: EULER-CYCLEEULER-CYCLEEULER-CYCLE reduces to EVEN-DEGREEEVEN-DEGREEEVEN-DEGREE

• A cycle in a multi-graph GGG

is a list v0, . . . , vn = v0v0, . . . , vn = v0v0, . . . , vn = v0 of vertices

where every two consecutive ones are adjacent in GGG.

Example: EULER-CYCLEEULER-CYCLEEULER-CYCLE reduces to EVEN-DEGREEEVEN-DEGREEEVEN-DEGREE

• A cycle in a multi-graph GGG

is a list v0, . . . , vn = v0v0, . . . , vn = v0v0, . . . , vn = v0 of vertices

where every two consecutive ones are adjacent in GGG.

• An Euler-cycle visits every edge exactly once.

Example: EULER-CYCLEEULER-CYCLEEULER-CYCLE reduces to EVEN-DEGREEEVEN-DEGREEEVEN-DEGREE

• A cycle in a multi-graph GGG

is a list v0, . . . , vn = v0v0, . . . , vn = v0v0, . . . , vn = v0 of vertices

where every two consecutive ones are adjacent in GGG.

• An Euler-cycle visits every edge exactly once.

EULER-CYCLEEULER-CYCLEEULER-CYCLE:

Given a graph GGG, does it have an Euler-cycle?

Example: EULER-CYCLEEULER-CYCLEEULER-CYCLE reduces to EVEN-DEGREEEVEN-DEGREEEVEN-DEGREE

• A cycle in a multi-graph GGG

is a list v0, . . . , vn = v0v0, . . . , vn = v0v0, . . . , vn = v0 of vertices

where every two consecutive ones are adjacent in GGG.

• An Euler-cycle visits every edge exactly once.

EULER-CYCLEEULER-CYCLEEULER-CYCLE:

Given a graph GGG, does it have an Euler-cycle?

• Theorem:

GGG has an Euler-cycle iff every vertex has even degree.

Example: INTEGER-PARTITIONINTEGER-PARTITIONINTEGER-PARTITION and EXACT-SUMEXACT-SUMEXACT-SUM

• INTEGER-PARTITIONINTEGER-PARTITIONINTEGER-PARTITION:

Instances: Finite S ⊆ NS ⊆ NS ⊆ N

Property: Exists P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P =
∑

S/2
∑

P =
∑

S/2
∑

P =
∑

S/2.

• Examples: For S = {1, 2, 3}S = {1, 2, 3}S = {1, 2, 3} the answer is no.

For S = {1, 3, 4, 6}S = {1, 3, 4, 6}S = {1, 3, 4, 6} it’s yes.

Example: INTEGER-PARTITIONINTEGER-PARTITIONINTEGER-PARTITION and EXACT-SUMEXACT-SUMEXACT-SUM

• INTEGER-PARTITIONINTEGER-PARTITIONINTEGER-PARTITION:

Instances: Finite S ⊆ NS ⊆ NS ⊆ N

Property: Exists P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P =
∑

S/2
∑

P =
∑

S/2
∑

P =
∑

S/2.

• Examples: For S = {1, 2, 3}S = {1, 2, 3}S = {1, 2, 3} the answer is no.

For S = {1, 3, 4, 6}S = {1, 3, 4, 6}S = {1, 3, 4, 6} it’s yes.

• EXACT-SUMEXACT-SUMEXACT-SUM:

Instances: Finite S ⊂ NS ⊂ NS ⊂ N and a target t ∈ Nt ∈ Nt ∈ N

Property: Exists P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P = t
∑

P = t
∑

P = t

Example: INTEGER-PARTITIONINTEGER-PARTITIONINTEGER-PARTITION and EXACT-SUMEXACT-SUMEXACT-SUM

• INTEGER-PARTITIONINTEGER-PARTITIONINTEGER-PARTITION:

Instances: Finite S ⊆ NS ⊆ NS ⊆ N

Property: Exists P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P =
∑

S/2
∑

P =
∑

S/2
∑

P =
∑

S/2.

• Examples: For S = {1, 2, 3}S = {1, 2, 3}S = {1, 2, 3} the answer is no.

For S = {1, 3, 4, 6}S = {1, 3, 4, 6}S = {1, 3, 4, 6} it’s yes.

• EXACT-SUMEXACT-SUMEXACT-SUM:

Instances: Finite S ⊂ NS ⊂ NS ⊂ N and a target t ∈ Nt ∈ Nt ∈ N

Property: Exists P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P = t
∑

P = t
∑

P = t

• Reduction ρρρ:

Map each instance SSS of INTEGER-PARTITIONINTEGER-PARTITIONINTEGER-PARTITION to (S, (
∑

S)/2)(S, (
∑

S)/2)(S, (
∑

S)/2)

F24 38

Example: CLIQUECLIQUECLIQUE and INDEP-SETINDEP-SETINDEP-SET

• Clique in graph GGG : set of pairwise-adjacent vertices.

• CLIQUECLIQUECLIQUE: Given GGG and t ∈ Nt ∈ Nt ∈ N

does GGG have a clique of size > t> t> t?

• Independent set in GGG : set of pairwise non-adjacent vertices.

• INDEP-SETINDEP-SETINDEP-SET: Given GGG and t ∈ Nt ∈ Nt ∈ N

does GGG have an independent-set of size > t> t> t?

F24 39

CLIQUECLIQUECLIQUE reduces to INDEP-SETINDEP-SETINDEP-SET

Reduction by a “reverse-video” mapping:

B

C

D

E

{A,B,D} a clique of size 3

Missing edges are in

(V,E)

A blue graph

A

pink

A

B

C

D

E

A red graph

Missing edges are in

{A,B,D} an ind set of size 3

(V,V −E)
2

blue

F24 40

Dfn of reductions between problems

• A reduction of a decision-problem PPP to a problem QQQ is a function

ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}

such that X ∈ PX ∈ PX ∈ P iff ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q.

That is, if X ∈ PX ∈ PX ∈ P then ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q

and if X 6∈ PX 6∈ PX 6∈ P then ρ(X) 6∈ Qρ(X) 6∈ Qρ(X) 6∈ Q .

Dfn of reductions between problems

• A reduction of a decision-problem PPP to a problem QQQ is a function

ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}

such that X ∈ PX ∈ PX ∈ P iff ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q.

That is, if X ∈ PX ∈ PX ∈ P then ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q

and if X 6∈ PX 6∈ PX 6∈ P then ρ(X) 6∈ Qρ(X) 6∈ Qρ(X) 6∈ Q .

• We write then ρ : P 6 Qρ : P 6 Qρ : P 6 Q.

Dfn of reductions between problems

• A reduction of a decision-problem PPP to a problem QQQ is a function

ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}ρ : {Instances of P} → {Instances of Q}

such that X ∈ PX ∈ PX ∈ P iff ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q.

That is, if X ∈ PX ∈ PX ∈ P then ρ(X) ∈ Qρ(X) ∈ Qρ(X) ∈ Q

and if X 6∈ PX 6∈ PX 6∈ P then ρ(X) 6∈ Qρ(X) 6∈ Qρ(X) 6∈ Q .

• We write then ρ : P 6 Qρ : P 6 Qρ : P 6 Q.

• A reduction ρρρ is helpful when it’s easier

to compute the output ρ(X)ρ(X)ρ(X) than to decide whether X ∈ PX ∈ PX ∈ P.

• When ρρρ is computable we write ρ : P 6c Qρ : P 6c Qρ : P 6c Q

and say that PPP computably-reduces to QQQ.

F24 41

ACCEPTACCEPTACCEPT 6c6c6c ε-ACCEPTε-ACCEPTε-ACCEPT

• Map instance (M, w)(M, w)(M, w) of ACCEPTACCEPTACCEPT to instance MwMwMw of ε-ACCEPTε-ACCEPTε-ACCEPT

so that MMM accepts www iff MwMwMw accepts εεε.

ACCEPTACCEPTACCEPT 6c6c6c ε-ACCEPTε-ACCEPTε-ACCEPT

• Map instance (M, w)(M, w)(M, w) of ACCEPTACCEPTACCEPT to instance MwMwMw of ε-ACCEPTε-ACCEPTε-ACCEPT

so that MMM accepts www iff MwMwMw accepts εεε.

• Define MwMwMw to be the acceptor that on input xxx

runs MMM on www as input, and accepts xxx if and when MMM accepts www .

ACCEPTACCEPTACCEPT 6c6c6c ε-ACCEPTε-ACCEPTε-ACCEPT

• Map instance (M, w)(M, w)(M, w) of ACCEPTACCEPTACCEPT to instance MwMwMw of ε-ACCEPTε-ACCEPTε-ACCEPT

so that MMM accepts www iff MwMwMw accepts εεε.

• Define MwMwMw to be the acceptor that on input xxx

runs MMM on www as input, and accepts xxx if and when MMM accepts www .

• If MMM accepts www then MwMwMw accepts every string.

Otherwise MwMwMw accepts no string.

• I.e. MMM accepts www iff Mw = ρ(M, w)Mw = ρ(M, w)Mw = ρ(M, w) accepts εεε .

ACCEPTACCEPTACCEPT 6c6c6c ε-ACCEPTε-ACCEPTε-ACCEPT

• Map instance (M, w)(M, w)(M, w) of ACCEPTACCEPTACCEPT to instance MwMwMw of ε-ACCEPTε-ACCEPTε-ACCEPT

so that MMM accepts www iff MwMwMw accepts εεε.

• Define MwMwMw to be the acceptor that on input xxx

runs MMM on www as input, and accepts xxx if and when MMM accepts www .

• If MMM accepts www then MwMwMw accepts every string.

Otherwise MwMwMw accepts no string.

• I.e. MMM accepts www iff Mw = ρ(M, w)Mw = ρ(M, w)Mw = ρ(M, w) accepts εεε .

• ρρρ is computable: It is a simple syntactic construction

of algorithm MwMwMw from algorithm MMM + string www .

F24 42

Composing reductions

• If functions f, g : Σ∗ →Σ∗f, g : Σ∗ →Σ∗f, g : Σ∗ →Σ∗ are computable, the so is f ◦ gf ◦ gf ◦ g.

• Proof. The output of fff is fed to ggg as input.

• Theorem

If ρ : P 6c Qρ : P 6c Qρ : P 6c Q and ρ′ : Q 6c Rρ′ : Q 6c Rρ′ : Q 6c R then ρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c R .

• ρ ◦ ρ′ρ ◦ ρ′ρ ◦ ρ′ is computable.

It is a reduction:

x ∈ Px ∈ Px ∈ P iff ρ(x) ∈ Qρ(x) ∈ Qρ(x) ∈ Q (since ρρρ is a reduction)

iff ρ′(ρ(x)) ∈ Rρ′(ρ(x)) ∈ Rρ′(ρ(x)) ∈ R (since ρ′ρ′ρ′ is a reduction)

F24 43

Reductions preserve decidability

• Theorem.Theorem.Theorem. Suppose ρ : P 6c Qρ : P 6c Qρ : P 6c Q . If QQQ is decidable then so is PPP .

• Proof. To decide whether X ∈ PX ∈ PX ∈ P

compute ρ(X)ρ(X)ρ(X) and run the decider for QQQ on ρ(X)ρ(X)ρ(X) as input.

• Consequence: Show that a problem PPP is not decidable

by defining ρ : Q 6c Pρ : Q 6c Pρ : Q 6c P for an undecidable QQQ.

F24 44

Proving decidability via computable reductions

• Consider the PDA-ACCEPTPDA-ACCEPTPDA-ACCEPT Problem:

Given a PDA PPP over ΣΣΣ and a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗,

does PPP accept www?

• We developed an algorithm that converts a PDA PPP

to a CFG GPGPGP equivalent to PPP .

• So the PDA-ACCEPTPDA-ACCEPTPDA-ACCEPT problem computably reduces to the problem:

◮ CFG-GENERATE:CFG-GENERATE:CFG-GENERATE:

Given a CFG GGG over ΣΣΣ , and a string w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗,

does GGG generate www?

• We have a decision algorithm (CYK) deciding CFG-GENERATECFG-GENERATECFG-GENERATE,

so we have a decision algorithm for PDA-ACCEPTPDA-ACCEPTPDA-ACCEPT.

F24 45

Proving SD via computable reductions

• We know that the problem acceptacceptaccept, referring to Turing acceptors, is SD.

• There is an algorithm for transforming Turing acceptors MMM

to equivalent general grammars GGG , that is such that (G) = L(M)(G) = L(M)(G) = L(M) .

So the following problem is also SD.

CFG-GENERATECFG-GENERATECFG-GENERATE:

Given a grammar GGG and a string www does GGG generate www.

F24 46

SCOPE PROPERTIES OF COMPUTING DEVICES

Decision problems about Turing machines

• Properties of Turing acceptors may be decidable:

Runs more than 4 steps on input 001

Has more than 4 states

The accept state is the only terminal state

• These refer to the inner workings of the Turing machine

not to the language it recognizes.

• The εεε-accept-accept-accept problem is different:

It is about the language LLL recognized, not the recognizing device.

• The answer yes/no would be the same for any acceptor for LLL.

F24 48

Scope-properties of machines

• Many important properties of computing devices MMM

are scope-properties , in that they are about what MMM does, and not about

how it does it.

• So a scope-property of acceptors MMM

is a property of the language that MMM recognizes, i.e. L(M)L(M)L(M) .

• If two acceptors recognize the same language

then they share every scope-property.

Scope-properties of machines

• Many important properties of computing devices MMM

are scope-properties , in that they are about what MMM does, and not about

how it does it.

• So a scope-property of acceptors MMM

is a property of the language that MMM recognizes, i.e. L(M)L(M)L(M) .

• If two acceptors recognize the same language

then they share every scope-property.

• Similarly, a scope-property of transducers MMM

is a property of the partial-function that it computes.

• If two transducers compute the same partial-function

then they share every scope-property.

Examples of scope-properties of Turing-acceptors

• L(M)L(M)L(M) is finite.

• L(M)L(M)L(M) is infinite.

• Accepts at least two strings, i.e. L(M)L(M)L(M) > 2> 2> 2 elements.

• Every string accepted by MMM has even length.

• L(M)L(M)L(M) is a regular language.

This does not mean that MMM is a DFA.

• For some n > 0n > 0n > 0 MMM accepts every string of length nnn.

• For every n > 0n > 0n > 0 MMM accepts some string of length nnn.

F24 50

Examples for scope-properties of Turing-transducers MMM

• Computes a total function.

• Undefined for input εεε.

• Define for all input of even length.

• Undefined for all input of even length.

• Constant (same output for all input

• Increasing: If |x| < |y||x| < |y||x| < |y| then |f(x)| < |f(y)||f(x)| < |f(y)||f(x)| < |f(y)|

• Bounded: There is an n ∈ Nn ∈ Nn ∈ N s.t. |f(x)| 6 n|f(x)| 6 n|f(x)| 6 n for all xxx .

• Unbounded: For every nnn there is some xxx s.t. |f(x)| > n|f(x)| > n|f(x)| > n .

• Inflationary: |f(x)| > |x||f(x)| > |x||f(x)| > |x| for all xxx.

F24 51

Non-scope properties of Turing machines

• Has more than 100 states.

• Reads every input to its end.

• For some input visits every state during computation

• Never runs more than n2n2n2 steps for input of size 6 n6 n6 n

• Is a decider

(but “recognizes a deciable language” is a scope-property!)

F24 52

Rice’s Theorem

• A property is trivial for a language LLL

if it is either true of every w ∈ Lw ∈ Lw ∈ L or false for every www .

• Example: The property L(M)L(M)L(M) is SD

is always true: it just conveys the definition of SD.

• Theorem. (Henry Rice, 1951).

There is no decidable scope-property of Turing-acceptors,

other than the trivial ones.

• Proof idea:

If PPP is non-trivial, then εεε-ACCEPT-ACCEPT-ACCEPT 6c P6c P6c P.

So PPP is undecidable.

F24 53

Proof of Rice’s Theorem

• Let PPP be a non-trivial scope-property of Turing acceptors.

Fix some acceptor EEE recognizing ∅∅∅.

Assume E 6∈ PE 6∈ PE 6∈ P (it won’t matter).

Also, PPP is non-trivial, so it is true of some acceptor AAA.

Note: EEE and AAA are on opposite sides of PPP !

Proof of Rice’s Theorem

• Let PPP be a non-trivial scope-property of Turing acceptors.

Fix some acceptor EEE recognizing ∅∅∅.

Assume E 6∈ PE 6∈ PE 6∈ P (it won’t matter).

Also, PPP is non-trivial, so it is true of some acceptor AAA.

Note: EEE and AAA are on opposite sides of PPP !

• Define ρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c Pρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c Pρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c P :

• The acceptor ρ(M)ρ(M)ρ(M) , call it M]M]M],

initially disregards its input xxx and runs MMM on εεε.

If and when MMM accepts εεε, M ′M ′M ′ fires AAA on xxx.

Proof of Rice’s Theorem

• Let PPP be a non-trivial scope-property of Turing acceptors.

Fix some acceptor EEE recognizing ∅∅∅.

Assume E 6∈ PE 6∈ PE 6∈ P (it won’t matter).

Also, PPP is non-trivial, so it is true of some acceptor AAA.

Note: EEE and AAA are on opposite sides of PPP !

• Define ρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c Pρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c Pρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c P :

• The acceptor ρ(M)ρ(M)ρ(M) , call it M]M]M],

initially disregards its input xxx and runs MMM on εεε.

If and when MMM accepts εεε, M ′M ′M ′ fires AAA on xxx.

• So L(M ′) =L(M ′) =L(M ′) = if MMM accepts εεε then L(A)L(A)L(A)

else ∅∅∅, i.e. L(E)L(E)L(E)

• I.e. MMM accepts εεε just in case M ′ = ρ(M) ∈ PM ′ = ρ(M) ∈ PM ′ = ρ(M) ∈ P.

Proof of Rice’s Theorem

• Let PPP be a non-trivial scope-property of Turing acceptors.

Fix some acceptor EEE recognizing ∅∅∅.

Assume E 6∈ PE 6∈ PE 6∈ P (it won’t matter).

Also, PPP is non-trivial, so it is true of some acceptor AAA.

Note: EEE and AAA are on opposite sides of PPP !

• Define ρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c Pρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c Pρ : εεε-ACCEPTεεε-ACCEPTεεε-ACCEPT 6c P :

• The acceptor ρ(M)ρ(M)ρ(M) , call it M]M]M],

initially disregards its input xxx and runs MMM on εεε.

If and when MMM accepts εεε, M ′M ′M ′ fires AAA on xxx.

• So L(M ′) =L(M ′) =L(M ′) = if MMM accepts εεε then L(A)L(A)L(A)

else ∅∅∅, i.e. L(E)L(E)L(E)

• I.e. MMM accepts εεε just in case M ′ = ρ(M) ∈ PM ′ = ρ(M) ∈ PM ′ = ρ(M) ∈ P.

• The reduction ρρρ merely tinkers with algorithms’ sytax,

so it is computable.

F24 55

More examples of scope problems

All problems below are non-trivial scope problems,

and are therefore undecidable, bu Rice’s Theorem.

• FINITEFINITEFINITE: L(M)L(M)L(M) is finite.

• INFINITEINFINITEINFINITE: L(M)L(M)L(M) is infinite.

• NOT-SINGLETONNOT-SINGLETONNOT-SINGLETON L(M)L(M)L(M) has at least two elements.

• EVENEVENEVEN Every w ∈ L(M)w ∈ L(M)w ∈ L(M) has even length.

• REGULARREGULARREGULAR: L(M)L(M)L(M) is a regular language.

(Note: MMM here can be any acceptor)

• FILLED-LENGTHFILLED-LENGTHFILLED-LENGTH: For some n > 0n > 0n > 0 MMM accepts all strings of length nnn .

That is L(M) ⊇ ΣnL(M) ⊇ ΣnL(M) ⊇ Σn for some nnn.

• NO-EMPTY-LENGTHNO-EMPTY-LENGTHNO-EMPTY-LENGTH: For every n > 0n > 0n > 0 MMM accepts some string of length nnn.

That is L(M) ∩ Σn 6= ∅L(M) ∩ Σn 6= ∅L(M) ∩ Σn 6= ∅ for all nnn.

F24 56

