For each of the following statements determine whether it is always true.

1. The inverse of a total mapping is surjective.

For each of the following statements determine whether it is always true.

1. The inverse of a total mapping is surjective.

Solution. True. $F : A \Rightarrow B$ is total if every x in the domain of F, namely A, is mapped by F to some y in its range, i.e. B. This says precisely that every x in the range of F^{-1} , i.e. A, is mapped-to by F^{-1} from some y in B, i.e. its range. This says that F^{-1} is surjective.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.

Solution. Yes, That's the CBS Theorem

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.

Solution. True. A DFA is a special case of an NFA, where the transition mapping is a function.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.

Solution. True. The initial regular expressions denote languages of size ≤ 1 , and union and concatenation, when applied to finite languages, yield finite languages.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.

Solution. False. Every language over an alphabet Σ , including non-regular ones, is a subset of the regular languages Σ^* .

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.

Solution. False. For example, $\mathcal{P}(\mathbb{N})$ is not countable.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.
- 7. If $F: A \rightarrow B$ then F^{-1} is injective.

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.
- 7. If $F: A \rightarrow B$ then F^{-1} is injective.

Solution. True. If $F : A \rightarrow B$ then F is univalent (for every input x at most one output y) and therefore its inverse F^{-1} is injective (for every output x at most one input y.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.
- 7. If $F: A \rightarrow B$ then F^{-1} is injective.
- 8. If L is recognized by an NFA, then its complement is basic.

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.
- 7. If $F: A \rightarrow B$ then F^{-1} is injective.
- 8. If L is recognized by an NFA, then its complement is basic.

Solution. True. If L is recognized by an NFA then it is regular, so its complement is regular as well, and therefore basic.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.
- 7. If $F: A \rightarrow B$ then F^{-1} is injective.
- 8. If L is recognized by an NFA, then its complement is basic.
- 9. The union of two non-regular languages is non-regular

For each of the following statements determine whether it is always true.

- 1. The inverse of a total mapping is surjective.
- 2. If there are injections $f: A \to B$ and $B \to A$ then $A \cong B$.
- 3. Every DFA is an NFA.
- 4. Every language denoted by a regular expression without star or plus is finite.
- 5. If L is a regular language then every sub-language of L is regular.
- 6. If a set is infinite then it is countable.
- 7. If $F: A \rightarrow B$ then F^{-1} is injective.
- 8. If L is recognized by an NFA, then its complement is basic.
- 9. The union of two non-regular languages is non-regular

Solution. False. Take a non-regular $L \subset \Sigma^*$. Then \overline{L} is non-regular, but the union is Σ^* which is regular.

1. Prove directly by induction on \mathbb{N} that $2+4+\cdots+2n = n(n+1)$

2. Let $\Sigma = \{\mathbf{a}, \mathbf{b}\}$. Prove by induction on Σ^* that $(u \cdot v)^R = v^R \cdot u^R$ for all $u, v \in \Sigma^*$.

Solution. By induction on Σ^* we prove that for every $u \in \Sigma^*$ the following statement holds: for every $v \in \Sigma^*$ $(u \cdot v)^R = v^R \cdot u^R$.

Base. $u = \varepsilon$. Then for every $v \in \Sigma^*$

$$(u \cdot v)^{R} = (\varepsilon \cdot v)^{R}$$

= v^{R} (dfn of concatenation)
= $v^{R} \cdot \varepsilon$
= $v^{R} \cdot \varepsilon^{R}$ dfn of reversal
= $v^{R} \cdot u^{R}$

Step: Assume the identity for u = w. For $u = \sigma w$ $(\sigma \in \Sigma)$ we have then $(u \cdot v)^R = ((\sigma w) \cdot v)^R$ $= (\sigma (w \cdot v))^R$ (dfn of concatenation) $= (w \cdot v)^R \cdot \sigma$ $= (v^R \cdot w^R) \cdot \sigma$ (IH) $= v^R \cdot (w^R \cdot \sigma)$ $= v^R \cdot (\sigma w)^R$ (dfn of reversal) $= v^R \cdot u^R$ 3. Convert the following NFA to an equivalent DFA.

(a) Prove that the following language is regular: $L = \{ x \cdot y \mid x, y \in \Sigma^*, |x| = |y| \}$

Solution. L consists of the strings of even length, i.e. $L = (\Sigma \cdot \Sigma)^*$ which is regular since Σ is finite and the collection of regular languages is closed under concatenation and star.

(b) Prove that the following language is not regular: $L = \{x \# y \mid x, y \in \Sigma^*, |x| = |y|\}$ (where # is a fresh symbol).

Solution. This language is not regular since it fails the clipping property. Given k, let $w = \mathbf{a}^k \# \mathbf{b}^k$ and $u = \mathbf{a}^k$. Then $w \in L$ and u is a substring of length $\geq k$. But any clipping in u would yield a string $w' = \mathbf{a}^m \# \mathbf{b}^k$ with m < k, so $w' \notin L$.

5. Convert the following NFA to an equivalent DFA. Label states of your DFA using the state-labels of the given NFA.

6. Use the state-elimination algorithm to obtain a regular expression that denotes the language below. Show all steps.

7. Use the algorithm for NFA-to-DFA conversion to obtain a DFA equivalent to the following NFA.

- 8. Let $L \subseteq \Sigma^*$ be regular. Show that the following languages are regular.
 - (a) $\{\mathbf{a} \cdot \boldsymbol{x} \mid \boldsymbol{x} \in \boldsymbol{L}\}$

Solution. This language is $L \cdot \{a\}$ which is regular as the concatenation of regular languages.

(b) $\{x \mid \mathbf{a} \cdot x \in L\}$

Solution. Since L is regular it is recognized by some DFA $M = (\Sigma, Q, s, A, \delta)$. Let $s \stackrel{a}{\rightarrow} q$ in M. Consider the DFA M' that differs from M only in having the state q above as its initial state. Then a string of the form $\mathbf{a}x$ is accepted by M, i.e. $s \stackrel{a}{\rightarrow} q \stackrel{x}{\rightarrow} A$ in M iff $q \stackrel{x}{\rightarrow} A$, i.e. iff M' accepts x. So M' recognizes $\{x \mid \mathbf{a} \cdot x \in L\}$, which is therefore regular.

(c) $\{x \cdot \mathbf{a} \cdot y \mid x, y \in L\}$

Solution. This language is $L \cdot \{a\} \cdot L$ which is regular as the concatenation of regular languages.

- 9. For each of the following languages L over the alphabet $\Sigma = \{a, b\}$ identify its residues.
 - (a) $L = \mathcal{L}(\mathbf{a} \cdot \mathbf{b} \cdot \mathbf{a}^*)$

Solution. $L/\varepsilon = L$ $L/a = \mathcal{L}(ba^*)$ $L/abu = \mathcal{L}(a^*) \text{ for all } u \in \mathcal{L}(a^*)$ $L/w = \emptyset \text{ for any other } w$

- (b) $L = \{ab, ba, aaba\}$
 - Solution. $L/\varepsilon = L$ $L/a = \{b, aba\}$ $L/b = L/aab = \{a\}$ $L/ab = L/ba = L/aaba = \{\varepsilon\}$ $L/aa = \{ba\}$ $L/w = \emptyset$ for any other w

(c) $L = \{w \in \{a, b\}^* \mid \#_a(w) \text{ is even}, \#_b(w) \text{ odd } \}$