501 Midterm

Oct 21, 2024

Start each problem on a new page. We write here Σ for the alphabet $\{a, b\}$.

- 1. (25%) For each of the following statements determine whether it is always true. (*No credit* without adequate explanation.)
 - (a) If $F: A \Rightarrow B$ is injective then so is $F^{-1}: B \Rightarrow A$.

Solution. False. The mapping $F : \{1\} \rightarrow \{0, 1\}$ that maps 1 to both 0 and 1 is injective, but its inverse maps both 0 and 1 to 0 and so is not injective.

(b) For every set S there is an injection $j: S \to \mathbb{R}$.

Solution. False. If there were an injection from $\mathcal{P}(\mathbb{R})$ to \mathbb{R} then we'd have $\mathcal{P}(\mathbb{R}) \cong \mathbb{R}$ by CBS, because the mapping $a \mapsto \{a\}$ is an injection from \mathbb{R} to $\mathcal{P}(\mathbb{R})$.

(c) If L and K are languages denoted by regular expressions then so is their intersection.

Solution. True. If L, K are denoted by regular expressions then they are regular, and so their intersection is regular. And every regular language is denoted by some regular expression.

(d) Every language denoted by a regular expression without star is finite.

Solution. True. The initial regular expressions denote languages of size ≤ 1 , and union and concatenation, when applied to finite languages, yield finite languages. (The midterm's phrasing of this problem was ambiguous about using the plus operation (+). Credit was given for negative answers based on this.)

(e) If every string in L is finite then L is recognized by an NFA.

Solution. False. Every string is finite, so the premise is vacuously true of any language L, regular or not.

2. (15%) Prove that $[0..1] \cong (0..1)$, i.e. the closed interval [0..1] is equipollent to the open interval (0..1).

Solution. $(0..1) \preccurlyeq [0..1]$ since the identity mapping from (0..1) to [0..1] is an injection.

On the other hand, $[0..1] \preccurlyeq (-1,2)$ by the identity injection, and $(-1,2) \preccurlyeq (0..1)$ by the injection $x \mapsto (x+1)/3$. Composing the two we get $[0..1] \preccurlyeq (0..1)$.

By the CBS Theorem it follows that $[0..1] \cong (0..1)$.

3. (3+3+9%)

(a) Give a generative definition of the set D of positive odd integers.

Solution. $1 \in D$ and if $x \in D$ then $x + 1 + 1 \in D$.

(b) Referring to your definition, state an induction principle for D.

Solution. Assume that a property P of positive odd integers is true of 1, and whenever it is true of x then it is also true of x + 2. Conclude that P is true of all elements of D.

(c) Using your induction principle show that $n^2 - 1$ is divisible by 8 for every odd integer. (Note: If n is odd then n+1 is even!)

Solution. Basis. For n = 1 we have $n^2 - 1 = 0$ which is divisible by 8.

Step. Assume (IH) that for n = k we have $n^2 - 1$, i.e. $k^2 - 1$, is divisible by 8. Then for n = k+2 we have

$$n^{2} - 1 = (k+2)^{2} - 1$$

= $k^{2} + 4k + 4 - 1$
= $(k^{2} + 1) + 4(k+1)$

The first addend is divisible by 8 by IH, and the second is divisible by 8 since k+1 is even. So $n^2 - 1$ is divisible by 8 for n = k+2. By induction on D it follows that $n^2 - 1$ is divisible by 8 for all $n \in D$.

- 4. (15%) Let $\Sigma = \{a, b\}$ and $L = \Sigma^* \cdot \{a\}$.
 - (a) Identify the residues of L.

Solution. L/w = L for every w not ending with a. $L/w = L \cup \{\varepsilon\}$ for every w ending with a.

(b) Construct a DFA recognizing L whose states are the residues.

Solution.

5. (15%) Prove that the following language is not regular. $L = \{ a^p \cdot b^q \mid p < q \}.$

Solution. *L* fails the Clipping Property. Given k > 0 let $w = a^k b^{k+1}$ and let *u* be *w*'s substring $b^k + 1$. Then $w \in L$ and $|u| \ge k$. Any non-empty clipping in *u* yields from *w* a string $w' = a^k b^m$ with $m \le k$, which is not in *L*.

Since L fails the Clipping Property, it is not regular.

6. (15%) Use the state-elimination algorithm to obtain a regular expression that denotes the language recognized by the following NFA. Show all steps.

