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More read-only algorithms

= Consider the language L over the Latin Alphabet consisting of strings that miss
some letter.

All English words are in L, but virtually no book is.

= L is a regular language: it is the intersection

of the 26 languages {w | w uses o} for o =a,b....
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More read-only algorithms

Consider the language L over the Latin Alphabet consisting of strings that miss
some letter.

All English words are in L, but virtually no book is.

L is a regular language: it is the intersection
of the 26 languages {w | w uses o} for o =a,b....

The smallest DFA that recognizes L
has = 2% > 67,000,000 states.

The smallest NFA recognizing L has 27 states.

Is there a deterministic algorithm
recognizing L using a small number of states?
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A deterministic algorithm

= Algorithm: Scan for each digit separately, and repeat.



A deterministic algorithm

= Algorithm: Scan for each digit separately, and repeat.

= This cannot be done if we only read forward!

The cursor would have to be scrolled back (or repositioned).

= So let's imagine a device that behaves just like an automaton,

but can move the cursor both ways.
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Extensions needed

= Each symbol read determines not only next state,

but also next move: forward or backward.

= Detecting ends of input requires end-markers:

say > (the
and LI (the

gate|) on the left,

blank

) on the right.

= Termination signaled by the states, not the end of input.

F23



Two-way automata

= A |two-way automaton (2DFA) | over an alphabet X:

» Finite set of states @)
» s € (), the initial state
» a € S, the accepting state

» Transition partial-function: d6: Q@ xI' — @ x Act
where ['=XU{>, U} and Act={+,—}.




Two-way automata

= A

= Act is the set of | Actions|.

two-way automaton (2DFA) | over an alphabet X:

» Finite set of states @)
» s € (), the initial state
» a € S, the accepting state

» Transition partial-function: d6: Q@ xI' — @ x Act
where ['=XU{>, U} and Act={+,—}.

Here they are + for “step formward” and — for “step back.”

» Note: End-markers are added to the alphabet .
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Intended behavior of 2DFAs

= Write ¢?2@p for 6(q,0) = (p, ).
= The intent:

» A 2DFA operates on the input string extended with end-markers:
Input 001201 appearsas >001201 L.

= A 2DFA scans one input symbol at a time.

Visualize it as a
>abc U >abc Ll >abc Ll
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A 2DFA for the “all-letters” language

= Here is a 2DFA over ¥ = {a,b,c}

that recognizs the strings using all three letter.



A 2DFA for the “all-letters” language

b,c (+) asbsc (_]
SRR Ny
> (+)

= Cycle through b’s and c's until an a is found.
If so, return to the gate;
if not then then the blank end-maker is reached, for which there is no transition.

The machine stops without accepting.



A 2DFA for the “all-letters” language

b,c (+) asbsc (_]
e ).
> (+)
a,C (+) aabsc (_)

s

> (+)

= Next cycle through a’s and c’s until a b is found.
If so, return to the gate; if not then the final blank is reached,

resulting as aboe in stopping without accepting.



A 2DFA for the “all-letters” language

b,c (+) asbsc (_]
L e
> (+)
a,C (+) asbsc (_)

b (-)

= Cycle through a’s and b's until a ¢ is found.

If so, accept. if not then stop at final blank without accepting.
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Operational semantics of 2DFAs: configurations

= The 2DFA is our first device where execution steps

consists in more than just a change of state.

= To describe a 2DFA’s behavior we must account for the cursor position

and therefore keep a record of the entire input for future use.
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Operational semantics of 2DFAs: configurations

The 2DFA is our first device where execution steps

consists in more than just a change of state.

To describe a 2DFA’s behavior we must account for the cursor position

and therefore keep a record of the entire input for future use.

= A| cursored-string|over X isa Y —string with one symbol-position underlined.

= A| configuration (cfg)|is a pair (g,w) where

% q is a state, and

x 1 is a cursored-string.

Example:  (x,>0101100L/)

= The |initial cfg for input w |is the cfg  (s,>wL).
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The YIELD relation between cfg’s

= Given a 2DFA M its| Yield| relation =>); is generated by

»If @™Hp  then (q,uyTv) = (p,uyTV)
> If q’y/(—;)p then (q,utyv) = (p,uryv)



The YIELD relation between cfg’s

= Given a 2DFA M its | Yield | relation =), is generated by

»If @™Hp  then (q,uyTv) = (p,uyTV)
> |If q’y(—;)p then (g,utyv) = (p,uryv)

= These clauses are the only ones in force.
If a cfg ends with a cursored symbol, as in (g,011010),

then a transition ¢ Oﬁ)) p does not apply.

= Similarly, a step-back transition has no effect when

the cursor is at the first symbol.

F23
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» Acfg ¢=(q, uwyv) is|terminal]if no transition applies.

It is

accepting
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Traces, accepted strings, recognized languages

A cfg ¢ = (q, uyv) is|terminal|if no transition applies.

It is | accepting | if its state is an accepting state.

» A|trace|of M for input w

IS a sequence

co=>cp=>---,

where ¢y is initial for w, and either

» the sequence is infinite; or

» the sequence is finite, and its last cfg is terminal.

The trace is | accepting | if

it is finite and its last cfg is accepting.

= M |accepts

weX

if its trace for input w is accepting.

F23
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A recognition algorithm for {a"b"}

= Since the language {a"b" | n > 0} is not regular

it is not recognized even by a 2-way automaton.



A recognition algorithm for {a"b"}

= Since the language {a"b" | n > 0} is not regular
it is not recognized even by a 2-way automaton.

» Can you think of a simple informal recognition algorithm?



A recognition algorithm for {a"b"}

= Since the language {a"b" | n > 0} is not regular

it is not recognized even by a 2-way automaton.

= How about repeating this:
cross off initial a (say by replacing it with > ),
then traverse the input and cross off final b.

= Stop and accept if and when neither a nor b

are present for a new cycle.

F23
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Accepting a’b?
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>>>>uuud
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, commonly known as
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Implementing string overwrite

= A generalization of 2DFA: the

on-site acceptor

, commonly known as

= The new operation: overwrite a symbol by another.

|.e. use the input for read/write memory. The components:

» Basic alphabet 2,

additional symbols, including >, LI in extended alphabet I'.

» A finite set () of states.

Two distinguished states: s,a € () , the start and accept states.

» A transition partial-function:
0: QxT' — @QxAct where Act={+,-} UT.

= Action “7" is the overwriting with vy € I" .

= We write (again) ¢2(p for

8(q,0) = (p, )

F23
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An LBA for the crossing-off algorithm

>,a(+)

l—lsasb ( - )

F23
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LBA operation: Configurations

= The building block is the configuration (cfg), just like 2DFA.

Reminder:

= A cursored-string over X is a string over X

with one symbol-position underlined.



LBA operation: Configurations

= The building block is the configuration (cfg), just like 2DFA.

Reminder:

= A cursored-string over X is a string over X

with one symbol-position underlined.
= A configuration (cfg) is a pair (q,w) where

» ¢ s a state, and

» W is a cursored-string.

eg. (a>0101100Ll)



LBA operation: Configurations

= The building block is the configuration (cfg), just like 2DFA.

Reminder:

= A cursored-string over X is a string over X

with one symbol-position underlined.

= The |initial cfg|for w: (s, >wl)
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LBA operation: Yield

= The Yield relation = between configurations
extends the Yield for 2DFAs:

»If @2p  then (q,uyTv) = (p,wyTV)
»If @2Op  then (q,utyv) = (p,uryv)
» NEW If ¢*(Dp then (q,uyv) = (p,urv)

» What if T and v are the same?

F23
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LBA operation: Traces and acceptance

= Acfg ¢ =(q, uyv)

» A cfg c is|accepting

IS

terminal

if no rule applies.

if it is terminal and its state is the accepting state.



LBA operation: Traces and acceptance

= Acfg c¢=(q, uyv) is|terminal|if no rule applies.

» A cfg c is|accepting

if it is terminal and its state is the accepting state.

= A terminating computation-trace of M for input w:

Co=>cL= - =y

where ¢y is initial for w and ¢, is terminal.

The trace is accepting if c, is accepting.



LBA operation: Traces and acceptance

F23

Acfg c=I(q, uyv) is

terminal

A cfg c is|accepting

if no rule applies.

if it is terminal and its state is the accepting state.

M | accepts

The language

w € X* if there is an accepting trace for input w.

recognized

by M is

L(M)={weX*| M accepts w }
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Example: Accepting trace for aabb

>a(+)

b(+)

> (+ )|
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)



Example: Accepting trace for aabb

(H, >>>1LLL)

F23
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Knocking off the wall

Devise an acceptor for those w € {0,1}*

that are binary numerals for prime numbers.

Intuitively clear that no algorithm can be on-site.

An additional feature: claim new space.

Same definition as on-site acceptors,

but different semantic for step-forward:

> If qv(—t)p then  (g,wy) implies (p,uyLl)

The machine appropriates new memory location

and by overwrite can fill it with whatever it wants!

This computation model is the | Turing acceptor|.
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How Turing acceptors compute

F23

Acfg c=I(q, uyv)

is | terminal | if no transition applies.

A terminal cfg ¢ is |accepting| if its state is a.

A | computation-trace

Co=>c1=>---=cy

of M for input w:

where ¢y is initial for w and ¢, is terminal.

The trace is | accepting

if its terminal cfg is accepting.

M |accepts| w e ¥* if

there is an accepting trace for input w.

The language | recognized| by M is

LIM)={weX*| M accepts w }
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Turing acceptors in the broader picture

= All our previous (deterministic) acceptors are special cases

of Turing acceptors:

» DFAs: Only action is step-on.

» 2DFA: Backward stepping permitted.

» LBA: Add overwriting.

» Turing acceptors: Dynamic computing space

q L&)'-) p  works at strings’-end.

F23

25



Turing acceptors in the broader picture

= We can add to the Turing acceptors useful components.



Turing acceptors in the broader picture

= We can add to the Turing acceptors useful components.

» Nondeterministic Turing acceptors

» Multi-string

Useful! Consider recognizing palindromes.
» Multi-cursors

» A plethora of programming constructs.



Turing acceptors in the broader picture

= We can add to the Turing acceptors useful components.

» Nondeterministic Turing acceptors

» Multi-string

Useful! Consider recognizing palindromes.
» Multi-cursors
» A plethora of programming constructs.

= These are all hugely useful,

improving efficiency, transparency, expressiveness, verification



Turing acceptors in the broader picture

= We can add to the Turing acceptors useful components.

» Nondeterministic Turing acceptors

» Multi-string

Useful! Consider recognizing palindromes.
» Multi-cursors

» A plethora of programming constructs.

= These are all hugely useful,

improving efficiency, transparency, expressiveness, verification

= But they do not yield new recognized languages!

To be discussed later...
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Turing deciders

= A

decider

is an acceptor that terminates for all input.

= A trace that ends with any state other than “accept”

is consider to be a rejecting trace.

= NOTE: The definition of deciders is | not structural or syntactic:
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it is a condition on acceptors, for which

no algorithm needs to be given.



