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More read-only algorithms

• Consider the language LLL over the Latin Alphabet consisting of strings that miss

some letter.

All English words are in LLL, but virtually no book is.

• LLL is a regular language: it is the intersection

of the 26 languages {w | w{w | w{w | w uses σ}σ}σ} for σ = a, b...σ = a, b...σ = a, b....
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More read-only algorithms

• Consider the language LLL over the Latin Alphabet consisting of strings that miss

some letter.

All English words are in LLL, but virtually no book is.

• LLL is a regular language: it is the intersection

of the 26 languages {w | w{w | w{w | w uses σ}σ}σ} for σ = a, b...σ = a, b...σ = a, b....

• The smallest DFA that recognizes LLL

has > 226 > 67, 000, 000> 226 > 67, 000, 000> 226 > 67, 000, 000 states.

• The smallest NFA recognizing LLL has 27 states.

• Is there a deterministic algorithm

recognizing LLL using a small number of states?
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A deterministic algorithm

• Algorithm: Scan for each digit separately, and repeat.



A deterministic algorithm

• Algorithm: Scan for each digit separately, and repeat.

• This cannot be done if we only read forward!

The cursor would have to be scrolled back (or repositioned).

• So let’s imagine a device that behaves just like an automaton,

but can move the cursor both ways.
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• Each symbol read determines not only next state,

but also next move: forward or backward.
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and ⊔⊔⊔ (the blank ) on the right.



Extensions needed

• Each symbol read determines not only next state,

but also next move: forward or backward.

• Detecting ends of input requires end-markers:

say >>> (the gate ) on the left,

and ⊔⊔⊔ (the blank ) on the right.

• Termination signaled by the states, not the end of input.

F23 6



Two-way automata

• A two-way automaton (2DFA) over an alphabet ΣΣΣ:

◮ Finite set of states QQQ

◮ s ∈ Qs ∈ Qs ∈ Q, the initial state

◮ a ∈ Sa ∈ Sa ∈ S, the accepting state

◮ Transition partial-function: δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.



Two-way automata

• A two-way automaton (2DFA) over an alphabet ΣΣΣ:

◮ Finite set of states QQQ

◮ s ∈ Qs ∈ Qs ∈ Q, the initial state

◮ a ∈ Sa ∈ Sa ∈ S, the accepting state

◮ Transition partial-function: δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act

where Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔}Γ = Σ ∪ {>, ⊔} and Act = {+, −}Act = {+, −}Act = {+, −}.

• ActActAct is the set of Actions .

Here they are +++ for “step formward” and −−− for “step back.”

• Note: End-markers are added to the alphabet ΣΣΣ .
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Intended behavior of 2DFAs

• Write q σ(α)
−−→pq σ(α)
−−→pq σ(α)
−−→p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉.
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Intended behavior of 2DFAs

• Write q σ(α)
−−→pq σ(α)
−−→pq σ(α)
−−→p for δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉.

• The intent:

◮ A 2DFA operates on the input string extended with end-markers:

Input 001201001201001201 appears as >001201 ⊔>001201 ⊔>001201 ⊔.

• A 2DFA scans one input symbol at a time.

Visualize it as a cursor:

>abc ⊔>abc ⊔>abc ⊔ >abc ⊔>abc ⊔>abc ⊔ >abc ⊔>abc ⊔>abc ⊔
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A 2DFA for the “all-letters” language

• Here is a 2DFA over Σ = {a, b, c}Σ = {a, b, c}Σ = {a, b, c}

that recognizs the strings using all three letter.



A 2DFA for the “all-letters” language

a (−)
21 3

> (+)

5
b (−)

7

a,b,c (−)

c (−)

b,c (+)

a,c (+) a,b,c (−)

a,b (+)

> (+)

> (+)

4

6

• Cycle through bbb ’s and ccc ’s until an aaa is found.

If so, return to the gate;

if not then then the blank end-maker is reached, for which there is no transition.

The machine stops without accepting.



A 2DFA for the “all-letters” language

a (−)
21 3

> (+)

5
b (−)

7

a,b,c (−)

c (−)

b,c (+)

a,c (+) a,b,c (−)

a,b (+)

> (+)

> (+)

4

6

• Next cycle through aaa ’s and ccc ’s until a bbb is found.

If so, return to the gate; if not then the final blank is reached,

resulting as aboe in stopping without accepting.



A 2DFA for the “all-letters” language

a (−)
21 3

> (+)

5
b (−)

7

a,b,c (−)

c (−)

b,c (+)

a,c (+) a,b,c (−)

a,b (+)

> (+)

> (+)

4

6

• Cycle through aaa ’s and bbb ’s until a ccc is found.

If so, accept. if not then stop at final blank without accepting.
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Operational semantics of 2DFAs: configurations

• The 2DFA is our first device where execution steps

consists in more than just a change of state.

• To describe a 2DFA’s behavior we must account for the cursor position

and therefore keep a record of the entire input for future use.
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⋆ qqq is a state, and

⋆ w̌̌w̌w is a cursored-string.

• Example: (X, >0101100 ⊔)(X, >0101100 ⊔)(X, >0101100 ⊔)



Operational semantics of 2DFAs: configurations

• The 2DFA is our first device where execution steps

consists in more than just a change of state.

• To describe a 2DFA’s behavior we must account for the cursor position

and therefore keep a record of the entire input for future use.

• A cursored-string over ΣΣΣ is a Σ−Σ−Σ−string with one symbol-position underlined.

• A configuration (cfg) is a pair (q, w̌)(q, w̌)(q, w̌) where

⋆ qqq is a state, and

⋆ w̌̌w̌w is a cursored-string.

• Example: (X, >0101100 ⊔)(X, >0101100 ⊔)(X, >0101100 ⊔)

• The initial cfg for input www is the cfg (s, >w ⊔)(s, >w ⊔)(s, >w ⊔).
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The YIELD relation between cfg’s

• Given a 2DFA MMM its Yield relation ⇒M⇒M⇒M is generated by

◮ If q γ (+)
−−−→pq γ (+)
−−−→pq γ (+)
−−−→p then (q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)

◮ If q
γ (−)
→ pq

γ (−)
→ pq

γ (−)
→ p then (q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)



The YIELD relation between cfg’s

• Given a 2DFA MMM its Yield relation ⇒M⇒M⇒M is generated by

◮ If q γ (+)
−−−→pq γ (+)
−−−→pq γ (+)
−−−→p then (q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)

◮ If q
γ (−)
→ pq

γ (−)
→ pq

γ (−)
→ p then (q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)

• These clauses are the only ones in force.

If a cfg ends with a cursored symbol, as in (q, 011010)(q, 011010)(q, 011010),

then a transition q
0(+)
→ pq
0(+)
→ pq
0(+)
→ p does not apply.

• Similarly, a step-back transition has no effect when

the cursor is at the first symbol.
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Traces, accepted strings, recognized languages

• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no transition applies.

It is accepting if its state is an accepting state.
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is a sequence c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·,

where c0c0c0 is initial for www, and either

◮ the sequence is infinite; or

◮ the sequence is finite, and its last cfg is terminal.



Traces, accepted strings, recognized languages

• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no transition applies.

It is accepting if its state is an accepting state.

• A trace of MMM for input www

is a sequence c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·c0 ⇒ c1 ⇒ · · ·,

where c0c0c0 is initial for www, and either

◮ the sequence is infinite; or

◮ the sequence is finite, and its last cfg is terminal.

• The trace is accepting if

it is finite and its last cfg is accepting.

• MMM accepts w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

if its trace for input www is accepting.
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On-site writing
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it is not recognized even by a 2-way automaton.
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• Can you think of a simple informal recognition algorithm?



A recognition algorithm for {a
n
b

n}{a
n
b

n}{a
n
b

n}

• Since the language {a
n
b

n | n > 0}{a
n
b

n | n > 0}{a
n
b

n | n > 0} is not regular

it is not recognized even by a 2-way automaton.

• How about repeating this:

cross off initial aaa (say by replacing it with >>> ),

then traverse the input and cross off final bbb.

• Stop and accept if and when neither aaa nor bbb

are present for a new cycle.
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I.e. use the input for read/write memory. The components:

◮ Basic alphabet ΣΣΣ ,

additional symbols, including >, ⊔>, ⊔>, ⊔ in extended alphabet ΓΓΓ.

◮ A finite set QQQ of states.

Two distinguished states: s, a ∈ Qs, a ∈ Qs, a ∈ Q , the start and accept states.

◮ A transition partial-function:
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Implementing string overwrite

• A generalization of 2DFA: the on-site acceptor , commonly known as LBA .

• The new operation: overwrite a symbol by another.

I.e. use the input for read/write memory. The components:

◮ Basic alphabet ΣΣΣ ,

additional symbols, including >, ⊔>, ⊔>, ⊔ in extended alphabet ΓΓΓ.

◮ A finite set QQQ of states.

Two distinguished states: s, a ∈ Qs, a ∈ Qs, a ∈ Q , the start and accept states.

◮ A transition partial-function:

δ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Actδ : Q × Γ ⇀ Q × Act where Act = {+, −} ∪ ΓAct = {+, −} ∪ ΓAct = {+, −} ∪ Γ.

• Action “γγγ ” is the overwriting with γ ∈ Γγ ∈ Γγ ∈ Γ .

• We write (again) q σ (α)
−−→pq σ (α)
−−→pq σ (α)
−−→p for

δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉δ(q, σ) = 〈p, α〉
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An LBA for the crossing-off algorithm

> ( + )

> ( + )

,a,b ( − )

b (     )

b ( + )

>, a ( + )

a ( > )

S G

H

K

B

A

W

( − )

( _  )
b ( + )
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LBA operation: Configurations

• The building block is the configuration (cfg), just like 2DFA.

Reminder:

• A cursored-string over ΣΣΣ is a string over ΣΣΣ

with one symbol-position underlined.
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Reminder:
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• A configuration (cfg) is a pair (q, w̌)(q, w̌)(q, w̌) where

◮ qqq is a state, and

◮ w̌̌w̌w is a cursored-string.

e.g. (A, >0101100 ⊔)(A, >0101100 ⊔)(A, >0101100 ⊔)



LBA operation: Configurations

• The building block is the configuration (cfg), just like 2DFA.

Reminder:

• A cursored-string over ΣΣΣ is a string over ΣΣΣ

with one symbol-position underlined.

• The initial cfg for www: (s, >w ⊔)(s, >w ⊔)(s, >w ⊔)
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LBA operation: Yield

• The Yield relation ⇒⇒⇒ between configurations

extends the Yield for 2DFAs:

◮ If q γ (+)
−−−→pq γ (+)
−−−→pq γ (+)
−−−→p then (q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)(q, uγτv) ⇒ (p, uγτv)

◮ If q γ (−)
−−−→pq γ (−)
−−−→pq γ (−)
−−−→p then (q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)(q, uτγv) ⇒ (p, uτγv)

◮ NEW If q γ (τ)
−−→pq γ (τ)
−−→pq γ (τ)
−−→p then (q, uγv) ⇒ (p, uτv)(q, uγv) ⇒ (p, uτv)(q, uγv) ⇒ (p, uτv)

• What if τττ and γγγ are the same?
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LBA operation: Traces and acceptance

• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no rule applies.

• A cfg ccc is accepting

if it is terminal and its state is the accepting state.
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• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no rule applies.

• A cfg ccc is accepting

if it is terminal and its state is the accepting state.

• A terminating computation-trace of MMM for input www:

c0 ⇒ c1 ⇒ · · · ⇒ cnc0 ⇒ c1 ⇒ · · · ⇒ cnc0 ⇒ c1 ⇒ · · · ⇒ cn

where c0c0c0 is initial for www and cncncn is terminal.

The trace is accepting if cncncn is accepting.



LBA operation: Traces and acceptance

• A cfg c = (q, uγv)c = (q, uγv)c = (q, uγv) is terminal if no rule applies.

• A cfg ccc is accepting

if it is terminal and its state is the accepting state.

• MMM accepts w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗ if there is an accepting trace for input www.

• The language recognized by MMM is

L(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | ML(M) = {w ∈ Σ∗ | M accepts w }w }w }
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MEMORY UNLEASHED
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Knocking off the wall

• Devise an acceptor for those w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗

that are binary numerals for prime numbers.

• Intuitively clear that no algorithm can be on-site.

• An additional feature: claim new space.

• Same definition as on-site acceptors,

but different semantic for step-forward:

◮ If q
γ(+)
→ pq

γ(+)
→ pq

γ(+)
→ p then (q, uγ)(q, uγ)(q, uγ) implies (p, uγ ⊔)(p, uγ ⊔)(p, uγ ⊔)

• The machine appropriates new memory location

and by overwrite can fill it with whatever it wants!

• This computation model is the Turing acceptor .
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Turing acceptors in the broader picture

• All our previous (deterministic) acceptors are special cases

of Turing acceptors:

◮ DFAs: Only action is step-on.

◮ 2DFA: Backward stepping permitted.

◮ LBA: Add overwriting.

◮ Turing acceptors: Dynamic computing space

q
⊔(+)
→ pq
⊔(+)
→ pq
⊔(+)
→ p works at strings’-end.
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Turing acceptors in the broader picture

• We can add to the Turing acceptors useful components.

◮ Nondeterministic Turing acceptors

◮ Multi-string

Useful! Consider recognizing palindromes.

◮ Multi-cursors

◮ A plethora of programming constructs.

• These are all hugely useful,

improving efficiency, transparency, expressiveness, verification

• But they do not yield new recognized languages!

To be discussed later...
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