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is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.
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Generative processes

« Virtually every infinite set considered in programming
is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.
Generative step: If n € N then “next’of n, sn ,is €N

 Implicit assumptions:

The meanings of 0 and “next” are known and given.
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Generating {0,1}*

» Base. The empty string is in {0, 1}*.

» Generative step.
If we{0,1}* then Ow and 1w are € {0,1}*
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Generating {0,1}*

» Base. The empty string is in {0,1}*.
» Generative step.

If we{0,1}* then Ow and 1w are € {0,1}*

 Implicit assumptions:

The meanings of the empty string
and of juxtaposition are known.

» Note: We generate strings here “from the head”;
This conforms with the general use of constructors,
and reflected in the functions head and tail.
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» Two parts in a generative dfn of set S:

» Base:
Particular known objects are in S.



Format of generative definitions

» Two parts in a generative dfn of set S:
» Base:
Particular known objects are in S.

» Generative steps:
If certain objects are in S

then so are certain objects obtained from those.
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Another example: Binary trees

» | Binary tree| means here a
finite, ordered, unlabeled binary tree

Base: The singleton tree e isin BT.

Generative step:
tO tl

If %o, t; are binary trees then so is \./

Implicit assumptions:
We know what a singleton tree and
juncture of trees mean.
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Try this...

» Generate the set E of even natural numbers.



Try this...

» Generate the set E of even natural numbers.

» Base: 0

» Generative step: If ne€ E then n—2 € E.
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Boolean terms

« Two ways to define closed boolean terms:
« IBT: Infix boolean terms:

» 0and 1 are in IBT
» If t,' e IBT then (¢)A(t)€IBT and (t)V (t') € IBT

 PBT: Prefix boolean terms:

» 0 and 1 are in PBT
» If t,#/ e PBT then Att' € PBT and Vit € PBT

» Main difference between IBT and PBT:
No parentheses in PBT !
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 Fix a textual coding of N, say binary numerals.
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Lists of natural numbers

» Generate L(N) the

lists of natural numbers |.

 Fix a textual coding of N, say binary numerals.

» [lis a list of naturals.

» If / isalistand £ anumeralthen k: /7 is alist.

« Examples:

1:0,

0:101:10011:10: .
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REASONING ABOUT
INDUCTIVE DATA

2024 9



Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.
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Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

» So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastone of 2" +1 and 2" —1 is prime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

« Another try (Fermat): All numbers 22" +1 are prime
3,5,17,257,65537 . Yahoo!
Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

e So how can we hope to prove
that all natural numbers are such-and-such ?
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Finitely generated infinities!

» The secret is that inductive data is generated by finite rules.

» Therefore we have a finite tool for proving that all
generated objects satisfy certain properties.
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Following the process

» Suppose we generate N using a green pen.
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Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3 4

» They all come out green:
As we generate N we make sure that we start with green,
and that each step maintains green-ness.

« Green-ness is here the process’ | invariant:
True at the outset, and preserved by the steps.

2024
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The principle of induction for N
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The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

» Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall = € N.

» As natural numbers are being generated,
they all come out satisfying P.

» A property of natural numbers that holds for zero
and is invariant under successor
is true of every natural number.

» The premise of the STEP is often called the “induction assumption”
or the Induction Hypothesis (IH).
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Example

 Show that 27 < 27*! for all = € N. What is the property?
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Example

e Show that 2% < 2*+1 for all = € N.
e If we know that

» 27 < 25+l s true for z = 0; and
» 27 <2t for x =n
implies that 2% < 2! for x =n+1
e then 2¢ < 2+l forall z € N.

» But we do have

» Base: 20 =1 <2 =201
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Example

e Show that 2% < 2*+1 for all = € N.
e If we know that

» 27 < 27+l g true for z = 0: and

» 27 < 2t for x =n
implies that 2% < 2! for x =n+1

e then 2% < 2*+! forall = € N.
» But we do have

» Base: 20 =1 <2 =201

» Step: If 2" < 2°*! (P(zx) for x =n) then
ont+l _ on 49" < on+1 + ont+l — on+2
(P(z) for z=mn+1)

« By Induction, 2% < 2**! forall = € N.

14
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Try this...

* Prove by induction on N that =z < 2* forall x € N.
We are given that exponentiation is an increasing function.

* By Induction = < 2* forall z € N,
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Try this...

* Prove by induction on N that =z < 2* forall x € N.

We are given that exponentiation is an increasing function.

» Base: For t=0 we have 22=0<1 =27,

» Step: Assume n < 2". Then
n+1 < 2"+1 (IH)
= 2420
< 2"+ 2" (exponentiation is increasing)

2n+1

* By Induction = < 2* forall x € N.

15
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Example: Divisibility

. P(z): 2°+2z is divisible by 3.

By Induction:
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Example: Divisibility

e P(z): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For 2 =0
23 +22x=03+2-0=0 which is divisible by 3.
» Step. Assume P(n) (IH). Then for z =n+1
$+2x = m+1P3+(2n+2)
= N3+3n2+3n+1)+(2n+2)
= (n¥+2n)+3(n*+n+1)
23 4+ 22 is the sum of numbers divisible by 3,
and is therefore divisible by 3.
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Example: Divisibility

e P(z): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For =0

23 +22x=03+2-0=0 which is divisible by 3.

» Step. Assume P(n) (IH). Then for z =n+1
$+2x = m+1P3+(2n+2)
= N3+3n2+3n+1)+(2n+2)
= (n¥+2n)+3(n*+n+1)
23 4+ 22 is the sum of numbers divisible by 3,
and is therefore divisible by 3.

* By Induction 2+ 22 is divisible by 3, for all = € N.

16
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Iterated summation

(*) 1+3+5+---+(22—1) = z?
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Iterated summation

(*) 1+3+5+---+(22—1) = z?
By Induction:

» Base. (x)istruefor z =0:

the empty sum =0 = 0%
» Step. Assume (x) for z =n.
Then, for z =n+1,
14344+ (2x—1) = 1+3+---4+(2n—1) + (2n+1)

= n?+ (2n+1) (IH)

(n+1)>2
Thatis, (x) for z=n+1.

17



Iterated summation

(*) 1+3+5+---+(22—1) = z?
By Induction:

» Base. (x)istruefor z =0:

the empty sum =0 = 0%
» Step. Assume (x) for z =n.
Then, for z =n+1,
14344+ (2x—1) = 1+3+---4+(2n—1) + (2n+1)

= n?+ (2n+1) (IH)

(n+1)>2
Thatis, (x) for z=n+1.

Conclude: (x) holds for every z € N.
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Another iterated summation

(*x) 142+4+---42 = 2(x+1)/2
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Another iterated summation

(*) 14+24+---4+2 = z(x+1)/2
By Induction.

» Base. (%) istruefor z=0:
The empty sum =0=0-1/2.

» Step. Assume (%) for z =n.

Then, for z =n+1,

O+1+:---+2 = 0+1+---+n+(n+l)
2t 4 (n+1) (IH)

= (n+1)3n+1)

= 1(n+1)- (n+2)

1z (z+1)

That is, (x) for x = n+1.
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Another iterated summation

(*) 14+24+---4+2 = z(x+1)/2
By Induction.

» Base. (%) istruefor z=0:
The empty sum =0=0-1/2.

» Step. Assume (%) for z =n.

Then, for z =n+1,

0+1+:--4+2 = 0+1+---+n+(n+l)
2t 4 (n+1) (IH)

= (n+1)3n+1)

= 1(n+1)- (n+2)

1z (z+1)

That is, (x) for x = n+1.

Conclude: (%) holds for every 2z € N.
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Involving other data

A property of natural numbers may refer to non-numeric datal!

(x) Every set with x elements has 2* subsets

By Induction.
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By Induction.
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which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).

For x =n+1 let S be a set with n+1 elements.

Choose a € S (S can’'t be empty!) and let S~ =4 S — {a}.
By IH S~ has 2" subsets Aj,..., Asn.
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Involving other data

A property of natural numbers may refer to non-numeric datal!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. z = 0. The only set with 0 elementsis 0,
which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).
For x =n+1 let S be a set with n+1 elements.

Choose a € S (S can’'t be empty!) and let S~ =4 S — {a}.

By IH S~ has 2" subsets A,,..., Aon.
Subsets of S': Al, ce ,Agn, AU {0,}, ceey Ao U {Cb}
which are all different. So S has 2" + 2" = 2"*t! gubsets.

* By Induction (x) for all =z € N.

2024
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Starting Induction elsewhere

e Show z2>2x forall x> 1.

» We wish to start induction from 2.
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Starting Induction elsewhere

e Show z2>2x forall x> 1.

» We wish to start induction from 2.
But that’'s the same as Induction
for the property (z +2)? > (z +2) !

* We refer to this as Shifted Induction:

» Base. 22=4>2
» Step. n? > n implies
(n+1)? = n?+2n+1
> n4+2n+1 (IH)
> n+1 since n > 0)

20



Starting Induction elsewhere

e Show z2>2x forall x> 1.

» We wish to start induction from 2.
But that’'s the same as Induction
for the property (z +2)? > (z +2) !

* We refer to this as Shifted Induction:

» Base. 22=4>2

» Step. n? > n implies
(n+1)? = n?+2n+1
> n+2n+1 (H)
> n+1 since n > 0)

» Conclusion: 2? >z for all integers = > 1.

20
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Shifted Induction

» The template for such reasoning is | Shifted Induction

« Given a property P(z) of natural numbers, and b € N,

e Assume: » Shifted Base. P true of b; and

» Shifted Step. Forall n > b,
P(n) implies P(n+1)
e Conclude: P(z) forallz>b .

* Induction is a special case, with b = 0.

2024 21
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Another example

e 3" >5.2" forall n > 4.

« By Shifted Induction with initial value 4.
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Another example

«3">5-2" forall n > 4.
« By Shifted Induction with initial value 4.

» Basis. 3*=81>80=5-2*
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Another example

e 3" >5.2" forall n > 4.

« By Shifted Induction with initial value 4.

» Basis. 3'=81>80=5 2
» Step. If 3" > 5-2" then

3n—|—l

>
>

3.3

3-(5-27) (IH)

2-5.2"
5_2n+1

22
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Is this new?

» But is Shifted Induction a new method?
Or is it just syntactic sugar for particular form of Induction?

2024 23
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Shifting, in general

e Given

» Shifted Base. P(b) and
» Shifted Step. P(n) implies P(n+1) forall n>b
we prove by Induction that P(z) forall = > b:
e Let P'(z) be P(x—0b)
» Base. P'(0) ,because P(b) by the Shifted Base.
» Step. P'(n) implies P'(n+1) for n >0

because P(n) implies P(n+1) forall n > b,
by the Shifted Base.

By Induction, P'(z) forall = >0,
so P(z) forall = > b.

2024 24
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Another example

e To prove 3" >5-2% for x > 2
use Induction to prove 32 > 5.2%%2 for 2 > 0:

» Shifted Basis. 3* >5-2% for 2 =2,
e, 372> 5.2%%2 for £ =0

» Step. 3" >5-2" implies 3" > 5.2 for n > 2,
e, 3"2>5.2"2 implies 32+l > 5. 90241 for p

WV
o

« Conclusion by Induction:
372 > 5.92%%2 for 2 >0
l.e. 3" >5-2% for = = 2.

2024 25
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Another shortcoming of Induction?

 Theorem. Every positive integer is the product of primes

e Induction?
No useful relation between factoring n» and factoring n+1 !
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Another shortcoming of Induction?

 Theorem. Every positive integer is the product of primes

* E.g. 1 is the empty product;
3 a singleton product;
9 the product of 3 used twice.

* Induction?
No useful relation between factoring n and factoring n+1 |
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Cumulative Induction

 Theorem. Every positive integer is the product of primes.
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* Proof by Induction for the property
(%) Every positive integer < z is product of primes.

» Basis. x =0 . No positive integers =z < 0 so (x) vacuously.

» Step. Assume (x) for z =n, show (x) for x =n+1
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Cumulative Induction

 Theorem. Every positive integer is the product of primes.

* Proof by Induction for the property
(%) Every positive integer < 2 is product of primes.
» Basis. x =0 . No positive integers =z < 0 so (x) vacuously.
» Step. Assume (x) for z =n, show (x) for x =n+1
» Case 1: n+1 is 1, which is the empty product.

» Case 2. n+1 is a prime, ok.

» Case 3. n+l=y-z forsome y,z € [2..n].
By IH y, 2z are products of primes, so n+1 is too.

2024 27
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The template of Cumulative Induction

| Cumulative Induction|template:

« Assume:

» Base. P(z) istruefor = =0.

» Step. For every z,
if P(y) is true for every y <z then P for z+1.

« Conclude: P(x) forall z € N.
* Induction is a special case, where the IH is just P(n).

« Cumulative Induction is also dubbed “Strong Induction”,
even though it is not stronger than Induction, as we show next.

2024 28
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Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”
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» Let “P progressive” abbreviate
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» Assume P is progressive.
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Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

* Proof by Induction.

» Assume P is progressive.

» Let Q(x) abbreviate “P(y) forevery y € [0..x)”
» Base: Q(0), because [0..0) = 0

» Step: P is progressive, so Q(z) implies Q(z+1).

By Induction, Q(z) for every z € N.
But then P(x) for every z € N.
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INDUCTIVE REASONING IN GENERAL



Induction over generated sets

 The principle of inductive reasoning applies
to any inductively generated set S, not just N.

 If P(xz) makes sense for z € S,
is true for every base element of S
and remains true under the generative steps for S,
then P(z) istrueforall z € S.
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Induction over generated sets

 The principle of inductive reasoning applies
to any inductively generated set S, not just N.

 If P(xz) makes sense for z € S,
is true for every base element of S
and remains true under the generative steps for S,
then P(z) istrueforall z € S.

» The underlying reason is the same as for N:
as the elements of S are generated,
the property P invariantly holds.
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Induction on strings

« Let P(xz) be a property of X-strings.
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« Let P(x) be a property of X-strings.
« Assume:

» Base. P(e)

» Steps. Foreach c € ¥ and w e ¥*
P(w) implies P(ow)
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Induction on strings

« Let P(x) be a property of X-strings.

« Assume:

» Base. P(e)

» Steps. Foreach c € ¥ and w e ¥*
P(w) implies P(ow)

» Conclude: P(w) forall we X",
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Example: Swapping

« For w e {0,1}* let Aw) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) (w)) =w
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Step for 1 is similar.

33



Example: Swapping

« For w e {0,1}* let Aw) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) (w)) =w
 The proof is by induction on {0,1}* .
» Basis. ((e)) =) =¢

» Stepfor 0. If z2)) ==
then 2(0z)) = (12 (2))

= Ox (IH)
Step for 1 is similar.

By induction on {0,1}* () forall w € {0,1}*.
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Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").
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*Prove |z-u|=|z|+ |u| (z,ueX").

» Problem: This is a property of a pair of strings!
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Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

 Solution: Read it as a property of one z:
|z u|=|z|+|ul forall ueX* (%)

» Basis: =z =e¢.
le-u| = |y since ¢-u=u
el + |ul = 0+ |u| = |uf
» Step: Assume (x) for = = w.
For x = ow we have forall u € ¥*
jow - u| = |o(w - u)
= 1+ |w-uy
= 1+ |w|+ |u| (IH)
= (lowl) + [ul
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Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

 Solution: Read it as a property of one z:
|z u|=|z|+|ul forall ueX*

» Basis: =z =e¢.
le-u| = |y since ¢-u=u
el + |ul = 0+ |u| = |uf
» Step: Assume (x) for = = w.
For x = ow we have forall u € ¥*
jow - u| = |o(w - u)
= 1+ |w-uy
= 1+ |w|+ |u| (IH)
= (low]) + |u|

* By induction on ¥* conclude (%) for all z € ¥*.
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Induction over binary trees

« Recall that the set of binary trees is generated

from a base tree e by juncture:
t, 4

if ¢y, t; are binary trees then so is \./

«Let P(z) be a property that makes sense for any bi-
nary tree t.

 |If we can show that

» Base: P(e) ;and

> Step: If both P(to) and P(t1)
then P(t) forthe juncture ¢ above of ¢, and t;

then P(t) is true for all binary trees t.

2024 35
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Example: Odd size of binary trees

» Can a binary tree have an even number of nodes?
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Example: Odd size of binary trees
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« Let P(t) be the property
“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

» Step: Suppose ty,t, are trees of odd sizes
no and n;.

Let ¢ be obtained from ¢, and ¢t;.

The size of t is ny+n;+ 1, which is again odd.
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Example: Odd size of binary trees

« Every binary tree has an odd number of nodes.
« Let P(t) be the property
“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

» Step: Suppose ty,t, are trees of odd sizes
no and n;.

Let ¢ be obtained from ¢, and ¢t;.

The size of t is ny+n;+ 1, which is again odd.

By induction on binary tree we conclude that
P(t) for all binary trees t.
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Invariants: A dynamic view of induction

 Euclid GCD algorithm
 Eating lots of chocolate

« A game of coins

2024 37
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GENERATING SETS



Generating the star of a language

« Example: We generated **
starting with an alphabet >::

— Base: Each o0 € ¥ isin X%,
— Generative step: If z € ¥* and o € ¥ then oz € ¥*.

» We started from a finite number of initial objects. More
broadly we can start with any set.

« For any language L we generate L*:

— Base: Each we L isin L*.
— Generative step: If x € L* and w € L then w-x € L*.

 This defines the mapping * between languages:
each language L is mapped to L*.

2024 39
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Generating the star of a mapping

« Combining languages by concatenation yields a new
language.
The iteration of concatenating with L,
starting with the unit language {¢},
yields L*.

40



Generating the star of a mapping

« Combining languages by concatenation yields a new
language.
The iteration of concatenating with L,
starting with the unit language {¢},
yields L*.

« Similarly, combining mappings F: A= A by com-
position
yields a new mapping.
The iteration of composing with F', starting with Id4 : A —
yields the | star of F' |, denoted F™*.
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Generating the star of a mapping

e Similarly, combining mappings F : A= A by com-
position
yields a new mapping.
The iteration of composing with F', startingwith Id4 : A —
yields the | star of F' |, denoted F™.

* Thatis, = (F)*y iff
=2 (F)z1(F) -+« (F)zk =y
forsome k>0 and z,..,z; A.

2024 40

40



COMPUTING BY RECURRENCE



Explicit function definitions (reminder)

e f(x)=3x (z+2) defines a function
In terms of given constants and function-identifiers.

e The definition

1. introduces a new function identifier ( f ); and

2. uses a defining expression 3 x (z +2))
built from known functions + and x and the
argument (i.e. input) of f.

2024 42
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Computing by recurrence

» Suppose s(x) = z+1 is the only function available.
Define:
d(0) = 0
d(s(z)) = s(s(d(z)))
« What is d(1)? d(2)? d(x)?

2024 43
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Computing by recurrence

d(0) = 0
d(s(z)) = s(s(d(z)))
 As the input is being generated,
successive outputs grow by double-increments:
» d(0) =0 is given

> d(1) = s(s(d(0))) = s(s(0)) =2
. d(2) = s(s(d(1))) = 5(s(2)) = 4 etc.

» f is defined by providing a value for input 0
and an explicit definition of f(z+1) interms of f(x).

2024 44
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The general template

* A function f: N—N is defined here by providing

1. avalue for f(0) and
2. an explicit definition of f(z+1) interms of f(x)
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The general template

* A function f: N—N is defined here by providing

1. avalue for f(0) and
2. an explicit definition of f(z+1) interms of f(x)

« Our next examples illustrate the potential
of recurrence to yield rapidly-increasing functions.
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Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
e(s(x)) = dle(x))
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Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
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Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
e(s(x)) = dle(x))
« What are e(1)? e(2)? e(n)?

 How do we prove it?
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Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
e(s(x)) = dle(x))
« What are e(1)? e(2)? e(n)?
By Induction!
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Shooting for the stars

» We defined the function e of exponentiation base 2.
Using Iteration again we define a new function
h(0) = 1
h(s(z)) = e(h(z))

hl) =20 =2

h2) = 22 = 4

h3) = 20 = 16

h(4) = 216 = 15384

h(5) = 2198t > 10°00  np physical meaning!

2024 47
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Recursion vs. recurrence

» Recurrence and recursion
are practically identical as English words,
but they have different mathematical meanings.

» Recursion: f(z)="--
f used as you wish

eg flz) = f(f(z+1))

» Recurrence: f(z)=---
f used for input z—1
Much weaker than recursion.

» Cumulative recurrence: f(x)=--- uUses
f forinputs <z
Has same power as recurrence.

2024 48

48



Output need not be numeric

 Strings as output:

£0) = ¢
f(s(z)) = a- f(a)
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Output need not be numeric

 Strings as output:

£0) = ¢
f(s(z)) = a- f(a)

+ f(n) = a"
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Outputs need not be numeric

* Sets as output: f(0)
)

f(s(x)) (-'L‘) U{f(z)}
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Outputs need not be numeric

 Sets as output: f(0)
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- f(1) = {0}
- f(2) =10, {0}}
- f(3) =10, {0},{0, {0}}}
« Ingeneral, f(n)={f(0),..., f(n—1)}
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Outputs need not be numeric

* Sets as output: f(0)

0
f(s(z))) = flz)u{f(z)}

- f(1) = {0}
~ f(2) = {0, {0}}
~ f(3) = {0, {0}, {0, {0}}}
e Ingeneral, f(n)={f(0),...,f(n—1)}

Every “number” is the set of previous numbers.

» So natural numbers can be simulated by abstract sets!
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Outputs need not be numeric

» Languages as output:

f(0) = {e}
f(s(z)) = f(z)-{a,b}
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Outputs need not be numeric

» Languages as output:

f(0) = {e}
f(s(z)) = f(z)-{a,b}

* f(n)
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Outputs need not be numeric

» Languages as output:

f(0) = {e}
f(s(z)) = f(z)-{a,b}

¢ f(n) = {aab}n
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RECURRENCE ON STRINGS



Example: The swap function

2: {0,1)* = {0, 1}

For instance: (01011) = 10100
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Example: The swap function

2: {0,1)* = {0, 1}

For instance: (01011) = 10100

We) = €
(0w) = 1 (w)
(1w) = 00 (w)
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Example: The swap function

2: {0,1)* = {0, 1}

For instance: (01011) = 10100

We) = ¢
(0w) = 1 (w)
(lw) = 0 (w)
As the values in {0,1}* are generated,

the corresponding output values are obtained.
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Template of recurrence on strings

e For ¥ ={0,1}:

 Given functions g, and ¢, over >* ,

fle) = ¢
fO0w) = go(f(w))
f(lw) = gi(f(w))
An entry for each o € ¥
and where each g, is a previously defined function
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Template of recurrence on strings

e For ¥ ={0,1}:

 Given functions g, and ¢, over >* ,

fle) = ¢
f(Ow) = go(f(w))
f(lw) = gi(f(w))

» A generic template for alphabets X :
fle) = c
flow) = go(f(w))
An entry for each o € ¥
and where each g, is a previously defined function
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Template of recurrence on strings

e For ¥ ={0,1}:

 Given functions g, and ¢, over >* ,

fle) = ¢
f(Ow) = go(f(w))
f(lw) = gi(f(w))

» A generic template for alphabets X :

fle) = c
flow) = go(f(w))
An entry for each o € ¥
and where each g, is a previously defined function

2024
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Another example

¥ ={0,1},
f: X% —= X" replaces in input w the first 0 by 1.

« Example: f(11001) = 11101.
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Another example

¥ ={0,1},
f: X% —= X" replaces in input w the first 0 by 1.

« Example: f(11001) = 11101.

- f(e) = ¢
> flw) = 1f(w)
» f(Ow) = 1w
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The output need not be strings

« The length function ¢: {0,1}* = N |i.e. (w) = |w|:
le) =0
(Ow) = 14+ 4(w)
((lw) = 14+ 4(w)
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Another example

e v¢: {0,1}* > N
vl(e) = 0
vl(Ow) = 2-vé(w)
vl(1lw) = 1+ 2-vé(w)
What is ve ?
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A valuation function

vé(e) =
vl(0w) =
vl(lw) =

« vl(w) = the numeric value of w’ in binary.

» For example,

vf(011)

2 - 'vf('w)
142 - vé(w)

2-vl(11)
2-(14+2-v4(1)
9.
2
6

(1+2-(14v(e)))

-(14+2-(140))

the numeric value of 110 In binary.

58

2024 58



