INDUCTIVELY GENERATED DATA

2024 1

Generative processes

« Virtually every infinite set considered in programming
is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.

Generative processes

« Virtually every infinite set considered in programming
is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.
Generative step: If n € N then “next’of n, sn ,is €N

Generative processes

« Virtually every infinite set considered in programming
is generated by a process.

The fundamental example is the set N of natural numbers:

» Initial object (“base”): The number 0 isin N.
Generative step: If n € N then “next’of n, sn ,is €N

 Implicit assumptions:

The meanings of 0 and “next” are known and given.

2024 2

Generating {0,1}*

» Base. The empty string is in {0, 1}*.

» Generative step.
If we{0,1}* then Ow and 1w are € {0,1}*

Generating {0,1}*

» Base. The empty string is in {0,1}*.
» Generative step.

If we{0,1}* then Ow and 1w are € {0,1}*

 Implicit assumptions:

The meanings of the empty string
and of juxtaposition are known.

Generating {0,1}*

» Base. The empty string is in {0,1}*.
» Generative step.

If we{0,1}* then Ow and 1w are € {0,1}*

 Implicit assumptions:

The meanings of the empty string
and of juxtaposition are known.

» Note: We generate strings here “from the head”;
This conforms with the general use of constructors,
and reflected in the functions head and tail.

2024

Format of generative definitions

» Two parts in a generative dfn of set S:

» Base:
Particular known objects are in S.

Format of generative definitions

» Two parts in a generative dfn of set S:
» Base:
Particular known objects are in S.

» Generative steps:
If certain objects are in S

then so are certain objects obtained from those.

2024 4

Another example: Binary trees

» | Binary tree| means here a
finite, ordered, unlabeled binary tree

Base: The singleton tree e isin BT.

Generative step:
tO tl

If %o, t; are binary trees then so is \./

Implicit assumptions:
We know what a singleton tree and
juncture of trees mean.

2024 5

Try this...

» Generate the set E of even natural numbers.

Try this...

» Generate the set E of even natural numbers.

» Base: 0

» Generative step: If ne€ E then n—2 € E.

2024 6

Boolean terms

« Two ways to define closed boolean terms:

Boolean terms

« Two ways to define closed boolean terms:
« IBT: Infix boolean terms:

» 0and 1 are in IBT
» If t,' e IBT then (¢)A(t)€IBT and (t)V (t') € IBT

Boolean terms

« Two ways to define closed boolean terms:
« IBT: Infix boolean terms:

» 0and 1 are in IBT
» If t,' e IBT then (¢)A(t)€IBT and (t)V (t') € IBT
 PBT: Prefix boolean terms:

» 0 and 1 are in PBT
» If t,#/ e PBT then Att' € PBT and Vit € PBT

Boolean terms

« Two ways to define closed boolean terms:
« IBT: Infix boolean terms:

» 0and 1 are in IBT
» If t,' e IBT then (¢)A(t)€IBT and (t)V (t') € IBT

 PBT: Prefix boolean terms:

» 0 and 1 are in PBT
» If t,#/ e PBT then Att' € PBT and Vit € PBT

» Main difference between IBT and PBT:
No parentheses in PBT !

2024 7

Lists of natural numbers

» Generate L(N) the|lists of natural numbers|.

 Fix a textual coding of N, say binary numerals.

Lists of natural numbers

» Generate L(N) the|lists of natural numbers|.

 Fix a textual coding of N, say binary numerals.

» [lis a list of naturals.

» If / isalistand £ anumeralthen k: /7 is alist.

Lists of natural numbers

» Generate L(N) the

lists of natural numbers |.

 Fix a textual coding of N, say binary numerals.

» [lis a list of naturals.

» If / isalistand £ anumeralthen k: /7 is alist.

« Examples:

1:0,

0:101:10011:10: .

2024 8

REASONING ABOUT
INDUCTIVE DATA

2024 9

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

» So how can we prove anything about N ?

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

» So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastone of 2" +1 and 2" —1 is prime.”
2,3,5,7,17,31 Hooray!

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

» So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastone of 2" +1 and 2" —1 is prime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

» So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastone of 2" +1 and 2" —1 is prime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

« Another try (Fermat): All numbers 22" +1 are prime
3,5,17,257,65537 . Yahoo!

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

» So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastone of 2" +1 and 2" —1 is prime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

« Another try (Fermat): All numbers 22" +1 are prime
3,5,17,257,65537 . Yahoo!
Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

10

Infinite sets, finite minds

« N isinfinite. {0,1}* is infinite.
But our minds and our proofs are finite.

» So how can we prove anything about N ?

 Trying many cases is never sufficient.
Example: “Forall n atleastone of 2" +1 and 2" —1 is prime.”
2,3,5,7,17,31 Hooray!
Oops: Both 63 and 65 are composite.

« Another try (Fermat): All numbers 22" +1 are prime
3,5,17,257,65537 . Yahoo!
Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

e So how can we hope to prove
that all natural numbers are such-and-such ?

2024 10

10

Finitely generated infinities!

» The secret is that inductive data is generated by finite rules.

» Therefore we have a finite tool for proving that all
generated objects satisfy certain properties.

2024 11

11

Following the process

» Suppose we generate N using a green pen.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3 4

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3 4

» They all come out green:
As we generate N we make sure that we start with green,
and that each step maintains green-ness.

12

Following the process

» Suppose we generate N using a green pen.

» (0 is a green natural.

» If 2 is a green natural, then so is its successor.

o 1 2 3 4

» They all come out green:
As we generate N we make sure that we start with green,
and that each step maintains green-ness.

« Green-ness is here the process’ | invariant:
True at the outset, and preserved by the steps.

2024

12

12

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

» Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

» Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall = € N.

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

» Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall = € N.

» As natural numbers are being generated,
they all come out satisfying P.

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

» Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall = € N.

» As natural numbers are being generated,
they all come out satisfying P.

» A property of natural numbers that holds for zero
and is invariant under successor
is true of every natural number.

13

The principle of induction for N

« Suppose P(z) is a property of natural numbers z.
P(z) abbreviates here “x has the property P”

» Assume:

» Base. P(0) and
» Step. Forall n € N, P(n) implies P(n+1).

« Conclude: P(z) forall = € N.

» As natural numbers are being generated,
they all come out satisfying P.

» A property of natural numbers that holds for zero
and is invariant under successor
is true of every natural number.

» The premise of the STEP is often called the “induction assumption”
or the Induction Hypothesis (IH).

2024 13

13

Example

 Show that 27 < 27*! for all = € N. What is the property?

14

Example

e Show that 2% < 2*+1 for all = € N.

« P(x) is 27 < 2%t!

14

Example

e Show that 2% < 2*+1 for all = € N.
e If we know that

» 27 < 27+l g true for z = 0: and

» 27 < 2*+ for x =n
implies that 2% < 2! for x =n+1

e then 2% < 2*+! forall = € N.

14

Example

e Show that 2% < 2*+1 for all = € N.
e If we know that

» 27 < 27+l g true for z = 0: and

» 27 < 2*+ for x =n
implies that 2% < 2! for x =n+1

e then 2% < 2*+! forall = € N.
» But we do have

» Base: 20=1 <2 =201

14

Example

e Show that 2% < 2*+1 for all = € N.
e If we know that

» 27 < 25+l s true for z = 0; and
» 27 <2t for x =n
implies that 2% < 2! for x =n+1
e then 2¢ < 2+l forall z € N.

» But we do have

» Base: 20 =1 <2 =201

» Step: If 2" < 2°*! (P(zx) for x =n) then
ont+l _ on 49" < on+1 + ont+l — on+2
(P(z) for z=mn+1)

14

Example

e Show that 2% < 2*+1 for all = € N.
e If we know that

» 27 < 27+l g true for z = 0: and

» 27 < 2t for x =n
implies that 2% < 2! for x =n+1

e then 2% < 2*+! forall = € N.
» But we do have

» Base: 20 =1 <2 =201

» Step: If 2" < 2°*! (P(zx) for x =n) then
ont+l _ on 49" < on+1 + ont+l — on+2
(P(z) for z=mn+1)

« By Induction, 2% < 2**! forall = € N.

14

2024

14

Try this...

* Prove by induction on N that =z < 2* forall x € N.
We are given that exponentiation is an increasing function.

* By Induction = < 2* forall z € N,

15

Try this...

* Prove by induction on N that =z < 2* forall x € N.

We are given that exponentiation is an increasing function.

» Base: For t=0 we have 22=0<1 =27,

» Step: Assume n < 2". Then
n+1 < 2"+1 (IH)
= 2420
< 2"+ 2" (exponentiation is increasing)

2n+1

* By Induction = < 2* forall x € N.

15

2024

15

Example: Divisibility

. P(z): 2°+2z is divisible by 3.

By Induction:

16

Example: Divisibility

e P(z): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For =0
23 +22x=03+2-0=0 which is divisible by 3.

16

Example: Divisibility

e P(z): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For 2 =0
23 +22x=03+2-0=0 which is divisible by 3.
» Step. Assume P(n) (IH). Then for z =n+1
$+2x = m+1P3+(2n+2)
= N3+3n2+3n+1)+(2n+2)
= (n¥+2n)+3(n*+n+1)
23 4+ 22 is the sum of numbers divisible by 3,
and is therefore divisible by 3.

16

Example: Divisibility

e P(z): 2°+ 2z isdivisible by 3.
By Induction:

» Base. For =0

23 +22x=03+2-0=0 which is divisible by 3.

» Step. Assume P(n) (IH). Then for z =n+1
$+2x = m+1P3+(2n+2)
= N3+3n2+3n+1)+(2n+2)
= (n¥+2n)+3(n*+n+1)
23 4+ 22 is the sum of numbers divisible by 3,
and is therefore divisible by 3.

* By Induction 2+ 22 is divisible by 3, for all = € N.

16

2024 16

Iterated summation

(*) 1+3+5+---+(22—1) = z?

17

Iterated summation

(*) 1+3+5+---+(22—1) = z?
By Induction:

17

Iterated summation

(*) 1+3+5+---+(22—1) = z?
By Induction:

» Base. (x)istruefor z =0:
the empty sum =0 = 0%

17

Iterated summation

(*) 1+3+5+---+(22—1) = z?
By Induction:

» Base. (x)istruefor z =0:

the empty sum =0 = 0%
» Step. Assume (x) for z =n.
Then, for z =n+1,
14344+ (2x—1) = 1+3+---4+(2n—1) + (2n+1)

= n?+ (2n+1) (IH)

(n+1)>2
Thatis, (x) for z=n+1.

17

Iterated summation

(*) 1+3+5+---+(22—1) = z?
By Induction:

» Base. (x)istruefor z =0:

the empty sum =0 = 0%
» Step. Assume (x) for z =n.
Then, for z =n+1,
14344+ (2x—1) = 1+3+---4+(2n—1) + (2n+1)

= n?+ (2n+1) (IH)

(n+1)>2
Thatis, (x) for z=n+1.

Conclude: (x) holds for every z € N.

2024 17

17

Another iterated summation

(*x) 142+4+---42 = 2(x+1)/2

18

Another iterated summation

(*) 14+24+---4+2 = z(x+1)/2
By Induction.

18

Another iterated summation

(*) 14+24+---4+2 = z(x+1)/2
By Induction.

» Base. (%) istruefor =z =0:
The empty sum =0=0-1/2.

18

Another iterated summation

(*) 14+24+---4+2 = z(x+1)/2
By Induction.

» Base. (%) istruefor z=0:
The empty sum =0=0-1/2.

» Step. Assume (%) for z =n.

Then, for z =n+1,

O+1+:---+2 = 0+1+---+n+(n+l)
2t 4 (n+1) (IH)

= (n+1)3n+1)

= 1(n+1)- (n+2)

1z (z+1)

That is, (x) for x = n+1.

18

Another iterated summation

(*) 14+24+---4+2 = z(x+1)/2
By Induction.

» Base. (%) istruefor z=0:
The empty sum =0=0-1/2.

» Step. Assume (%) for z =n.

Then, for z =n+1,

0+1+:--4+2 = 0+1+---+n+(n+l)
2t 4 (n+1) (IH)

= (n+1)3n+1)

= 1(n+1)- (n+2)

1z (z+1)

That is, (x) for x = n+1.

Conclude: (%) holds for every 2z € N.

2024 18

18

Involving other data

A property of natural numbers may refer to non-numeric datal!

(x) Every set with x elements has 2* subsets

By Induction.

19

Involving other data

A property of natural numbers may refer to non-numeric datal!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. z = 0. The only set with 0 elementsis 0,
which has just 2° =1 subset, namely 0 itself.

19

Involving other data

A property of natural numbers may refer to non-numeric datal!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. z = 0. The only set with 0 elementsis 0,
which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).
For x =n+1 let S be a set with n+1 elements.
Choose a € S (S can’'t be empty!) and let S~ =4 S — {a}.

19

Involving other data

A property of natural numbers may refer to non-numeric datal!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. z = 0. The only set with 0 elementsis 0,
which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).

For x =n+1 let S be a set with n+1 elements.

Choose a € S (S can’'t be empty!) and let S~ =4 S — {a}.
By IH S~ has 2" subsets Aj,..., Asn.

Subsets of S: Aj,...,Am, AjU{a}, ..., AU {a}

which are all different. So S has 2" + 2" = 2"*! subsets.

19

Involving other data

A property of natural numbers may refer to non-numeric datal!

(x) Every set with x elements has 2* subsets
By Induction.

» Base. z = 0. The only set with 0 elementsis 0,
which has just 2° =1 subset, namely 0 itself.

» Step. Assume P(n) (IH).
For x =n+1 let S be a set with n+1 elements.

Choose a € S (S can’'t be empty!) and let S~ =4 S — {a}.

By IH S~ has 2" subsets A,,..., Aon.
Subsets of S': Al, ce ,Agn, AU {0,}, ceey Ao U {Cb}
which are all different. So S has 2" + 2" = 2"*t! gubsets.

* By Induction (x) for all =z € N.

2024

19

19

Starting Induction elsewhere

e Show z2>2x forall x> 1.

» We wish to start induction from 2.

20

Starting Induction elsewhere

e Show z2>2x forall x> 1.

» We wish to start induction from 2.

But that’s the same as Induction
for the property (z +2)? > (z +2) !

20

Starting Induction elsewhere

e Show z2>2x forall x> 1.

» We wish to start induction from 2.
But that’'s the same as Induction
for the property (z +2)? > (z +2) !

* We refer to this as Shifted Induction:

» Base. 22=4>2
» Step. n? > n implies
(n+1)? = n?+2n+1
> n4+2n+1 (IH)
> n+1 since n > 0)

20

Starting Induction elsewhere

e Show z2>2x forall x> 1.

» We wish to start induction from 2.
But that’'s the same as Induction
for the property (z +2)? > (z +2) !

* We refer to this as Shifted Induction:

» Base. 22=4>2

» Step. n? > n implies
(n+1)? = n?+2n+1
> n+2n+1 (H)
> n+1 since n > 0)

» Conclusion: 2? >z for all integers = > 1.

20

2024 20

Shifted Induction

» The template for such reasoning is | Shifted Induction

« Given a property P(z) of natural numbers, and b € N,

e Assume: » Shifted Base. P true of b; and

» Shifted Step. Forall n > b,
P(n) implies P(n+1)
e Conclude: P(z) forallz>b .

* Induction is a special case, with b = 0.

2024 21

21

Another example

e 3" >5.2" forall n > 4.

« By Shifted Induction with initial value 4.

22

Another example

«3">5-2" forall n > 4.
« By Shifted Induction with initial value 4.

» Basis. 3*=81>80=5-2*

22

Another example

e 3" >5.2" forall n > 4.

« By Shifted Induction with initial value 4.

» Basis. 3'=81>80=5 2
» Step. If 3" > 5-2" then

3n—|—l

>
>

3.3

3-(5-27) (IH)

2-5.2"
5_2n+1

22

2024 22

Is this new?

» But is Shifted Induction a new method?
Or is it just syntactic sugar for particular form of Induction?

2024 23

23

Shifting, in general

e Given

» Shifted Base. P(b) and
» Shifted Step. P(n) implies P(n+1) forall n>b
we prove by Induction that P(z) forall = > b:
e Let P'(z) be P(x—0b)
» Base. P'(0) ,because P(b) by the Shifted Base.
» Step. P'(n) implies P'(n+1) for n >0

because P(n) implies P(n+1) forall n > b,
by the Shifted Base.

By Induction, P'(z) forall = >0,
so P(z) forall = > b.

2024 24

24

Another example

e To prove 3" >5-2% for x > 2
use Induction to prove 32 > 5.2%%2 for 2 > 0:

» Shifted Basis. 3* >5-2% for 2 =2,
e, 372> 5.2%%2 for £ =0

» Step. 3" >5-2" implies 3" > 5.2 for n > 2,
e, 3"2>5.2"2 implies 32+l > 5. 90241 for p

WV
o

« Conclusion by Induction:
372 > 5.92%%2 for 2 >0
l.e. 3" >5-2% for = = 2.

2024 25

25

Another shortcoming of Induction?

 Theorem. Every positive integer is the product of primes

e Induction?
No useful relation between factoring n» and factoring n+1 !

26

Another shortcoming of Induction?

 Theorem. Every positive integer is the product of primes

* E.g. 1 is the empty product;
3 a singleton product;
9 the product of 3 used twice.

* Induction?
No useful relation between factoring n and factoring n+1 |

2024 26

26

Cumulative Induction

 Theorem. Every positive integer is the product of primes.

27

Cumulative Induction

 Theorem. Every positive integer is the product of primes.

* Proof by Induction for the property
(%) Every positive integer < z is product of primes.

27

Cumulative Induction

 Theorem. Every positive integer is the product of primes.

* Proof by Induction for the property
(%) Every positive integer < z is product of primes.

» Basis. x =0 . No positive integers =z < 0 so (x) vacuously.

27

Cumulative Induction

 Theorem. Every positive integer is the product of primes.

* Proof by Induction for the property
(%) Every positive integer < z is product of primes.

» Basis. x =0 . No positive integers =z < 0 so (x) vacuously.

» Step. Assume (x) for z =n, show (x) for x =n+1

27

Cumulative Induction

 Theorem. Every positive integer is the product of primes.

* Proof by Induction for the property
(%) Every positive integer < 2 is product of primes.
» Basis. x =0 . No positive integers =z < 0 so (x) vacuously.
» Step. Assume (x) for z =n, show (x) for x =n+1
» Case 1: n+1 is 1, which is the empty product.

» Case 2. n+1 is a prime, ok.

» Case 3. n+l=y-z forsome y,z € [2..n].
By IH y, 2z are products of primes, so n+1 is too.

2024 27

27

The template of Cumulative Induction

| Cumulative Induction|template:

« Assume:

» Base. P(z) istruefor = =0.

» Step. For every z,
if P(y) is true for every y <z then P for z+1.

« Conclude: P(x) forall z € N.
* Induction is a special case, where the IH is just P(n).

« Cumulative Induction is also dubbed “Strong Induction”,
even though it is not stronger than Induction, as we show next.

2024 28

28

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

29

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

29

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

* Proof by Induction.

29

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

* Proof by Induction.

» Assume P is progressive.

29

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

* Proof by Induction.

» Assume P is progressive.

» Let Q(x) abbreviate “P(y) forevery y € [0..x)”

29

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

* Proof by Induction.

» Assume P is progressive.
» Let Q(x) abbreviate “P(y) forevery y € [0..x)”
» Base: Q(0), because [0..0) = 0

29

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

* Proof by Induction.

» Assume P is progressive.

» Let Q(x) abbreviate “P(y) forevery y € [0..x)”
» Base: Q(0), because [0..0) = 0

» Step: P is progressive, so Q(z) implies Q(z+1).

29

Cumulative Induction is not more general

» Let “P progressive” abbreviate
“if P(y) forevery y € [0..x) then P(x).”

« Cumulative induction reads:
If P is progressive then P(x) forall x € N

* Proof by Induction.

» Assume P is progressive.

» Let Q(x) abbreviate “P(y) forevery y € [0..x)”
» Base: Q(0), because [0..0) = 0

» Step: P is progressive, so Q(z) implies Q(z+1).

By Induction, Q(z) for every z € N.
But then P(x) for every z € N.

2024 29

29

INDUCTIVE REASONING IN GENERAL

Induction over generated sets

 The principle of inductive reasoning applies
to any inductively generated set S, not just N.

 If P(xz) makes sense for z € S,
is true for every base element of S
and remains true under the generative steps for S,
then P(z) istrueforall z € S.

31

Induction over generated sets

 The principle of inductive reasoning applies
to any inductively generated set S, not just N.

 If P(xz) makes sense for z € S,
is true for every base element of S
and remains true under the generative steps for S,
then P(z) istrueforall z € S.

» The underlying reason is the same as for N:
as the elements of S are generated,
the property P invariantly holds.

2024 31

31

Induction on strings

« Let P(xz) be a property of X-strings.

32

Induction on strings

« Let P(x) be a property of X-strings.
« Assume:

» Base. P(e)

» Steps. Foreach c € ¥ and w e ¥*
P(w) implies P(ow)

32

Induction on strings

« Let P(x) be a property of X-strings.

« Assume:

» Base. P(e)

» Steps. Foreach c € ¥ and w e ¥*
P(w) implies P(ow)

» Conclude: P(w) forall we X",

32

2024 32

Example: Swapping

« For w e {0,1}* let Aw) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) (w)) =w

33

Example: Swapping

« For we {0,1}* let (w) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) (w)) =w
 The proof is by induction on {0,1}* .

33

Example: Swapping

« For w e {0,1}* let Aw) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) (w)) =w
 The proof is by induction on {0,1}* .

» Basis. ((¢)) =) =¢

33

Example: Swapping

e For w e {0,1}* let Ww) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) (w)) =w
 The proof is by induction on {0,1}* .

» Basis. ((¢)) =) =¢
» Stepfor 0. If z2)) ==
then 2(02)) = (12 (x))

= Ox (IH)
Step for 1 is similar.

33

Example: Swapping

« For w e {0,1}* let Aw) (“swap w”) be
w with 0 and 1 interchanged: 001 = 110.

We show (x) (w)) =w
 The proof is by induction on {0,1}* .
» Basis. ((e)) =) =¢

» Stepfor 0. If z2)) ==
then 2(0z)) = (12 (2))

= Ox (IH)
Step for 1 is similar.

By induction on {0,1}* () forall w € {0,1}*.

33

2024

33

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

34

Dealing with several inputs

*Prove |z-u|=|z|+ |u| (z,ueX").

» Problem: This is a property of a pair of strings!

34

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

 Solution: Read it as a property of one z:

|z u|=|z|+|ul forall ueX*

34

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

 Solution: Read it as a property of one z:
|z u|=|z|+|ul forall ueX*

» Basis: = =e.
le-u| = |y since ¢-u=u
lel + |u] = 0+ Jul = |uf

34

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

 Solution: Read it as a property of one z:
|z u|=|z|+|ul forall ueX* (%)

» Basis: =z =e¢.
le-u| = |y since ¢-u=u
el + |ul = 0+ |u| = |uf
» Step: Assume (x) for = = w.
For x = ow we have forall u € ¥*
jow - u| = |o(w - u)
= 1+ |w-uy
= 1+ |w|+ |u| (IH)
= (lowl) + [ul

34

Dealing with several inputs

* Prove |z-u|=|z|+ |u| (z,ueX").

 Solution: Read it as a property of one z:
|z u|=|z|+|ul forall ueX*

» Basis: =z =e¢.
le-u| = |y since ¢-u=u
el + |ul = 0+ |u| = |uf
» Step: Assume (x) for = = w.
For x = ow we have forall u € ¥*
jow - u| = |o(w - u)
= 1+ |w-uy
= 1+ |w|+ |u| (IH)
= (low]) + |u|

* By induction on ¥* conclude (%) for all z € ¥*.

34

Induction over binary trees

« Recall that the set of binary trees is generated

from a base tree e by juncture:
t, 4

if ¢y, t; are binary trees then so is \./

«Let P(z) be a property that makes sense for any bi-
nary tree t.

 |If we can show that

» Base: P(e) ;and

> Step: If both P(to) and P(t1)
then P(t) forthe juncture ¢ above of ¢, and t;

then P(t) is true for all binary trees t.

2024 35

35

Example: Odd size of binary trees

» Can a binary tree have an even number of nodes?

36

Example: Odd size of binary trees

« Every binary tree has an odd number of nodes.

36

Example: Odd size of binary trees

« Every binary tree has an odd number of nodes.

« Let P(t) be the property

“t has an odd number of nodes”

36

Example: Odd size of binary trees

« Every binary tree has an odd number of nodes.

« Let P(t) be the property

“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

36

Example: Odd size of binary trees

« Every binary tree has an odd number of nodes.
« Let P(t) be the property
“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

» Step: Suppose ty,t, are trees of odd sizes
no and n;.

Let ¢ be obtained from ¢, and ¢t;.

The size of t is ny+n;+ 1, which is again odd.

36

Example: Odd size of binary trees

« Every binary tree has an odd number of nodes.
« Let P(t) be the property
“t has an odd number of nodes”

Induction on trees:

» Basis: P(e) (since 1 is odd)

» Step: Suppose ty,t, are trees of odd sizes
no and n;.

Let ¢ be obtained from ¢, and ¢t;.

The size of t is ny+n;+ 1, which is again odd.

By induction on binary tree we conclude that
P(t) for all binary trees t.

2024 36

36

Invariants: A dynamic view of induction

 Euclid GCD algorithm
 Eating lots of chocolate

« A game of coins

2024 37

37

GENERATING SETS

Generating the star of a language

« Example: We generated **
starting with an alphabet >::

— Base: Each o0 € ¥ isin X%,
— Generative step: If z € ¥* and o € ¥ then oz € ¥*.

» We started from a finite number of initial objects. More
broadly we can start with any set.

« For any language L we generate L*:

— Base: Each we L isin L*.
— Generative step: If x € L* and w € L then w-x € L*.

 This defines the mapping * between languages:
each language L is mapped to L*.

2024 39

39

Generating the star of a mapping

« Combining languages by concatenation yields a new
language.
The iteration of concatenating with L,
starting with the unit language {¢},
yields L*.

40

Generating the star of a mapping

« Combining languages by concatenation yields a new
language.
The iteration of concatenating with L,
starting with the unit language {¢},
yields L*.

« Similarly, combining mappings F: A= A by com-
position
yields a new mapping.
The iteration of composing with F', starting with Id4 : A —
yields the | star of F' |, denoted F™*.

40

Generating the star of a mapping

e Similarly, combining mappings F : A= A by com-
position
yields a new mapping.
The iteration of composing with F', startingwith Id4 : A —
yields the | star of F' |, denoted F™.

* Thatis, = (F)*y iff
=2 (F)z1(F) -+« (F)zk =y
forsome k>0 and z,..,z; A.

2024 40

40

COMPUTING BY RECURRENCE

Explicit function definitions (reminder)

e f(x)=3x (z+2) defines a function
In terms of given constants and function-identifiers.

e The definition

1. introduces a new function identifier (f); and

2. uses a defining expression 3 x (z +2))
built from known functions + and x and the
argument (i.e. input) of f.

2024 42

42

Computing by recurrence

» Suppose s(x) = z+1 is the only function available.
Define:
d(0) = 0
d(s(z)) = s(s(d(z)))
« What is d(1)? d(2)? d(x)?

2024 43

43

Computing by recurrence

d(0) = 0
d(s(z)) = s(s(d(z)))
 As the input is being generated,
successive outputs grow by double-increments:
» d(0) =0 is given

> d(1) = s(s(d(0))) = s(s(0)) =2
. d(2) = s(s(d(1))) = 5(s(2)) = 4 etc.

» f is defined by providing a value for input 0
and an explicit definition of f(z+1) interms of f(x).

2024 44

44

The general template

* A function f: N—N is defined here by providing

1. avalue for f(0) and
2. an explicit definition of f(z+1) interms of f(x)

45

The general template

* A function f: N—N is defined here by providing

1. avalue for f(0) and
2. an explicit definition of f(z+1) interms of f(x)

« Our next examples illustrate the potential
of recurrence to yield rapidly-increasing functions.

2024 45

45

Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
e(s(x)) = dle(x))

46

Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
e(s(x)) = dle(x))
« What are e(1)? e(2)? e(n)?

46

Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
e(s(x)) = dle(x))
« What are e(1)? e(2)? e(n)?

 How do we prove it?

46

Exponentiation

 Using the doubling-function d
we define a new function:

e(0) =1
e(s(x)) = dle(x))
« What are e(1)? e(2)? e(n)?
By Induction!

46

2024 46

Shooting for the stars

» We defined the function e of exponentiation base 2.
Using Iteration again we define a new function
h(0) = 1
h(s(z)) = e(h(z))

hl) =20 =2

h2) = 22 = 4

h3) = 20 = 16

h(4) = 216 = 15384

h(5) = 2198t > 10°00 np physical meaning!

2024 47

47

Recursion vs. recurrence

» Recurrence and recursion
are practically identical as English words,
but they have different mathematical meanings.

» Recursion: f(z)="--
f used as you wish

eg flz) = f(f(z+1))

» Recurrence: f(z)=---
f used for input z—1
Much weaker than recursion.

» Cumulative recurrence: f(x)=--- uUses
f forinputs <z
Has same power as recurrence.

2024 48

48

Output need not be numeric

 Strings as output:

£0) = ¢
f(s(z)) = a- f(a)

49

Output need not be numeric

 Strings as output:

£0) = ¢
f(s(z)) = a- f(a)

* f(n) =

49

Output need not be numeric

 Strings as output:

£0) = ¢
f(s(z)) = a- f(a)

+ f(n) = a"

2024 49

49

Outputs need not be numeric

* Sets as output: f(0)
)

f(s(x)) (-'L‘) U{f(z)}

50

Outputs need not be numeric

* Sets as output: f(0)
)

f(s(x)) (-’L‘) U{f(=)}

- f(1) = {0}

- f(2) =10, {0}}
- f(3) =10, {0},{0, {0}}}

50

Outputs need not be numeric

 Sets as output: f(0)
f(s(z))) (fr) U{f(z)}
- f(1) = {0}
- f(2) =10, {0}}
- f(3) =10, {0},{0, {0}}}
« Ingeneral, f(n)={f(0),..., f(n—1)}

Every “number” is the set of previous numbers.

50

Outputs need not be numeric

* Sets as output: f(0)

0
f(s(z))) = flz)u{f(z)}

- f(1) = {0}
~ f(2) = {0, {0}}
~ f(3) = {0, {0}, {0, {0}}}
e Ingeneral, f(n)={f(0),...,f(n—1)}

Every “number” is the set of previous numbers.

» So natural numbers can be simulated by abstract sets!

2024 50

50

Outputs need not be numeric

» Languages as output:

f(0) = {e}
f(s(z)) = f(z)-{a,b}

51

Outputs need not be numeric

» Languages as output:

f(0) = {e}
f(s(z)) = f(z)-{a,b}

* f(n)

51

Outputs need not be numeric

» Languages as output:

f(0) = {e}
f(s(z)) = f(z)-{a,b}

¢ f(n) = {aab}n

2024 51

51

RECURRENCE ON STRINGS

Example: The swap function

2: {0,1)* = {0, 1}

For instance: (01011) = 10100

53

Example: The swap function

2: {0,1)* = {0, 1}

For instance: (01011) = 10100

We) = €
(0w) = 1 (w)
(1w) = 00 (w)

53

Example: The swap function

2: {0,1)* = {0, 1}

For instance: (01011) = 10100

We) = ¢
(0w) = 1 (w)
(lw) = 0 (w)
As the values in {0,1}* are generated,

the corresponding output values are obtained.

53

2024 53

Template of recurrence on strings

e For ¥ ={0,1}:

 Given functions g, and ¢, over >* ,

fle) = ¢
fO0w) = go(f(w))
f(lw) = gi(f(w))
An entry for each o € ¥
and where each g, is a previously defined function

54

Template of recurrence on strings

e For ¥ ={0,1}:

 Given functions g, and ¢, over >* ,

fle) = ¢
f(Ow) = go(f(w))
f(lw) = gi(f(w))

» A generic template for alphabets X :
fle) = c
flow) = go(f(w))
An entry for each o € ¥
and where each g, is a previously defined function

54

Template of recurrence on strings

e For ¥ ={0,1}:

 Given functions g, and ¢, over >* ,

fle) = ¢
f(Ow) = go(f(w))
f(lw) = gi(f(w))

» A generic template for alphabets X :

fle) = c
flow) = go(f(w))
An entry for each o € ¥
and where each g, is a previously defined function

2024

54

54

Another example

¥ ={0,1},
f: X% —= X" replaces in input w the first 0 by 1.

« Example: f(11001) = 11101.

55

Another example

¥ ={0,1},
f: X% —= X" replaces in input w the first 0 by 1.

« Example: f(11001) = 11101.
- f(e) =
> f(lw
> f(Ow

) =
) =

55

Another example

¥ ={0,1},
f: X% —= X" replaces in input w the first 0 by 1.

« Example: f(11001) = 11101.
- fle)=e¢
> f(lw) =
> f(ow) =

55

Another example

¥ ={0,1},
f: X% —= X" replaces in input w the first 0 by 1.

» Example: f(11001) = 11101.
- fle) =¢
- f(1w) = 1f(w)
- f(ow) =

55

Another example

¥ ={0,1},
f: X% —= X" replaces in input w the first 0 by 1.

« Example: f(11001) = 11101.

- f(e) = ¢
> flw) = 1f(w)
» f(Ow) = 1w

2024 55

55

The output need not be strings

« The length function ¢: {0,1}* = N |i.e. (w) = |w|:
le) =0
(Ow) = 14+ 4(w)
((lw) = 14+ 4(w)

2024 56

56

Another example

e v¢: {0,1}* > N
vl(e) = 0
vl(Ow) = 2-vé(w)
vl(1lw) = 1+ 2-vé(w)
What is ve ?

2024 57

57

A valuation function

vé(e) =
vl(0w) =
vl(lw) =

« vl(w) = the numeric value of w’ in binary.

» For example,

vf(011)

2 - 'vf('w)
142 - vé(w)

2-vl(11)
2-(14+2-v4(1)
9.
2
6

(1+2-(14v(e)))

-(14+2-(140))

the numeric value of 110 In binary.

58

2024 58

