INDUCTIVELY GENERATED DATA

Generative processes

 Virtually every infinite set considered in programming is *generated by a process*.

The fundamental example is the set \mathbb{N} of natural numbers:

▶ Initial object ("base"): The number 0 is in \mathbb{N} .

Generative processes

 Virtually every infinite set considered in programming is *generated by a process*.

The fundamental example is the set \mathbb{N} of natural numbers:

▶ Initial object ("base"): The number 0 is in \mathbb{N} .

Generative step: If $n \in N$ then "next" of n, s n, is $\in \mathbb{N}$

Generative processes

 Virtually every infinite set considered in programming is *generated by a process*.

The fundamental example is the set \mathbb{N} of natural numbers:

▶ Initial object ("base"): The number 0 is in \mathbb{N} .

Generative step: If $n \in N$ then "next" of n, s n, is $\in \mathbb{N}$

• Implicit assumptions:

The meanings of 0 and "next" are known and given.

Generating {0,1}*

- ▶ Base. The *empty string* is in {0,1}*.
- ► Generative step.

If $w \in \{0,1\}^*$ then 0w and 1w are $\in \{0,1\}^*$

Generating {0,1}*

- ▶ Base. The *empty string* is in {0,1}*.
- Generative step. If $w \in \{0, 1\}^*$ then 0w and 1w are $\in \{0, 1\}^*$
- Implicit assumptions:

The meanings of the empty string and of juxtaposition are known.

Generating {0,1}*

- **Base.** The *empty string* is in $\{0, 1\}^*$.
- Generative step.

If $w \in \{0,1\}^*$ then 0w and 1w are $\in \{0,1\}^*$

• Implicit assumptions:

The meanings of the empty string and of juxtaposition are known.

 Note: We generate strings here "from the head"; This conforms with the general use of constructors, and reflected in the functions *head* and *tail*.

Format of generative definitions

• Two parts in a generative dfn of set S:

► Base:

Particular known objects are in S.

Format of generative definitions

- Two parts in a generative dfn of set S:
 - ► Base:

Particular known objects are in S.

Generative steps:

If certain objects are in S

then so are certain objects obtained from those.

Another example: Binary trees

 Binary tree means here a finite, ordered, unlabeled binary tree

Base: The singleton tree • is in **BT**. **Generative step:**

If t_0 , t_1 are binary trees then so is

Implicit assumptions:

We know what a singleton tree and juncture of trees mean.

• Generate the set E of even natural numbers.

- Generate the set *E* of even natural numbers.
 - ► Base: 0
 - Generative step: If $n \in E$ then $n-2 \in E$.

• Two ways to define closed boolean terms:

- Two ways to define closed boolean terms:
- IBT: Infix boolean terms:
 - ▶ 0 and 1 are in IBT
 - ▶ If $t, t' \in IBT$ then $(t) \land (t') \in IBT$ and $(t) \lor (t') \in IBT$

- Two ways to define closed boolean terms:
- IBT: Infix boolean terms:
 - ▶ 0 and 1 are in IBT
 - ▶ If $t, t' \in IBT$ then $(t) \land (t') \in IBT$ and $(t) \lor (t') \in IBT$
- **PBT**: Prefix boolean terms:
 - ▶ 0 and 1 are in PBT
 - If $t, t' \in \mathbf{PBT}$ then $\wedge t t' \in \mathbf{PBT}$ and $\vee t t' \in \mathbf{PBT}$

- Two ways to define closed boolean terms:
- IBT: Infix boolean terms:
 - ▶ 0 and 1 are in IBT
 - If $t, t' \in IBT$ then $(t) \land (t') \in IBT$ and $(t) \lor (t') \in IBT$
- **PBT**: Prefix boolean terms:
 - ▶ 0 and 1 are in PBT
 - If $t, t' \in \mathbf{PBT}$ then $\wedge t t' \in \mathbf{PBT}$ and $\vee t t' \in \mathbf{PBT}$
- Main difference between IBT and PBT:

No parentheses in PBT !

Lists of natural numbers

- Generate $\mathbb{L}(\mathbb{N})$ the **lists of natural numbers**.
- Fix a textual coding of \mathbb{N} , say binary numerals.

Lists of natural numbers

- Generate $\mathbb{L}(\mathbb{N})$ the **lists of natural numbers**.
- Fix a textual coding of \mathbb{N} , say binary numerals.
 - \blacktriangleright \Box is a list of naturals.
 - If ℓ is a list and k a numeral then $k: \ell$ is a list.

Lists of natural numbers

- Generate $\mathbb{L}(\mathbb{N})$ the **lists of natural numbers**.
- Fix a textual coding of \mathbb{N} , say binary numerals.
 - \blacktriangleright \Box is a list of naturals.
 - If ℓ is a list and k a numeral then $k: \ell$ is a list.
- Examples: $1:\Box$, $0:101:10011:10:\Box$.

REASONING ABOUT INDUCTIVE DATA

• **N** is infinite. **{0,1}*** is infinite.

But our minds and our proofs are finite.

- N is infinite. {0, 1}* is infinite.
 But our minds and our proofs are finite.
- So how can we prove anything about \mathbb{N} ?

- N is infinite. {0, 1}* is infinite.
 But our minds and our proofs are finite.
- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.
 Example: "For all n at least one of 2ⁿ + 1 and 2ⁿ 1 is prime."
 2,3,5,7,17,31 Hooray!

- N is infinite. {0, 1}* is infinite.
 But our minds and our proofs are finite.
- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.
 Example: "For all n at least one of 2ⁿ + 1 and 2ⁿ 1 is prime."
 2,3,5,7,17,31 Hooray!

Oops: Both 63 and 65 are composite.

- N is infinite. {0, 1}* is infinite.
 But our minds and our proofs are finite.
- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.
 Example: "For all n at least one of 2ⁿ + 1 and 2ⁿ 1 is prime."
 2, 3, 5, 7, 17, 31 Hooray!
 Oops: Both 63 and 65 are composite.
- Another try (Fermat): All numbers $2^{2^n} + 1$ are prime 3, 5, 17, 257, 65537. Yahoo!

- N is infinite. {0, 1}* is infinite.
 But our minds and our proofs are finite.
- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.
 Example: "For all n at least one of 2ⁿ + 1 and 2ⁿ 1 is prime." 2,3,5,7,17,31 Hooray!
 Oops: Both 63 and 65 are composite.
- Another try (Fermat): All numbers 2^{2ⁿ} + 1 are prime 3, 5, 17, 257, 65537. Yahoo!
 Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

- N is infinite. {0, 1}* is infinite.
 But our minds and our proofs are finite.
- So how can we prove anything about \mathbb{N} ?
- Trying many cases is never sufficient.
 Example: "For all n at least one of 2ⁿ + 1 and 2ⁿ 1 is prime." 2,3,5,7,17,31 Hooray!
 Oops: Both 63 and 65 are composite.
- Another try (Fermat): *All numbers* 2^{2ⁿ} + 1 *are prime* 3, 5, 17, 257, 65537. Yahoo!
 Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.
- So how can we hope to prove that all natural numbers are such-and-such ?

Finitely generated infinities!

- The secret is that inductive data is generated by *finite rules.*
- Therefore we have a finite tool for proving that all generated objects satisfy certain properties.

• Suppose we generate ${\mathbb N}$ using a green pen.

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.

0

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.

0 1

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.

0 1 2

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.
 - 0 1 2 3

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.

0 1 2 3 4

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.

0 1 2 3 4

- They all come out green:
 - As we generate N we make sure that we start with green, and that each step maintains green-ness.
Following the process

- Suppose we generate ℕ using a green pen.
 - ▶ 0 is a green natural.
 - If x is a green natural, then so is its successor.

0 1 2 3 4

- They all come out green:
 - As we generate N we make sure that we start with green, and that each step maintains green-ness.
- Green-ness is here the process' *invariant:* True at the outset, and preserved by the steps.

The principle of induction for \mathbb{N}

• Suppose P(x) is a property of natural numbers x.

P(x) abbreviates here "x has the property P"

The principle of induction for \mathbb{N}

- Suppose P(x) is a property of natural numbers x.
 P(x) abbreviates here "x has the property P"
- Assume:
 - **Base.** P(0) and
 - ▶ Step. For all $n \in \mathbb{N}$, P(n) implies P(n+1).

The principle of induction for \mathbb{N}

- Suppose P(x) is a property of natural numbers x.
 P(x) abbreviates here "x has the property P"
- Assume:
 - ► **Base.** *P*(0) and
 - ▶ Step. For all $n \in \mathbb{N}$, P(n) implies P(n+1).
- Conclude: P(x) for all $x \in \mathbb{N}$.

The principle of induction for N

- Suppose P(x) is a property of natural numbers x.
 P(x) abbreviates here "x has the property P"
- Assume:
 - **Base.** P(0) and
 - ▶ Step. For all $n \in \mathbb{N}$, P(n) implies P(n+1).
- Conclude: P(x) for all $x \in \mathbb{N}$.
- As natural numbers are being generated, they all come out satisfying *P*.

The principle of induction for N

- Suppose P(x) is a property of natural numbers x.
 P(x) abbreviates here "x has the property P"
- Assume:
 - **Base.** P(0) and
 - ▶ Step. For all $n \in \mathbb{N}$, P(n) implies P(n+1).
- Conclude: P(x) for all $x \in \mathbb{N}$.
- As natural numbers are being generated, they all come out satisfying *P*.
- A property of natural numbers that holds for zero and is invariant under successor is true of every natural number.

The principle of induction for ℕ

- Suppose P(x) is a property of natural numbers x.
 P(x) abbreviates here "x has the property P"
- Assume:
 - ► **Base.** *P*(0) and
 - ▶ Step. For all $n \in \mathbb{N}$, P(n) implies P(n+1).
- Conclude: P(x) for all $x \in \mathbb{N}$.
- As natural numbers are being generated, they all come out satisfying *P*.
- A property of natural numbers that holds for zero and is invariant under successor is true of every natural number.
- The premise of the STEP is often called the "induction assumption" or the Induction Hypothesis (IH).

• Show that $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$. What is the property?

- Show that $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- P(x) is $2^x < 2^{x+1}$

- Show that $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- If we know that
 - $2^x < 2^{x+1}$ is true for x = 0; and
 - ► $2^x < 2^{x+1}$ for x = nimplies that $2^x < 2^{x+1}$ for x = n+1
- then $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.

- Show that $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- If we know that
 - $2^x < 2^{x+1}$ is true for x = 0; and
 - ► $2^x < 2^{x+1}$ for x = nimplies that $2^x < 2^{x+1}$ for x = n+1
- then $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- · But we do have
 - ► Base: $2^0 = 1 < 2 = 2^{0+1}$

- Show that $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- · If we know that
 - $2^x < 2^{x+1}$ is true for x = 0; and
 - ► $2^x < 2^{x+1}$ for x = nimplies that $2^x < 2^{x+1}$ for x = n+1
- then $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- · But we do have
 - ► Base: $2^0 = 1 < 2 = 2^{0+1}$
 - ► Step: If $2^n < 2^{n+1}$ (P(x) for x = n) then $2^{n+1} = 2^n + 2^n < 2^{n+1} + 2^{n+1} = 2^{n+2}$ (P(x) for x = n+1)

- Show that $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- · If we know that
 - $2^x < 2^{x+1}$ is true for x = 0; and
 - ► $2^x < 2^{x+1}$ for x = nimplies that $2^x < 2^{x+1}$ for x = n+1
- then $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.
- · But we do have
 - ► Base: $2^0 = 1 < 2 = 2^{0+1}$
 - Step: If $2^n < 2^{n+1}$ (P(x) for x = n) then $2^{n+1} = 2^n + 2^n < 2^{n+1} + 2^{n+1} = 2^{n+2}$

(P(x) for x = n+1)

• By Induction, $2^x < 2^{x+1}$ for all $x \in \mathbb{N}$.

Try this...

- Prove by induction on N that $x \leq 2^x$ for all $x \in \mathbb{N}$. We are given that exponentiation is an increasing function.
- By Induction $x \leq 2^x$ for all $x \in \mathbb{N}$.

Try this...

- Prove by induction on \mathbb{N} that $x \leq 2^x$ for all $x \in \mathbb{N}$. We are given that exponentiation is an increasing function.
 - Base: For x = 0 we have $x^2 = 0 < 1 = 2^x$.
 - ▶ Step: Assume $n \leq 2^n$. Then

 $n+1 \leqslant 2^{n}+1 \quad (IH)$ $= 2^{n}+2^{0}$ $\leqslant 2^{n}+2^{n} \quad (exponentiation is increasing)$ $= 2^{n+1}$

• By Induction $x \leq 2^x$ for all $x \in \mathbb{N}$.

Example: Divisibility

- P(x): $x^3 + 2x$ is divisible by 3.
- By Induction:

Example: Divisibility

- P(x): $x^3 + 2x$ is divisible by 3.
- By Induction:
 - **Base.** For x = 0

 $x^3 + 2x = 0^3 + 2 \cdot 0 = 0$ which is divisible by 3.

- P(x): $x^3 + 2x$ is divisible by 3.
- By Induction:
 - ▶ Base. For x = 0
 x³ + 2x = 0³ + 2 ⋅ 0 = 0 which is divisible by 3.
 ▶ Step. Assume P(n) (IH). Then for x = n+1
 x³ + 2x = (n+1)³ + (2n+2) = (n³ + 3n² + 3n + 1) + (2n + 2) = (n³ + 2n) + 3(n² + n + 1)

 $x^3 + 2x$ is the sum of numbers divisible by 3, and is therefore divisible by 3.

- P(x): $x^3 + 2x$ is divisible by 3.
- By Induction:
 - ▶ Base. For x = 0 x³ + 2x = 0³ + 2 ⋅ 0 = 0 which is divisible by 3.
 ▶ Step. Assume P(n) (IH). Then for x = n+1 x³ + 2x = (n+1)³ + (2n + 2) = (n³ + 3n² + 3n + 1) + (2n + 2) = (n³ + 2n) + 3(n² + n + 1) x³ + 2x is the sum of numbers divisible by 3, and is therefore divisible by 3.
- By Induction $x^3 + 2x$ is divisible by 3, for all $x \in \mathbb{N}$.

(*) $1+3+5+\cdots+(2x-1) = x^2$

(*)
$$1+3+5+\cdots+(2x-1) = x^2$$

By Induction:

(*)
$$1+3+5+\cdots+(2x-1) = x^2$$

By Induction:

► **Base.** (*) is true for x = 0: the empty sum $= 0 = 0^2$.

(*)
$$1+3+5+\cdots+(2x-1) = x^2$$

By Induction:

- ▶ Base. (*) is true for x = 0: the empty sum $= 0 = 0^2$.
- Step. Assume (*) for x = n.

Then, for x = n+1, $1+3+\dots+(2x-1) = 1+3+\dots+(2n-1)+(2n+1)$ $= n^2+(2n+1)$ (IH) $= (n+1)^2$

That is, (\star) for x = n+1.

(*)
$$1+3+5+\cdots+(2x-1) = x^2$$

By Induction:

- ▶ Base. (*) is true for x = 0: the empty sum $= 0 = 0^2$.
- ► Step. Assume (*) for x = n. Then, for x = n+1, $1+3+\dots+(2x-1) = 1+3+\dots+(2n-1)+(2n+1)$ $= n^2 + (2n+1)$ (IH) $= (n+1)^2$

That is, (\star) for x = n+1.

Conclude: (*) holds for every $x \in \mathbb{N}$.

(*) $1+2+\cdots+x = x(x+1)/2$

(*)
$$1+2+\cdots+x = x(x+1)/2$$

By Induction.

(*) $1+2+\cdots+x = x(x+1)/2$

By Induction.

► Base. (*) is true for x = 0: The empty sum $= 0 = 0 \cdot 1/2$.

(*)
$$1+2+\cdots+x = x(x+1)/2$$

By Induction.

- ▶ Base. (*) is true for x = 0: The empty sum $= 0 = 0 \cdot 1/2$.
- Step. Assume (\star) for x = n.

Then, for x = n+1,

$$0 + 1 + \dots + x = 0 + 1 + \dots + n + (n+1)$$

= $\frac{n(n+1)}{2} + (n+1)$ (IH)
= $(n+1)(\frac{1}{2}n+1)$
= $\frac{1}{2}(n+1) \cdot (n+2)$
= $\frac{1}{2}x(x+1)$

That is, (\star) for x = n+1.

(*)
$$1+2+\cdots+x = x(x+1)/2$$

By Induction.

- **Base.** (*) is true for x = 0: The empty sum $= 0 = 0 \cdot 1/2$.
- Step. Assume (\star) for x = n.

Then, for x = n+1,

$$0 + 1 + \dots + x = 0 + 1 + \dots + n + (n+1)$$

= $\frac{n(n+1)}{2} + (n+1)$ (IH)
= $(n+1)(\frac{1}{2}n+1)$
= $\frac{1}{2}(n+1) \cdot (n+2)$
= $\frac{1}{2}x(x+1)$

That is, (\star) for x = n+1.

Conclude: (*) holds for every $x \in \mathbb{N}$.

- A property of natural numbers may refer to non-numeric data!
 - (*) Every set with x elements has 2^x subsets
- By Induction.

- A property of natural numbers may refer to non-numeric data!
 - (*) Every set with x elements has 2^x subsets
- By Induction.
 - ▶ Base. x = 0. The only set with 0 elements is Ø, which has just $2^0 = 1$ subset, namely Ø itself.

- A property of natural numbers may refer to non-numeric data!
 - (*) Every set with x elements has 2^x subsets
- By Induction.
 - ▶ Base. x = 0. The only set with 0 elements is Ø, which has just $2^0 = 1$ subset, namely Ø itself.
 - Step. Assume P(n) (IH).

For x = n+1 let S be a set with n+1 elements.

Choose $a \in S$ (*S* can't be empty!) and let $S^- =_{df} S - \{a\}$.

- A property of natural numbers may refer to non-numeric data!
 - (*) Every set with x elements has 2^x subsets
- By Induction.
 - ▶ Base. x = 0. The only set with 0 elements is Ø, which has just $2^0 = 1$ subset, namely Ø itself.
 - Step. Assume P(n) (IH).

For x = n+1 let S be a set with n+1 elements. Choose $a \in S$ (S can't be empty!) and let $S^- =_{df} S - \{a\}$. By IH S^- has 2^n subsets A_1, \ldots, A_{2^n} . Subsets of $S \colon A_1, \ldots, A_{2^n}, A_1 \cup \{a\}, \ldots, A_{2^n} \cup \{a\}$ which are all different. So S has $2^n + 2^n = 2^{n+1}$ subsets.

- A property of natural numbers may refer to non-numeric data!
 - (*) Every set with x elements has 2^x subsets
- By Induction.
 - ▶ **Base.** x = 0. The only set with 0 elements is Ø, which has just $2^0 = 1$ subset, namely Ø itself.
 - ▶ Step. Assume P(n) (IH).

For x = n+1 let S be a set with n+1 elements. Choose $a \in S$ (S can't be empty!) and let $S^- =_{df} S - \{a\}$. By IH S^- has 2^n subsets A_1, \ldots, A_{2^n} . Subsets of $S : A_1, \ldots, A_{2^n}, A_1 \cup \{a\}, \ldots, A_{2^n} \cup \{a\}$ which are all different. So S has $2^n + 2^n = 2^{n+1}$ subsets.

• By Induction (*) for all $x \in \mathbb{N}$.

Starting Induction elsewhere

- Show $x^2 > x$ for all x > 1.
- We wish to start induction from 2.

Starting Induction elsewhere

- Show $x^2 > x$ for all x > 1.
- We wish to start induction from 2.

But that's the same as Induction for the property $(x + 2)^2 > (x + 2)$!
Starting Induction elsewhere

- Show $x^2 > x$ for all x > 1.
- We wish to start induction from 2.
 But that's the same as Induction for the property (x + 2)² > (x + 2) !
- We refer to this as Shifted Induction:

► Base. $2^2 = 4 > 2$ ► Step. $n^2 > n$ implies $(n+1)^2 = n^2 + 2n + 1$ > n+2n+1 (IH)
> n+1 since n > 0)

Starting Induction elsewhere

- Show $x^2 > x$ for all x > 1.
- We wish to start induction from 2.
 But that's the same as Induction for the property (x + 2)² > (x + 2) !
- We refer to this as Shifted Induction:

► Base. $2^2 = 4 > 2$ ► Step. $n^2 > n$ implies $(n+1)^2 = n^2 + 2n + 1$ > n+2n+1 (IH)
> n+1 since n > 0)

• Conclusion: $x^2 > x$ for all integers x > 1.

Shifted Induction

- The template for such reasoning is **Shifted Induction**
- Given a property P(x) of natural numbers, and $b \in \mathbb{N}$,
- Assume: Shifted Base. *P* true of *b*; and

▶ Shifted Step. For all $n \ge b$, P(n) implies P(n+1)

- Conclude: P(x) for all $x \ge b$.
- Induction is a special case, with b = 0.

- $3^n > 5 \cdot 2^n$ for all $n \ge 4$.
- By Shifted Induction with initial value 4.

- $3^n > 5 \cdot 2^n$ for all $n \ge 4$.
- By Shifted Induction with initial value 4.
 - ▶ <u>Basis</u>. $3^4 = 81 > 80 = 5 \cdot 2^4$

- $3^n > 5 \cdot 2^n$ for all $n \ge 4$.
- By Shifted Induction with initial value 4.

▶ Basis.
$$3^4 = 81 > 80 = 5 \cdot 2^4$$

▶ Step. If $3^n > 5 \cdot 2^n$ then
 $3^{n+1} = 3 \cdot 3^n$
 $> 3 \cdot (5 \cdot 2^n)$ (IH)
 $> 2 \cdot 5 \cdot 2^n$
 $= 5 \cdot 2^{n+1}$

Is this new?

• But is Shifted Induction a new method? Or is it just syntactic sugar for particular form of Induction?

Shifting, in general

- Given
 - Shifted Base. P(b) and
 - ▶ Shifted Step. P(n) implies P(n+1) for all $n \ge b$

we prove by *Induction* that P(x) for all $x \ge b$:

- Let P'(x) be P(x-b)
 - **Base.** P'(0), because P(b) by the Shifted Base.
 - ▶ Step. P'(n) implies P'(n+1) for $n \ge 0$ because P(n) implies P(n+1) for all $n \ge b$, by the Shifted Base.
- By Induction, P'(x) for all $x \ge 0$, so P(x) for all $x \ge b$.

- To prove $3^x > 5 \cdot 2^x$ for $x \ge 2$ use Induction to prove $3^{x+2} > 5 \cdot 2^{x+2}$ for $x \ge 0$:
 - ► Shifted Basis. $3^x > 5 \cdot 2^x$ for x = 2, i.e. $3^{x+2} > 5 \cdot 2^{x+2}$ for x = 0
 - ▶ Step. $3^n > 5 \cdot 2^n$ implies $3^{n+1} > 5 \cdot 2^{n+1}$ for $n \ge 2$, i,e, $3^{n+2} > 5 \cdot 2^{n+2}$ implies $3^{(n+2)+1} > 5 \cdot 2^{(n+2)+1}$ for $n \ge 0$
- Conclusion by Induction: $3^{x+2} > 5 \cdot 2^{x+2} \text{ for } x \ge 0$
 - i.e. $3^x > 5 \cdot 2^x$ for $x \ge 2$.

Another shortcoming of Induction?

- **Theorem.** Every positive integer is the product of primes
- Induction?

No useful relation between factoring n and factoring n+1 !

Another shortcoming of Induction?

- **Theorem.** Every positive integer is the product of primes
- E.g. 1 is the empty product;
 3 a singleton product;
 9 the product of 3 used twice.
- Induction?

No useful relation between factoring n and factoring n+1 !

• **Theorem.** Every positive integer is the product of primes.

- **Theorem.** Every positive integer is the product of primes.
- Proof by Induction for the property
 - (*) Every positive integer $\leq x$ is product of primes.

- **Theorem.** Every positive integer is the product of primes.
- Proof by Induction for the property
 - (*) Every positive integer $\leq x$ is product of primes.
 - ▶ **Basis.** x = 0. No positive integers $x \leq 0$ so (*) vacuously.

- **Theorem.** Every positive integer is the product of primes.
- Proof by Induction for the property
 - (*) Every positive integer $\leq x$ is product of primes.
 - **Basis.** x = 0. No positive integers $x \leq 0$ so (*) vacuously.
 - ▶ Step. Assume (*) for x = n, show (*) for x = n+1

- **Theorem.** Every positive integer is the product of primes.
- Proof by Induction for the property
 - (*) Every positive integer $\leq x$ is product of primes.
 - **Basis.** x = 0. No positive integers $x \leq 0$ so (*) vacuously.
 - ▶ Step. Assume (*) for x = n, show (*) for x = n+1
 - Case 1: n+1 is 1, which is the empty product.
 - Case 2. n+1 is a prime, ok.
 - ► Case 3. $n+1 = y \cdot z$ for some $y, z \in [2..n]$. By IH y, z are products of primes, so n+1 is too.

The template of Cumulative Induction

Cumulative Induction template:

• Assume:

- **Base.** P(x) is true for x = 0.
- ▶ Step. For every x, if P(y) is true for every $y \leq x$ then P for x+1.
- Conclude: P(x) for all $x \in \mathbb{N}$.
- Induction is a special case, where the IH is just P(n).
- Cumulative Induction is also dubbed "Strong Induction", even though it is not stronger than Induction, as we show next.

Let "P progressive" abbreviate

"if P(y) for every $y \in [0..x)$ then P(x)."

- Let "*P* progressive" abbreviate *"if* P(y) *for every* $y \in [0..x)$ *then* P(x)."
- Cumulative induction reads:

```
If P is progressive then P(x) for all x \in \mathbb{N}
```

- Let "*P* progressive" abbreviate *"if* P(y) *for every* $y \in [0..x)$ *then* P(x)."
- Cumulative induction reads:

```
If P is progressive then P(x) for all x \in \mathbb{N}
```

• Proof by Induction.

- Let "*P* progressive" abbreviate *"if* P(y) *for every* $y \in [0..x)$ *then* P(x)."
- Cumulative induction reads:

```
If P is progressive then P(x) for all x \in \mathbb{N}
```

- Proof by Induction.
 - ► Assume *P* is progressive.

- Let "*P* progressive" abbreviate *"if* P(y) *for every* $y \in [0..x)$ *then* P(x)."
- Cumulative induction reads:

```
If P is progressive then P(x) for all x \in \mathbb{N}
```

- Proof by Induction.
 - ► Assume *P* is progressive.
 - Let Q(x) abbreviate "P(y) for every $y \in [0..x)$."

- Let "*P* progressive" abbreviate *"if* P(y) *for every* $y \in [0..x)$ *then* P(x)."
- Cumulative induction reads:

```
If P is progressive then P(x) for all x \in \mathbb{N}
```

- Proof by Induction.
 - ► Assume *P* is progressive.
 - Let Q(x) abbreviate "P(y) for every $y \in [0..x)$."
 - ► Base: Q(0), because $[0..0) = \emptyset$

- Let "*P* progressive" abbreviate *"if* P(y) *for every* $y \in [0..x)$ *then* P(x)."
- Cumulative induction reads:

```
If P is progressive then P(x) for all x \in \mathbb{N}
```

- Proof by Induction.
 - ► Assume *P* is progressive.
 - Let Q(x) abbreviate "P(y) for every $y \in [0..x)$."
 - ► Base: Q(0), because $[0..0) = \emptyset$
 - Step: *P* is progressive, so Q(x) implies Q(x+1).

- Let "*P* progressive" abbreviate *"if* P(y) for every $y \in [0..x)$ then P(x)."
- Cumulative induction reads:

```
If P is progressive then P(x) for all x \in \mathbb{N}
```

- Proof by Induction.
 - ► Assume *P* is progressive.
 - Let Q(x) abbreviate "P(y) for every $y \in [0..x)$."
 - ► Base: Q(0), because $[0..0) = \emptyset$
 - Step: *P* is progressive, so Q(x) implies Q(x+1).
- By Induction, Q(x) for every $x \in \mathbb{N}$.

But then P(x) for every $x \in \mathbb{N}$.

INDUCTIVE REASONING IN GENERAL

Induction over generated sets

- The principle of inductive reasoning applies to any inductively generated set S, not just \mathbb{N} .
- If P(x) makes sense for x ∈ S,
 is true for every base element of S
 and remains true under the generative steps for S,
 then P(x) is true for all x ∈ S.

Induction over generated sets

- The principle of inductive reasoning applies to any inductively generated set S, not just \mathbb{N} .
- If P(x) makes sense for x ∈ S, is true for every base element of S and remains true under the generative steps for S, then P(x) is true for all x ∈ S.
- The underlying reason is the same as for N: as the elements of *S* are generated, the property *P* invariantly holds.

Induction on strings

• Let P(x) be a property of Σ -strings.

- Let P(x) be a property of Σ -strings.
- Assume:
 - ▶ Base. $P(\varepsilon)$
 - ▶ Steps. For each $\sigma \in \Sigma$ and $w \in \Sigma^*$ P(w) implies $P(\sigma w)$

- Let P(x) be a property of Σ -strings.
- Assume:
 - ▶ Base. $P(\varepsilon)$
 - Steps. For each $\sigma \in \Sigma$ and $w \in \Sigma^*$ P(w) implies $P(\sigma w)$
- Conclude: P(w) for all $w \in \Sigma^*$.

 For w ∈ {0,1}* let ≥(w) ("swap w") be w with 0 and 1 interchanged: ≥001 = 110.
 We show (*) ≥(≥(w)) = w

- For w ∈ {0,1}* let (w) ("swap w") be w with 0 and 1 interchanged: (001 = 110.
 We show (*) (((w)) = w
- The proof is by induction on $\{0, 1\}^*$.

- For w ∈ {0,1}* let (w) ("swap w") be w with 0 and 1 interchanged: (001 = 110.
 We show (*) (((w)) = w
- The proof is by induction on $\{0, 1\}^*$.
 - ▶ Basis. $\wr(\wr(\varepsilon)) = \wr(\varepsilon) = \varepsilon$

- For w ∈ {0,1}* let (w) ("swap w") be w with 0 and 1 interchanged: (001 = 110.
 We show (*) ((w)) = w
- The proof is by induction on $\{0, 1\}^*$.
 - ► Basis. $\wr(\wr(\varepsilon)) = \wr(\varepsilon) = \varepsilon$ ► Step for 0. If $\wr(\wr(x)) = x$ then $\wr(\wr(0x)) = \wr(1 \wr (x))$ $= 0 \wr (\wr(x))$ = 0x (IH)

Step for 1 is similar.

- For w ∈ {0,1}* let (w) ("swap w") be w with 0 and 1 interchanged: (001 = 110.
 We show (*) (((w)) = w
- The proof is by induction on $\{0, 1\}^*$.
 - ► Basis. $\wr(\wr(\varepsilon)) = \wr(\varepsilon) = \varepsilon$ ► Step for 0. If $\wr(\wr(x)) = x$ then $\wr(\wr(0x)) = \wr(1 \wr (x))$ $= 0 \wr (\wr(x))$ = 0x (IH) Step for 1 is similar.
- By induction on $\{0,1\}^*$ (*) for all $w \in \{0,1\}^*$.
• Prove $|x \cdot u| = |x| + |u|$ ($x, u \in \Sigma^*$).

- Prove $|x \cdot u| = |x| + |u|$ ($x, u \in \Sigma^*$).
- Problem: This is a property of a pair of strings!

- Prove $|x \cdot u| = |x| + |u|$ ($x, u \in \Sigma^*$).
- Solution: Read it as a property of one x:

 $|x \cdot u| = |x| + |u|$ for all $u \in \Sigma^*$ (*)

- Prove $|x \cdot u| = |x| + |u|$ ($x, u \in \Sigma^*$).
- Solution: Read it as a property of one *x*:

 $|x \cdot u| = |x| + |u|$ for all $u \in \Sigma^*$

• Basis: $x = \varepsilon$.

$$ert arepsilon \cdot u ert = ert u ert$$
 since $arepsilon \cdot u = u$
 $ert arepsilon ert + ert u ert = 0 + ert u ert = ert u ert$

 (\star)

- Prove $|x \cdot u| = |x| + |u|$ ($x, u \in \Sigma^*$).
- Solution: Read it as a property of one x:

$$|x \cdot u| = |x| + |u| \quad \text{for all } u \in \Sigma^* \qquad (\star)$$

$$\bullet \text{ Basis: } x = \varepsilon.$$

$$|\varepsilon \cdot u| = |u| \quad \text{since } \varepsilon \cdot u = u$$

$$|\varepsilon| + |u| = 0 + |u| = |u|$$

$$\bullet \text{ Step: Assume } (\star) \text{ for } x = w.$$

For $x = \sigma w$ we have for all $u \in \Sigma^*$

$$|\sigma w \cdot u| = |\sigma(w \cdot u)|$$

$$= 1 + |w \cdot u|$$

$$= 1 + |w| + |u| \quad (\text{IH})$$

$$= (|\sigma w|) + |u|$$

- Prove $|x \cdot u| = |x| + |u|$ ($x, u \in \Sigma^*$).
- Solution: Read it as a property of one x:

$$|x \cdot u| = |x| + |u| \quad \text{for all } u \in \Sigma^* \qquad (\star)$$

• Basis: $x = \varepsilon$.

$$|\varepsilon \cdot u| = |u| \quad \text{since } \varepsilon \cdot u = u$$

$$|\varepsilon| + |u| = 0 + |u| = |u|$$

• Step: Assume (\star) for $x = w$.
For $x = \sigma w$ we have for all $u \in \Sigma^*$

$$|\sigma w \cdot u| = |\sigma(w \cdot u)|$$

$$= 1 + |w \cdot u|$$

$$= 1 + |w| + |u| \quad (\text{IH})$$

$$= (|\sigma w|) + |u|$$

• By induction on Σ^* conclude (\star) for all $x \in \Sigma^*$.

Induction over binary trees

 Recall that the set of binary trees is generated from a base tree
 by juncture:

if t_0 , t_1 are binary trees then so is

- Let P(x) be a property that makes sense for any binary tree t.
- If we can show that
 - ▶ **Base:** $P(\bullet)$; and
 - Step: If both $P(t_0)$ and $P(t_1)$ then P(t) for the juncture t above of t_0 and t_1

then P(t) is true for all binary trees t.

 $t_0 = t_1$

• Can a binary tree have an even number of nodes?

• Every binary tree has an odd number of nodes.

- Every binary tree has an odd number of nodes.
- Let *P*(*t*) be the property "*t* has an odd number of nodes"

- Every binary tree has an odd number of nodes.
- Let P(t) be the property

"t has an odd number of nodes"

Induction on trees:

• **Basis:** $P(\bullet)$ (since 1 is odd)

- Every binary tree has an odd number of nodes.
- Let P(t) be the property

"t has an odd number of nodes"

Induction on trees:

- **Basis:** $P(\bullet)$ (since 1 is odd)
- Step: Suppose t_0, t_1 are trees of odd sizes n_0 and n_1 .

Let t be obtained from t_0 and t_1 .

The size of t is $n_0 + n_1 + 1$, which is again odd.

- Every binary tree has an odd number of nodes.
- Let P(t) be the property

"t has an odd number of nodes"

Induction on trees:

- **Basis:** $P(\bullet)$ (since 1 is odd)
- Step: Suppose t_0, t_1 are trees of odd sizes n_0 and n_1 .

Let t be obtained from t_0 and t_1 .

The size of t is $n_0 + n_1 + 1$, which is again odd.

• By induction on binary tree we conclude that P(t) for all binary trees t.

Invariants: A dynamic view of induction

- Euclid GCD algorithm
- Eating lots of chocolate
- A game of coins

GENERATING SETS

Generating the star of a language

- Example: We generated Σ^* starting with an alphabet Σ :
 - Base: Each $\sigma \in \Sigma$ is in Σ^* .
 - Generative step: If $x \in \Sigma^*$ and $\sigma \in \Sigma$ then $\sigma x \in \Sigma^*$.
- We started from a finite number of initial objects. More broadly we can start with any set.
- For any language L we generate L^* :

- Base: Each $w \in L$ is in L^* .

- Generative step: If $x \in L^*$ and $w \in L$ then $w \cdot x \in L^*$.
- This defines the mapping * between languages:
 each language *L* is mapped to *L**.

Generating the star of a mapping

Combining languages by concatenation yields a new language.

The iteration of concatenating with L, starting with the unit language $\{\varepsilon\}$, yields L^* .

Generating the star of a mapping

• Combining languages by concatenation yields a new language.

The iteration of concatenating with L, starting with the unit language $\{\varepsilon\}$, yields L^* .

• Similarly, combining *mappings* $F : A \Rightarrow A$ by composition

yields a new mapping.

The iteration of composing with F, starting with $Id_A : A \rightarrow I$ yields the star of F, denoted F^* .

Generating the star of a mapping

• Similarly, combining *mappings* $F : A \Rightarrow A$ by composition

yields a new mapping.

- The iteration of composing with F, starting with $Id_A : A \rightarrow I$ yields the star of F, denoted F^* .
- That is, $x(F)^*y$ iff

 $= z_0(F) z_1(F) \cdots (F) z_k = y$

for some $k \ge 0$ and $z_0, ..., z_k A$.

COMPUTING BY RECURRENCE

Explicit function definitions (reminder)

- $f(x) = 3 \times (x + 2)$ defines a function in terms of given constants and function-identifiers.
- The definition
 - 1. introduces a new function identifier (f); and
 - 2. uses a defining expression $3 \times (x + 2)$) built from known functions + and × and the argument (i.e. input) of f.

Computing by recurrence

• Suppose s(x) = x+1 is the only function available. Define:

$$d(0) = 0$$

$$d(s(x)) = s(s(d(x)))$$

• What is d(1)? d(2)? d(x)?

d(0) = 0d(s(x)) = s(s(d(x)))

- As the input is being generated, successive outputs grow by double-increments:
 - d(0) = 0 is given
 - ▶ d(1) = s(s(d(0))) = s(s(0)) = 2
 - d(2) = s(s(d(1))) = s(s(2)) = 4 etc.
- f is defined by providing a value for input 0 and an explicit definition of f(x+1) in terms of f(x).

The general template

- A function $f: \mathbb{N} \to \mathbb{N}$ is defined here by providing
 - 1. a value for f(0) and
 - 2. an explicit definition of f(x+1) in terms of f(x)

The general template

- A function $f: \mathbb{N} \to \mathbb{N}$ is defined here by providing
 - 1. a value for f(0) and
 - 2. an explicit definition of f(x+1) in terms of f(x)
- Our next examples illustrate the potential of recurrence to yield rapidly-increasing functions.

• Using the doubling-function *d* we define a new function:

 $\begin{array}{rcl} e(0) &=& 1 \\ e(s(x)) &=& d(e(x)) \end{array}$

• Using the doubling-function *d* we define a new function:

e(0) = 1e(s(x)) = d(e(x))

• What are e(1)? e(2)? e(n)?

• Using the doubling-function *d* we define a new function:

e(0) = 1e(s(x)) = d(e(x))

- What are e(1)? e(2)? e(n)?
- How do we prove it?

• Using the doubling-function *d* we define a new function:

e(0) = 1e(s(x)) = d(e(x))

What are e(1)? e(2)? e(n)?
 By Induction!

Shooting for the stars

• We defined the function *e* of exponentiation base 2. Using Iteration again we define a new function

 $\begin{array}{rcl} h(0) &=& 1 \\ h(s(x)) &=& e(h(x)) \end{array}$

•

$$h(1) = 2^{1} = 2$$

$$h(2) = 2^{2} = 4$$

$$h(3) = 2^{4} = 16$$

$$h(4) = 2^{16} = 15384$$

$$h(5) = 2^{15384} > 10^{5000}$$

no physical meaning!

Recursion vs. recurrence

• Recurrence and recursion

are practically identical as English words, but they have different mathematical meanings.

• Recursion: $f(x) = \cdots$ f used as you wish eg f(x) = f(f(x+1))

• Recurrence: $f(x) = \cdots$

f used for input x-1Much weaker than recursion.

• Cumulative recurrence: $f(x) = \cdots$ uses

f for inputs < x

Has same power as recurrence.

Output need not be numeric

• Strings as output:

$$f(0) = \varepsilon$$

 $f(s(x))) = a \cdot f(x)$

Output need not be numeric

• Strings as output:

$$f(0) = arepsilon$$

 $f(s(x))) = \mathbf{a} \cdot f(x)$
• $f(n) =$

Output need not be numeric

• Strings as output:

$$\begin{array}{rll} f(0) &= \varepsilon \\ f(s(x))) &= {\rm a} \cdot f(x) \\ \bullet f(n) = {\rm a}^n \end{array}$$

Sets as output:

 $\begin{array}{rcl} f(0) &= & \emptyset \\ f(s(x))) &= & f(x) \cup \{f(x)\} \end{array}$

Outputs need not be numeric

- Sets as output: $f(0) = \emptyset$ $f(s(x))) = f(x) \cup \{f(x)\}$
 - $\blacktriangleright f(1) = \{ \emptyset \}$
 - $\blacktriangleright f(2) = \{ \emptyset, \, \{ \emptyset \} \}$
 - $\blacktriangleright f(3) = \{ \emptyset, \, \{\emptyset\}, \{\emptyset, \, \{\emptyset\}\} \}$
- Sets as output: $f(0) = \emptyset$ $f(s(x))) = f(x) \cup \{f(x)\}$
 - $\blacktriangleright f(1) = \{ \emptyset \}$
 - $\blacktriangleright f(2) = \{ \emptyset, \, \{ \emptyset \} \}$
 - $\blacktriangleright f(3) = \{ \emptyset, \, \{\emptyset\}, \{\emptyset, \, \{\emptyset\}\} \}$
- In general, $f(n) = \{f(0), \dots, f(n-1)\}$ Every "number" is the set of previous numbers.

- Sets as output: $f(0) = \emptyset$ $f(s(x))) = f(x) \cup \{f(x)\}$
 - $\blacktriangleright f(1) = \{ \emptyset \}$
 - $\blacktriangleright f(2) = \{ \emptyset, \, \{ \emptyset \} \}$
 - $\blacktriangleright f(3) = \{ \emptyset, \, \{\emptyset\}, \{\emptyset, \, \{\emptyset\}\} \}$
- In general, $f(n) = \{f(0), \dots, f(n-1)\}$ Every "number" is the set of previous numbers.
- So natural numbers can be simulated by abstract sets!

• Languages as output:

 $\begin{array}{rll} f(0) &=& \{\varepsilon\} \\ f(s(x)) &=& f(x) \cdot \{\mathtt{a}, \mathtt{b}\} \end{array}$

• Languages as output:

$$\begin{array}{rcl} f(0) &=& \{\varepsilon\} \\ f(s(x)) &=& f(x) \cdot \{\mathtt{a}, \mathtt{b}\} \end{array}$$

• f(n) =

• Languages as output:

$$\begin{array}{rcl} f(0) &=& \{\varepsilon\} \\ f(s(x)) &=& f(x) \cdot \{\mathtt{a}, \mathtt{b}\} \end{array}$$

• $f(n) = \{a, b\}^n$

RECURRENCE ON STRINGS

 $\wr : \{0,1\}^* \! \rightarrow \! \{0,1\}^*$

For instance: (01011) = 10100

 $\wr : \{0,1\}^* \! \rightarrow \! \{0,1\}^*$

For instance: (01011) = 10100

$$\begin{array}{l} \wr(\varepsilon) &= \varepsilon \\ \wr(0w) &= \mathbf{1}\wr(w) \\ \wr(\mathbf{1}w) &= \mathbf{0}\wr(w) \end{array}$$

 $\wr : \{0,1\}^* \rightarrow \{0,1\}^*$

For instance: (01011) = 10100

$$\begin{array}{l} \partial(\varepsilon) &= \varepsilon \\ \partial(0w) &= \mathbf{1} \partial(w) \\ \partial(\mathbf{1}w) &= \mathbf{0} \partial(w) \end{array}$$

As the values in $\{0,1\}^*$ are generated,

the corresponding output values are obtained.

- For $\Sigma = \{0, 1\}$:
- Given functions g_0 and g_1 over Σ^* ,

$$egin{array}{rll} f(arepsilon) &=& c \ f(0w) &=& g_0(f(w)) \ f(1w) &=& g_1(f(w)) \end{array}$$

An entry for each $\sigma \in \Sigma$

and where each g_{σ} is a previously defined function

- For $\Sigma = \{0, 1\}$:
- Given functions g_0 and g_1 over Σ^* ,

 $egin{array}{rcl} f(arepsilon) &=& c \ f(0w) &=& g_0(f(w)) \ f(1w) &=& g_1(f(w)) \end{array}$

• A generic template for alphabets Σ :

$$egin{array}{rll} f(arepsilon) &=& c \ f(\sigma w) &=& g_\sigma(f(w)) \end{array}$$

An entry for each $\sigma \in \Sigma$

and where each g_{σ} is a previously defined function

- For $\Sigma = \{0, 1\}$:
- Given functions g_0 and g_1 over Σ^* ,

 $egin{array}{rll} f(arepsilon) &=& c \ f(0w) &=& g_0(f(w)) \ f(1w) &=& g_1(f(w)) \end{array}$

• A generic template for alphabets Σ :

$$egin{array}{rll} f(arepsilon) &=& c \ f(\sigma w) &=& g_\sigma(f(w)) \end{array}$$

An entry for each $\sigma \in \Sigma$

and where each g_{σ} is a previously defined function

- $\Sigma = \{0, 1\}$, $f: \Sigma^* \to \Sigma^*$ replaces in input w the first 0 by 1.
- Example: f(11001) = 11101.

- $\Sigma = \{0, 1\}$, $f: \Sigma^* \to \Sigma^*$ replaces in input w the first 0 by 1.
- Example: f(11001) = 11101.
 - $f(\varepsilon) =$
 - $f(\mathbf{1}w) =$
 - ► *f*(0*w*) =

- $\Sigma = \{0, 1\}$, $f: \Sigma^* \to \Sigma^*$ replaces in input w the first 0 by 1.
- Example: f(11001) = 11101.
 - $\blacktriangleright f(\varepsilon) = \varepsilon$
 - $f(\mathbf{1}w) =$
 - ► *f*(0*w*) =

- $\Sigma = \{0, 1\}$, $f: \Sigma^* \to \Sigma^*$ replaces in input w the first 0 by 1.
- Example: f(11001) = 11101.
 - $\blacktriangleright f(\varepsilon) = \varepsilon$
 - $\blacktriangleright f(\mathbf{1}w) = \mathbf{1}f(w)$
 - ► *f*(0*w*) =

- $\Sigma = \{0, 1\}$, $f: \Sigma^* \to \Sigma^*$ replaces in input w the first 0 by 1.
- Example: f(11001) = 11101.
 - $\blacktriangleright f(\varepsilon) = \varepsilon$
 - $\blacktriangleright f(\mathbf{1}w) = \mathbf{1}f(w)$
 - f(0w) = 1w

• The length function $\ell : \{0,1\}^* \to \mathbb{N}$, i.e. $\ell(w) = |w|$:

 $\ell(\varepsilon) = 0$ $\ell(0w) = 1 + \ell(w)$ $\ell(1w) = 1 + \ell(w)$

•
$$v\ell: \{0,1\}^* \to \mathbb{N}$$

 $v\ell(\varepsilon) = 0$
 $v\ell(0w) = 2 \cdot v\ell(w)$
 $v\ell(1w) = 1 + 2 \cdot v\ell(w)$
What is $v\ell$?

A valuation function

 $v\ell(\varepsilon) = 0$ $v\ell(0w) = 2 \cdot v\ell(w)$ $v\ell(1w) = 1 + 2 \cdot v\ell(w)$

- $v\ell(w) =$ the numeric value of w^R in binary.
- For example,

$$v\ell(011) = 2 \cdot v\ell(11)$$

= 2 \cdot (1 + 2 \cdot v\ell(1))
= 2 \cdot (1 + 2 \cdot (1 + v\ell(\varepsilon)))
= 2 \cdot (1 + 2 \cdot (1 + 0))
= 6

= the numeric value of **110** in binary.