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Generative processes

• Virtually every infinite set considered in programming

is generated by a process.

The fundamental example is the set NNN of natural numbers:

◮ Initial object (“base”): The number 000 is in NNN.
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Generative processes

• Virtually every infinite set considered in programming

is generated by a process.

The fundamental example is the set NNN of natural numbers:

◮ Initial object (“base”): The number 000 is in NNN.

Generative step: If n ∈ Nn ∈ Nn ∈ N then “next” of nnn , snsnsn , is ∈ N∈ N∈ N

• Implicit assumptions:

The meanings of 000 and “next” are known and given.
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Generating {0, 1}∗{0, 1}∗{0, 1}∗

◮ Base. The empty string is in {0, 1}∗{0, 1}∗{0, 1}∗.

◮ Generative step.

If w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ then 0 w0 w0 w and 1 w1 w1 w are ∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

3



Generating {0, 1}∗{0, 1}∗{0, 1}∗

◮ Base. The empty string is in {0, 1}∗{0, 1}∗{0, 1}∗.

◮ Generative step.

If w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ then 0 w0 w0 w and 1 w1 w1 w are ∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Implicit assumptions:

The meanings of the empty string

and of juxtaposition are known.

3



Generating {0, 1}∗{0, 1}∗{0, 1}∗

◮ Base. The empty string is in {0, 1}∗{0, 1}∗{0, 1}∗.

◮ Generative step.

If w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ then 0 w0 w0 w and 1 w1 w1 w are ∈ {0, 1}∗∈ {0, 1}∗∈ {0, 1}∗

• Implicit assumptions:

The meanings of the empty string

and of juxtaposition are known.

• Note: We generate strings here “from the head”;

This conforms with the general use of constructors,

and reflected in the functions head and tail .
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Format of generative definitions

• Two parts in a generative dfn of set SSS:

◮ Base:

Particular known objects are in SSS.
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Format of generative definitions

• Two parts in a generative dfn of set SSS:

◮ Base:

Particular known objects are in SSS.

◮ Generative steps:

If certain objects are in SSS

then so are certain objects obtained from those.

2024 4

4



Another example: Binary trees

◮ Binary tree means here a

finite, ordered, unlabeled binary tree

Base: The singleton tree ••• is in BTBTBT.

Generative step:

If t0, t1t0, t1t0, t1 are binary trees then so is

tt0 1

Implicit assumptions:

We know what a singleton tree and

juncture of trees mean.
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Try this...

• Generate the set EEE of even natural numbers.

6



Try this...

• Generate the set EEE of even natural numbers.

◮ Base: 000

◮ Generative step: If n ∈ En ∈ En ∈ E then n−2 ∈ En−2 ∈ En−2 ∈ E.
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Boolean terms

• Two ways to define closed boolean terms:
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Boolean terms

• Two ways to define closed boolean terms:

• IBT: Infix boolean terms:

◮ 000 and 111 are in IBT

◮ If t, t′ ∈ IBTt, t′ ∈ IBTt, t′ ∈ IBT then (t) ∧ (t′) ∈ IBT(t) ∧ (t′) ∈ IBT(t) ∧ (t′) ∈ IBT and (t) ∨ (t′) ∈ IBT(t) ∨ (t′) ∈ IBT(t) ∨ (t′) ∈ IBT

• PBT: Prefix boolean terms:

◮ 000 and 111 are in PBT

◮ If t, t′ ∈ PBTt, t′ ∈ PBTt, t′ ∈ PBT then ∧ t t′ ∈ PBT∧ t t′ ∈ PBT∧ t t′ ∈ PBT and ∨ t t′ ∈ PBT∨ t t′ ∈ PBT∨ t t′ ∈ PBT

• Main difference between IBT and PBT:

No parentheses in PBT !
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Lists of natural numbers

• Generate L(N)L(N)L(N) the lists of natural numbers .

• Fix a textual coding of NNN, say binary numerals.
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Lists of natural numbers

• Generate L(N)L(N)L(N) the lists of natural numbers .

• Fix a textual coding of NNN, say binary numerals.

◮ ��� is a list of naturals.

◮ If ℓℓℓ is a list and kkk a numeral then k : ℓk : ℓk : ℓ is a list.

• Examples: 1 : �1 : �1 : �, 0 : 101 : 10011 : 10 : �0 : 101 : 10011 : 10 : �0 : 101 : 10011 : 10 : �.
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REASONING ABOUT

INDUCTIVE DATA
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Infinite sets, finite minds

• NNN is infinite. {0, 1}∗{0, 1}∗{0, 1}∗ is infinite.

But our minds and our proofs are finite.
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Infinite sets, finite minds

• NNN is infinite. {0, 1}∗{0, 1}∗{0, 1}∗ is infinite.

But our minds and our proofs are finite.

• So how can we prove anything about NNN ?

• Trying many cases is never sufficient.

Example: “For all nnn at least one of 2n + 12n + 12n + 1 and 2n − 12n − 12n − 1 is prime.”

2, 3, 5, 7, 17, 312, 3, 5, 7, 17, 312, 3, 5, 7, 17, 31 Hooray!

Oops: Both 636363 and 656565 are composite.

• Another try (Fermat): All numbers 22n

+ 122n

+ 122n

+ 1 are prime

3, 5, 17, 257, 655373, 5, 17, 257, 655373, 5, 17, 257, 65537 . Yahoo!

Oops (Euler): Next one is 4,294,967,297, which is divisible by 641.

• So how can we hope to prove

that all natural numbers are such-and-such ?
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Finitely generated infinities!

• The secret is that inductive data is generated by finite rules.

• Therefore we have a finite tool for proving that all

generated objects satisfy certain properties.
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Following the process

• Suppose we generate NNN using a green pen.
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Following the process

• Suppose we generate NNN using a green pen.

◮ 000 is a green natural.

◮ If xxx is a green natural, then so is its successor.

000 111 222 333 444

• They all come out green:

As we generate NNN we make sure that we start with green,

and that each step maintains green-ness.

• Green-ness is here the process’ invariant:

True at the outset, and preserved by the steps.
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The principle of induction for NNN

• Suppose P (x)P (x)P (x) is a property of natural numbers xxx.

P (x)P (x)P (x) abbreviates here “xxx has the property PPP ”
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The principle of induction for NNN

• Suppose P (x)P (x)P (x) is a property of natural numbers xxx.

P (x)P (x)P (x) abbreviates here “xxx has the property PPP ”

• Assume:

◮ Base. P (0)P (0)P (0) and

◮ Step. For all n ∈ Nn ∈ Nn ∈ N , P (n)P (n)P (n) implies P (n+1)P (n+1)P (n+1).

• Conclude: P (x)P (x)P (x) for all x ∈ Nx ∈ Nx ∈ N.

• As natural numbers are being generated,

they all come out satisfying PPP .

• A property of natural numbers that holds for zero

and is invariant under successor

is true of every natural number.

• The premise of the STEP is often called the “induction assumption”

or the Induction Hypothesis (IH).
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Example

• Show that 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N. What is the property?
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• But we do have

◮ Base: 20 = 1 < 2 = 20+120 = 1 < 2 = 20+120 = 1 < 2 = 20+1

◮ Step: If 2n < 2n+12n < 2n+12n < 2n+1 (P (x)P (x)P (x) for x = nx = nx = n) then
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Example

• Show that 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N. What is the property?

• If we know that

◮ 2x < 2x+12x < 2x+12x < 2x+1 is true for x = 0x = 0x = 0; and

◮ 2x < 2x+12x < 2x+12x < 2x+1 for x = nx = nx = n

implies that 2x < 2x+12x < 2x+12x < 2x+1 for x = n + 1x = n + 1x = n + 1

• then 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N.

• But we do have

◮ Base: 20 = 1 < 2 = 20+120 = 1 < 2 = 20+120 = 1 < 2 = 20+1

◮ Step: If 2n < 2n+12n < 2n+12n < 2n+1 (P (x)P (x)P (x) for x = nx = nx = n) then

2n+1 = 2n + 2n < 2n+1 + 2n+1 = 2n+22n+1 = 2n + 2n < 2n+1 + 2n+1 = 2n+22n+1 = 2n + 2n < 2n+1 + 2n+1 = 2n+2

(P (x)P (x)P (x) for x = n+1x = n+1x = n+1)

• By Induction, 2x < 2x+12x < 2x+12x < 2x+1 for all x ∈ Nx ∈ Nx ∈ N.
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Try this...

• Prove by induction on NNN that x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.

We are given that exponentiation is an increasing function.

• By Induction x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.
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Try this...

• Prove by induction on NNN that x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.

We are given that exponentiation is an increasing function.

◮ Base: For x = 0x = 0x = 0 we have x2 = 0 < 1 = 2xx2 = 0 < 1 = 2xx2 = 0 < 1 = 2x.

◮ Step: Assume n 6 2nn 6 2nn 6 2n. Then

n + 1n + 1n + 1 666 2n + 12n + 12n + 1 (IH)

=== 2n + 202n + 202n + 20

666 2n + 2n2n + 2n2n + 2n (exponentiation is increasing)

=== 2n+12n+12n+1

• By Induction x 6 2xx 6 2xx 6 2x for all x ∈ Nx ∈ Nx ∈ N.
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Example: Divisibility

• P (x) : x3 + 2xP (x) : x3 + 2xP (x) : x3 + 2x is divisible by 3.

• By Induction:
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x3 + 2x = 03 + 2 · 0 = 0x3 + 2x = 03 + 2 · 0 = 0x3 + 2x = 03 + 2 · 0 = 0 which is divisible by 3.

◮ Step. Assume P (n)P (n)P (n) (IH). Then for x = n+1x = n+1x = n+1

x3 + 2xx3 + 2xx3 + 2x === (n + 1)3 + (2n + 2)(n + 1)3 + (2n + 2)(n + 1)3 + (2n + 2)

=== (n3 + 3n2 + 3n + 1) + (2n + 2)(n3 + 3n2 + 3n + 1) + (2n + 2)(n3 + 3n2 + 3n + 1) + (2n + 2)

=== (n3 + 2n) + 3(n2 + n + 1)(n3 + 2n) + 3(n2 + n + 1)(n3 + 2n) + 3(n2 + n + 1)

x3 + 2xx3 + 2xx3 + 2x is the sum of numbers divisible by 3,

and is therefore divisible by 3.
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Example: Divisibility

• P (x) : x3 + 2xP (x) : x3 + 2xP (x) : x3 + 2x is divisible by 3.

• By Induction:

◮ Base. For x = 0x = 0x = 0

x3 + 2x = 03 + 2 · 0 = 0x3 + 2x = 03 + 2 · 0 = 0x3 + 2x = 03 + 2 · 0 = 0 which is divisible by 3.

◮ Step. Assume P (n)P (n)P (n) (IH). Then for x = n+1x = n+1x = n+1

x3 + 2xx3 + 2xx3 + 2x === (n + 1)3 + (2n + 2)(n + 1)3 + (2n + 2)(n + 1)3 + (2n + 2)

=== (n3 + 3n2 + 3n + 1) + (2n + 2)(n3 + 3n2 + 3n + 1) + (2n + 2)(n3 + 3n2 + 3n + 1) + (2n + 2)

=== (n3 + 2n) + 3(n2 + n + 1)(n3 + 2n) + 3(n2 + n + 1)(n3 + 2n) + 3(n2 + n + 1)

x3 + 2xx3 + 2xx3 + 2x is the sum of numbers divisible by 3,

and is therefore divisible by 3.

• By Induction x3 + 2xx3 + 2xx3 + 2x is divisible by 3, for all x ∈ Nx ∈ Nx ∈ N.
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Iterated summation

(⋆) 1 + 3 + 5 + · · · + (2x−1) = x21 + 3 + 5 + · · · + (2x−1) = x21 + 3 + 5 + · · · + (2x−1) = x2
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Iterated summation

(⋆) 1 + 3 + 5 + · · · + (2x−1) = x21 + 3 + 5 + · · · + (2x−1) = x21 + 3 + 5 + · · · + (2x−1) = x2

By Induction:

◮ Base. (⋆) is true for x = 0x = 0x = 0:

the empty sum = 0 = 02.= 0 = 02.= 0 = 02.

◮ Step. Assume (⋆) for x = nx = nx = n .

Then, for x = n+1x = n+1x = n+1 ,

1 + 3 + · · · + (2x−1)1 + 3 + · · · + (2x−1)1 + 3 + · · · + (2x−1) === 1 + 3 + · · · + (2n−1) + (2n+1)1 + 3 + · · · + (2n−1) + (2n+1)1 + 3 + · · · + (2n−1) + (2n+1)

=== n2 + (2n+1)n2 + (2n+1)n2 + (2n+1) (IH)

=== (n+1)2(n+1)2(n+1)2

That is, (⋆) for x = n+1x = n+1x = n+1.
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Iterated summation

(⋆) 1 + 3 + 5 + · · · + (2x−1) = x21 + 3 + 5 + · · · + (2x−1) = x21 + 3 + 5 + · · · + (2x−1) = x2

By Induction:

◮ Base. (⋆) is true for x = 0x = 0x = 0:

the empty sum = 0 = 02.= 0 = 02.= 0 = 02.

◮ Step. Assume (⋆) for x = nx = nx = n .

Then, for x = n+1x = n+1x = n+1 ,

1 + 3 + · · · + (2x−1)1 + 3 + · · · + (2x−1)1 + 3 + · · · + (2x−1) === 1 + 3 + · · · + (2n−1) + (2n+1)1 + 3 + · · · + (2n−1) + (2n+1)1 + 3 + · · · + (2n−1) + (2n+1)

=== n2 + (2n+1)n2 + (2n+1)n2 + (2n+1) (IH)

=== (n+1)2(n+1)2(n+1)2

That is, (⋆) for x = n+1x = n+1x = n+1.

Conclude: (⋆) holds for every x ∈ Nx ∈ Nx ∈ N.
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Another iterated summation

(⋆) 1 + 2 + · · · + x = x(x + 1)/21 + 2 + · · · + x = x(x + 1)/21 + 2 + · · · + x = x(x + 1)/2
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◮ Base. (⋆) is true for x = 0x = 0x = 0:

The empty sum = 0 = 0 · 1/2= 0 = 0 · 1/2= 0 = 0 · 1/2.
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That is, (⋆) for x = n+1x = n+1x = n+1.
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Another iterated summation

(⋆) 1 + 2 + · · · + x = x(x + 1)/21 + 2 + · · · + x = x(x + 1)/21 + 2 + · · · + x = x(x + 1)/2

By Induction.

◮ Base. (⋆) is true for x = 0x = 0x = 0:

The empty sum = 0 = 0 · 1/2= 0 = 0 · 1/2= 0 = 0 · 1/2.

◮ Step. Assume (⋆) for x = nx = nx = n .

Then, for x = n+1x = n+1x = n+1,

0 + 1 + · · · + x0 + 1 + · · · + x0 + 1 + · · · + x === 0 + 1 + · · · + n + (n+1)0 + 1 + · · · + n + (n+1)0 + 1 + · · · + n + (n+1)

=== n(n+1)
2 + (n+1)n(n+1)
2 + (n+1)n(n+1)
2 + (n+1) (IH)

=== (n + 1)(1
2n + 1)(n + 1)(1
2n + 1)(n + 1)(1
2n + 1)

=== 1
2(n+1) · (n+2)1
2(n+1) · (n+2)1
2(n+1) · (n+2)

=== 1
2 x (x+1)1
2 x (x+1)1
2 x (x+1)

That is, (⋆) for x = n+1x = n+1x = n+1.

Conclude: (⋆) holds for every x ∈ Nx ∈ Nx ∈ N.
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Involving other data

• A property of natural numbers may refer to non-numeric data!

(⋆) Every set with xxx elements has 2x2x2x subsets

• By Induction.
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◮ Base. x = 0x = 0x = 0. The only set with 000 elements is ∅∅∅ ,

which has just 20 = 120 = 120 = 1 subset, namely ∅∅∅ itself.

◮ Step. Assume P (n)P (n)P (n) (IH).
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19



Involving other data

• A property of natural numbers may refer to non-numeric data!

(⋆) Every set with xxx elements has 2x2x2x subsets

• By Induction.

◮ Base. x = 0x = 0x = 0. The only set with 000 elements is ∅∅∅ ,

which has just 20 = 120 = 120 = 1 subset, namely ∅∅∅ itself.

◮ Step. Assume P (n)P (n)P (n) (IH).

For x = n+1x = n+1x = n+1 let SSS be a set with n+1n+1n+1 elements.

Choose a ∈ Sa ∈ Sa ∈ S (SSS can’t be empty!) and let S− =df S − {a}S− =df S − {a}S− =df S − {a}.

By IH S−S−S− has 2n2n2n subsets A1, . . . , A2nA1, . . . , A2nA1, . . . , A2n.

Subsets of SSS : A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}A1, . . . , A2n, A1 ∪ {a}, . . . , A2n ∪ {a}

which are all different. So SSS has 2n + 2n = 2n+12n + 2n = 2n+12n + 2n = 2n+1 subsets.

• By Induction (⋆) for all x ∈ Nx ∈ Nx ∈ N.
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Starting Induction elsewhere

• Show x2 > xx2 > xx2 > x for all x > 1x > 1x > 1.

• We wish to start induction from 2.
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Starting Induction elsewhere

• Show x2 > xx2 > xx2 > x for all x > 1x > 1x > 1.

• We wish to start induction from 2.

But that’s the same as Induction

for the property (x + 2)2 > (x + 2)(x + 2)2 > (x + 2)(x + 2)2 > (x + 2) !

• We refer to this as Shifted Induction:

◮ Base. 22 = 4 > 222 = 4 > 222 = 4 > 2

◮ Step. n2 > nn2 > nn2 > n implies

(n + 1)2(n + 1)2(n + 1)2 === n2 + 2n + 1n2 + 2n + 1n2 + 2n + 1

>>> n + 2n + 1n + 2n + 1n + 2n + 1 (IH)

>>> n + 1n + 1n + 1 since n > 0)n > 0)n > 0)
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Starting Induction elsewhere

• Show x2 > xx2 > xx2 > x for all x > 1x > 1x > 1.

• We wish to start induction from 2.

But that’s the same as Induction

for the property (x + 2)2 > (x + 2)(x + 2)2 > (x + 2)(x + 2)2 > (x + 2) !

• We refer to this as Shifted Induction:

◮ Base. 22 = 4 > 222 = 4 > 222 = 4 > 2

◮ Step. n2 > nn2 > nn2 > n implies

(n + 1)2(n + 1)2(n + 1)2 === n2 + 2n + 1n2 + 2n + 1n2 + 2n + 1

>>> n + 2n + 1n + 2n + 1n + 2n + 1 (IH)

>>> n + 1n + 1n + 1 since n > 0)n > 0)n > 0)

• Conclusion: x2 > xx2 > xx2 > x for all integers x > 1x > 1x > 1 .
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Shifted Induction

• The template for such reasoning is Shifted Induction

• Given a property P (x)P (x)P (x) of natural numbers, and b ∈ Nb ∈ Nb ∈ N,

• Assume: ◮ Shifted Base. PPP true of bbb; and

◮ Shifted Step. For all n > bn > bn > b,

P (n)P (n)P (n) implies P (n+1)P (n+1)P (n+1)

• Conclude: P (x)P (x)P (x) for all x > bx > bx > b .

• Induction is a special case, with b = 0b = 0b = 0.
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Another example

• 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n for all n > 4n > 4n > 4.

• By Shifted Induction with initial value 444.
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Another example

• 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n for all n > 4n > 4n > 4.

• By Shifted Induction with initial value 444.

◮ Basis. 34 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 24
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Another example

• 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n for all n > 4n > 4n > 4.

• By Shifted Induction with initial value 444.

◮ Basis. 34 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 2434 = 81 > 80 = 5 · 24

◮ Step. If 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n then

3n+13n+13n+1 === 3 · 3n3 · 3n3 · 3n

>>> 3 · (5 · 2n)3 · (5 · 2n)3 · (5 · 2n) (IH)

>>> 2 · 5 · 2n2 · 5 · 2n2 · 5 · 2n

=== 5 · 2n+15 · 2n+15 · 2n+1
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Is this new?

• But is Shifted Induction a new method?

Or is it just syntactic sugar for particular form of Induction?
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Shifting, in general

• Given

◮ Shifted Base. P (b)P (b)P (b) and

◮ Shifted Step. P (n)P (n)P (n) implies P (n+1)P (n+1)P (n+1) for all n > bn > bn > b

we prove by Induction that P (x)P (x)P (x) for all x > bx > bx > b:

• Let P ′(x)P ′(x)P ′(x) be P (x − b)P (x − b)P (x − b)

◮ Base. P ′(0)P ′(0)P ′(0) , because P (b)P (b)P (b) by the Shifted Base.

◮ Step. P ′(n)P ′(n)P ′(n) implies P ′(n + 1)P ′(n + 1)P ′(n + 1) for n > 0n > 0n > 0

because P (n)P (n)P (n) implies P (n+1)P (n+1)P (n+1) for all n > bn > bn > b,

by the Shifted Base.

• By Induction, P ′(x)P ′(x)P ′(x) for all x > 0x > 0x > 0,

so P (x)P (x)P (x) for all x > bx > bx > b.
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Another example

• To prove 3x > 5 · 2x3x > 5 · 2x3x > 5 · 2x for x > 2x > 2x > 2

use Induction to prove 3x+2 > 5 · 2x+23x+2 > 5 · 2x+23x+2 > 5 · 2x+2 for x > 0x > 0x > 0:

◮ Shifted Basis. 3x > 5 · 2x3x > 5 · 2x3x > 5 · 2x for x = 2x = 2x = 2 ,

i.e. 3x+2 > 5 · 2x+23x+2 > 5 · 2x+23x+2 > 5 · 2x+2 for x = 0x = 0x = 0

◮ Step. 3n > 5 · 2n3n > 5 · 2n3n > 5 · 2n implies 3n+1 > 5 · 2n+13n+1 > 5 · 2n+13n+1 > 5 · 2n+1 for n > 2n > 2n > 2 ,

i,e, 3n+2 > 5 · 2n+23n+2 > 5 · 2n+23n+2 > 5 · 2n+2 implies 3(n+2)+1 > 5 · 2(n+2)+13(n+2)+1 > 5 · 2(n+2)+13(n+2)+1 > 5 · 2(n+2)+1 for n > 0n > 0n > 0

• Conclusion by Induction:

3x+2 > 5 · 2x+23x+2 > 5 · 2x+23x+2 > 5 · 2x+2 for x > 0x > 0x > 0

i.e. 3x > 5 · 2x3x > 5 · 2x3x > 5 · 2x for x > 2x > 2x > 2.
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Another shortcoming of Induction?

• Theorem. Every positive integer is the product of primes

• Induction?

No useful relation between factoring nnn and factoring n+1n+1n+1 !
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Another shortcoming of Induction?

• Theorem. Every positive integer is the product of primes

• E.g. 1 is the empty product;

3 a singleton product;

9 the product of 3 used twice.

• Induction?

No useful relation between factoring nnn and factoring n+1n+1n+1 !
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Cumulative Induction

• Theorem. Every positive integer is the product of primes.
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Cumulative Induction

• Theorem. Every positive integer is the product of primes.

• Proof by Induction for the property

(⋆) Every positive integer 6 x6 x6 x is product of primes.

◮ Basis. x = 0x = 0x = 0 . No positive integers x 6 0x 6 0x 6 0 so (⋆) vacuously.

◮ Step. Assume (⋆) for x = nx = nx = n, show (⋆) for x = n+1x = n+1x = n+1

◮ Case 1: n+1n+1n+1 is 1, which is the empty product.

◮ Case 2. n+1n+1n+1 is a prime, ok.

◮ Case 3. n+1 = y · zn+1 = y · zn+1 = y · z for some y, z ∈ [2..n]y, z ∈ [2..n]y, z ∈ [2..n].

By IH y, zy, zy, z are products of primes, so n+1n+1n+1 is too.
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The template of Cumulative Induction

• Cumulative Induction template:

• Assume:

◮ Base. P (x)P (x)P (x) is true for x = 0x = 0x = 0.

◮ Step. For every xxx ,

if P (y)P (y)P (y) is true for every y 6 xy 6 xy 6 x then PPP for x+1x+1x+1.

• Conclude: P (x)P (x)P (x) for all x ∈ Nx ∈ Nx ∈ N.

• Induction is a special case, where the IH is just P (n)P (n)P (n).

• Cumulative Induction is also dubbed “Strong Induction”,

even though it is not stronger than Induction, as we show next.

2024 28

28



Cumulative Induction is not more general

• Let “PPP progressive” abbreviate

“if P (y)P (y)P (y) for every y ∈ [0..x)y ∈ [0..x)y ∈ [0..x) then P (x)P (x)P (x).”
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“if P (y)P (y)P (y) for every y ∈ [0..x)y ∈ [0..x)y ∈ [0..x) then P (x)P (x)P (x).”
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If PPP is progressive then P (x)P (x)P (x) for all x ∈ Nx ∈ Nx ∈ N

• Proof by Induction.
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◮ Let Q(x)Q(x)Q(x) abbreviate “P (y)P (y)P (y) for every y ∈ [0..x)y ∈ [0..x)y ∈ [0..x).”

◮ Base: Q(0)Q(0)Q(0), because [0..0) = ∅[0..0) = ∅[0..0) = ∅
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Cumulative Induction is not more general
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◮ Let Q(x)Q(x)Q(x) abbreviate “P (y)P (y)P (y) for every y ∈ [0..x)y ∈ [0..x)y ∈ [0..x).”

◮ Base: Q(0)Q(0)Q(0), because [0..0) = ∅[0..0) = ∅[0..0) = ∅

◮ Step: PPP is progressive, so Q(x)Q(x)Q(x) implies Q(x+1)Q(x+1)Q(x+1).
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Cumulative Induction is not more general

• Let “PPP progressive” abbreviate

“if P (y)P (y)P (y) for every y ∈ [0..x)y ∈ [0..x)y ∈ [0..x) then P (x)P (x)P (x).”

• Cumulative induction reads:

If PPP is progressive then P (x)P (x)P (x) for all x ∈ Nx ∈ Nx ∈ N

• Proof by Induction.

◮ Assume PPP is progressive.

◮ Let Q(x)Q(x)Q(x) abbreviate “P (y)P (y)P (y) for every y ∈ [0..x)y ∈ [0..x)y ∈ [0..x).”

◮ Base: Q(0)Q(0)Q(0), because [0..0) = ∅[0..0) = ∅[0..0) = ∅

◮ Step: PPP is progressive, so Q(x)Q(x)Q(x) implies Q(x+1)Q(x+1)Q(x+1).

• By Induction, Q(x)Q(x)Q(x) for every x ∈ Nx ∈ Nx ∈ N.

But then P (x)P (x)P (x) for every x ∈ Nx ∈ Nx ∈ N.
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INDUCTIVE REASONING IN GENERAL
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Induction over generated sets

• The principle of inductive reasoning applies

to any inductively generated set SSS, not just NNN.

• If P (x)P (x)P (x) makes sense for x ∈ Sx ∈ Sx ∈ S,

is true for every base element of SSS

and remains true under the generative steps for SSS,

then P (x)P (x)P (x) is true for all x ∈ Sx ∈ Sx ∈ S.
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Induction over generated sets

• The principle of inductive reasoning applies

to any inductively generated set SSS, not just NNN.

• If P (x)P (x)P (x) makes sense for x ∈ Sx ∈ Sx ∈ S,

is true for every base element of SSS

and remains true under the generative steps for SSS,

then P (x)P (x)P (x) is true for all x ∈ Sx ∈ Sx ∈ S.

• The underlying reason is the same as for N:

as the elements of SSS are generated,

the property PPP invariantly holds.
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Induction on strings

• Let P (x)P (x)P (x) be a property of ΣΣΣ-strings.
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Induction on strings

• Let P (x)P (x)P (x) be a property of ΣΣΣ-strings.

• Assume:

◮ Base. P (ε)P (ε)P (ε)

◮ Steps. For each σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

P (w)P (w)P (w) implies P (σw)P (σw)P (σw)
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Induction on strings

• Let P (x)P (x)P (x) be a property of ΣΣΣ-strings.

• Assume:

◮ Base. P (ε)P (ε)P (ε)

◮ Steps. For each σ ∈ Σσ ∈ Σσ ∈ Σ and w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗

P (w)P (w)P (w) implies P (σw)P (σw)P (σw)

• Conclude: P (w)P (w)P (w) for all w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗.
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Example: Swapping

• For w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗ let ≀(w)≀(w)≀(w) (“swap www”) be

www with 000 and 111 interchanged: ≀001 = 110≀001 = 110≀001 = 110.

We show (⋆) ≀(≀(w)) = w≀(≀(w)) = w≀(≀(w)) = w
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◮ Basis. ≀(≀(ε)) = ≀(ε) = ε≀(≀(ε)) = ≀(ε) = ε≀(≀(ε)) = ≀(ε) = ε
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then ≀(≀(0x))≀(≀(0x))≀(≀(0x)) === ≀(1 ≀ (x))≀(1 ≀ (x))≀(1 ≀ (x))

=== 0 ≀ (≀(x))0 ≀ (≀(x))0 ≀ (≀(x))

=== 0x0x0x (IH)

Step for 111 is similar.
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www with 000 and 111 interchanged: ≀001 = 110≀001 = 110≀001 = 110.

We show (⋆) ≀(≀(w)) = w≀(≀(w)) = w≀(≀(w)) = w
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◮ Basis. ≀(≀(ε)) = ≀(ε) = ε≀(≀(ε)) = ≀(ε) = ε≀(≀(ε)) = ≀(ε) = ε

◮ Step for 000. If ≀(≀(x)) = x≀(≀(x)) = x≀(≀(x)) = x

then ≀(≀(0x))≀(≀(0x))≀(≀(0x)) === ≀(1 ≀ (x))≀(1 ≀ (x))≀(1 ≀ (x))

=== 0 ≀ (≀(x))0 ≀ (≀(x))0 ≀ (≀(x))

=== 0x0x0x (IH)

Step for 111 is similar.

• By induction on {0, 1}∗{0, 1}∗{0, 1}∗ (⋆) for all w ∈ {0, 1}∗w ∈ {0, 1}∗w ∈ {0, 1}∗.
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Dealing with several inputs

• Prove |x · u| = |x| + |u||x · u| = |x| + |u||x · u| = |x| + |u| ( x, u ∈ Σ∗x, u ∈ Σ∗x, u ∈ Σ∗ ).
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• Problem: This is a property of a pair of strings!
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|ε| + |u||ε| + |u||ε| + |u| === 0 + |u| = |u|0 + |u| = |u|0 + |u| = |u|

◮ Step: Assume (⋆) for x = wx = wx = w.

For x = σwx = σwx = σw we have for all u ∈ Σ∗u ∈ Σ∗u ∈ Σ∗

|σw · u||σw · u||σw · u| === |σ(w · u)||σ(w · u)||σ(w · u)|

=== 1 + |w · u|1 + |w · u|1 + |w · u|

=== 1 + |w| + |u|1 + |w| + |u|1 + |w| + |u| (IH)

=== (|σw|) + |u|(|σw|) + |u|(|σw|) + |u|
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|σw · u||σw · u||σw · u| === |σ(w · u)||σ(w · u)||σ(w · u)|

=== 1 + |w · u|1 + |w · u|1 + |w · u|

=== 1 + |w| + |u|1 + |w| + |u|1 + |w| + |u| (IH)

=== (|σw|) + |u|(|σw|) + |u|(|σw|) + |u|

• By induction on Σ∗Σ∗Σ∗ conclude (⋆) for all x ∈ Σ∗x ∈ Σ∗x ∈ Σ∗.
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Induction over binary trees

• Recall that the set of binary trees is generated

from a base tree ••• by juncture:

if t0, t1t0, t1t0, t1 are binary trees then so is

tt0 1

• Let P (x)P (x)P (x) be a property that makes sense for any bi-

nary tree ttt.

• If we can show that

◮ Base: P (•)P (•)P (•) ; and

◮ Step: If both P (t0)P (t0)P (t0) and P (t1)P (t1)P (t1)

then P (t)P (t)P (t) for the juncture ttt above of t0t0t0 and t1t1t1

then P (t)P (t)P (t) is true for all binary trees ttt.
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Example: Odd size of binary trees

• Can a binary tree have an even number of nodes?
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◮ Basis: P (•)P (•)P (•) (since 1 is odd)
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• Let P (t)P (t)P (t) be the property

“ttt has an odd number of nodes”

Induction on trees:

◮ Basis: P (•)P (•)P (•) (since 1 is odd)

◮ Step: Suppose t0, t1t0, t1t0, t1 are trees of odd sizes

n0n0n0 and n1n1n1.

Let ttt be obtained from t0t0t0 and t1t1t1.

The size of ttt is n0 + n1 + 1n0 + n1 + 1n0 + n1 + 1 , which is again odd.
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Example: Odd size of binary trees

• Every binary tree has an odd number of nodes.

• Let P (t)P (t)P (t) be the property

“ttt has an odd number of nodes”

Induction on trees:

◮ Basis: P (•)P (•)P (•) (since 1 is odd)

◮ Step: Suppose t0, t1t0, t1t0, t1 are trees of odd sizes

n0n0n0 and n1n1n1.

Let ttt be obtained from t0t0t0 and t1t1t1.

The size of ttt is n0 + n1 + 1n0 + n1 + 1n0 + n1 + 1 , which is again odd.

• By induction on binary tree we conclude that

P (t)P (t)P (t) for all binary trees ttt.
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Invariants: A dynamic view of induction

• Euclid GCD algorithm

• Eating lots of chocolate

• A game of coins
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GENERATING SETS
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Generating the star of a language

• Example: We generated Σ∗Σ∗Σ∗

starting with an alphabet ΣΣΣ:

– Base: Each σ ∈ Σσ ∈ Σσ ∈ Σ is in Σ∗Σ∗Σ∗.

– Generative step: If x ∈ Σ∗x ∈ Σ∗x ∈ Σ∗ and σ ∈ Σσ ∈ Σσ ∈ Σ then σ x ∈ Σ∗σ x ∈ Σ∗σ x ∈ Σ∗.

• We started from a finite number of initial objects. More

broadly we can start with any set.

• For any language LLL we generate L∗L∗L∗ :

– Base: Each w ∈ Lw ∈ Lw ∈ L is in L∗L∗L∗.

– Generative step: If x ∈ L∗x ∈ L∗x ∈ L∗ and w ∈ Lw ∈ Lw ∈ L then w · x ∈ L∗w · x ∈ L∗w · x ∈ L∗.

• This defines the mapping ∗∗∗ between languages:

each language LLL is mapped to L∗L∗L∗ .
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Generating the star of a mapping

• Combining languages by concatenation yields a new

language.

The iteration of concatenating with LLL ,

starting with the unit language {ε}{ε}{ε} ,

yields L∗L∗L∗.
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Generating the star of a mapping

• Combining languages by concatenation yields a new

language.

The iteration of concatenating with LLL ,

starting with the unit language {ε}{ε}{ε} ,

yields L∗L∗L∗.

• Similarly, combining mappings F : A ⇒ AF : A ⇒ AF : A ⇒ A by com-

position

yields a new mapping.

The iteration of composing with FFF , starting with IdA : A → AIdA : A → AIdA : A → A

yields the star of FFF , denoted F ∗F ∗F ∗.
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Generating the star of a mapping

• Similarly, combining mappings F : A ⇒ AF : A ⇒ AF : A ⇒ A by com-

position

yields a new mapping.

The iteration of composing with FFF , starting with IdA : A → AIdA : A → AIdA : A → A

yields the star of FFF , denoted F ∗F ∗F ∗.

• That is, x (F )∗ yx (F )∗ yx (F )∗ y iff

= z0 (F ) z1 (F ) · · · (F ) zk = y= z0 (F ) z1 (F ) · · · (F ) zk = y= z0 (F ) z1 (F ) · · · (F ) zk = y

for some k > 0k > 0k > 0 and z0, .., zk Az0, .., zk Az0, .., zk A.
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COMPUTING BY RECURRENCE
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Explicit function definitions (reminder)

• f (x) = 3 × (x + 2)f (x) = 3 × (x + 2)f (x) = 3 × (x + 2) defines a function

in terms of given constants and function-identifiers.

• The definition

1. introduces a new function identifier (fff ); and

2. uses a defining expression 3 × (x + 2))3 × (x + 2))3 × (x + 2))

built from known functions +++ and ××× and the

argument (i.e. input) of fff .
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Computing by recurrence

• Suppose s(x) = x+1s(x) = x+1s(x) = x+1 is the only function available.

Define:

d(0)d(0)d(0) === 000

d(s(x))d(s(x))d(s(x)) === s(s(d(x)))s(s(d(x)))s(s(d(x)))

• What is d(1)d(1)d(1)? d(2)d(2)d(2)? d(x)d(x)d(x)?
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Computing by recurrence

d(0)d(0)d(0) === 000

d(s(x))d(s(x))d(s(x)) === s(s(d(x)))s(s(d(x)))s(s(d(x)))

• As the input is being generated,

successive outputs grow by double-increments:

◮ d(0) = 0d(0) = 0d(0) = 0 is given

◮ d(1) = s(s(d(0))) = s(s(0)) = 2d(1) = s(s(d(0))) = s(s(0)) = 2d(1) = s(s(d(0))) = s(s(0)) = 2

◮ d(2) = s(s(d(1))) = s(s(2)) = 4d(2) = s(s(d(1))) = s(s(2)) = 4d(2) = s(s(d(1))) = s(s(2)) = 4 etc.

• fff is defined by providing a value for input 000

and an explicit definition of f (x+1)f (x+1)f (x+1) in terms of f (x)f (x)f (x).
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The general template

• A function f : N→Nf : N→Nf : N→N is defined here by providing

1. a value for f (0)f (0)f (0) and

2. an explicit definition of f (x+1)f (x+1)f (x+1) in terms of f (x)f (x)f (x)
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The general template

• A function f : N→Nf : N→Nf : N→N is defined here by providing

1. a value for f (0)f (0)f (0) and

2. an explicit definition of f (x+1)f (x+1)f (x+1) in terms of f (x)f (x)f (x)

• Our next examples illustrate the potential

of recurrence to yield rapidly-increasing functions.
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Exponentiation

• Using the doubling-function ddd

we define a new function:

e(0)e(0)e(0) === 111

e(s(x))e(s(x))e(s(x)) === d(e(x))d(e(x))d(e(x))
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Exponentiation

• Using the doubling-function ddd

we define a new function:

e(0)e(0)e(0) === 111

e(s(x))e(s(x))e(s(x)) === d(e(x))d(e(x))d(e(x))

• What are e(1)e(1)e(1)? e(2)e(2)e(2)? e(n)e(n)e(n)?

• How do we prove it?
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Exponentiation

• Using the doubling-function ddd

we define a new function:

e(0)e(0)e(0) === 111

e(s(x))e(s(x))e(s(x)) === d(e(x))d(e(x))d(e(x))

• What are e(1)e(1)e(1)? e(2)e(2)e(2)? e(n)e(n)e(n)?

By Induction!
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Shooting for the stars

• We defined the function eee of exponentiation base 2.

Using Iteration again we define a new function

h(0)h(0)h(0) === 111

h(s(x))h(s(x))h(s(x)) === e(h(x))e(h(x))e(h(x))

•

h(1)h(1)h(1) === 212121 === 222

h(2)h(2)h(2) === 222222 === 444

h(3)h(3)h(3) === 242424 === 161616

h(4)h(4)h(4) === 216216216 === 153841538415384

h(5)h(5)h(5) === 215384215384215384 >>> 105000105000105000 no physical meaning!
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Recursion vs. recurrence

• Recurrence and recursion

are practically identical as English words,

but they have different mathematical meanings.

◮ Recursion: f (x) = · · ·f (x) = · · ·f (x) = · · ·

fff used as you wish

eg f (x) = f (f (x+1))f (x) = f (f (x+1))f (x) = f (f (x+1))

◮ Recurrence: f (x) = · · ·f (x) = · · ·f (x) = · · ·

fff used for input x−1x−1x−1

Much weaker than recursion.

◮ Cumulative recurrence: f (x) = · · ·f (x) = · · ·f (x) = · · · uses

fff for inputs < x< x< x

Has same power as recurrence.
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Output need not be numeric

• Strings as output:

f (0)f (0)f (0) === εεε

f (s(x)))f (s(x)))f (s(x))) === a · f (x)a · f (x)a · f (x)
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• Strings as output:
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• f (n) =f (n) =f (n) =
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Output need not be numeric

• Strings as output:

f (0)f (0)f (0) === εεε

f (s(x)))f (s(x)))f (s(x))) === a · f (x)a · f (x)a · f (x)

• f (n) =f (n) =f (n) = a
n
a

n
a

n
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Outputs need not be numeric

• Sets as output: f (0)f (0)f (0) === ∅∅∅

f (s(x)))f (s(x)))f (s(x))) === f (x) ∪ {f (x)}f (x) ∪ {f (x)}f (x) ∪ {f (x)}
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•

◮ f (1) = {∅}f (1) = {∅}f (1) = {∅}

◮ f (2) = {∅, {∅}}f (2) = {∅, {∅}}f (2) = {∅, {∅}}

◮ f (3) = {∅, {∅}, {∅, {∅}}}f (3) = {∅, {∅}, {∅, {∅}}}f (3) = {∅, {∅}, {∅, {∅}}}
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◮ f (3) = {∅, {∅}, {∅, {∅}}}f (3) = {∅, {∅}, {∅, {∅}}}f (3) = {∅, {∅}, {∅, {∅}}}

• In general, f (n) = {f (0), . . . , f (n − 1)}f (n) = {f (0), . . . , f (n − 1)}f (n) = {f (0), . . . , f (n − 1)}

Every “number” is the set of previous numbers.
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Outputs need not be numeric

• Sets as output: f (0)f (0)f (0) === ∅∅∅

f (s(x)))f (s(x)))f (s(x))) === f (x) ∪ {f (x)}f (x) ∪ {f (x)}f (x) ∪ {f (x)}

•

◮ f (1) = {∅}f (1) = {∅}f (1) = {∅}

◮ f (2) = {∅, {∅}}f (2) = {∅, {∅}}f (2) = {∅, {∅}}

◮ f (3) = {∅, {∅}, {∅, {∅}}}f (3) = {∅, {∅}, {∅, {∅}}}f (3) = {∅, {∅}, {∅, {∅}}}

• In general, f (n) = {f (0), . . . , f (n − 1)}f (n) = {f (0), . . . , f (n − 1)}f (n) = {f (0), . . . , f (n − 1)}

Every “number” is the set of previous numbers.

• So natural numbers can be simulated by abstract sets!
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Outputs need not be numeric

• Languages as output:

f (0)f (0)f (0) === {ε}{ε}{ε}

f (s(x))f (s(x))f (s(x)) === f (x) · {a,b}f (x) · {a,b}f (x) · {a,b}
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Outputs need not be numeric

• Languages as output:

f (0)f (0)f (0) === {ε}{ε}{ε}

f (s(x))f (s(x))f (s(x)) === f (x) · {a,b}f (x) · {a,b}f (x) · {a,b}

• f (n)f (n)f (n) =
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Outputs need not be numeric

• Languages as output:

f (0)f (0)f (0) === {ε}{ε}{ε}

f (s(x))f (s(x))f (s(x)) === f (x) · {a,b}f (x) · {a,b}f (x) · {a,b}

• f (n)f (n)f (n) = {a,b}n{a,b}n{a,b}n
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RECURRENCE ON STRINGS
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Example: The swap function

≀ : {0, 1}∗ →{0, 1}∗≀ : {0, 1}∗ →{0, 1}∗≀ : {0, 1}∗ →{0, 1}∗

For instance: ≀(01011) = 10100≀(01011) = 10100≀(01011) = 10100
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≀(ε)≀(ε)≀(ε) === εεε

≀(0w)≀(0w)≀(0w) === 1 ≀ (w)1 ≀ (w)1 ≀ (w)

≀(1w)≀(1w)≀(1w) === 0 ≀ (w)0 ≀ (w)0 ≀ (w)
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Example: The swap function
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For instance: ≀(01011) = 10100≀(01011) = 10100≀(01011) = 10100

≀(ε)≀(ε)≀(ε) === εεε

≀(0w)≀(0w)≀(0w) === 1 ≀ (w)1 ≀ (w)1 ≀ (w)

≀(1w)≀(1w)≀(1w) === 0 ≀ (w)0 ≀ (w)0 ≀ (w)

As the values in {0, 1}∗{0, 1}∗{0, 1}∗ are generated,

the corresponding output values are obtained.
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Template of recurrence on strings

• For Σ = {0, 1}Σ = {0, 1}Σ = {0, 1} :

• Given functions g0g0g0 and g1g1g1 over Σ∗Σ∗Σ∗ ,

f (ε)f (ε)f (ε) === ccc

f (0w)f (0w)f (0w) === g0(f (w))g0(f (w))g0(f (w))

f (1w)f (1w)f (1w) === g1(f (w))g1(f (w))g1(f (w))

An entry for each σ ∈ Σσ ∈ Σσ ∈ Σ

and where each gσgσgσ is a previously defined function
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Template of recurrence on strings
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and where each gσgσgσ is a previously defined function
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Another example

• Σ = {0, 1}Σ = {0, 1}Σ = {0, 1} ,

f : Σ∗ → Σ∗f : Σ∗ → Σ∗f : Σ∗ → Σ∗ replaces in input www the first 000 by 111.

• Example: f (11001) = 11101f (11001) = 11101f (11001) = 11101.
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◮ f (0w) =f (0w) =f (0w) =
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Another example

• Σ = {0, 1}Σ = {0, 1}Σ = {0, 1} ,

f : Σ∗ → Σ∗f : Σ∗ → Σ∗f : Σ∗ → Σ∗ replaces in input www the first 000 by 111.

• Example: f (11001) = 11101f (11001) = 11101f (11001) = 11101.

◮ f (ε) =f (ε) =f (ε) = εεε

◮ f (1w) =f (1w) =f (1w) = 1f (w)1f (w)1f (w)

◮ f (0w) =f (0w) =f (0w) = 1w1w1w
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The output need not be strings

• The length function ℓ : {0, 1}∗ → Nℓ : {0, 1}∗ → Nℓ : {0, 1}∗ → N , i.e. ℓ(w) = |w|ℓ(w) = |w|ℓ(w) = |w|:

ℓ(ε)ℓ(ε)ℓ(ε) === 000

ℓ(0w)ℓ(0w)ℓ(0w) === 1 + ℓ(w)1 + ℓ(w)1 + ℓ(w)

ℓ(1w)ℓ(1w)ℓ(1w) === 1 + ℓ(w)1 + ℓ(w)1 + ℓ(w)
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Another example

• vℓ : {0, 1}∗ → Nvℓ : {0, 1}∗ → Nvℓ : {0, 1}∗ → N

vℓ(ε)vℓ(ε)vℓ(ε) === 000

vℓ(0w)vℓ(0w)vℓ(0w) === 2 · vℓ(w)2 · vℓ(w)2 · vℓ(w)

vℓ(1w)vℓ(1w)vℓ(1w) === 1 + 2 · vℓ(w)1 + 2 · vℓ(w)1 + 2 · vℓ(w)

What is vℓvℓvℓ ?
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A valuation function

vℓ(ε)vℓ(ε)vℓ(ε) === 000

vℓ(0w)vℓ(0w)vℓ(0w) === 2 · vℓ(w)2 · vℓ(w)2 · vℓ(w)

vℓ(1w)vℓ(1w)vℓ(1w) === 1 + 2 · vℓ(w)1 + 2 · vℓ(w)1 + 2 · vℓ(w)

• vℓ(w) =vℓ(w) =vℓ(w) = the numeric value of wRwRwR in binary.

• For example,

vℓ(011)vℓ(011)vℓ(011) === 2 · vℓ(11)2 · vℓ(11)2 · vℓ(11)

=== 2 · (1 + 2 · vℓ(1)2 · (1 + 2 · vℓ(1)2 · (1 + 2 · vℓ(1)

=== 2 · (1 + 2 · (1 + vℓ(ε)))2 · (1 + 2 · (1 + vℓ(ε)))2 · (1 + 2 · (1 + vℓ(ε)))

=== 2 · (1 + 2 · (1 + 0))2 · (1 + 2 · (1 + 0))2 · (1 + 2 · (1 + 0))

=== 666

= the numeric value of 110110110 in binary.
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