TIME COMPLEXITY

Measuring computational complexity

- Time is the most limiting resource
- Computation time = number of steps
 - = number of cfgs in computation trace
- Steps on *Turing machines*: They count moves honestly.

Asymptotic complexity

- Performance of algorithms may differ wildly for different inputs.
- Measure complexity by bound on resources consumed as a function of input *size* ("worst-case complexity").
- For a Turing machine M over Σ
 let T_M(w) be the number of cfg's in the trace of M for input w ∈ Σ*, if defined.
- Given a function $f : \mathbb{N} \to \mathbb{N}$), M runs within time fif $T_M(w) \leq f(|w|)$ for all inputs w.
- Example: if M runs within time $n \mapsto n^2$ then $T_M(abcde) \leqslant 25$.
- Note that if M runs within time f and $f \leq g$ then M runs within within g as well.

Which machine model

- Why Turing machines are the reference?
 Because they don't cheat.
- But perhaps they are too simple.
- E.g. to compute $w \mapsto w \cdot w$

a Turing transducer moves each symbol in w a distance w, so the computation take $> |w|^2$ steps.

If we use an auxiliary string ("tape") the doubling of w
 can be performed in < 6 |w| steps, for some small constant c.

- By *asymptotic behavior* of a function $f: \mathbb{N} \to \mathbb{N}$ we mean its behavior for all sufficiently large input.
- Examples: Asymptotically, $n^3 > 100n^2$ (for n > 100) and $100n^3 < 2^n$ (for n > 15).

Comparing asymptotic behaviors

- By *asymptotic behavior* of a function $f: \mathbb{N} \to \mathbb{N}$ we mean its behavior for all sufficiently large input.
- Examples: Asymptotically, $n^3 > 100n^2$ (for n > 100) and $100n^3 < 2^n$ (for n > 15).
- In Geometry, an *asymptote* of a curve is a line tangent to a curve at infinity: **Example:** The *x*-axis is an asymptote of the curve y = 1/x So is the *y*-axis.

Coefficients ignored: big-O notation

- Implementation choices, such as hardware or size of alphabet, are important in determining performance, but we wish to abstract away from them, to obtain a broader vision.
- A function g is of order f if there are c, k > 0 s.t. $g(n) \leq c \cdot f(n)$ for all $n \geq k$.
- We say then that g is O(f) ("big-O of f").

Coefficients ignored: big-O notation

- Implementation choices, such as hardware or size of alphabet, are important in determining performance, but we wish to abstract away from them, to obtain a broader vision.
- A function g is of order f if there are c, k > 0 s.t. $g(n) \leq c \cdot f(n)$ for all $n \geq k$.
- We say then that g is O(f) ("big-O of f").
- Convention:

Use n as a catch-all variable for natural numbers, writing eg $O(n^2)$ for $O(n \mapsto n^2)$, that is "O(f) where $f(n) = n^2$."

Time complexity classes

- TM M is *in time* f if T_M is O(f).
- We write Time(f) for the collection of languages recognized by a Turing acceptor in time O(f).
- The f's of interest are non-decreasing: $f(n+1) \ge f(n)$ for all n.
- Examples: $\log n$, n, $n \log n$, n^2 , n^5 , 2^n , 2^{n^2} , n!, n^n .
- Similar notation for transducers.

The Time Hierarchy Theorem

- We can expect that significantly more computation time implies that more functions are computable.
- This is mostly true:
- Time Hierarchy Theorem. Assume
 - $t, T : \mathbb{N} \to \mathbb{N}$ are "reasonable"; and

$$\blacktriangleright \ \frac{t(n) \cdot \log(t(n))}{T(n)} \quad \rightarrow \quad 0 \quad \text{ as } \ n \rightarrow \infty$$

Then there is a language recognized in Time(t) but not in Time(T)u.

• Alternative phrasing: $t(n) \cdot \log(t(n)) = o(T(n))$ ("little o").

```
• Time(n) \subsetneq Time(n<sup>2</sup>) \subsetneq Time(n<sup>3</sup>)
\subsetneq Time(n<sup>3.001</sup>) \subsetneq Time(2<sup>n</sup>) \subsetneq Time(3<sup>n</sup>)
\subsetneq Time(2<sup>n<sup>2</sup></sup>) \subsetneq Time(n!) \subsetneq Time(n<sup>n</sup>)
```

POLYNOMIAL TIME

Polynomial vs exponential growth rate

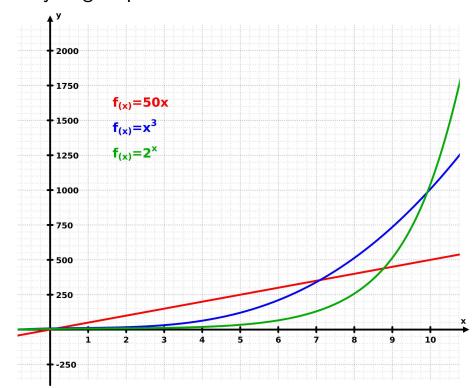
- Polynomial growth-rate: $f(n) = n^k$, k fixed.
- Exponential growth-rate: $f(n) = k^n$, k fixed.
- The choice of base k does not change the general picture:

 $a^n = b^{cn}$ where $c = \log_b(a)p = \log b/\log a$,

• But polynomial and exponential growth-rates tell very different stories: If an algorithm runs 2^n steps on input of size n, then the universe is too small to deal with input of size 300: It is believed that there are $10^{90} \approx 2^{300}$ quarks in the universe.

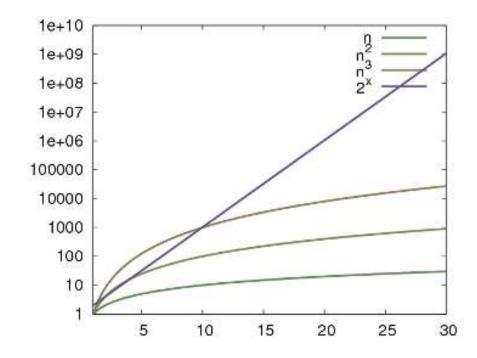
Graphics

 Any exponential function overtakes any polynomial function for sufficiently large inputs.



• Taking logarithmic scaling for the increase

visualizes the difference more clearly:



Every polynomial function flattens out rapidly,

whereas any exponential function grows steadily:

 $\log(n^k) = k \cdot \log n$, flattening.

 $log(2^n) = n$, steadily increasing

- Write $f \succ g$ for "f eventually exceeds g," i.e. $\exists a \forall x > a \quad f(x) > g(x)$.
- By induction on **k**:

for every m, $e^x \succ m \cdot x^k$, i.e. $\lim_{x \to \infty} x^k / e^x = 0$

- For k = 0 we have $x^0 = 1$, and indeed $\lim_{x \to \infty} 1/e^x = 0$.
- Assuming $\lim_{x\to\infty} x^k/e^x = 0$ we have

$$\lim_{x \to \infty} x^{k+1}/e^x = \lim_{x \to \infty} (x^{k+1})'/(e^x)' \text{ by L'Hopital Rule}$$
$$= \lim_{x \to \infty} ((k+1)x^k)/e^x$$
$$= (k+1) \lim_{x \to \infty} x^k/e^x$$
$$= 0 \text{ by IH}$$

PTime decidable problems

- A Turing decider *runs in polynomial time (PTime)* if its running time on input of size *n* is *O(n^k)* for some *k*.
- We can therefore consider informal algorithms without worrying about low level implementation.
 Exception: linear & quasi-linear (n log n).

Suppose $L \subseteq \Sigma^*$ is PTime decidable, say within time $c \cdot n^k$.

• Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?

Suppose $L \subseteq \Sigma^*$ is PTime decidable, say within time $c \cdot n^k$.

• Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?

Yes.

Deciding $w \cdot w \in L$ takes time $\leq c |w \cdot w|^k = 2^k \cdot |w|^k$, so L' is decidable in time $O(n^k)$ too.

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- What if we upgrade to $w \cdot w \cdot w$?

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- What if we upgrade to $w \cdot w \cdot w$? Upgrade 2^k to 3^k , Still $Time(n^k)$.

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- What about $L'' = \{ w \mid |w| w \in L \}$?

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- What about $L'' = \{ w \mid |w| w \in L \}$? $||w|w| = |w \cdots w| = |w|^2$. Deciding $|w|w \in L$ takes time $\leq (|w|^2)^k = |w|^{2k}$ Still PTime!

Suppose $L \subseteq \Sigma^*$ is PTime decidable, say within time n^k (glossing over the big-O.)

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- Is $L^2 = L \cdot L$ Ptime decidable?

Suppose $L \subseteq \Sigma^*$ is PTime decidable, say within time n^k (glossing over the big-O.)

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- Is $L^2 = L \cdot L$ Ptime decidable?

On input x cycle through all splits $x = u \cdot v$. How many splits are there?

Suppose $L \subseteq \Sigma^*$ is PTime decidable, say within time n^k (glossing over the big-O.)

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- Is $L^2 = L \cdot L$ Ptime decidable?

On input x cycle through all splits $x = u \cdot v$. How many splits are there?

Take x = abcde. Count the positions of the dot:

 $x = \varepsilon \cdot abcde, a \cdot bcde, ab \cdot cde, abc \cdot de, abcd \cdot e$

There are x splits.

Suppose $L \subseteq \Sigma^*$ is PTime decidable, say within time n^k (glossing over the big-O.)

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- Is $L^2 = L \cdot L$ Ptime decidable?

On input x cycle through all splits $x = u \cdot v$. How many splits are there?

Each split $x = u \cdot v$ takes $\leq |u|^k + |v|^k < 2|x|^k$ steps.

So L^2 is decidable in time $O(n^{k+1})$.

Suppose $L \subseteq \Sigma^*$ is PTime decidable, say within time n^k (glossing over the big-O.)

- Is $L' = \{ w \mid w \cdot w \in L \}$ PTime-decidable?
- Is $L^2 = L \cdot L$ Ptime decidable?

On input x cycle through all splits $x = u \cdot v$. How many splits are there? Each split $x = u \cdot v$ takes $\leq |u|^k + |v|^k < 2|x|^k$ steps.

So L^2 is decidable in time $O(n^{k+1})$.

Note: We have not attempted to refine the bounds.
 The order-of-magnitude trounces such concerns.

*The Cobham-Edmunds Thesis

 PTime is a practical first-approximation of the scope of computational *feasibility*:

Cobham-Edmunds Thesis (1964)

An algorithm is (intuitively) feasible iff it runs in PTime.

 Since all basic computation models simulate each other within a factor polynomial in the size of the input, the reference to "algorithms" is justified.

 The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.

- The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.
- But it is far more problematic than the Turing Thesis, and should be taken with a grain of salt, as a rough guide.

- The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.
- But it is far more problematic than the Turing Thesis, and should be taken with a grain of salt, as a rough guide.
- Here are some issues.
 - The exponents should matter: n^{100} is not feasible.

- The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.
- But it is far more problematic than the Turing Thesis, and should be taken with a grain of salt, as a rough guide.
- Here are some issues.
 - The exponents should matter: n^{100} is not feasible.
 - The coefficients should matter: $100^{100} n$ is not feasible.

- The Cobham-Edmunds Thesis is a declaration of faith, not a theorem, just like the Turing-Church Thesis.
- But it is far more problematic than the Turing Thesis, and should be taken with a grain of salt, as a rough guide.
- Here are some issues.
 - The exponents should matter: n^{100} is not feasible.
 - The coefficients should matter: $100^{100} n$ is not feasible.
 - Conversely, time of order $n^{\log \log n}$ is not admitted, and yet $n^{\log \log n} < n^8$ for all $n < 2^{2^8} = 2^{256} \approx 10^{77}$.

SHOWING PTIME DECIDABILITY

• CONNECTIVITY:

Given a graph G = (V, E), is it connected? (Dijkstra, 1969)

• CONNECTIVITY:

Given a graph G = (V, E), is it connected? (Dijkstra, 1969)

• LINEAR-INEQUAL:

Given a set of linear inequalities, is there a solution with real numbers? (Khachian, 1979)

Example: $3x + y \ge 0$, $x + 3y \le 0$

• CONNECTIVITY:

Given a graph G = (V, E), is it connected? (Dijkstra, 1969)

• LINEAR-INEQUAL:

Given a set of linear inequalities, is there a solution with real numbers? (Khachian, 1979)

Example: $3x + y \ge 0$, $x + 3y \le 0$

• PRIMALITY:

Given a natural number, is it prime (Agrawal, Kayal & Saxena, 2006)

- Memoization = memorize information for future use (Greek: mnémé = memory).
 - Also called *dynamic programming* algorithm,
 - because information is cached "dynamically" over times.

Also called *dynamic programming* algorithm, because information is cached "dynamically" over times.

The CYK algorithm is an example. Here's a related one.
 Theorem. If L ⊆ Σ* is PTime-decidable then so is L*

Also called *dynamic programming* algorithm, because information is cached "dynamically" over times.

• The CYK algorithm is an example. Here's a related one.

Theorem. If $L \subseteq \Sigma^*$ is PTime-decidable then so is L^*

• How about exhaustive search?

For each partition of input w into concatenated non-empty substrings check whether all parts are in L.

Also called *dynamic programming* algorithm, because information is cached "dynamically" over times.

• The CYK algorithm is an example. Here's a related one.

Theorem. If $L \subseteq \Sigma^*$ is PTime-decidable then so is L^*

• How about exhaustive search?

For each partition of input w into concatenated non-empty substrings check whether all parts are in L.

• There are 2^{n-1} partitions of w of size n!!

Also called *dynamic programming* algorithm, because information is cached "dynamically" over times.

• The CYK algorithm is an example. Here's a related one.

Theorem. If $L \subseteq \Sigma^*$ is PTime-decidable then so is L^*

• How about exhaustive search?

For each partition of input w into concatenated non-empty substrings check whether all parts are in L.

- There are 2^{n-1} partitions of w of size n!!
- But the number of "parts" is only quadratic in *n* ! So...?

PTime is closed under star

Theorem. If $L \subseteq \Sigma^*$ is PTime-decidable then so is L^*

• For input ε the answer is "yes".

PTime is closed under star

Theorem. If $L \subseteq \Sigma^*$ is PTime-decidable then so is L^*

- For input ε the answer is "yes".
- We generate the set S of substrings of $w = \sigma_1 \cdots \sigma_n$ that are in L^*

Theorem. If $L \subseteq \Sigma^*$ is PTime-decidable then so is L^*

- For input ε the answer is "yes".
- We generate the set S of substrings of $w = \sigma_1 \cdots \sigma_n$ that are in L^*
- Calculate for successive i the i-long elements of S: $S_i = \{ \sigma_{m+1} \cdots \sigma_{m+i} \in L^+ \mid 0 \leq m \leq n-i \}$

Theorem. If $L \subseteq \Sigma^*$ is PTime-decidable then so is L^*

- For input ε the answer is "yes".
- We generate the set S of substrings of $w = \sigma_1 \cdots \sigma_n$ that are in L^*
- Calculate for successive i the i-long elements of S: $S_i = \{ \sigma_{m+1} \cdots \sigma_{m+i} \in L^+ \mid 0 \leq m \leq n-i \}$
- $S_1 = \{\sigma_i \mid \sigma_i \in L\}.$

• Initially S_i is empty.

• Initially S_i is empty.

w's substrings x of length i start at σ_j for $j \in [1..n-i)$

• Initially S_i is empty.

w's substrings x of length i start at σ_j for $j \in [1..n - i)$ For each such x consider the i-1 possible non-trivial splits $x = y \cdot z$, say $|y| = d \in (0..i)$.

• Initially S_i is empty.

w's substrings x of length i start at σ_j for $j \in [1..n - i)$ For each such x consider the i-1 possible non-trivial splits $x = y \cdot z$, say $|y| = d \in (0..i)$.

If $y \in S_d$ and $z = S_{i-d}$ add x to S_i .

• Initially S_i is empty.

w's substrings x of length i start at σ_j for $j \in [1..n - i)$ For each such x consider the i-1 possible non-trivial splits $x = y \cdot z$, say $|y| = d \in (0..i)$.

If $y \in S_d$ and $z = S_{i-d}$ add x to S_i .

• Finally w is accepted iff $w \in S_n$.

• Initially S_i is empty.

w's substrings x of length i start at σ_j for $j \in [1..n - i)$ For each such x consider the i-1 possible non-trivial splits $x = y \cdot z$, say $|y| = d \in (0..i)$.

If $y \in S_d$ and $z = S_{i-d}$ add x to S_i .

- Finally w is accepted iff $w \in S_n$.
- The algorithm has three nested loops, each iterating ≤ |w| times, so running time is O(n³).

PTIME CERTIFICATION

Reminder: Certifications

A certification for a decision problem *P* is a binary relation ⊢ between strings (the certificates),
 and instances of *P*, such that for all instances *w*

w satisfies \mathcal{P} IFF $c \vdash w$ for some certificate c

We showed that a problem *P* is SD iff it has a decidable certification.

Feasible-certification

- A certification ⊢ for *P* is *PTime* if *c* ⊢ *w* is PTime in *w* (*only!*). We write then *c* ⊢_{*P*} *w*.
- In time t a Turing acceptor cannot read more than the t initial symbols of c, so c ⊢ w implies that
 |c| is eventually bounded by |w|^k for some k.
- An equivalent definition: A certification \vdash for \mathcal{P} is *PTime* if $c \vdash w$ is PTime, and $|c| \leq |w|^k$ for some k.

Examples: Scheduling problems

- Scheduling problems: Can we fit stuff within given constraints.
- INTEGER-PARTITION: Given a set *S* of positive integers with an even total sum

is there a set $P \subseteq S$ such that $\Sigma P = \Sigma(S - P)$?

• Certificate for *S*: *P*.

Certification is PTime: Checking $P \subseteq S$ and $\Sigma P = \Sigma(S - P)$. P-size: $|P| \leq |S|$

- EXACT-SUM Given set S of positive integers, and target t > 0, is there P ⊆ S such that ∑P = t?
- Certificate for S, t: The subset P. P-Time: Check $P \subseteq S$ and $\Sigma P = t$. P-size: $|P| \leq |S|$.

- Recall INTEGER-EQUATION:
 Given integer polynomial P , is there an integer solution?
- That problem is undecidable.

But consider limiting textual size of the solution:

► BOUNDED-INTEGER-EQUATION:

Given integer polynomial P and a bound b, is there a solution of textual size $\leq |b|$?

- Certificate: a solution.
- Certification relation: V solves E.
- This is doable in time $O(n^5)$.

PTIME REDUCTIONS

Recall: Computable reductions

• When a reduction $\rho: \mathcal{P} - \text{instncs} \to \mathcal{Q} - \text{instncs}$ is computable we write $\rho: \mathcal{P} \leq_c \mathcal{Q}$.

Recall: Computable reductions

- When a reduction $\rho: \mathcal{P} \text{instncs} \to \mathcal{Q} \text{instncs}$ is computable we write $\rho: \mathcal{P} \leq_c \mathcal{Q}$.
- If $\mathcal{P} \leq_{c} \mathcal{Q}$ and \mathcal{Q} is decidable,

then so is \mathcal{P} .

Recall: Computable reductions

- When a reduction $\rho: \mathcal{P} \text{instncs} \to \mathcal{Q} \text{instncs}$ is computable we write $\rho: \mathcal{P} \leq_c \mathcal{Q}$.
- If $\mathcal{P} \leq_{c} \mathcal{Q}$ and \mathcal{Q} is decidable, then so is \mathcal{P} .
- Easy exercise: \mathcal{P} is decidable iff $\mathcal{P} \leq_c \{0,1\}$.

PTime reductions

• When a reduction $\rho: \mathcal{P} - \text{instncs} \to \mathcal{Q} - \text{instncs}$ is PTime we write $\rho: \mathcal{P} \leq_p \mathcal{Q}$.

PTime reductions

- When a reduction $\rho: \mathcal{P} \text{instncs} \to \mathcal{Q} \text{instncs}$ is PTime we write $\rho: \mathcal{P} \leq_p \mathcal{Q}$.
- If $\mathcal{P} \leqslant_p \mathcal{Q}$ and \mathcal{Q} is PTime,

then so is \mathcal{P} .

PTime reductions

- When a reduction $\rho: \mathcal{P} \text{instncs} \to \mathcal{Q} \text{instncs}$ is PTime we write $\rho: \mathcal{P} \leq_p \mathcal{Q}$.
- If *P* ≤_p *Q* and *Q* is PTime, then so is *P*.
- Easy exercise: \mathcal{P} is PTime iff $\mathcal{P} \leq_p \{0,1\}$.

PTime is closed under composition:

 $\begin{array}{ll} \textit{If} \quad f\in\mathsf{Time}(n^k) \;\;\textit{and} \;\; g\in\mathsf{Time}(n^\ell) \\ \textit{then} \quad f\circ g \;\in \mathsf{Time}((n^k)^\ell)=\mathsf{Time}(n^{k\cdot\ell}). \end{array}$

PTime is closed under composition:

- If $f \in \text{Time}(n^k)$ and $g \in \text{Time}(n^\ell)$ then $f \circ g \in \text{Time}((n^k)^\ell) = \text{Time}(n^{k \cdot \ell})$.
- Suppose transducer T computes f in time $c \cdot n^k$, and T' computes g in time $d \cdot n^\ell$.

PTime is closed under composition:

- If $f \in \text{Time}(n^k)$ and $g \in \text{Time}(n^\ell)$ then $f \circ g \in \text{Time}((n^k)^\ell) = \text{Time}(n^{k \cdot \ell}).$
- Suppose transducer T computes f in time $c \cdot n^k$, and T' computes g in time $d \cdot n^\ell$.
- Given input $w \in \Sigma^*$,

T terminates in $\leq c \cdot |w|^k$ steps, and so has an output *y* of size $\leq c \cdot |w|^k$.

PTime is closed under composition:

- If $f \in \text{Time}(n^k)$ and $g \in \text{Time}(n^\ell)$ then $f \circ g \in \text{Time}((n^k)^\ell) = \text{Time}(n^{k \cdot \ell}).$
- Suppose transducer T computes f in time $c \cdot n^k$, and T' computes g in time $d \cdot n^\ell$.
- Given input $w \in \Sigma^*$,

T terminates in $\leq c \cdot |w|^k$ steps, and so has an output y of size $\leq c \cdot |w|^k$.

• Given **y** as input,

 $T' \text{ operates in time } \leqslant d \cdot |y|^{\ell},$ i.e. $\leqslant e \cdot |w|^{k \cdot \ell}$ ($e = d \cdot c^k$).

Composing PTime-reductions

• Since the composition of computable functions is again computable, we had:

 $\begin{array}{ll} \text{If} \quad \rho: \ \mathcal{P} \ \leqslant_c \ \mathcal{Q} \quad \text{and} \quad \rho': \ \mathcal{Q} \ \leqslant_c \ \mathcal{R} \\ \text{then} \quad \rho \circ \rho': \ \mathcal{P} \leqslant_c \mathcal{R} \end{array}$

Composing PTime-reductions

• Since the composition of computable functions is again computable, we had: If $\rho: \mathcal{P} \leq_c \mathcal{Q}$ and $\rho': \mathcal{Q} \leq_c \mathcal{R}$

then $\rho \circ \rho' : \mathcal{P} \leqslant_c \mathcal{R}$

But PTime is also closed under composition,

so we similarly have:

 $\begin{array}{ll} \text{If} & \rho: \ \mathcal{P} \leqslant_p \ \mathcal{Q} & \text{and} & \rho': \ \mathcal{Q} \leqslant_p \ \mathcal{R} \\ \\ \text{then} & \rho \circ \rho': \ \mathcal{P} \leqslant_p \ \mathcal{R} \end{array}$

Composing PTime-reductions

• Since the composition of computable functions is again computable, we had: If $\rho: \mathcal{P} \leq_c \mathcal{Q}$ and $\rho': \mathcal{Q} \leq_c \mathcal{R}$

then $\rho \circ \rho' : \mathcal{P} \leqslant_c \mathcal{R}$

But PTime is also closed under composition,

so we similarly have:

- $\begin{array}{ll} \text{If} & \rho : \mathcal{P} \leqslant_p \mathcal{Q} & \text{and} & \rho' : \mathcal{Q} \leqslant_p \mathcal{R} \\ \\ \text{then} & \rho \circ \rho' : \mathcal{P} \leqslant_p \mathcal{R} \end{array}$
- A prize for amalgamating the polynomial run-times: For example, reducibility in quadratic time is *not* closed under composition!

EXAMPLES

The disjoint sum

• Fix an alphabet Σ and a fresh Symbol, say @. For $L, K \subseteq \Sigma^*$ define

 $L \oplus K =_{\mathrm{df}} L \cup @K (@K \text{ is } \{@\} \cdot K).$

- So if $w \in L \cap K$ then
 - w and @w are distinct elements of $L \oplus K$.

The disjoint sum

• Fix an alphabet Σ and a fresh Symbol, say @. For $L, K \subseteq \Sigma^*$ define $L \oplus K =_{df} L \cup @K$ (@K is $\{@\} \cdot K$).

• So if $w \in L \cap K$ then

w and @w are distinct elements of $L \oplus K$.

Example: L = towns in IN, K = towns in NY.
 Bloomington is an IN string, @Bloomington is a NY string.

The disjoint sum

• Fix an alphabet Σ and a fresh Symbol, say @. For $L, K \subseteq \Sigma^*$ define

 $L \oplus K =_{\mathrm{df}} L \cup @K (@K \text{ is } \{@\} \cdot K).$

- So if $w \in L \cap K$ then
 - w and @w are distinct elements of $L \oplus K$.
- Example: L = towns in IN, K = towns in NY.
 Bloomington is an IN string, @Bloomington is a NY string.
- For finite L, K the size of $L \oplus K$ is the sum of the size of L and the size of K.

• What is $A \oplus (B \oplus C)$?

- What is $A \oplus (B \oplus C)$?
 - $A \cup @B \cup @@C$

- What is $A \oplus (B \oplus C)$?
- Define a reduction ρ : $L \leq_p L \oplus K$.

- What is $A \oplus (B \oplus C)$?
- Define a reduction ρ : $L \leq_p L \oplus K$.
 - ho is the identity on L.

- What is $A \oplus (B \oplus C)$?
- Define a reduction ρ : $L \leq_p L \oplus K$.
- Define a reduction ρ : $K \leq_p L \oplus K$.

- What is $A \oplus (B \oplus C)$?
- Define a reduction ρ : $L \leq_p L \oplus K$.
- Define a reduction ρ : $K \leq_p L \oplus K$.

 $\rho(w) = @w$

- What is $A \oplus (B \oplus C)$?
- Define a reduction ρ : $L \leq_p L \oplus K$.
- Define a reduction ρ : $K \leq_p L \oplus K$.
- Define a reduction ρ : $L \oplus K \leq_p K \oplus L$.

- What is $A \oplus (B \oplus C)$?
- Define a reduction ρ : $L \leq_p L \oplus K$.
- Define a reduction ρ : $K \leq_p L \oplus K$.
- Define a reduction ρ : $L \oplus K \leq_p K \oplus L$.

 $\rho(w) =$ if hd(w) = @ then tl(w) else @w.

Given $S \subseteq \mathbb{N}$, is there $P \subset S$ s.t. $\Sigma P = \Sigma S - P$ (i.e. both are $\frac{1}{2}(\Sigma S)$

► EXACT-SUM:

Given $S \subseteq \mathbb{N}$ and a target value $t \in \mathbb{N}$,

is there $P \subset S$ s.t. $\Sigma P = t$.

Given $S \subseteq \mathbb{N}$, is there $P \subset S$ s.t. $\Sigma P = \Sigma S - P$ (i.e. both are $\frac{1}{2}(\Sigma S)$

► EXACT-SUM:

Given $S \subseteq \mathbb{N}$ and a target value $t \in \mathbb{N}$,

is there $P \subset S$ s.t. $\Sigma P = t$.

• Define ρ : INTEGER-PARTITION \leq_p EXACT-SUM.

Given $S \subseteq \mathbb{N}$, is there $P \subset S$ s.t. $\Sigma P = \Sigma S - P$ (i.e. both are $\frac{1}{2}(\Sigma S)$

► EXACT-SUM:

Given $S \subseteq \mathbb{N}$ and a target value $t \in \mathbb{N}$,

is there $P \subset S$ s.t. $\Sigma P = t$.

- Define ρ : INTEGER-PARTITION \leq_p EXACT-SUM.
- If ΣS is even,

let $\rho(S)$ be the instance $(S, \Sigma S/2)$ of EXACT-SUM.

Given $S \subseteq \mathbb{N}$, is there $P \subset S$ s.t. $\Sigma P = \Sigma S - P$ (i.e. both are $\frac{1}{2}(\Sigma S)$

► EXACT-SUM:

Given $S \subseteq \mathbb{N}$ and a target value $t \in \mathbb{N}$,

is there $P \subset S$ s.t. $\Sigma P = t$.

- Define ρ : INTEGER-PARTITION \leq_p EXACT-SUM.
- If ΣS is even,

let $\rho(S)$ be the instance $(S, \Sigma S/2)$ of EXACT-SUM.

• If ΣS is odd,

let $\rho(S)$ be some some "no" instance of **EXACT-SUM**, say ({1},2).

Given $S \subseteq \mathbb{N}$, is there $P \subset S$ s.t. $\Sigma P = \Sigma S - P$ (i.e. both are $\frac{1}{2}(\Sigma S)$

► EXACT-SUM:

Given $S \subseteq \mathbb{N}$ and a target value $t \in \mathbb{N}$,

is there $P \subset S$ s.t. $\Sigma P = t$.

- Define ρ : INTEGER-PARTITION \leq_p EXACT-SUM.
- If ΣS is even,

let $\rho(S)$ be the instance $(S, \Sigma S/2)$ of EXACT-SUM.

• If ΣS is odd,

let $\rho(S)$ be some some "no" instance of **EXACT-SUM**, say ({1}, 2).

ρ is in PTime, and is a reduction!

Exact-Sum reduces to Integer-Partition

• INTEGER-PARTITION is a special case of EXACT-SUM,

so it was easy to define a reduction in this order.

• Surprisingly, we also have the converse:

Define ρ : I-P \leq_p E-S

Exact-Sum reduces to Integer-Partition

- **INTEGER-PARTITION** is a special case of **EXACT-SUM**, so it was easy to define a reduction in this order.
- Surprisingly, we also have the converse: Define ρ : I-P \leq_p E-S
- Given instance (S, t) of E-S let $n = \Sigma S$.

Note: t < n, otherwise (S, t) is trivially not in E-S.

Exact-Sum reduces to Integer-Partition

- INTEGER-PARTITION is a special case of EXACT-SUM, so it was easy to define a reduction in this order.
- Surprisingly, we also have the converse: Define ρ : I-P \leq_p E-S
- Given instance (S, t) of E-S let $n = \sum S$. Note: t < n, otherwise (S, t) is trivially not in E-S.
- Idea: augment S with the number 2n t, which is > n, and with n+t which totals the result to 4n.

• Let ρ map (S,t) to $S' =_{\mathrm{df}} S \cup \{n+t, 2n-t\}$. So S' adds up to 4n.

- Let ρ map (S,t) to $S' =_{\mathrm{df}} S \cup \{n+t, 2n-t\}$. So S' adds up to 4n.
- Claim: There is a $P \subseteq S$ that adds up to t iff there is a $P' \subset S'$ that adds up to $(\Sigma S')/2 = 2n$.

- Let ρ map (S,t) to $S' =_{\mathrm{df}} S \cup \{n+t, 2n-t\}$. So S' adds up to 4n.
- Claim: There is a $P \subseteq S$ that adds up to t iff there is a $P' \subset S'$ that adds up to $(\Sigma S')/2 = 2n$.
- \Rightarrow : If there is a $P \subset S$ that adds up to t then then $P \cup \{2n-t\}$ is a subset of S'that adds up to $t + (2n - t) = 2n = (\Sigma S')/2$.

- Let ρ map (S,t) to $S' =_{\mathrm{df}} S \cup \{n+t, 2n-t\}$. So S' adds up to 4n.
- Claim: There is a $P \subseteq S$ that adds up to t iff there is a $P' \subset S'$ that adds up to $(\Sigma S')/2 = 2n$.
- \Rightarrow : If there is a $P \subset S$ that adds up to t then then $P \cup \{2n-t\}$ is a subset of S'that adds up to $t + (2n - t) = 2n = (\Sigma S')/2$.
- \Leftarrow : If there is a $P' \subset S'$ that adds up to $\Sigma S' = 2n$ then S' - P' adds up to 4n - 2n = 2n.

The new elements add up to 3n,

so each of P' and S'-P' has one of the two.

- Let ρ map (S,t) to $S' =_{\mathrm{df}} S \cup \{n+t, 2n-t\}$. So S' adds up to 4n.
- Claim: There is a $P \subseteq S$ that adds up to t iff there is a $P' \subset S'$ that adds up to $(\Sigma S')/2 = 2n$.
- ⇒: If there is a P ⊂ S that adds up to t then then P ∪ {2n−t} is a subset of S' that adds up to t + (2n − t) = 2n = (ΣS')/2.
- \Leftarrow : If there is a $P' \subset S'$ that adds up to $\Sigma S' = 2n$ then S' - P' adds up to 4n - 2n = 2n.

The new elements add up to 3n,

so each of P' and S' - P' has one of the two.

Removing 2n − t from the half that has it,
 yields a P ⊂ S that adds up to t.

Lessons

- Reductions may be ingenious,
 - using particulars of the problems compared.

There are no silver bullets.

Lessons

 Reductions may be ingenious, using particulars of the problems compared.

There are no silver bullets.

• *Warning:* We only had *S* and *t* given.

S' was calculated, but P & P' were **hypothetical**, linking the property of the source-problem to the property of the target-problem.

NP COMPLETENESS

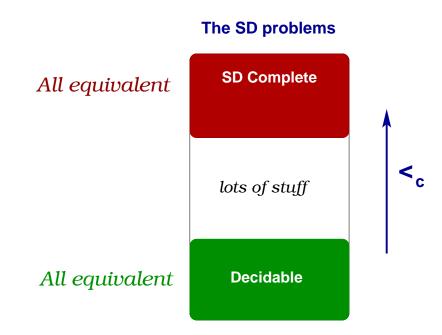
Maximal complexity in SD

• A problem \mathcal{P} is **SD-hard**

if every SD problem is computably-reducible to \mathcal{P} .

- If *P* is SD-hard, and *P* ≤_c *P*' then *P*' is SD-hard:
 Every SD problem *Q* is reducible to *P* since *P* is SD-hard.
 So by transitivity of ≤_c it follows that *P* ≤_c *P*' we get by *Q* ≤_c *P*'.
- **P** is **SD-complete** if it is SD-hard and is itself SD.
- An obvious SD-complete problem: ACCEPT.

Clear broad picture for SD...

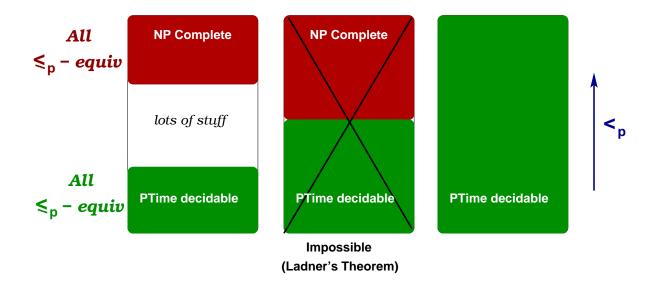


- Whether there is something in the middle was an open problem for about two decades, until proven by Albert Nuchnik (1956) and independently by Richard Friedman (1957).
- Subsequent research showed that there is quite a lot there...

The analog: maximally complex NP problems

- A problem \mathcal{P} is *NP-hard* if every problem in NP is $\leq_p \mathcal{P}$.
- Since \leq_p is transitive, if \mathcal{P} is NP-hard, and $\mathcal{P} \leq_p \mathcal{P}'$, then \mathcal{P}' is NP-hard as well.
- A problem \mathcal{P} is *NP-complete* if it is both NP and NP-hard.
- From these definitions it follows that if there is an NP-hard problem *P* which is PTime-decidable, then every NP problem is PTime-decidable!

Blurry picture for NP



The NP problems: 2 possibilities

Computing is binary...

- We conceive a certification $\vdash_{\mathcal{P}}$ for a problem \mathcal{P} in two stages:
 - 1. Identify what sort of objects are the certificates.
 - E.g. a certificate for an instance of HAMILT-PATH
 - is a list ℓ without repetition of the vertices.
 - 2. State properties that make a certificate valid.
 - For **HAMILTONIAN-PATH** these are:
 - ℓ is without repetitions, and
 - successive entries are adjacent in G.

Reminder: Boolean valuations

- Boolean expressions *E* are generated from variables using negation, conjunction, and disjunction.
 Example: (-x) ∧ -(y ∨ x).
- Given a valuation $V: Var \rightarrow \{0,1\}$ of variables, each boolean expression E evaluates to V(E) = 0 or V(E) = 1.
- Example: If V(x) = 0, V(y) = 0 then $V(-x \land -(y \lor x)) = 1$, but if V(x) = 1 then $V(-x \land -(y \lor x)) = 0$.
- A valuation V satisfies E if V(E) = 1.
- *E* is *satisfiable* if it is satisfied by *some V*,
 It is *valid* if it satisfied by *every V*.
- So E is satisfiable iff -E is not satisfiable and is valid iff -E is not satisfiable.

Boolean satisfiability

- **BOOL-SAT**: Given a boolean expression, is it satisfiable?
- A certification for **BOOL-SAT**:

the certificate for E is a valuation satisfying it.

Checking a certificate is PTime in the size of the expression.
 So the certification is feasible.

Coding certificates by boolean expressions

- Digital coding is central to describing discrete data, and the simplest form of digital coding is binary, i.e. using booleans.
- No surprise then that a good candidate for NP-hardness is Boolean Satisfiability BOOL-SAT.
- We use yes/no questions to code the potential certificates, and then yes/no questions that check their validity as certificates.

Playing Charades with decision-problems

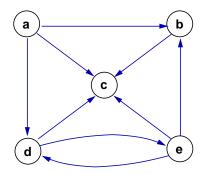
Boolean coding of Hamiltonian-Path

- HAMILTONIAN-PATH: Given directed graph G = (V, E), does it have a path visiting every vertex once.
- I.e. is there a listing u₁, u₂, ..., u_n of the vertices
 s.t. u_i(E)u_{i+1} for i < n.
- Convey this by a boolean expression.

For each $v \in V$ and i = 1..n a fresh boolean variable x_{iv} intended to be true iff u_i is v.

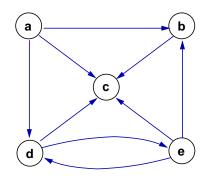
The boolean expression

• Example:



The boolean expression

• Example:

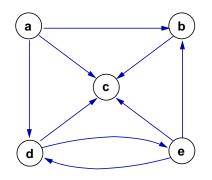


 A listing a, b, c, d, e is conveyed by the valuation assigning 1 to x_{1a}, x_{2b}, x_{3c}, x_{4d}, x_{5e} and 0 to the other variables:

x_{1a}	x_{1b}	x_{1c}	x_{1d}	x_{1e}
x_{2a}	<i>x</i> _{2b}	x_{2c}	x _{2d}	x_{2e}
x_{3a}	<i>x</i> _{3b}	<i>x</i> _{3c}	x_{3d}	x_{3e}
<i>x</i> _{4a}	<i>x</i> _{4b}	x_{4c}	x _{4d}	x_{4e}
x_{5a}	x_{5b}	x_{5c}	x_{5d}	x_{5e}

The boolean expression

• Example:



• Our Hamiltonian path, $a \rightarrow d \rightarrow e \rightarrow b \rightarrow c$: is conveyed by:

The vertex-listing is a path

- We state the conditions that make a valuation of the variables x_{iv} into a Hamiltonian path.
- At least one position per vertex:

For each vertex v the disjunction $x_{1v} \lor \cdots \lor x_{nv}$.

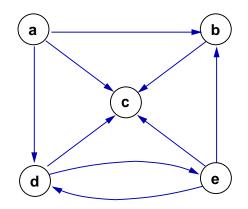
• At most one position per vertex:

For each vertex v and distinct i, j = 1..n

the expression $-(x_{iv} \wedge x_{jv})$

Successive vertices are adjacent in the graph

- For each position i < nthe disjunction of all expressions $x_{iv} \wedge x_{i+1,u}$ where v(E)u.
- E.g., positions 2 and 3 are related by one of the 9 edges:
 - $egin{aligned} &(x_{2a} \wedge x_{3b}) \, ee \, (x_{2a} \wedge x_{3c}) \, ee \, (x_{2a} \wedge x_{3d}) \ &ee \, (x_{2b} \wedge x_{3c}) \ &ee \, (x_{2d} \wedge x_{3c}) \, ee \, (x_{2d} \wedge x_{3e}) \ &ee \, (x_{2e} \wedge x_{3b}) \, ee \, (x_{2e} \wedge x_{3c}) \ &ee \, (x_{2e} \wedge x_{3d}) \ &ee \, (x_{2e} \wedge x_{3d}) \end{aligned}$



The reduction

- We've obtained a reduction ρ : HP \leq_p BOOL-SAT
- ρ maps a directed graph G = (V, E) to the conjunction A_G of the boolean expressions as above,

based on the particular size and edge-relation of G.

• A_G is computable in time cubic in the size of G.

- The mapping ρ is a reduction:
 - If there is a Hamilt path $u_1 \rightarrow \cdots \rightarrow u_n$ in Gthen the boolean expression A_G is satisfied by the valuation that assigns 1 to x_{iv} iff v is u_i .
 - Conversely, if the expression A_G is satisfied by a valuation V then $(v_1...v_k)$ is a Hamilt path,

where v_i is the unique v for which $V(x_{iv}) = 1$.

• Conclusion: ρ : HAMILT-PATH \leq_p BOOL-SAT

SAT IS NP-COMPLETE

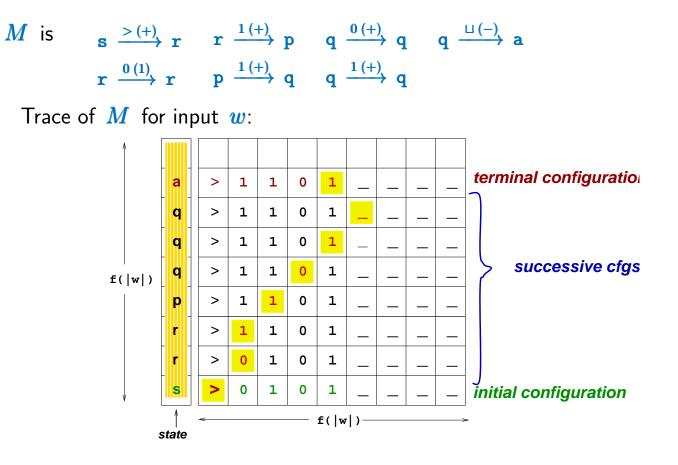
Boolean coding of PTime

- Let M be a Turing acceptor over Σ running within time f(n) (f a polynomial). We'll assume $f(n) \ge n$.
- Define a reduction ρ : $\mathcal{L}(M) \leq_p \text{BOOL-SAT}$
- ρ maps each Σ -string wto a boolean-expression E_w such that

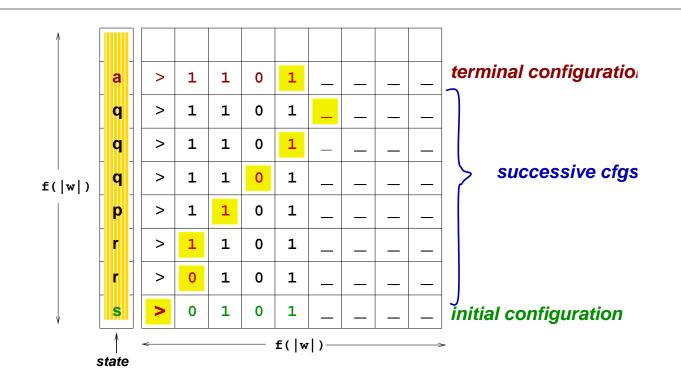
M accepts w IFF E_w is satisfiable.

The trace displayed as a square grid

The trace displayed as a square grid



The grid defined by yes/on questions



• We'll have a collection of boolean variables,

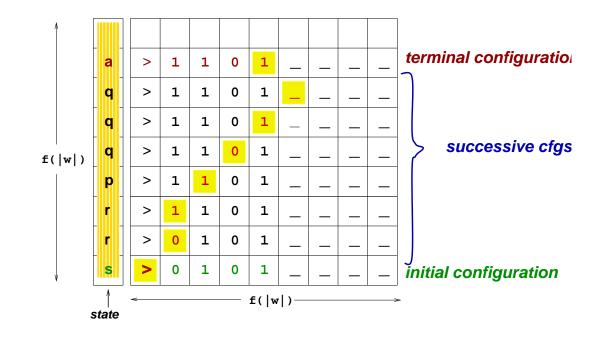
each standing for a question about the trace of $\,M\,$ for input $\,w\,$.

(A session of the party game *charades*.)

• For each state q and row $i \leq |w| \quad x_{i,q}$ for "state of i 'th cfg is q" Examples: $x_{1,s}, x_{4,p}$

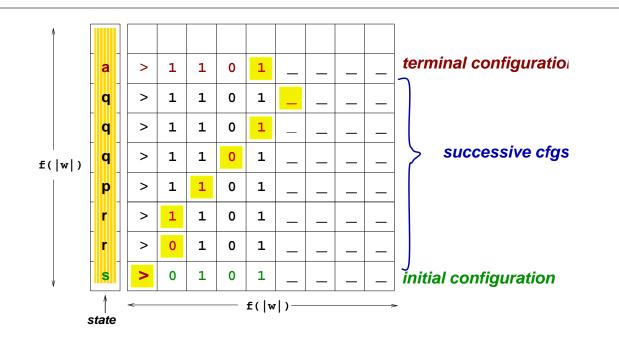
- For each $i,j \leq |w|$: $c_{i,j}$ for "cursor of i'th cfg at j"
- For each $i,j \leqslant |w|$ and $\sigma \in \Sigma$: $\ell_{i,j,\sigma}$ for "(i,j) cell has σ

Yes/no for consistency conditions



- One state + one cursor per row
- one symbol per cell
- First row is initial state $+ > w \sqcup^m$.
- Last row has accept state

Yes/no for operational conditions



- Each subsequent row is obtained from the preceding by one of the rules of *M*
- Analogous to the edge-condition for **HAMILTONIAN-PATH**.
- The initial cfg has state s and cursored string in $\geq w \sqcup^*$.
- Successive cfgs are related by the transitions of *M* (or repeat terminal cfgs).

• Example: For $q \xrightarrow{\sigma(\tau)} r$

$$egin{aligned} &(x_{i,q} \wedge c_{i,j} \wedge \ell_{i,j,\sigma} & & \ &
ightarrow & \ & p_{i+1,r} \ \wedge \ c_{i+1,j} \ \wedge \ \ell_{i+1,j, au} \ & \ & \wedge \ & \wedge_{k
eq j} \ \ell_{i,k,\xi} \
ightarrow \ \ell_{i+1,k,\xi} \end{aligned}$$

• The *accept* state appears: $\bigvee_i x_{i,a}$.

Coding PTime certification

- Consider a PTime-certified language *L*,
 with a feasible certification ⊢.
- That is, $c \vdash w$ is decided by a Turing-acceptor M, in time $\leq f(|w|)$, with $|c| \leq f|w|$ (f polynomial).
- That is, $w \in L$ iff M accepts w, c for some c of length $\leq f(|w|)$ in time $\leq f(|w|)$. (The comma is a separator-symbol).
- We cannot construct a trace-layout for \boldsymbol{w} ,

because we don't have *c*:

The values of the boolean variables $\ell_{1j\sigma}$

are unknown for j > |w|.

Boolean satisfiability is NP-complete

- But the satisfiability of the resulting boolean expression E_w means precisely that w, c is accepted by M for **some** such values!
- The satisfiability of E_w is equivalent to M accepting w, c for some c of size $\leq g(|w|)$ in time $\leq f(x)$.
- We this proved that **BOOL-SAT** is NP-hard.
- Since BOOL-SAT is PTime certified we conclude: Theorem. BOOL-SAT is NP-complete.

NP-COMPLETENESS OF ADDITIONAL PROBLEMS

- We can now prove that certain problems *P* are NP-complete and therefore dangerously complex, by defining a PTime reduction BOOL-SAT ≤_p *P*.
- Defining such reductions may be challenging, because boolean expressions can be arbitrarily complex.
 Can we facilitate reductions by focusing on some that are
- Reductions to **normal forms** are all around!

- We can now prove that certain problems *P* are NP-complete and therefore dangerously complex, by defining a PTime reduction BOOL-SAT ≤_p *P*.
- Defining such reductions may be challenging, because boolean expressions can be arbitrarily complex.
 Can we facilitate reductions by focusing on some that are
- Reductions to **normal forms** are all around!
- Decimal fractions (percents): 3/8 versus 4/11 (.375 vs .364)

- We can now prove that certain problems *P* are NP-complete and therefore dangerously complex, by defining a PTime reduction BOOL-SAT ≤_p *P*.
- Defining such reductions may be challenging, because boolean expressions can be arbitrarily complex.
 Can we facilitate reductions by focusing on some that are
- Reductions to **normal forms** are all around!
- Decimal fractions (percents): 3/8 versus 4/11 (.375 vs .364)
- Better: Normalized scientific notation for real numbers: $123.45 = 1.2345 \times 10^2$, $0.0012345 = 1.2345 \times 10^{-3}$
- Displays immediately the order of magnitude.

- We can now prove that certain problems *P* are NP-complete and therefore dangerously complex, by defining a PTime reduction BOOL-SAT ≤_p *P*.
- Defining such reductions may be challenging,
 because boolean expressions can be arbitrarily complex.
 Can we facilitate reductions by focusing on some that are
- Reductions to **normal forms** are all around!
- Decimal fractions (percents): 3/8 versus 4/11 (.375 vs .364)
- Better: Normalized scientific notation for real numbers: $123.45 = 1.2345 \times 10^2$, $0.0012345 = 1.2345 \times 10^{-3}$
- Displays immediately the order of magnitude.
- Polynomials are defined using +, ×, − in any order.

• Putting order in the chaos:

× in the scope of -, in the scope of +.

• $-((x+y)\cdot x)\cdot (1-y) = x^2\cdot y + x\cdot y^2 - x^2 - x\cdot y$

Normal form for boolean expressions

- For boolean expressions: chaos of negations, conjunctions, disjunction
- **Normal form:** negations in scope of conjunctions in scope of disjunctions

$$egin{aligned} -[(x ee -u) \wedge (y ee v)] &= (-x ee -y) \ & \wedge (-x ee -v) \ & \wedge (u ee -v) \ & \wedge (u ee -y) \ & \wedge (u ee -v) \end{aligned}$$

- *Literals:* variables or their negation.
- *(disjunctive) clauses:* disjunction of literals (1,2,3,0... disjuncts)
- Conjunctive normal expression (CNF):

conjunction of disjunctive clauses

CNF and satisfiability

More orderly SAT: ask only about satisfiability of CNFs:
 CNF-SAT:

Given a CNF boolean expression E, is it satisfiable?

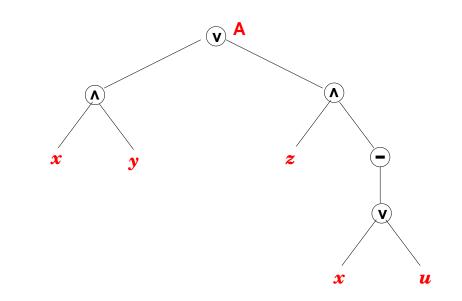
- We'll show that **CNF-SAT** is NP-hard.
- NP-hardness of problems would be made easier: **CNF-SAT** $\leq_p \mathcal{P}$ easier to show than **SAT** $\leq_p \mathcal{P}$.

CNF-SAT is NP-hard

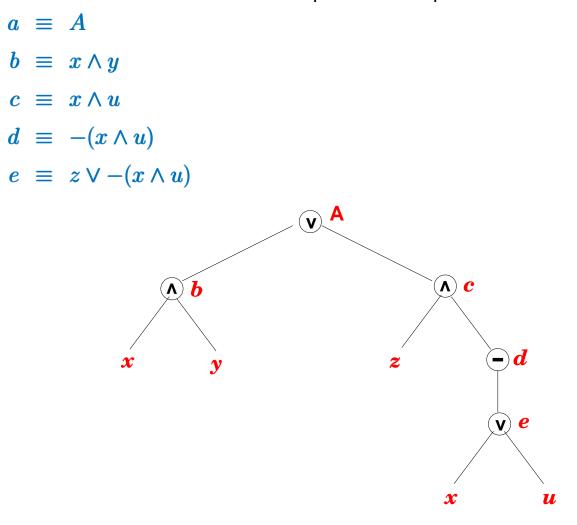
- Method: Reduce **BOOL-SAT** to **CNF-SAT**.
- Every boolean expression can be converted into an equivalent CNF expression.
- But this does NOT yield the desired reduction!
- Expression *E* is converted into a CNF equivalent which may be *exponentially longer*!
- However: NO NEED for an equivalent CNF!
 Suffices a CNF whose *satisfiability* is equivalent to the *satisfiability* of *E*.
- We can even restrict attention to <u>3CNF</u> expressions where each clause has ≤ 3 literals.

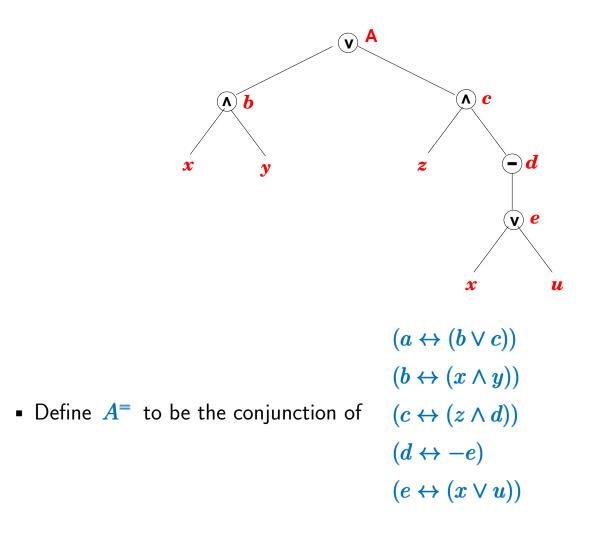
3CNF-Satisfiability

- 3CNF SATISFIABILITY Does a given 3CNF expression have a satisfying valuation.
- SAT \leq_p 3CNF-SAT
- Example, A is $(x \land y) \lor (z \land -(x \lor u))$



• Name with fresh variables the compound sub-expressions of *A*:





Equivalence	in 3CNF format
$(a \leftrightarrow (b \lor c))$	$ar{a} ee ar{b} ee c$
	$a \lor b$
	$a \lor \bar{c}$
$(b \leftrightarrow (x \wedge y))$	$ar{b} \lor x$
	$ar{b} \lor y$
	$ar{x} ee ar{y} ee b$
$(c \leftrightarrow (z \wedge d))$	$ar{c} \lor z$
	$ar{c} \lor d$
	$ar{z} ee ar{d} ee c$
$(d \leftrightarrow -e)$	$ar{d} ee ar{e}$
	$e \lor ar{d}$
$(e \leftrightarrow (x \lor u))$	$ar{e} \lor x \lor u$
	$ar{x} \lor e$
	$ar{u} ee e$

- A is satisfiable iff the 3CNF $a \wedge A^=$ is satisfiable.
- $a \wedge A^{=}$ is of size linear in the size of A.

Exact-3CNF-Sat

- Further tightening the normal form for boolean expression.
- EXACT-3CNF-SAT:

Does a given 3CNF expression w/ exactly 3 literals per clause have a satisfying valuation?

- 3CNF-SAT \leq_P EXACT-3CNF-SAT
- Given a 3-CNF A obtain $\rho(A)$ by

1. Replacing clauses $L_0 \lor L_1$ by $(L_0 \lor L_1 \lor y) \land (L_0 \lor L_1 \lor \overline{y}) \quad (y \text{ fresh});$

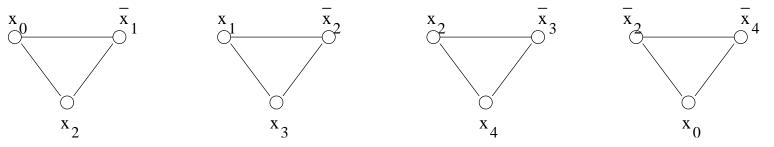
2. Replacing single-literal clauses L by $(L \lor y \lor z) \land (L \lor y \lor \overline{z}) \land (L \lor \overline{y} \lor z) \land (L \lor \overline{y} \lor \overline{z})$

NP COMPLETENESS ALL AROUND

- Define ρ : **3CNF-SAT** \leq_p **INDEP-SET**. Map a **3CNF** expression E with k clauses to graph G + target k.
- A thought: each clause is mapped to a triangle of literals.
 Satisfying k clauses requires then one vertex per triangle:

 $(x_0 \lor \bar{x}_1 \lor x_2) \land (x_1 \lor \bar{x}_2 \lor x_3) \land (x_2 \lor \bar{x}_3 \lor x_4) \land (\bar{x}_2 \lor \bar{x}_4 \lor x_0)$

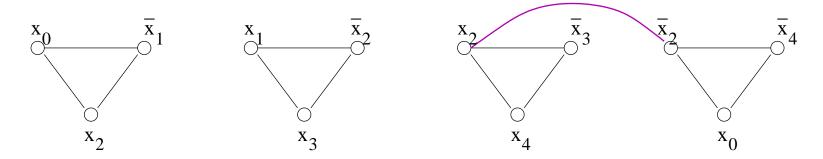
• An initial draft of *G*:



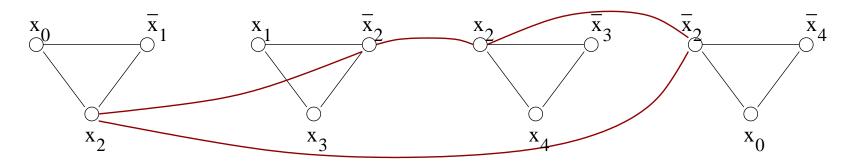
Choose a vertex in each triangle, eg top left.
 Oops, we are trying to have both x_2 and \bar{x}_2 true!

Add consistency edges

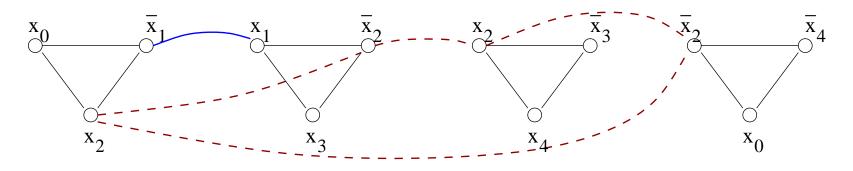
• Consistency edge for x_2 :



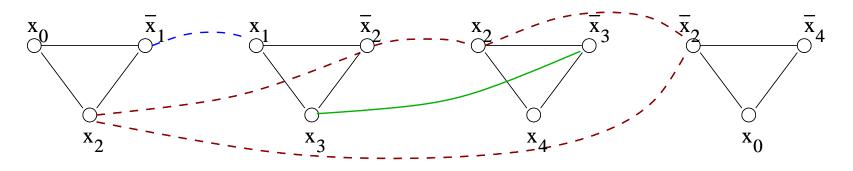
• Additional consistency edges for x_2 :



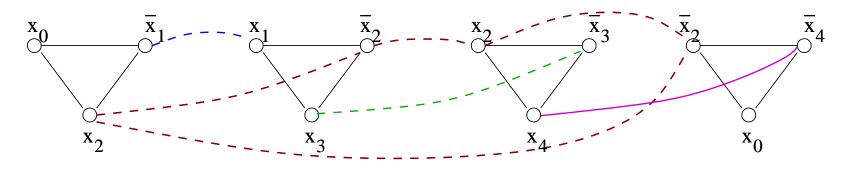
• Consistency edge for x_1 :



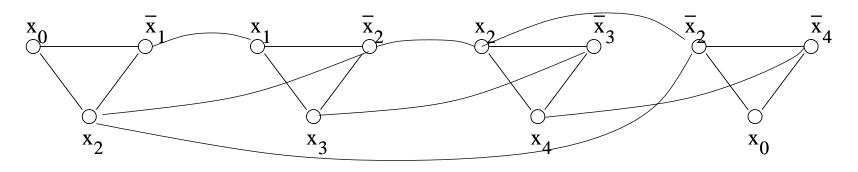
• Consistency edge for **x**₃:



• Consistency edge for x_4 :



• Final graph **G**:



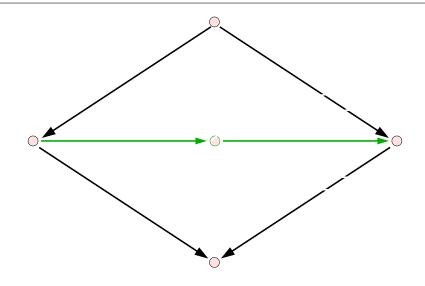
- If A has a satisfying valuation msV, then G has an independent-set S of size t, consisting of vertices true under V.
- If G has an independent set S of size t, then S must have one vertex per triangle, and the valuation that satisfies the labels of S satisfies A.

Consequence: clique is NP-complete

- We showed that **CLIQUE** is NP.
- INDEP-SET \leq_p CLIQUE
- Since **INDEP-SET** is NP-hard, so is **CLIQUE**.

EAMPLE: DIRECTED HAMITONIAN PATH

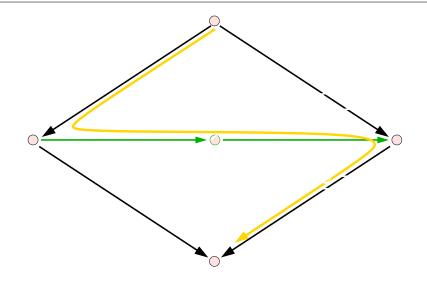
- HAMILTONIAN-PATH (H-PATH): Given a directed graph G = (V, E), does it have a path visiting each vertex exactly once.
- **H-PATH** has a feasible certification: the certificate is the path.
- To prove NP-hardness show **3CNF-SAT** \leq_p **H-PATH**



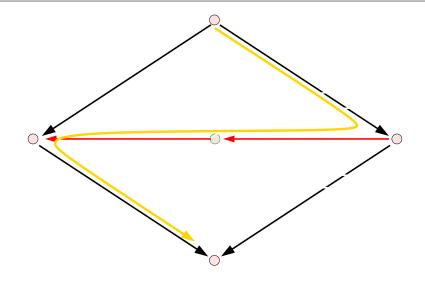
• This is an example of a *gadget*:

a component, often repeated, of a compound discrete object.

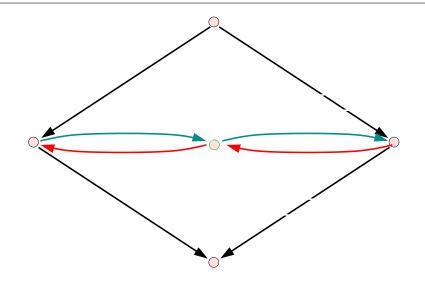
• Does it have an H-path?



• An H-path through the gadget must follow the rightward edges.

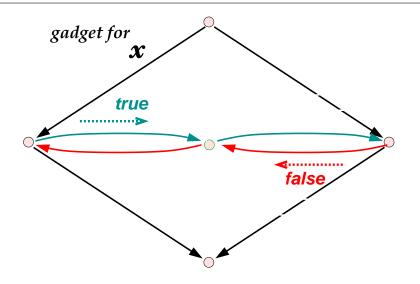


• Dually for leftwards horizontal edges.



• With edges pointing both ways we get a choice between two H-paths.

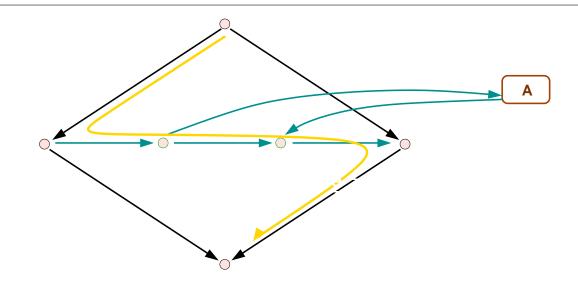
The gadget as a boolean switch



Take each choice of H-path to represent a truth value

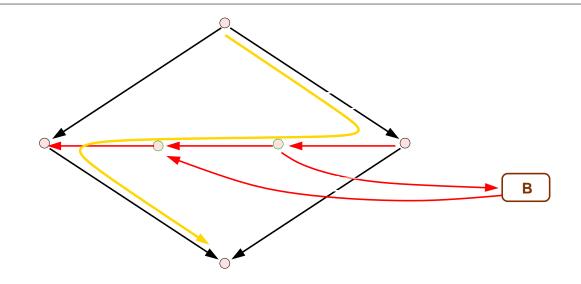
of a boolean variable \boldsymbol{x} .

Side trips of a H-path



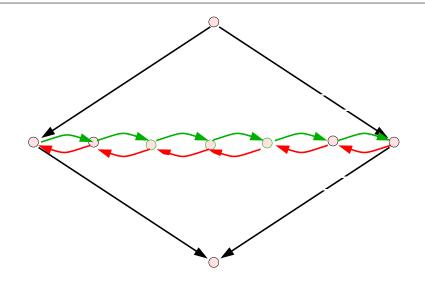
- Ahamilt-bool-basic-use-positiven H-path crossing the gadget rightwards (*x true*) can optionally veer to visit an extenal vertex *A* and return one step to the right.
- Not so for an H-path for *false*.

Side trips of a H-path



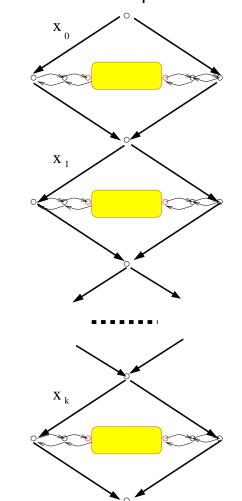
Dually, an H-path crossing the gadget leftwards (*x* false)
 can veer to visit edge *B* and return one step to the left.

Side trips of a H-path



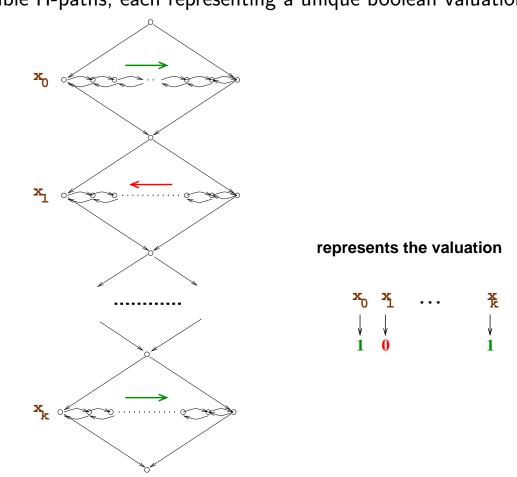
To visit up to n external vertices
 the horizontal "switch-box" must have
 at least n+1 vertices (endpoints included).

A serial panel of gadgets



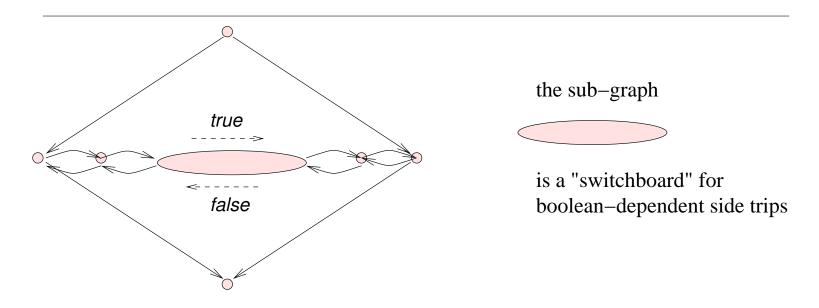
For variables $x_1, \ldots x_k$ we form a serial panel of k gadgets.

A serial panel of gadgets



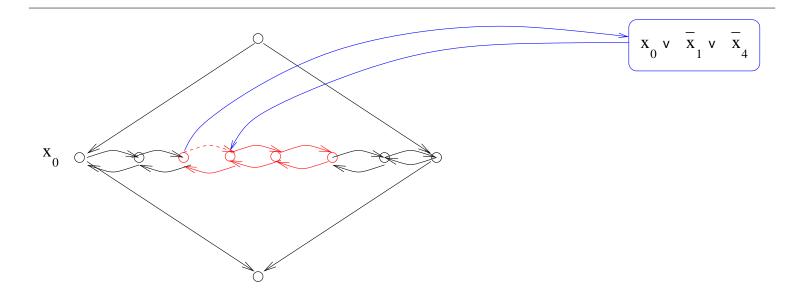
 2^k possible H-paths, each representing a unique boolean valuation:

Here are the constraints

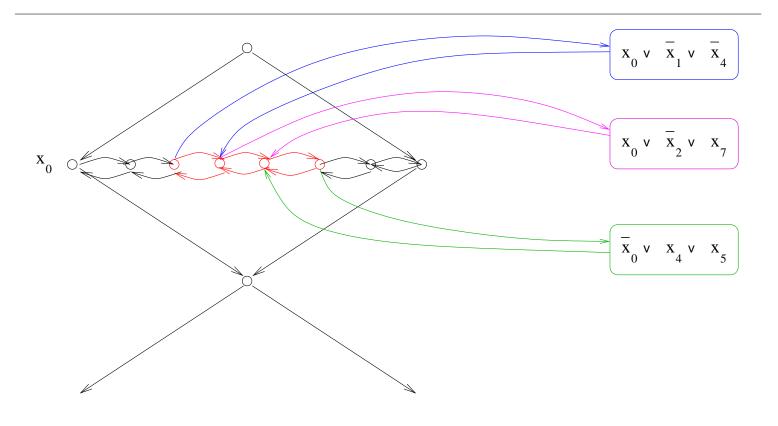


- Given a 3CNF expression E with variables $x_1 \dots x_k$ sider sequentla panel of
- Each clause represented by a vertex.
- Satifying a clause represented by visiting it.
- Every clause risited by one literal (Hamiltonian!)

Variable x_0 visits a clause



*Variable x + 0 visits multiple clauses



The x_0 switchboard used positively by two clauses and negatively by one

Combining the switchboards

