
TIME COMPLEXITY



Measuring computational complexity

• Time is the most limiting resource

• Computation time = number of steps

= number of cfgs in computation trace

• Steps on Turing machines: They count moves honestly.
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Asymptotic complexity

• Performance of algorithms may differ wildly for different inputs.

• Measure complexity by bound on resources consumed

as a function of input size (“worst-case complexity”).

• For a Turing machine MMM over ΣΣΣ

let TM(w)TM(w)TM(w) be the number of cfg’s in the

trace of MMM for input w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗, if defined.

• Given a function f : N→Nf : N→Nf : N→N ), MMM runs within time fff

if TM(w) 6 f(|w|)TM(w) 6 f(|w|)TM(w) 6 f(|w|) for all inputs www.

• Example: if MMM runs within time n 7→ n2n 7→ n2n 7→ n2

then TM(abcde) 6 25TM(abcde) 6 25TM(abcde) 6 25.

• Note that if MMM runs within time fff and f 6 gf 6 gf 6 g

then MMM runs within within ggg as well.
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Which machine model

• Why Turing machines are the reference?

Because they don’t cheat.

• But perhaps they are too simple.

• E.g. to compute w 7→ w · ww 7→ w · ww 7→ w · w

a Turing transducer moves each symbol in www a distance www ,

so the computation take > |w|2> |w|2> |w|2 steps.

• If we use an auxiliary string (“tape”) the doubling of www

can be performed in < 6 |w|< 6 |w|< 6 |w| steps, for some small constant ccc.
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Comparing asymptotic behaviors

• By asymptotic behavior of a function f : N→Nf : N→Nf : N→N

we mean its behavior for all sufficiently large input.

• Examples: Asymptotically, n3 > 100n2n3 > 100n2n3 > 100n2 (for n > 100n > 100n > 100)

and 100 n3 < 2n100 n3 < 2n100 n3 < 2n (for n > 15n > 15n > 15).



Comparing asymptotic behaviors

• By asymptotic behavior of a function f : N→Nf : N→Nf : N→N

we mean its behavior for all sufficiently large input.

• Examples: Asymptotically, n3 > 100n2n3 > 100n2n3 > 100n2 (for n > 100n > 100n > 100)

and 100 n3 < 2n100 n3 < 2n100 n3 < 2n (for n > 15n > 15n > 15).

• In Geometry, an asymptote of a curve

is a line tangent to a curve at infinity:

Example: The xxx-axis is an asymptote of the curve y = 1/xy = 1/xy = 1/x

So is the yyy-axis.
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Coefficients ignored: big-O notation

• Implementation choices, such as hardware or size of alphabet,

are important in determining performance,

but we wish to abstract away from them, to obtain a broader vision.

• A function ggg is of order fff if there are c, k >0c, k >0c, k >0 s.t.

g(n) 6 c · f(n)g(n) 6 c · f(n)g(n) 6 c · f(n) for all n > kn > kn > k.

• We say then that ggg is O(f)O(f)O(f) (“big-O of fff ”).
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• Implementation choices, such as hardware or size of alphabet,

are important in determining performance,

but we wish to abstract away from them, to obtain a broader vision.

• A function ggg is of order fff if there are c, k >0c, k >0c, k >0 s.t.

g(n) 6 c · f(n)g(n) 6 c · f(n)g(n) 6 c · f(n) for all n > kn > kn > k.

• We say then that ggg is O(f)O(f)O(f) (“big-O of fff ”).

• Convention:

Use nnn as a catch-all variable for natural numbers,

writing eg O(n2)O(n2)O(n2) for O(n 7→ n2)O(n 7→ n2)O(n 7→ n2) ,

that is “ O(f)O(f)O(f) where f(n) = n2f(n) = n2f(n) = n2.”



Time complexity classes

• TM MMM is in time fff if TMTMTM is O(f)O(f)O(f) .

• We write Time(f)(f)(f) for the collection of languages

recognized by a Turing acceptor in time O(f)O(f)O(f) .

• The fff ’s of interest are non-decreasing:

f(n + 1) > f(n)f(n + 1) > f(n)f(n + 1) > f(n) for all nnn.

• Examples: log n, n, n log n, n2, n5, 2n, 2n2
, n!, nnlog n, n, n log n, n2, n5, 2n, 2n2
, n!, nnlog n, n, n log n, n2, n5, 2n, 2n2
, n!, nn.

• Similar notation for transducers.
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The Time Hierarchy Theorem

• We can expect that significantly more computation time

implies that more functions are computable.

• This is mostly true:

• Time Hierarchy Theorem. Assume

◮ t, T : N → Nt, T : N → Nt, T : N → N are “reasonable”; and

◮
t(n) · log(t(n))t(n) · log(t(n))t(n) · log(t(n))

T (n)T (n)T (n)
→ 0→ 0→ 0 as n → ∞n → ∞n → ∞

Then there is a language recognized in Time(t)Time(t)Time(t) but not in Time(T )uTime(T )uTime(T )u.

• Alternative phrasing: t(n) · log(t(n)) = o(T (n))t(n) · log(t(n)) = o(T (n))t(n) · log(t(n)) = o(T (n)) (“little o”).
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Instances of the Time-Hierarchy Theorem

• Time(n)Time(n)Time(n) ( Time(n2) ( Time(n3)( Time(n2) ( Time(n3)( Time(n2) ( Time(n3)

( Time(n3.001) ( Time(2n) ( Time(3n)( Time(n3.001) ( Time(2n) ( Time(3n)( Time(n3.001) ( Time(2n) ( Time(3n)

( Time(2n2
) ( Time(n!) ( Time(nn)( Time(2n2
) ( Time(n!) ( Time(nn)( Time(2n2
) ( Time(n!) ( Time(nn)
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POLYNOMIAL TIME



Polynomial vs exponential growth rate

• Polynomial growth-rate: f(n) = nkf(n) = nkf(n) = nk, kkk fixed.

• Exponential growth-rate: f(n) = knf(n) = knf(n) = kn, kkk fixed.

• The choice of base kkk does not change the general picture:

an = bcnan = bcnan = bcn where c = logb(a)p = log b/ log ac = logb(a)p = log b/ log ac = logb(a)p = log b/ log a,

• But polynomial and exponential growth-rates tell very different stories:

If an algorithm runs 2n2n2n steps on input of size nnn, then

the universe is too small to deal with input of size 300:

It is believed that there are 1090 ≈ 23001090 ≈ 23001090 ≈ 2300 quarks in the universe.
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Graphics

• Any exponential function overtakes any polynomial function

for sufficiently large inputs.



• Taking logarithmic scaling for the increase

visualizes the difference more clearly:

Every polynomial function flattens out rapidly,

whereas any exponential function grows steadily:

log(nk) = k · log nlog(nk) = k · log nlog(nk) = k · log n , flattening.

log(2n) = nlog(2n) = nlog(2n) = n , steadily increasing



Exponentials surpass polynomials: a calculus proof

• Write f ≻ gf ≻ gf ≻ g for “fff eventually exceeds ggg,”

i.e. ∃a ∀x>a f(x) > g(x)∃a ∀x>a f(x) > g(x)∃a ∀x>a f(x) > g(x).

• By induction on kkk:

for every mmm, ex ≻ m · xkex ≻ m · xkex ≻ m · xk , i.e. limx→∞ xk/ex = 0limx→∞ xk/ex = 0limx→∞ xk/ex = 0

• For k = 0k = 0k = 0 we have x0 = 1x0 = 1x0 = 1, and indeed limx→∞ 1/ex = 0limx→∞ 1/ex = 0limx→∞ 1/ex = 0.

• Assuming limx→∞ xk/ex = 0limx→∞ xk/ex = 0limx→∞ xk/ex = 0 we have

limx→∞ xk+1/exlimx→∞ xk+1/exlimx→∞ xk+1/ex === limx→∞ (xk+1)′/(ex)′limx→∞ (xk+1)′/(ex)′limx→∞ (xk+1)′/(ex)′ by L’Hopital Rule

=== limx→∞ ((k+1) xk)/exlimx→∞ ((k+1) xk)/exlimx→∞ ((k+1) xk)/ex

=== (k+1) limx→∞ xk/ex(k+1) limx→∞ xk/ex(k+1) limx→∞ xk/ex

=== 000 by IH
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PTime decidable problems

• A Turing decider runs in polynomial time (PTime)

if its running time on input of size nnn is O(nk)O(nk)O(nk) for some kkk.

• We can therefore consider informal algorithms

without worrying about low level implementation.

Exception: linear & quasi-linear ( n log nn log nn log n).
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Examples

Suppose L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is PTime decidable,

say within time c · nkc · nkc · nk.

• Is L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L } PTime-decidable?
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Examples
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Examples

Suppose L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is PTime decidable,

say within time c · nkc · nkc · nk.

• Is L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L } PTime-decidable?

• What about L′′ = { w | |w| w ∈ L }L′′ = { w | |w| w ∈ L }L′′ = { w | |w| w ∈ L }?

||w| w| = |w · · · · · w| = |w|2||w| w| = |w · · · · · w| = |w|2||w| w| = |w · · · · · w| = |w|2 .

Deciding |w| w ∈ L|w| w ∈ L|w| w ∈ L takes time 6 (|w|2)k = |w|2k6 (|w|2)k = |w|2k
6 (|w|2)k = |w|2k

Still PTime!
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Examples

Suppose L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is PTime decidable,

say within time nknknk (glossing over the big-O.)

• Is L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L } PTime-decidable?

• Is L2 = L · LL2 = L · LL2 = L · L Ptime decidable?

On input xxx cycle through all splits x = u · vx = u · vx = u · v .

How many splits are there?

Take x = abcdex = abcdex = abcde . Count the positions of the dot:

x =x =x = ε · abcdeε · abcdeε · abcde, a · bcdea · bcdea · bcde, ab · cdeab · cdeab · cde, abc · deabc · deabc · de, abcd · eabcd · eabcd · e

There are |x||x||x| splits.



Examples
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say within time nknknk (glossing over the big-O.)

• Is L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L } PTime-decidable?

• Is L2 = L · LL2 = L · LL2 = L · L Ptime decidable?

On input xxx cycle through all splits x = u · vx = u · vx = u · v .

How many splits are there?

Each split x = u · vx = u · vx = u · v takes 6 |u|k+|v|k < 2|x|k6 |u|k+|v|k < 2|x|k6 |u|k+|v|k < 2|x|k steps.

So L2L2L2 is decidable in time O(nk+1)O(nk+1)O(nk+1).



Examples

Suppose L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is PTime decidable,

say within time nknknk (glossing over the big-O.)

• Is L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L }L′ = { w | w · w ∈ L } PTime-decidable?

• Is L2 = L · LL2 = L · LL2 = L · L Ptime decidable?

On input xxx cycle through all splits x = u · vx = u · vx = u · v .

How many splits are there?

Each split x = u · vx = u · vx = u · v takes 6 |u|k+|v|k < 2|x|k6 |u|k+|v|k < 2|x|k6 |u|k+|v|k < 2|x|k steps.

So L2L2L2 is decidable in time O(nk+1)O(nk+1)O(nk+1).

• Note: We have not attempted to refine the bounds.

The order-of-magnitude trounces such concerns.
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⋆The Cobham-Edmunds Thesis

• PTime is a practical first-approximation

of the scope of computational feasibility :

Cobham-Edmunds Thesis (1964)

An algorithm is (intuitively) feasible iff it runs in PTime.

• Since all basic computation models simulate each other

within a factor polynomial in the size of the input,

the reference to “algorithms” is justified.
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Flaws of the Cobham-Edmunds Thesis

• The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,

just like the Turing-Church Thesis.

• But it is far more problematic than the Turing Thesis,

and should be taken with a grain of salt, as a rough guide.

• Here are some issues.

◮ The exponents should matter: n100n100n100 is not feasible.

◮ The coefficients should matter: 100100 n100100 n100100 n is not feasible.

◮ Conversely, time of order nlog log nnlog log nnlog log n is not admitted,

and yet nlog log n < n8nlog log n < n8nlog log n < n8 for all n < 228
= 2256 ≈ 1077n < 228
= 2256 ≈ 1077n < 228
= 2256 ≈ 1077.
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SHOWING PTIME DECIDABILITY



Major PTime decision-problems

• connectivityconnectivityconnectivity:

Given a graph G = (V, E)G = (V, E)G = (V, E), is it connected? (Dijkstra, 1969)
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• linear-inequallinear-inequallinear-inequal:
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(Khachian, 1979)
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Major PTime decision-problems

• connectivityconnectivityconnectivity:

Given a graph G = (V, E)G = (V, E)G = (V, E), is it connected? (Dijkstra, 1969)

• linear-inequallinear-inequallinear-inequal:

Given a set of linear inequalities, is there a solution with real numbers?

(Khachian, 1979)

Example: 3x + y > 0, x + 3y 6 03x + y > 0, x + 3y 6 03x + y > 0, x + 3y 6 0

• primalityprimalityprimality:

Given a natural number, is it prime (Agrawal, Kayal & Saxena, 2006)
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Memoization: caching data for repeated use

• Memoization = memorize information for future use

(Greek: mnémé = memory).

Also called dynamic programming algorithm,

because information is cached “dynamically” over times.
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Memoization: caching data for repeated use

• Memoization = memorize information for future use

(Greek: mnémé = memory).

Also called dynamic programming algorithm,

because information is cached “dynamically” over times.

• The CYK algorithm is an example. Here’s a related one.

Theorem. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is PTime-decidable then so is L∗L∗L∗

• How about exhaustive search?

For each partition of input www into concatenated non-empty substrings

check whether all parts are in LLL.

• There are 2n−12n−12n−1 partitions of www of size nnn!!

• But the number of “parts” is only quadratic in nnn ! So...?
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PTime is closed under star

Theorem. If L ⊆ Σ∗L ⊆ Σ∗L ⊆ Σ∗ is PTime-decidable then so is L∗L∗L∗

• For input εεε the answer is “yes”.

• We generate the set SSS of substrings of w = σ1 · · · σnw = σ1 · · · σnw = σ1 · · · σn that are in L∗L∗L∗

• Calculate for successive iii the iii-long elements of SSS:

Si = { σm+1 · · · σm+i ∈ L+ | 0 6 m 6 n−i }Si = { σm+1 · · · σm+i ∈ L+ | 0 6 m 6 n−i }Si = { σm+1 · · · σm+i ∈ L+ | 0 6 m 6 n−i }

• S1 = {σi | σi ∈ L}S1 = {σi | σi ∈ L}S1 = {σi | σi ∈ L}.
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• Initially SiSiSi is empty.

www ’s substrings xxx of length iii start at σjσjσj for j ∈ [1..n − i)j ∈ [1..n − i)j ∈ [1..n − i)

For each such xxx consider the i−1i−1i−1 possible non-trivial splits

x = y · zx = y · zx = y · z , say |y| = d ∈ (0..i)|y| = d ∈ (0..i)|y| = d ∈ (0..i) .

If y ∈ Sdy ∈ Sdy ∈ Sd and z = Si−dz = Si−dz = Si−d add xxx to SiSiSi.

• Finally www is accepted iff w ∈ Snw ∈ Snw ∈ Sn.

• The algorithm has three nested loops,

each iterating 6 |w|6 |w|6 |w| times,

so running time is O(n3)O(n3)O(n3).
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PTIME CERTIFICATION



Reminder: Certifications

• A certification for a decision problem PPP

is a binary relation ⊢⊢⊢ between strings (the certificates),

and instances of PPP , such that for all instances www

www satisfies PPP iff c ⊢ wc ⊢ wc ⊢ w for some certificate ccc

• We showed that a problem PPP is SD

iff it has a decidable certification.
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Feasible-certification

• A certification ⊢⊢⊢ for PPP is PTime

if c ⊢ wc ⊢ wc ⊢ w is PTime in |w||w||w| (only!). We write then c ⊢P wc ⊢P wc ⊢P w.

• In time ttt a Turing acceptor cannot read more

than the ttt initial symbols of ccc, so c ⊢ wc ⊢ wc ⊢ w implies that

|c||c||c| is eventually bounded by |w|k|w|k|w|k for somekkk.

• An equivalent definition: A certification ⊢⊢⊢ for PPP is PTime

if c ⊢ wc ⊢ wc ⊢ w is PTime, and |c| 6 |w|k|c| 6 |w|k|c| 6 |w|k for some kkk .
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Examples: Scheduling problems

• Scheduling problems: Can we fit stuff within given constraints.

• integer-partitioninteger-partitioninteger-partition: Given a set SSS of positive integers with an even total

sum

is there a set P ⊆ SP ⊆ SP ⊆ S such that
∑

P =
∑

(S − P )
∑

P =
∑

(S − P )
∑

P =
∑

(S − P ) ?

• Certificate for SSS: PPP .

Certification is PTime: Checking P ⊆ SP ⊆ SP ⊆ S and
∑

P =
∑

(S − P )
∑

P =
∑

(S − P )
∑

P =
∑

(S − P ).

P-size: |P | 6 |S||P | 6 |S||P | 6 |S|

• exact-sumexact-sumexact-sum Given set SSS of positive integers, and target t > 0t > 0t > 0,

is there P ⊆ SP ⊆ SP ⊆ S such that
∑

P = t
∑

P = t
∑

P = t?

• Certificate for S, tS, tS, t : The subset PPP .

P-Time: Check P ⊆ SP ⊆ SP ⊆ S and
∑

P = t
∑

P = t
∑

P = t.

P-size: |P | 6 |S||P | 6 |S||P | 6 |S|.

F24 28



Examples: Solvability problems

• Recall integer-equationinteger-equationinteger-equation:

Given integer polynomial PPP ,

is there an integer solution?

• That problem is undecidable.

But consider limiting textual size of the solution:

◮ bounded-integer-equationbounded-integer-equationbounded-integer-equation:

Given integer polynomial PPP and a bound bbb,

is there a solution of textual size 6 |b|6 |b|6 |b|?

• Certificate: a solution.

• Certification relation: VVV solves EEE.

• This is doable in time O(n5)O(n5)O(n5).
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PTIME REDUCTIONS



Recall: Computable reductions

• When a reduction ρ : P − instncs → Q − instncsρ : P − instncs → Q − instncsρ : P − instncs → Q − instncs is computable

we write ρ : P 6c Qρ : P 6c Qρ : P 6c Q .
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we write ρ : P 6c Qρ : P 6c Qρ : P 6c Q .

• If P 6c QP 6c QP 6c Q and QQQ is decidable,

then so is PPP .



Recall: Computable reductions

• When a reduction ρ : P − instncs → Q − instncsρ : P − instncs → Q − instncsρ : P − instncs → Q − instncs is computable

we write ρ : P 6c Qρ : P 6c Qρ : P 6c Q .

• If P 6c QP 6c QP 6c Q and QQQ is decidable,

then so is PPP .

• Easy exercise: PPP is decidable iff P 6c {0, 1}P 6c {0, 1}P 6c {0, 1}.
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PTime reductions

• When a reduction ρ : P − instncs → Q − instncsρ : P − instncs → Q − instncsρ : P − instncs → Q − instncs is PTime

we write ρ : P 6p Qρ : P 6p Qρ : P 6p Q .



PTime reductions

• When a reduction ρ : P − instncs → Q − instncsρ : P − instncs → Q − instncsρ : P − instncs → Q − instncs is PTime

we write ρ : P 6p Qρ : P 6p Qρ : P 6p Q .

• If P 6p QP 6p QP 6p Q and QQQ is PTime,

then so is PPP .



PTime reductions

• When a reduction ρ : P − instncs → Q − instncsρ : P − instncs → Q − instncsρ : P − instncs → Q − instncs is PTime

we write ρ : P 6p Qρ : P 6p Qρ : P 6p Q .

• If P 6p QP 6p QP 6p Q and QQQ is PTime,

then so is PPP .

• Easy exercise: PPP is PTime iff P 6p {0, 1}P 6p {0, 1}P 6p {0, 1}.
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Composition of PTime functions is PTime

• Theorem.

PTime is closed under composition:

If f ∈ Time(nk)f ∈ Time(nk)f ∈ Time(nk) and g ∈ Time(nℓ)g ∈ Time(nℓ)g ∈ Time(nℓ)

then f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ).f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ).f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ).
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and T ′T ′T ′ computes ggg in time d · nℓd · nℓd · nℓ .
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and T ′T ′T ′ computes ggg in time d · nℓd · nℓd · nℓ .

• Given input w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗,

TTT terminates in 6 c · |w|k6 c · |w|k6 c · |w|k steps,

and so has an output yyy of size 6 c · |w|k6 c · |w|k6 c · |w|k.



Composition of PTime functions is PTime

• Theorem.

PTime is closed under composition:

If f ∈ Time(nk)f ∈ Time(nk)f ∈ Time(nk) and g ∈ Time(nℓ)g ∈ Time(nℓ)g ∈ Time(nℓ)

then f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ).f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ).f ◦ g ∈ Time((nk)ℓ) = Time(nk·ℓ).

• Suppose transducer TTT computes fff in time c · nkc · nkc · nk ,

and T ′T ′T ′ computes ggg in time d · nℓd · nℓd · nℓ .

• Given input w ∈ Σ∗w ∈ Σ∗w ∈ Σ∗,

TTT terminates in 6 c · |w|k6 c · |w|k6 c · |w|k steps,

and so has an output yyy of size 6 c · |w|k6 c · |w|k6 c · |w|k.

• Given yyy as input,

T ′T ′T ′ operates in time 6 d · |y|ℓ6 d · |y|ℓ6 d · |y|ℓ,

i.e. 6 e · |w|k·ℓ6 e · |w|k·ℓ
6 e · |w|k·ℓ ( e = d · cke = d · cke = d · ck ).
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Composing PTime-reductions

• Since the composition of computable functions is again computable, we had:

If ρ : P 6c Qρ : P 6c Qρ : P 6c Q and ρ′ : Q 6c Rρ′ : Q 6c Rρ′ : Q 6c R

then ρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c R



Composing PTime-reductions

• Since the composition of computable functions is again computable, we had:

If ρ : P 6c Qρ : P 6c Qρ : P 6c Q and ρ′ : Q 6c Rρ′ : Q 6c Rρ′ : Q 6c R

then ρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c R

• But PTime is also closed under composition,

so we similarly have:
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Composing PTime-reductions

• Since the composition of computable functions is again computable, we had:

If ρ : P 6c Qρ : P 6c Qρ : P 6c Q and ρ′ : Q 6c Rρ′ : Q 6c Rρ′ : Q 6c R

then ρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c Rρ ◦ ρ′ : P 6c R

• But PTime is also closed under composition,

so we similarly have:

If ρ : P 6p Qρ : P 6p Qρ : P 6p Q and ρ′ : Q 6p Rρ′ : Q 6p Rρ′ : Q 6p R

then ρ ◦ ρ′ : P 6p Rρ ◦ ρ′ : P 6p Rρ ◦ ρ′ : P 6p R

• A prize for amalgamating the polynomial run-times:

For example, reducibility in quadratic time

is not closed under composition!
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EXAMPLES



The disjoint sum

• Fix an alphabet ΣΣΣ and a fresh Symbol, say @@@ .

For L, K ⊆ Σ∗L, K ⊆ Σ∗L, K ⊆ Σ∗ define

L ⊕ K =df L ∪ @KL ⊕ K =df L ∪ @KL ⊕ K =df L ∪ @K (@K@K@K is {@} · K{@} · K{@} · K).

• So if w ∈ L ∩ Kw ∈ L ∩ Kw ∈ L ∩ K then

www and @w@w@w are distinct elements of L ⊕ KL ⊕ KL ⊕ K .



The disjoint sum

• Fix an alphabet ΣΣΣ and a fresh Symbol, say @@@ .

For L, K ⊆ Σ∗L, K ⊆ Σ∗L, K ⊆ Σ∗ define

L ⊕ K =df L ∪ @KL ⊕ K =df L ∪ @KL ⊕ K =df L ∪ @K (@K@K@K is {@} · K{@} · K{@} · K).

• So if w ∈ L ∩ Kw ∈ L ∩ Kw ∈ L ∩ K then

www and @w@w@w are distinct elements of L ⊕ KL ⊕ KL ⊕ K .

• Example: LLL = towns in IN, KKK = towns in NY.

Bloomington is an IN string, @Bloomington is a NY string.



The disjoint sum

• Fix an alphabet ΣΣΣ and a fresh Symbol, say @@@ .

For L, K ⊆ Σ∗L, K ⊆ Σ∗L, K ⊆ Σ∗ define

L ⊕ K =df L ∪ @KL ⊕ K =df L ∪ @KL ⊕ K =df L ∪ @K (@K@K@K is {@} · K{@} · K{@} · K).

• So if w ∈ L ∩ Kw ∈ L ∩ Kw ∈ L ∩ K then

www and @w@w@w are distinct elements of L ⊕ KL ⊕ KL ⊕ K .

• Example: LLL = towns in IN, KKK = towns in NY.

Bloomington is an IN string, @Bloomington is a NY string.

• For finite L, KL, KL, K the size of L ⊕ KL ⊕ KL ⊕ K

is the sum of the size of LLL and the size of KKK .
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• What is A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)?

• Define a reduction ρ : L 6p L ⊕ Kρ : L 6p L ⊕ Kρ : L 6p L ⊕ K.

ρρρ is the identity on LLL .
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• What is A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)?

• Define a reduction ρ : L 6p L ⊕ Kρ : L 6p L ⊕ Kρ : L 6p L ⊕ K.

• Define a reduction ρ : K 6p L ⊕ Kρ : K 6p L ⊕ Kρ : K 6p L ⊕ K.



Riddles about ⊕⊕⊕

• What is A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)?

• Define a reduction ρ : L 6p L ⊕ Kρ : L 6p L ⊕ Kρ : L 6p L ⊕ K.

• Define a reduction ρ : K 6p L ⊕ Kρ : K 6p L ⊕ Kρ : K 6p L ⊕ K.

ρ(w) = @wρ(w) = @wρ(w) = @w



Riddles about ⊕⊕⊕

• What is A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)?

• Define a reduction ρ : L 6p L ⊕ Kρ : L 6p L ⊕ Kρ : L 6p L ⊕ K.

• Define a reduction ρ : K 6p L ⊕ Kρ : K 6p L ⊕ Kρ : K 6p L ⊕ K.

• Define a reduction ρ : L ⊕ K 6p K ⊕ Lρ : L ⊕ K 6p K ⊕ Lρ : L ⊕ K 6p K ⊕ L.



Riddles about ⊕⊕⊕

• What is A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)A ⊕ (B ⊕ C)?

• Define a reduction ρ : L 6p L ⊕ Kρ : L 6p L ⊕ Kρ : L 6p L ⊕ K.

• Define a reduction ρ : K 6p L ⊕ Kρ : K 6p L ⊕ Kρ : K 6p L ⊕ K.

• Define a reduction ρ : L ⊕ K 6p K ⊕ Lρ : L ⊕ K 6p K ⊕ Lρ : L ⊕ K 6p K ⊕ L.

ρ(w) =ρ(w) =ρ(w) = if hd(w) = @hd(w) = @hd(w) = @ then tl(w)tl(w)tl(w) else @w@w@w.
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Integer-Partition reduces to Exact-Sum

◮ integer-partitioninteger-partitioninteger-partition:

Given S ⊆ NS ⊆ NS ⊆ N, is there P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P =
∑

S−P
∑

P =
∑

S−P
∑

P =
∑

S−P

(i.e. both are 1
2
(

∑
S)1

2
(

∑
S)1

2
(

∑
S)

◮ exact-sumexact-sumexact-sum:

Given S ⊆ NS ⊆ NS ⊆ N and a target value t ∈ Nt ∈ Nt ∈ N ,

is there P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P = t
∑

P = t
∑

P = t.
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• Define ρ : integer-partition 6p exact-sumρ : integer-partition 6p exact-sumρ : integer-partition 6p exact-sum.
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Integer-Partition reduces to Exact-Sum

◮ integer-partitioninteger-partitioninteger-partition:

Given S ⊆ NS ⊆ NS ⊆ N, is there P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P =
∑

S−P
∑

P =
∑

S−P
∑

P =
∑

S−P

(i.e. both are 1
2
(

∑
S)1

2
(

∑
S)1

2
(

∑
S)

◮ exact-sumexact-sumexact-sum:

Given S ⊆ NS ⊆ NS ⊆ N and a target value t ∈ Nt ∈ Nt ∈ N ,

is there P ⊂ SP ⊂ SP ⊂ S s.t.
∑

P = t
∑

P = t
∑

P = t.

• Define ρ : integer-partition 6p exact-sumρ : integer-partition 6p exact-sumρ : integer-partition 6p exact-sum.

• If
∑

S
∑

S
∑

S is even,

let ρ(S)ρ(S)ρ(S) be the instance (S,
∑

S/2)(S,
∑

S/2)(S,
∑

S/2) of exact-sumexact-sumexact-sum.

• If
∑

S
∑

S
∑

S is odd,

let ρ(S)ρ(S)ρ(S) be some some “no” instance of exact-sumexact-sumexact-sum,

say ({1}, 2)({1}, 2)({1}, 2).

• ρρρ is in PTime, and is a reduction!
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Exact-Sum reduces to Integer-Partition

• integer-partitioninteger-partitioninteger-partition is a special case of exact-sumexact-sumexact-sum,

so it was easy to define a reduction in this order.

• Surprisingly, we also have the converse:

Define ρ : i-p 6p e-sρ : i-p 6p e-sρ : i-p 6p e-s



Exact-Sum reduces to Integer-Partition

• integer-partitioninteger-partitioninteger-partition is a special case of exact-sumexact-sumexact-sum,

so it was easy to define a reduction in this order.

• Surprisingly, we also have the converse:

Define ρ : i-p 6p e-sρ : i-p 6p e-sρ : i-p 6p e-s

• Given instance (S, t)(S, t)(S, t) of e-se-se-s let n =
∑

Sn =
∑

Sn =
∑

S.

Note: t < nt < nt < n , otherwise (S, t)(S, t)(S, t) is trivially not in e-se-se-s.



Exact-Sum reduces to Integer-Partition

• integer-partitioninteger-partitioninteger-partition is a special case of exact-sumexact-sumexact-sum,

so it was easy to define a reduction in this order.

• Surprisingly, we also have the converse:

Define ρ : i-p 6p e-sρ : i-p 6p e-sρ : i-p 6p e-s

• Given instance (S, t)(S, t)(S, t) of e-se-se-s let n =
∑

Sn =
∑

Sn =
∑

S.

Note: t < nt < nt < n , otherwise (S, t)(S, t)(S, t) is trivially not in e-se-se-s.

• Idea: augment SSS with the number 2n − t2n − t2n − t , which is > n> n> n,

and with n+tn+tn+t which totals the result to 4n4n4n.
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The reduction

• Let ρρρ map (S, t)(S, t)(S, t) to S ′ =df S ∪ {n + t, 2n − t}S ′ =df S ∪ {n + t, 2n − t}S ′ =df S ∪ {n + t, 2n − t}.

So S ′S ′S ′ adds up to 4n4n4n.
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The reduction

• Let ρρρ map (S, t)(S, t)(S, t) to S ′ =df S ∪ {n + t, 2n − t}S ′ =df S ∪ {n + t, 2n − t}S ′ =df S ∪ {n + t, 2n − t}.

So S ′S ′S ′ adds up to 4n4n4n.

• Claim: There is a P ⊆ SP ⊆ SP ⊆ S that adds up to ttt iff

there is a P ′ ⊂ S ′P ′ ⊂ S ′P ′ ⊂ S ′ that adds up to (
∑
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∑
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Lessons

• Reductions may be ingenious,

using particulars of the problems compared.

There are no silver bullets.

• Warning: We only had SSS and ttt given.

S ′S ′S ′ was calculated, but PPP & P ′P ′P ′ were hypothetical ,

linking the property of the source-problem to the

property of the target-problem.
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NP COMPLETENESS



Maximal complexity in SD

• A problem PPP is SD-hard

if every SD problem is computably-reducible to PPP .

• If PPP is SD-hard, and P 6c P ′P 6c P ′P 6c P ′ then P ′P ′P ′ is SD-hard:

Every SD problem QQQ is reducible to PPP since PPP is SD-hard.

So by transitivity of 6c6c6c it follows that P 6c P ′P 6c P ′P 6c P ′ we get by Q 6c P ′Q 6c P ′Q 6c P ′.

• PPP is SD-complete if it is SD-hard and is itself SD.

• An obvious SD-complete problem: acceptacceptaccept.
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Clear broad picture for SD...

Decidable

The SD problems

<c

SD CompleteAll equivalent 

All equivalent 

lots of stuff 

• Whether there is something in the middle was an open problem

for about two decades, until proven by Albert Nuchnik (1956)

and independently by Richard Friedman (1957).

• Subsequent research showed that there is quite a lot there...
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The analog: maximally complex NP problems

• A problem PPP is NP-hard if every problem in NP is 6p P6p P6p P .

• Since 6p6p6p is transitive, if PPP is NP-hard, and P 6p P ′P 6p P ′P 6p P ′ ,

then P ′P ′P ′ is NP-hard as well.

• A problem PPP is NP-complete if it is both NP and NP-hard.

• From these definitions it follows that if there is

an NP-hard problem PPP which is PTime-decidable,

then every NP problem is PTime-decidable!
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Blurry picture for NP

<p

All

− equiv

(Ladner’s Theorem)

   Impossible

lots of stuff 

NP Complete

PTime decidable PTime decidable

NP Complete

PTime decidable

<p

All

− equiv<p

The NP problems: 2 possibilities
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Computing is binary...

• We conceive a certification ⊢P⊢P⊢P for a problem PPP in two stages:

1. Identify what sort of objects are the certificates.

E.g. a certificate for an instance of hamilt-pathhamilt-pathhamilt-path

is a list ℓℓℓ without repetition of the vertices.

2. State properties that make a certificate valid.

For hamiltonian-pathhamiltonian-pathhamiltonian-path these are:

ℓℓℓ is without repetitions, and

successive entries are adjacent in GGG .
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Reminder: Boolean valuations

• Boolean expressions EEE are generated from variables

using negation, conjunction, and disjunction.

Example: (−x) ∧ −(y ∨ x)(−x) ∧ −(y ∨ x)(−x) ∧ −(y ∨ x).

• Given a valuation V : V ar → {0, 1}V : V ar → {0, 1}V : V ar → {0, 1} of variables,

each boolean expression EEE evaluates to V (E) = 0V (E) = 0V (E) = 0 or V (E) = 1V (E) = 1V (E) = 1.

• Example: If V (x) = 0, V (y) = 0V (x) = 0, V (y) = 0V (x) = 0, V (y) = 0 then V (−x ∧ −(y ∨ x)) = 1V (−x ∧ −(y ∨ x)) = 1V (−x ∧ −(y ∨ x)) = 1,

but if V (x) = 1V (x) = 1V (x) = 1 then V (−x ∧ −(y ∨ x)) = 0V (−x ∧ −(y ∨ x)) = 0V (−x ∧ −(y ∨ x)) = 0.

• A valuation VVV satisfies EEE if V (E) = 1V (E) = 1V (E) = 1.

• EEE is satisfiable if it is satisfied by some VVV ,

It is valid if it satisfied by every VVV .

• So EEE is satisfiable iff −E−E−E is not satisfiable

and is valid iff −E−E−E is not satisfiable.



Boolean satisfiability

• bool-satbool-satbool-sat: Given a boolean expression, is it satisfiable?

• A certification for bool-satbool-satbool-sat:

the certificate for EEE is a valuation satisfying it.

• Checking a certificate is PTime in the size of the expression.

So the certification is feasible.
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Coding certificates by boolean expressions

• Digital coding is central to describing discrete data,

and the simplest form of digital coding is binary, i.e. using booleans.

• No surprise then that a good candidate for NP-hardness

is Boolean Satisfiability bool-satbool-satbool-sat.

• We use yes/no questions to code the potential certificates,

and then yes/no questions that check their validity as certificates.
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Playing Charades with decision-problems



Boolean coding of Hamiltonian-Path

• hamiltonian-pathhamiltonian-pathhamiltonian-path: Given directed graph G = (V, E)G = (V, E)G = (V, E),

does it have a path visiting every vertex once.

• I.e. is there a listing u1, u2, . . . , unu1, u2, . . . , unu1, u2, . . . , un of the vertices

s.t. ui(E)ui+1ui(E)ui+1ui(E)ui+1 for i < ni < ni < n.

• Convey this by a boolean expression.

For each v ∈ Vv ∈ Vv ∈ V and i = 1..ni = 1..ni = 1..n a fresh boolean variable xivxivxiv

intended to be true iff uiuiui is vvv.
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The boolean expression

• Example:
a b

ed

c



The boolean expression

• Example:
a b

ed

c

• A listing a, b, c, d, ea, b, c, d, ea, b, c, d, e is conveyed by the valuation

assigning 1 to x1a, x2b, x3c, x4d, x5ex1a, x2b, x3c, x4d, x5ex1a, x2b, x3c, x4d, x5e and 0 to the other variables:

x1ax1ax1a x1bx1bx1b x1cx1cx1c x1dx1dx1d x1ex1ex1e

x2ax2ax2a x2bx2bx2b x2cx2cx2c x2dx2dx2d x2ex2ex2e

x3ax3ax3a x3bx3bx3b x3cx3cx3c x3dx3dx3d x3ex3ex3e

x4ax4ax4a x4bx4bx4b x4cx4cx4c x4dx4dx4d x4ex4ex4e

x5ax5ax5a x5bx5bx5b x5cx5cx5c x5dx5dx5d x5ex5ex5e



The boolean expression

• Example:
a b

ed

c

• Our Hamiltonian path, a→d→e→b→ca→d→e→b→ca→d→e→b→c: is conveyed by:

x1ax1ax1a x1bx1bx1b x1cx1cx1c x1dx1dx1d x1ex1ex1e

x2ax2ax2a x2bx2bx2b x2cx2cx2c x2dx2dx2d x2ex2ex2e

x3ax3ax3a x3bx3bx3b x3cx3cx3c x3dx3dx3d x3ex3ex3e

x4ax4ax4a x4bx4bx4b x4cx4cx4c x4dx4dx4d x4ex4ex4e

x5ax5ax5a x5bx5bx5b x5cx5cx5c x5dx5dx5d x5ex5ex5e
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The vertex-listing is a path

• We state the conditions that make a valuation

of the variables xivxivxiv into a Hamiltonian path.

• At least one position per vertex:

For each vertex vvv the disjunction x1v ∨ · · · ∨ xnvx1v ∨ · · · ∨ xnvx1v ∨ · · · ∨ xnv.

• At most one position per vertex:

For each vertex vvv and distinct i, j = 1..ni, j = 1..ni, j = 1..n

the expression −(xiv ∧ xjv)−(xiv ∧ xjv)−(xiv ∧ xjv)
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Successive vertices are adjacent in the graph

• For each position i < ni < ni < n

the disjunction of all expressions xiv ∧ xi+1,uxiv ∧ xi+1,uxiv ∧ xi+1,u where v(E)uv(E)uv(E)u.

• E.g., positions 2 and 3 are related by one of the 9 edges:

(x2a ∧ x3b) ∨ (x2a ∧ x3c) ∨ (x2a ∧ x3d)(x2a ∧ x3b) ∨ (x2a ∧ x3c) ∨ (x2a ∧ x3d)(x2a ∧ x3b) ∨ (x2a ∧ x3c) ∨ (x2a ∧ x3d)

∨ (x2b ∧ x3c)∨ (x2b ∧ x3c)∨ (x2b ∧ x3c)

∨ (x2d ∧ x3c) ∨ (x2d ∧ x3e)∨ (x2d ∧ x3c) ∨ (x2d ∧ x3e)∨ (x2d ∧ x3c) ∨ (x2d ∧ x3e)

∨ (x2e ∧ x3b) ∨ (x2e ∧ x3c)∨ (x2e ∧ x3b) ∨ (x2e ∧ x3c)∨ (x2e ∧ x3b) ∨ (x2e ∧ x3c)

∨ (x2e ∧ x3d)∨ (x2e ∧ x3d)∨ (x2e ∧ x3d)
a b

ed

c
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The reduction

• We’ve obtained a reduction ρ : hp 6p bool-satρ : hp 6p bool-satρ : hp 6p bool-sat

• ρρρ maps a directed graph G = (V, E)G = (V, E)G = (V, E) to the conjunction AGAGAG of the boolean

expressions as above,

based on the particular size and edge-relation of GGG.

• AGAGAG is computable in time cubic in the size of GGG.
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• The mapping ρρρ is a reduction:

◮ If there is a Hamilt path u1 →· · ·→unu1 →· · ·→unu1 →· · ·→un in GGG

then the boolean expression AGAGAG is satisfied by the valuation

that assigns 1 to xivxivxiv iff vvv is uiuiui.

◮ Conversely, if the expression AGAGAG is satisfied by a valuation VVV

then (v1..vk)(v1..vk)(v1..vk) is a Hamilt path,

where vivivi is the unique vvv for which V (xiv) = 1V (xiv) = 1V (xiv) = 1.

• Conclusion: ρ : hamilt-path 6p bool-satρ : hamilt-path 6p bool-satρ : hamilt-path 6p bool-sat
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SAT IS NP-COMPLETE



Boolean coding of PTime

• Let MMM be a Turing acceptor over ΣΣΣ

running within time f(n)f(n)f(n) (fff a polynomial).

We’ll assume f(n) > nf(n) > nf(n) > n.

• Define a reduction ρ : L(M) 6p bool-satρ : L(M) 6p bool-satρ : L(M) 6p bool-sat

• ρρρ maps each ΣΣΣ-string www

to a boolean-expression EwEwEw such that

MMM accepts www iff EwEwEw is satisfiable.
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The trace displayed as a square grid

MMM is s
> (+)

−−−→ rs
> (+)

−−−→ rs
> (+)

−−−→ r

r
0 (1)

−−→ rr
0 (1)

−−→ rr
0 (1)

−−→ r

r
1 (+)

−−−→ pr
1 (+)

−−−→ pr
1 (+)

−−−→ p

p
1 (+)

−−−→ qp
1 (+)

−−−→ qp
1 (+)

−−−→ q

q
0 (+)

−−−→ qq
0 (+)

−−−→ qq
0 (+)

−−−→ q

q
1 (+)

−−−→ qq
1 (+)

−−−→ qq
1 (+)

−−−→ q

q
⊔ (−)

−−−→ aq
⊔ (−)

−−−→ aq
⊔ (−)

−−−→ a



The trace displayed as a square grid

MMM is s
> (+)

−−−→ rs
> (+)

−−−→ rs
> (+)

−−−→ r

r
0 (1)

−−→ rr
0 (1)

−−→ rr
0 (1)

−−→ r

r
1 (+)

−−−→ pr
1 (+)

−−−→ pr
1 (+)

−−−→ p

p
1 (+)

−−−→ qp
1 (+)

−−−→ qp
1 (+)

−−−→ q

q
0 (+)

−−−→ qq
0 (+)

−−−→ qq
0 (+)

−−−→ q

q
1 (+)

−−−→ qq
1 (+)

−−−→ qq
1 (+)

−−−→ q

q
⊔ (−)

−−−→ aq
⊔ (−)

−−−→ aq
⊔ (−)

−−−→ a

Trace of MMM for input www:

s

r

r

p

_ _ _ _

> _ _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

1

q

q

_

_

_

_

__

q

_

>

state

1

1

1

1

1

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

a

1

0

0

successive cfgs

terminal configuration

initial configuration

f(|w|)

f(|w|)
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The grid defined by yes/on questions

s

r

r

p

_ _ _ _

> _ _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

1

q

q

_

_

_

_

__

q

_

>

state

1

1

1

1

1

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

a

1

0

0

successive cfgs

terminal configuration

initial configuration

f(|w|)

f(|w|)

• We’ll have a collection of boolean variables,

each standing for a question about the trace of MMM for input www .

(A session of the party game charades.)

• For each state qqq and row i 6 |w|i 6 |w|i 6 |w| xi,qxi,qxi,q for “state of iii’th cfg is qqq”

Examples: x1,s, x4,px1,s, x4,px1,s, x4,p



• For each i, j 6 |w|i, j 6 |w|i, j 6 |w| : ci,jci,jci,j for “cursor of iii’th cfg at jjj”

• For each i, j 6 |w|i, j 6 |w|i, j 6 |w| and σ ∈ Σσ ∈ Σσ ∈ Σ : ℓi,j,σσσℓi,j,σσσℓi,j,σσσ for “ (i, j)(i, j)(i, j) cell has σσσ
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Yes/no for consistency conditions

s

r

r

p

_ _ _ _

> _ _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

1

q

q

_

_

_

_

__

q

_

>

state

1

1

1

1

1

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

a

1

0

0

successive cfgs

terminal configuration

initial configuration

f(|w|)

f(|w|)

• One state + one cursor per row

• one symbol per cell

• First row is initial state + > w ⊔m> w ⊔m> w ⊔m.

• Last row has accept state
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Yes/no for operational conditions

s

r

r

p

_ _ _ _

> _ _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

> _ _ _

1

q

q

_

_

_

_

__

q

_

>

state

1

1

1

1

1

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

a

1

0

0

successive cfgs

terminal configuration

initial configuration

f(|w|)

f(|w|)

• Each subsequent row is obtained from the preceding

by one of the rules of MMM

• Analogous to the edge-condition for hamiltonian-pathhamiltonian-pathhamiltonian-path.

• The initial cfg has state sss and cursored string in >w ⊔∗>w ⊔∗>w ⊔∗ .

• Successive cfgs are related by the transitions of MMM

(or repeat terminal cfgs).



• Example: For q σ(τ)σ(τ)σ(τ)
−−→ rq σ(τ)σ(τ)σ(τ)
−−→ rq σ(τ)σ(τ)σ(τ)
−−→ r

(xi,q ∧ ci,j ∧ ℓi,j,σ(xi,q ∧ ci,j ∧ ℓi,j,σ(xi,q ∧ ci,j ∧ ℓi,j,σ

→→→

pi+1,r ∧ ci+1,j ∧ ℓi+1,j,τpi+1,r ∧ ci+1,j ∧ ℓi+1,j,τpi+1,r ∧ ci+1,j ∧ ℓi+1,j,τ

∧ ∧k 6=j ℓi,k,ξ → ℓi+1,k,ξ∧ ∧k 6=j ℓi,k,ξ → ℓi+1,k,ξ∧ ∧k 6=j ℓi,k,ξ → ℓi+1,k,ξ

• The accept state appears:
∨

i xi,a
∨

i xi,a
∨

i xi,a.
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Coding PTime certification

• Consider a PTime-certified language LLL ,

with a feasible certification ⊢⊢⊢.

• That is, c ⊢ wc ⊢ wc ⊢ w is decided by a Turing-acceptor MMM ,

in time 6 f(|w|)6 f(|w|)6 f(|w|), with |c| 6 f |w|)|c| 6 f |w|)|c| 6 f |w|) (fff polynomial).

• That is, w ∈ Lw ∈ Lw ∈ L iff MMM accepts w, cw, cw, c for some ccc of length 6 f(|w|)6 f(|w|)6 f(|w|) in time

6 f(|w|)6 f(|w|)6 f(|w|). (The comma is a separator-symbol).

• We cannot construct a trace-layout for www ,

because we don’t have ccc :

The values of the boolean variables ℓ1jσℓ1jσℓ1jσ

are unknown for j > |w|j > |w|j > |w|.
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Boolean satisfiability is NP-complete

• But the satisfiability of the resulting boolean expression EwEwEw

means precisely that w, cw, cw, c is accepted by MMM for some such values!

• The satisfiability of EwEwEw is equivalent to

MMM accepting w, cw, cw, c for some ccc of size 6 g(|w|)6 g(|w|)6 g(|w|)

in time 6 f(x)6 f(x)6 f(x) .

• We this proved that bool-satbool-satbool-sat is NP-hard.

• Since bool-satbool-satbool-sat is PTime certified we conclude:

Theorem. bool-satbool-satbool-sat is NP-complete.
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NP-COMPLETENESS OF ADDITIONAL PROBLEMS



Normal forms

• We can now prove that certain problems PPP

are NP-complete and therefore dangerously complex,

by defining a PTime reduction bool-sat 6p Pbool-sat 6p Pbool-sat 6p P .

• Defining such reductions may be challenging,

because boolean expressions can be arbitrarily complex.

Can we facilitate reductions by focusing on some that are

• Reductions to normal forms are all around!
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Can we facilitate reductions by focusing on some that are

• Reductions to normal forms are all around!

• Decimal fractions (percents): 3/8 versus 4/11 (.375 vs .364)

• Better: Normalized scientific notation for real numbers:

123.45 = 1.2345 × 102123.45 = 1.2345 × 102123.45 = 1.2345 × 102, 0.0012345 = 1.2345 × 10−30.0012345 = 1.2345 × 10−30.0012345 = 1.2345 × 10−3

• Displays immediately the order of magnitude.

• Polynomials are defined using +, ×, −+, ×, −+, ×, − in any order.



• Putting order in the chaos:

××× in the scope of −−−, in the scope of +++.

• −((x + y) · x) · (1 − y) = x2 · y + x · y2 − x2 − x · y−((x + y) · x) · (1 − y) = x2 · y + x · y2 − x2 − x · y−((x + y) · x) · (1 − y) = x2 · y + x · y2 − x2 − x · y
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Normal form for boolean expressions

• For boolean expressions: chaos of negations, conjunctions, disjunction

• Normal form: negations in scope of conjunctions in scope of disjunctions

−[(x ∨ −u) ∧ (y ∨ v)]−[(x ∨ −u) ∧ (y ∨ v)]−[(x ∨ −u) ∧ (y ∨ v)] = (−x∨−y)(−x∨−y)(−x∨−y)

∧ (−x∨−v)∧ (−x∨−v)∧ (−x∨−v)

∧ (u∨−y)∧ (u∨−y)∧ (u∨−y)

∧ (u∨−v)∧ (u∨−v)∧ (u∨−v)

• Literals: variables or their negation.

• (disjunctive) clauses: disjunction of literals (1,2,3,0... disjuncts)

• Conjunctive normal expression (CNF):

conjunction of disjunctive clauses
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CNF and satisfiability

• More orderly satsatsat: ask only about satisfiability of CNFs:

cnf-satcnf-satcnf-sat:

Given a CNF boolean expression EEE, is it satisfiable?

• We’ll show that cnf-satcnf-satcnf-sat is NP-hard.

• NP-hardness of problems would be made easier:

cnf-sat 6p Pcnf-sat 6p Pcnf-sat 6p P easier to show than sat 6p Psat 6p Psat 6p P .
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CNF-SATCNF-SATCNF-SAT is NP-hard

• Method: Reduce bool-satbool-satbool-sat to cnf-satcnf-satcnf-sat.

• Every boolean expression can be converted

into an equivalent CNF expression.

• But this does NOT yield the desired reduction!

• Expression EEE is converted into a CNF equivalent

which may be exponentially longer!

• However: NO NEED for an equivalent CNF!

Suffices a CNF whose satisfiability is equivalent

to the satisfiability of EEE.

• We can even restrict attention to 3CNF expressions

where each clause has 6 36 36 3 literals.
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3CNF-Satisfiability

• 3CNF SATISFIABILITY Does a given 3CNF expression have a satisfying

valuation.

• sat 6p 3cnf-satsat 6p 3cnf-satsat 6p 3cnf-sat

• Example, AAA is (x ∧ y) ∨ (z ∧ −(x ∨ u))(x ∧ y) ∨ (z ∧ −(x ∨ u))(x ∧ y) ∨ (z ∧ −(x ∨ u))

v
v v

v

y z

x u

x

A



• Name with fresh variables the compound sub-expressions of AAA:

aaa ≡≡≡ AAA

bbb ≡≡≡ x ∧ yx ∧ yx ∧ y

ccc ≡≡≡ x ∧ ux ∧ ux ∧ u

ddd ≡≡≡ −(x ∧ u)−(x ∧ u)−(x ∧ u)

eee ≡≡≡ z ∨ −(x ∧ u)z ∨ −(x ∧ u)z ∨ −(x ∧ u)

v

v v

v

z

x u

x

A

b c

y d

e
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v

v v

v

z

x u

x

A

b c

y d

e

• Define A=A=A= to be the conjunction of

(a ↔ (b ∨ c))(a ↔ (b ∨ c))(a ↔ (b ∨ c))

(b ↔ (x ∧ y))(b ↔ (x ∧ y))(b ↔ (x ∧ y))

(c ↔ (z ∧ d))(c ↔ (z ∧ d))(c ↔ (z ∧ d))

(d ↔ −e)(d ↔ −e)(d ↔ −e)

(e ↔ (x ∨ u))(e ↔ (x ∨ u))(e ↔ (x ∨ u))



Equivalence in 3CNF format

(a ↔ (b ∨ c))(a ↔ (b ∨ c))(a ↔ (b ∨ c)) ā ∨ b ∨ cā ∨ b ∨ cā ∨ b ∨ c

a ∨ b̄a ∨ b̄a ∨ b̄

a ∨ c̄a ∨ c̄a ∨ c̄

(b ↔ (x ∧ y))(b ↔ (x ∧ y))(b ↔ (x ∧ y)) b̄ ∨ xb̄ ∨ xb̄ ∨ x

b̄ ∨ yb̄ ∨ yb̄ ∨ y

x̄ ∨ ȳ ∨ bx̄ ∨ ȳ ∨ bx̄ ∨ ȳ ∨ b

(c ↔ (z ∧ d))(c ↔ (z ∧ d))(c ↔ (z ∧ d)) c̄ ∨ zc̄ ∨ zc̄ ∨ z

c̄ ∨ dc̄ ∨ dc̄ ∨ d

z̄ ∨ d̄ ∨ cz̄ ∨ d̄ ∨ cz̄ ∨ d̄ ∨ c

(d ↔ −e)(d ↔ −e)(d ↔ −e) d̄ ∨ ēd̄ ∨ ēd̄ ∨ ē

e ∨ d̄e ∨ d̄e ∨ d̄

(e ↔ (x ∨ u))(e ↔ (x ∨ u))(e ↔ (x ∨ u)) ē ∨ x ∨ uē ∨ x ∨ uē ∨ x ∨ u

x̄ ∨ ex̄ ∨ ex̄ ∨ e

ū ∨ eū ∨ eū ∨ e



• AAA is satisfiable iff the 3CNF a ∧ A=a ∧ A=a ∧ A= is satisfiable.

• a ∧ A=a ∧ A=a ∧ A= is of size linear in the size of AAA .
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Exact-3CNF-Sat

• Further tightening the normal form for boolean expression.

• exact-3cnf-sat:exact-3cnf-sat:exact-3cnf-sat:

Does a given 3CNF expression w/ exactly 3 literals per clause

have a satisfying valuation?

• 3cnf-sat 6P exact-3cnf-sat3cnf-sat 6P exact-3cnf-sat3cnf-sat 6P exact-3cnf-sat

• Given a 3-CNF AAA obtain ρ(A)ρ(A)ρ(A) by

1. Replacing clauses L0 ∨ L1L0 ∨ L1L0 ∨ L1 by

(L0 ∨ L1 ∨ y) ∧ (L0 ∨ L1 ∨ ȳ)(L0 ∨ L1 ∨ y) ∧ (L0 ∨ L1 ∨ ȳ)(L0 ∨ L1 ∨ y) ∧ (L0 ∨ L1 ∨ ȳ) (yyy fresh);

2. Replacing single-literal clauses LLL by

(L ∨ y ∨ z) ∧ (L ∨ y ∨ z̄) ∧ (L ∨ ȳ ∨ z) ∧ (L ∨ ȳ ∨ z̄)(L ∨ y ∨ z) ∧ (L ∨ y ∨ z̄) ∧ (L ∨ ȳ ∨ z) ∧ (L ∨ ȳ ∨ z̄)(L ∨ y ∨ z) ∧ (L ∨ y ∨ z̄) ∧ (L ∨ ȳ ∨ z) ∧ (L ∨ ȳ ∨ z̄)
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NP COMPLETENESS ALL AROUND



indep-setindep-setindep-set is NP-complete

• Define ρ : 3cnf-sat 6p indep-setρ : 3cnf-sat 6p indep-setρ : 3cnf-sat 6p indep-set.

Map a 3cnf3cnf3cnf expression EEE with kkk clauses

to graph GGG + target kkk.

• A thought: each clause is mapped to a triangle of literals.

Satisfying kkk clauses requires then one vertex per triangle:

(x0 ∨ x̄1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄2 ∨ x̄4 ∨ x0)(x0 ∨ x̄1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄2 ∨ x̄4 ∨ x0)(x0 ∨ x̄1 ∨ x2) ∧ (x1 ∨ x̄2 ∨ x3) ∧ (x2 ∨ x̄3 ∨ x4) ∧ (x̄2 ∨ x̄4 ∨ x0)

• An initial draft of GGG :
_

1
x

2

_
xx

0

x2

x
1

x3

x x
_

32

x4

x
_

4

x0

2

_
x

• Choose a vertex in each triangle, eg top left.

Oops, we are trying to have both x2x2x2 and x̄2x̄2x̄2 true!



Add consistency edges

• Consistency edge for x2x2x2:

_
1x 2

_
xx0

x2

x1

x3

x x
_

32

x4

x
_

4

x0

2

_
x
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• Additional consistency edges for x2x2x2:

_
1x 2

_
xx0

x2

x1

x3

x x
_

32

x4

x
_

4

x0

2

_
x
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• Consistency edge for x1x1x1:

_
1x 2

_
xx0

x2

x1

x3

x x
_

32

x4

x
_

4

x0

2

_
x

F24 84



• Consistency edge for x3x3x3:

_
1x 2

_
x

_
1x 2

_
xx0

x2

x1

x3

x x
_

32

x4

x
_

4

x0

2
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xx0
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x3

x x
_

32

x4

x
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x0

2

_
x
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• Consistency edge for x4:

_
1x 2

_
x

_
1x 2

_
xx0

x2

x1

x3

x x
_

32

x4

x
_
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xx0
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x x
_
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• Final graph GGG:

_
1x 2

_
x

_
1x 2

_
xx0

x2

x1

x3

x x
_

32

x4

x
_

4

x0

2

_
xx0

x2

x1

x3

x x
_

32

x4

x
_

4

x0

2

_
x

• If AAA has a satisfying valuation msV,

then GGG has an independent-set SSS of size ttt ,

consisting of vertices true under VVV .

• If GGG has an independent set SSS of size ttt ,

then SSS must have one vertex per triangle,

and the valuation that satisfies the labels of SSS satisfies AAA .
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Consequence: cliquecliqueclique is NP-complete

• We showed that cliquecliqueclique is NP.

• indep-set 6p cliqueindep-set 6p cliqueindep-set 6p clique

• Since indep-setindep-setindep-set is NP-hard, so is cliquecliqueclique.
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EAMPLE: DIRECTED HAMITONIAN PATH



Hamiltonian-pathHamiltonian-pathHamiltonian-path is NP-complete

• hamiltonian-path (h-path)hamiltonian-path (h-path)hamiltonian-path (h-path): Given a directed graph G = (V, E)G = (V, E)G = (V, E) ,

does it have a path visiting each vertex exactly once.

• h-pathh-pathh-path has a feasible certification:

the certificate is the path.

• To prove NP-hardness show 3cnf-sat 6p h-path3cnf-sat 6p h-path3cnf-sat 6p h-path

F24 90



A diamond gadget

true

false

• This is an example of a gadget:

a component, often repeated, of a compound discrete object.

• Does it have an H-path?
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A diamond gadget

true

false

• An H-path through the gadget must follow the rightward edges.
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A diamond gadget

true

false

• Dually for leftwards horizontal edges.
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A diamond gadget

• With edges pointing both ways we get a choice between two H-paths.
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The gadget as a boolean switch

true

false

gadget for
x

• Take each choice of H-path to represent a truth value

of a boolean variable xxx.
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Side trips of a H-path

true

false

A

B

• Ahamilt-bool-basic-use-positiven H-path crossing the gadget rightwards (xxx true)

can optionally veer to visit an extenal vertex AAA

and return one step to the right.

• Not so for an H-path for false.
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Side trips of a H-path

B

true

false

A

• Dually, an H-path crossing the gadget leftwards (xxx false)

can veer to visit edge BBB and return one step to the left.
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Side trips of a H-path

true

false

• To visit up to nnn external vertices

the horizontal “switch-box” must have

at least n+1n+1n+1 vertices (endpoints included).
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A serial panel of gadgets

For variables x1, . . . xkx1, . . . xkx1, . . . xk we form a serial panel of kkk gadgets.

x
0

x 1

kx



A serial panel of gadgets

2k2k2k possible H-paths, each representing a unique boolean valuation:

x  x          x0  1           k

x1

x0

xk

represents the valuation 

...
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Here are the constraints

false

true

the sub−graph

is a "switchboard" for
boolean−dependent side trips

• Given a 3CNF expression EEE with variables x1 . . . xkx1 . . . xkx1 . . . xksider sequentla panel of

• Each clause represented by a vertex.

• Satifying a clause represented by visiting it.

• Every clause risited by one literal (Hamiltonian!)
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Variable x0x0x0 visits a clause

x
0

x
4

_
x

1

_
x

0
v v
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⋆Variable x + 0x + 0x + 0 visits multiple clauses

x
0

x
0

_
x

4
x

5

x
0

x
2

_
x

7

x
4

_
x

1

_
x

0
v v

v v

v v

The x
0

switchboard used positively by two clauses and negatively by one
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Combining the switchboards

x
0

x
1

x
k

x
0

x
1

x
k

C
m

C
1

v v
_

C
0

hamiltonian-pathhamiltonian-pathhamiltonian-path is NP-complete.
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