TIME COMPLEXITY



Measuring computational complexity

= Time is the most limiting resource

= Computation time = number of steps

= number of cfgs in computation trace

= Steps on Turing machines: They count moves honestly.
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Asymptotic complexity

Performance of algorithms may differ wildly for different inputs.

Measure complexity by bound on resources consumed

as a function of input size (“worst-case complexity”).

For a Turing machine M over X
let Ths(w) be the number of cfg's in the
trace of M for input w € ¥, if defined.

Given a function f: N—N), M |runs within time f
if Tar(w) < f(lw|) for all inputs w.

Example: if M runs within time n 5 n?

then T)s(abcde) < 25.

Note that if M runs within time f and f < g

then M runs within within g as well.
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Which machine model

Why Turing machines are the reference?

Because they don't cheat.

But perhaps they are too simple.

E.g. to compute w — w - w
a Turing transducer moves each symbol in w a distance w,

so the computation take > |w|* steps.

If we use an auxiliary string (“tape”) the doubling of w

can be performed in < 6 |w| steps, for some small constant c.
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Comparing asymptotic behaviors

= By asymptotic behavior of a function f:N—N

we mean its behavior for all sufficiently large input.

« Examples: Asymptotically, n® > 100n> (for n > 100)
and 10013 < 2" (for n > 15).



Comparing asymptotic behaviors

= By asymptotic behavior of a function f:N—N

we mean its behavior for all sufficiently large input.

« Examples: Asymptotically, n® > 100n> (for n > 100)
and 10013 < 2" (for n > 15).

= [n Geometry, an asymptote of a curve
is a line tangent to a curve at infinity:
Example: The x-axis is an asymptote of the curve y =1/x

So is the y-axis.
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Coefficients ignored: big-O notation

= Implementation choices, such as hardware or size of alphabet,

are important in determining performance,

but we wish to abstract away from them, to obtain a broader vision.

= A function g is|of order

f if there are ¢, k>0 s.t.

gn)<c- f(n) forall n>k.

= We say then that g is O(f) (“big-O of f").



Coefficients ignored: big-O notation

Implementation choices, such as hardware or size of alphabet,
are important in determining performance,

but we wish to abstract away from them, to obtain a broader vision.

A function g is|of order| f if there are ¢,k>0 s.t.
gn)<c- f(n) forall n>k.

We say then that g is O(f) (“big-O of f").

Convention:

Use n as a catch-all variable for natural numbers,
writing eg O(n?) for O(n — n?),
that is “ O(f) where f(n)=n?"



Time complexity classes

TM M is|in time f |if Ty is O(f).

We write Time(f) for the collection of languages

recognized by a Turing acceptor in time O(f) .

The f's of interest are non-decreasing:

f(n+1) = f(n) for all n.

, 2
Examples: logn, n, nlogn, n?, n’, 2%, 2", nl, n".

Similar notation for transducers.
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The Time Hierarchy Theorem

We can expect that significantly more computation time

implies that more functions are computable.

This is mostly true:

Time Hierarchy Theorem. Assume

» t,T: N— N are “reasonable”; and

n) - log(t(n
> t( )T<§§t( )) —+ 0 as n— o0

Then there is a language recognized in Time(t) but not in Time(T)u.

Alternative phrasing:  t(n) - log(t(n)) = o(T'(n)) (“little 0").
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Instances of the Time-Hierarchy Theorem

« Time(n) C Time(n?) C Time(n?)
Time(n3%) C Time(2") C Time(3")

Time(2"") C Time(n!) C Time(n®)

NN
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Polynomial vs exponential growth rate

Polynomial growth-rate: f(n) =n*, k fixed.

Exponential growth-rate: f(n) = k", k fixed.

The choice of base £ does not change the general picture:

a" = b where ¢ = log(a)p =logb/loga,

But polynomial and exponential growth-rates tell very different stories:
If an algorithm runs 2" steps on input of size n, then
the universe is too small to deal with input of size 300:

It is believed that there are 10%° &~ 23% quarks in the universe.

F24
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Graphics

= Any exponential function overtakes any polynomial function

for sufficiently large inputs.
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= Taking logarithmic scaling for the increase
visualizes the difference more clearly:

le+10 '
1e+09
1a+08
1e+Q7 |
1e+06
100000
10000 |
1040
100 |
10

1

Every polynomial function flattens out rapidly,
whereas any exponential function grows steadily:
log(n¥) =k - logn, flattening.

log(2") = n, steadily increasing



Exponentials surpass polynomials: a calculus proof

Write f > g for “f eventually exceeds g,”
i.e. daVr>a f(z)>g(x).

By induction on k:

k

for every m, e* > m-x"  ie. lim, . :I:k/ex =0

For k=0 we have z° =1, and indeed lim,_,., 1/e* =0.

Assuming  lim,_, :c""'/e‘*'j =0 we have
lim, o xF/e* = lim, o (2¥11)'/(e®)’ by L'Hopital Rule
= lim,_yo ((k+1)2*)/e®
= (k+1) lim,_o x*/€*
0 by IH

F24 14



PTime decidable problems

= A Turing decider | runs in polynomial time (PTime)

if its running time on input of size n is O(n*) for some k.

= We can therefore consider informal algorithms

F24

without worrying about low level implementation.

Exception: linear & quasi-linear ( n logn).
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Examples

Suppose L C ¥* is PTime decidable,

say within time c¢- n*.

s ls '={w | w-w & L} PTime-decidable?
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Examples

Suppose L C ¥* is PTime decidable,

say within time c¢- n*.

s ls I'={w | w-wé& L} PTime-decidable?
= What about L' ={w | |w|w e L}?
lw|w] = |w- - w| = |w].

Deciding |w|w € L takes time < (|w[*)F = |w|*
Still PTime!

F24
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Examples

Suppose L C ¥* is PTime decidable,
say within time n* (glossing over the big-0.)
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Examples

Suppose L C ¥* is PTime decidable,
say within time n* (glossing over the big-0.)

s ls '={w | w-weL} PTime-decidable?

= |s L2 =L -L Ptime decidable?

On input 2 cycle through all splits x =u-v .

How many splits are there?

Take z = abcde . Count the positions of the dot:

xr = € - abcde, a - bcde, ab - cde, abc - de, abcd - e

There are |z| splits.
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= |s L2 =L -L Ptime decidable?

On input 2 cycle through all splits x =u-v .

How many splits are there?

Each split o =u-v takes < |u|*+|v|* < 2|z|* steps.
So L? is decidable in time O(n**1).



Examples

Suppose L C ¥* is PTime decidable,

say within time n* (glossing over the big-0.)
s ls V={w|w-weL}
» Is IL? = L - L Ptime decidable?

On input 2 cycle through all splits x =u-v .

How many splits are there?

Each split o =u-v takes < |u|*+|v|* < 2|z|* steps.

So L? is decidable in time O(n**1).

= Note: We have not attempted to refine the bounds.

The order-of-magnitude trounces such concerns.

F24
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*The Cobham-Edmunds Thesis

= PTime is a practical first-approximation

of the scope of computational feasibility:

Cobham-Edmunds Thesis (1964)

An algorithm is (intuitively) feasible iff it runs in PTime.

= Since all basic computation models simulate each other
within a factor polynomial in the size of the input,

the reference to “algorithms” is justified.

F24
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Flaws of the Cobham-Edmunds Thesis

= The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,

just like the Turing-Church Thesis.
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Flaws of the Cobham-Edmunds Thesis

= The Cobham-Edmunds Thesis is a declaration of faith, not a theorem,

just like the Turing-Church Thesis.

= But it is far more problematic than the Turing Thesis,

and should be taken with a grain of salt, as a rough guide.

» Here are some issues.

100

» The exponents should matter: n**" is not feasible.

» The coefficients should matter: 100'% 7 is not feasible.

loglogn

» Conversely, time of order n is not admitted,

i p 8 '
and yet n'°8l8n < nd for all n < 2% =226 ~ 1077,

F24
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SHOWING PTIME DECIDABILITY



Major PTime decision-problems

= CONNECTIVITY:
Given a graph G = (V, E), is it connected? (Dijkstra, 1969)
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Major PTime decision-problems

= CONNECTIVITY:
Given a graph G = (V, E), is it connected? (Dijkstra, 1969)

= LINEAR-INEQUAL:

Given a set of linear inequalities, is there a solution with real numbers?

(Khachian, 1979)
Example: 3z +y >0, 43y <0

= PRIMALITY:

Given a natural number, is it prime (Agrawal, Kayal & Saxena, 2006)

F24 21



Memoization: caching data for repeated use

= Memoization = memorize information for future use
(Greek: mnémé = memory).
Also called dynamic programming algorithm,

because information is cached “dynamically” over times.
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Memoization: caching data for repeated use

F24

Memoization = memorize information for future use
(Greek: mnémé = memory).
Also called dynamic programming algorithm,

because information is cached “dynamically” over times.

The CYK algorithm is an example. Here's a related one.

Theorem. If L C¥* s PTime-decidable then so is L*

How about exhaustive search?
For each partition of input w into concatenated non-empty substrings

check whether all parts are in L.
There are 2" partitions of w of size n!!

But the number of “parts” is only quadratic in n! So...?
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Theorem. If L C¥* s PTime-decidable then so is L*

= For input £ the answer is “yes".
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PTime is closed under star

Theorem. If L C¥* s PTime-decidable then so is L*

= For input £ the answer is “yes".
= We generate the set S of substrings of w =04---0, that are in L*

= Calculate for successive i the i-long elements of S:

S@‘={0‘m+1“~0‘m+i e Lt | Ogmgn—i}

l51={0‘@'|0'2‘€L}.

F24
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Computing S; for i € [2..n]

= Initially S; is empty.
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Computing S; for i € [2..n]

= Initially S; is empty.
w's substrings x of length i start at o; for j € [l.n — i)
For each such z consider the 2—1 possible non-trivial splits
r=y-z,say |y|=de€(0.1).
If ye€ Sy and 2= S;_4 add = to S;.

= Finally w is accepted iff w € S,,.

= The algorithm has three nested loops,
each iterating < |w| times,

so running time is O(n?).

F24
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PTIME CERTIFICATION



Reminder: Certifications

= A certification for a decision problem P
is a binary relation - between strings (the certificates),

and instances of P, such that for all instances w

w satisfies P IFF ¢k w for some certificate ¢

= We showed that a problem P is SD

iff it has a decidable certification.

F24
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Feasible-certification

= A certification = for P is| PTime

if ckw is PTimein |w| (only!). We write then ¢t w.

» In time ¢ a Turing acceptor cannot read more

than the ¢ initial symbols of ¢, so ¢ w implies that

c| is eventually bounded by |w|* for somek.
]

= An equivalent definition: A certification = for P is

if ¢cw is PTime, and |c| < |w|* for some k.

F24
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Examples: Scheduling problems

= Scheduling problems: Can we fit stuff within given constraints.

= INTEGER-PARTITION: Given a set S of positive integers with an even total
sum

is there a set P C S such that *P =5(S — P) ?

= Certificate for S: P.
Certification is PTime: Checking P C S and =P =x(S — P).
P-size: |P| < |S]|

= EXACT-SUM Given set S of positive integers, and target t > 0,
is there P C S such that *P =17

= Certificate for S,t: The subset P.
P-Time: Check PC S and =P =1.
P-size: |P| < |S|.
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Examples: Solvability problems

» Recall INTEGER-EQUATION:
Given integer polynomial P,

is there an integer solution?

= That problem is undecidable.

But consider limiting textual size of the solution:

» BOUNDED-INTEGER-EQUATION:
Given integer polynomial P and a bound b,

is there a solution of textual size < |b|?
= Certificate: a solution.

» Certification relation: V' solves FE.

= This is doable in time O(n?).

F24
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PTIME REDUCTIONS



Recall: Computable reductions

= When a reduction p: P — instncs — O — instncs is computable

we write p: P <. 9.
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Recall: Computable reductions

= When a reduction p: P — instncs — O — instncs is computable

we write p: P <. 9.

» If P<,.0 and O is decidable,
then so is P.

» Easy exercise: P is decidable iff P <. {0,1}.

F24
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PTime reductions
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PTime reductions

= When a reduction p: P — instncs — O — instncs is PTime
we write p: P <, 9.

= If P<,09 and Q is PTime,
then so is P.



PTime reductions

= When a reduction p: P — instncs — O — instncs is PTime
we write p: P <, 9.

= If P<,09 and Q is PTime,
then so is P.

= Easy exercise: P is PTime iff P <, {0,1}.

F24
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Composition of PTime functions is PTime

= Theorem.
PTime is closed under composition:
If f € Time(n*) and g € Time(nt)
then fog € Time((n*)¢) = Time(nk?).
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» Theorem.
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Composition of PTime functions is PTime

Theorem.

PTime is closed under composition:
If f € Time(n*) and g € Time(n')
then fog € Time((n*)¢) = Time(nk?).

Suppose transducer T' computes f in time c-n

and T" computes ¢ in time d-n’.

Given input w € ¥*,
T terminates in < c- |w|F steps,

and so has an output y of size < c- |w|".

Given ¥y as input,
T' operates in time <d - |yl",
ie. <e-|lwft (e=d-c)

F24
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Composing PTime-reductions

= Since the composition of computable functions is again computable, we had:
f p: P <. Q and p: O < R
then pop': P<. R
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Composing PTime-reductions

= Since the composition of computable functions is again computable, we had:

f p: P <. Q and p: O < R
then pop : P<. R

= But PTime is also closed under composition,
so we similarly have:
If p:P <, Q9 and p: O <, R
then pop': P, R

= A prize for amalgamating the polynomial run-times:
For example, reducibility in quadratic time

is not closed under composition!

F24

34



EXAMPLES



The disjoint sum

= Fix an alphabet ¥ and a fresh Symbol, say @ .
For L, K C ¥* define
L& K =L U QK (QK is {Q}-K).

= Soif we LN K then
w and @w are distinct elements of L @ K .
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The disjoint sum

Fix an alphabet ¥ and a fresh Symbol, say @.
For L, K C ¥* define
Lo K=4L U QK (QK is {Q}-K).

Soif we LN K then
w and @w are distinct elements of L @ K .

Example: L = towns in IN, K = towns in NY.
Bloomington is an IN string, @Bloomington is a NY string.

For finite L, K thesizeof L® K
is the sum of the size of L and the size of K .

F24
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Riddles about &

Whatis A® (B® C)?

Define a reduction p: L <, L® K.

Define a reduction p: K <, L ® K.

Define a reduction p: L& K <, K® L.

p(w) = if hd(w) =@ then tl(w) else Quw.

F24
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Integer-Partition reduces to Exact-Sum

» INTEGER-PARTITION:
Given SCN, jsthere PC S st. S P=3xS—P
(i.e. both are 1(=S)

» EXACT-SUM.:
Given S C N and a target value t € N,
is there PC S s.t. P =1.



Integer-Partition reduces to Exact-Sum

» INTEGER-PARTITION:
Given SCN, jsthere PC S st. S P=xS—P
(i.e. both are 1(=S)

» EXACT-SUM.:
Given S C N and a target value t € N,
is there PC S s.t. P =1.

= Define p: INTEGER-PARTITION <, EXACT-SUM.



Integer-Partition reduces to Exact-Sum

» INTEGER-PARTITION:
Given SCN, jsthere PC S st. S P=xS—P
(i.e. both are 1(=S)

» EXACT-SUM.:
Given S C N and a target value t € N,
is there PC S s.t. P =1.

= Define p: INTEGER-PARTITION <, EXACT-SUM.

= If =5 is even,
let p(S) be the instance (S,55/2) of EXACT-SUM.



Integer-Partition reduces to Exact-Sum

» INTEGER-PARTITION:
Given SCN, jsthere PC S st. S P=3xS—P
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= Define p: INTEGER-PARTITION <, EXACT-SUM.

= If =5 is even,
let p(S) be the instance (S,55/2) of EXACT-SUM.
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Integer-Partition reduces to Exact-Sum

F24

» INTEGER-PARTITION:
Given SCN, jsthere PC S st. S P=xS—-P
(i.e. both are 1(=S)

» EXACT-SUM:
Given S C N and a target value t € N,
is there PC S s.t. P =1t.

Define  p: INTEGER-PARTITION <, EXACT-SUM.

If =S is even,
let p(S) be the instance (S,55/2) of EXACT-SUM.

If =S is odd,

let p(S) be some some “no” instance of EXACT-SUM,
say ({1},2).

p is in PTime, and is a reduction!
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Exact-Sum reduces to Integer-Partition

» INTEGER-PARTITION is a special case of EXACT-SUM,

so it was easy to define a reduction in this order.

= Surprisingly, we also have the converse:

Define p: I-P <, E-S
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= Given instance (S,t) of E-S let n =3%5.
Note: ¢ < n , otherwise (S,%) is trivially not in E-S.



Exact-Sum reduces to Integer-Partition

INTEGER-PARTITION is a special case of EXACT-SUM,

so it was easy to define a reduction in this order.

Surprisingly, we also have the converse:

Define p: I-P <, E-S

Given instance (S,t) of E-Slet n=1x5.

Note: ¢ < n , otherwise (S,%) is trivially not in E-S.

|dea: augment S with the number 2n — ¢, which is > n,

and with n+t which totals the result to 4n.

F24
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The reduction

= Let p map (S,t) to S"=4 S U {n+t,2n—1t}.
So S’ adds up to 4n.
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The reduction

Let p map (S,t) to S"=4 S U {n+t,2n—1t}.
So S’ adds up to 4n.

Claim: Thereisa P C S that adds up to ¢ iff
there isa P’ C S’ that adds up to (£5')/2 = 2n.

=: |If thereisa P C S that adds up to t then
then P U {2n—t} is a subset of S’
that adds up to t+ (2n —t) = 2n = (£5")/2.
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then S'—P’ adds up to 4n—2n = 2n.

The new elements add up to 3n,

so each of P/ and S’— P’ has one of the two.



The reduction

Let p map (S,t) to S"=4 S U {n+t,2n—1t}.
So S’ adds up to 4n.

Claim: Thereisa P C S that adds up to ¢ iff
there isa P’ C S’ that adds up to (£5')/2 = 2n.

=: |If thereisa P C S that adds up to t then
then P U {2n—t} is a subset of S’
that adds up to t+ (2n —t) = 2n = (£5")/2.

<: Ifthereisa P’ C S’ that adds up to =5 =2n
then S'—P’ adds up to 4n—2n = 2n.

The new elements add up to 3n,

so each of P/ and S’— P’ has one of the two.

Removing 2n —t from the half that has it,
yields a P C S that adds up to t.



Lessons

= Reductions may be ingenious,
using particulars of the problems compared.

There are no silver bullets.



Lessons

= Reductions may be ingenious,
using particulars of the problems compared.

There are no silver bullets.

= Warning: We only had S and ¢ given.
S’ was calculated, but P & P’ were hypothetical,
linking the property of the source-problem to the
property of the target-problem.
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NP COMPLETENESS



Maximal complexity in SD

A problem P is|SD-hard
if every SD problem is computably-reducible to P.

If P is SD-hard, and P <. P’ then P’ is SD-hard:
Every SD problem @ is reducible to P since P is SD-hard.
So by transitivity of <. it follows that P <. P’ we get by O <. P'.

P is| SD-complete|if it is SD-hard and is itself SD.

An obvious SD-complete problem: ACCEPT.
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Clear broad picture for SD...

The SD problems

SD Complete

All equivalent

lots of stuff c

All equivalent Decidable

» Whether there is something in the middle was an open problem
for about two decades, until proven by Albert Nuchnik (1956)
and independently by Richard Friedman (1957).

= Subsequent research showed that there is quite a lot there...

F24
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The analog: maximally complex NP problems

Since <, is transitive, if P is NP-hard, and P <, P’
then P’ is NP-hard as well.

From these definitions it follows that if there is
an NP-hard problem P which is PTime-decidable,
then every NP problem is PTime-decidable!

F24

A problem P is | NP-hard|if every problem in NP is <, P.

A problem P is| NP-complete| if it is both NP and NP-hard.
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Blurry picture for NP

The NP problems: 2 possibilities

All NP Complete NP Complete
<, - equiv
A
lots of stuff <
p
All
< . PTime decidable PTime decidable PTime decidable
<p - equw

Impossible
(Ladner’s Theorem)
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Computing is binary...

= We conceive a certification p for a problem P in two stages:

1. ldentify what sort of objects are the certificates.
E.g. a certificate for an instance of HAMILT-PATH

is a list £ without repetition of the vertices.

2. State properties that make a certificate valid.
For HAMILTONIAN-PATH these are:
¢ is without repetitions, and

successive entries are adjacent in G .

F24
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Reminder: Boolean valuations

Boolean expressions E' are generated from variables

using negation, conjunction, and disjunction.

Example: (—2) A —(y V z).

Given a valuation

V: Var — {0,1}  of variables,

each boolean expression E evaluatesto V(E)=0 or V(F)=1.

Example: If V(z)=0,V(y)=0 then V(—zA—-(yVzx))=1,
but if V(z)=1 then V(-2 A—(yVz))=0.

A valuation V' |satisfies| E if V(E)=1.

E is|satisfiable

if it is satisfied by some V',

It is | valid| if it satisfied by every V.

So FE is satisfiable iff —FE' is not satisfiable

and is valid iff —F' is not satisfiable.



Boolean satisfiability

= BOOL-SAT: Given a boolean expression, is it satisfiable?

» A certification for BOOL-SAT:

the certificate for E is a valuation satisfying it.

= Checking a certificate is PTime in the size of the expression.

So the certification is feasible.
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Coding certificates by boolean expressions

= Digital coding is central to describing discrete data,

and the simplest form of digital coding is binary, i.e. using booleans.

= No surprise then that a good candidate for NP-hardness
is Boolean Satisfiability BOOL-SAT.

= We use yes/no questions to code the potential certificates,

and then yes/no questions that check their validity as certificates.
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Playing Charades with decision-problems



Boolean coding of Hamiltonian-Path

= HAMILTONIAN-PATH: Given directed graph G = (V, E),

does it have a path visiting every vertex once.

= |.e. is there a listing w1, us,...,u, of the vertices

s.t. u@-(E)u@H for 1 <n.

= Convey this by a boolean expression.
Foreach v € V and ¢ =1..n a fresh boolean variable z;,

intended to be true iff u; is v.
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The boolean expression

= Example:




The boolean expression

= Example: ]

7

= A listing a,b,c,d,e is conveyed by the valuation

assigning 1 to Ti14, Top, T3, Tad, Tse and 0 to the other variables:

Tib Tic Tid Tie
T2a Toe T2d T2e
T3a T3 T3d T3e
Tga Tap T4c Tyge

Tsa Tsp Ise Tsd



The boolean expression

= Example:

= Our Hamiltonian path,

F24

a—d—e—b—rc: is conveyed by:

T2q
T34
Tpa

T5q

T1p
Tap

I3p

I5b

T1e
e
I3c

T4e

Tid Tie
T2e

T34

Tad T4e

Isd Tse

»

(0]
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The vertex-listing is a path

» \We state the conditions that make a valuation

of the variables z;, into a Hamiltonian path.

= At least one position per vertex:

For each vertex v the disjunction 1,V -V Zy,.

= At most one position per vertex:
For each vertex v and distinct 2,7 = 1..n

the expression  —(ziy A )

F24
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Successive vertices are adjacent in the graph

» For each position 2 < n

the disjunction of all expressions  z;, A Zi11, where v(E)u.

= E.g., positions 2 and 3 are related by one of the 9 edges:
(T2a Ax3p) V (20 AT3e) V (T2a A X34)
V (29 A 3)
V (T2a A T3e) V (Tog A T3e)
V (22 Ax3p) V (X2 A 23,)
V (x9e A x39)
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The reduction

= We've obtained a reduction p: HP <, BOOL-SAT

= p maps a directed graph G = (V, E) to the conjunction Ag of the boolean
expressions as above,

based on the particular size and edge-relation of G.

= Ag is computable in time cubic in the size of G.
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= The mapping p is a reduction:

» If there is a Hamilt path u;—---—u, in G
then the boolean expression Ag is satisfied by the valuation

that assigns 1 to x;, iff v is wu;.

» Conversely, if the expression Ag is satisfied by a valuation V
then (v;..vx) is a Hamilt path,

where v; is the unique v for which V(x;,) = 1.

= Conclusion:  p: HAMILT-PATH <, BOOL-SAT

F24
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SAT IS NP-COMPLETE



Boolean coding of PTime

= Let M be a Turing acceptor over X
running within time f(n) (f a polynomial).
We'll assume f(n) = n.

= Define a reduction p: L(M) <, BOOL-SAT

= p maps each Y-string w

to a boolean-expression FE,, such that

M accepts w IFF E,, s satisfiable.
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The trace displayed as a square grid
r
r



The trace displayed as a square grid

M is g > 1) b q 0(+) 4 a )
1 1
L 0O p (+), q4 q (+) q

Trace of M for input w:

terminal configuratiol
~

fOiw) |

F successive cfgs

V| V| V|V, V| V| V]|V
oo | Rr|IRr|RP|RP|RL|R
RPlRr| PP PP PR|R
o|lo|lo|]o|lo|o| o o
RPlRr| R R RP|P|R|PR

J
— | —| — | — |Initial configuration
T F(Iw)
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The grid defined by yes/on questions

af >/ 1101 | | _|_ terminal configuratiol
y M

q >|1(1|0 1 | | _| _

q >|1 (1|02 _| | _| _

| > successive cfgs
tw) |9 ol I Bl I R I >

pll>1/101| | | _|_

o>l ajola|_|_|_|_

rll>lol1]o1|_| _|_|_

i 20101 _|_|_|_]|initial configuration

| F(Iw)

State

= We'll have a collection of boolean variables,
each standing for a question about the trace of M for input w .

(A session of the party game charades.)

= For each state ¢ and row @ < |w| =x;, for “state of i'th cfgis q”

Examples: x4, 24,



« Foreach 4,5 < |w|: ¢ for “cursor of i'th cfg at j"

= Foreach i,j <|w| and 0 € ¥: {; ;s for “(i,7) cell has o
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Yes/no for consistency conditions

| a 1> 11|02 | | _|_ terminal configuratiol
T )

q >11 10212, | | _|_

ql||>/1 /1|02 | _|_|_
lal |l > successive cfgs

f(w) | q | 11|02 | _ | | _ F

p >11,1 0212, | | _|_

rj| >/ 1101 _|_|_|_

roy>o0 (10 1| _|_|_|_

$/// 210101 _|_|_|_/|initial configuration

| f(Iw)

One state + one cursor per row

one symbol per cell

First row is initial state + >w L™,

Last row has accept state
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Yes/no for operational conditions

f(

W) |

a 1> 111/01l1 terminal configuratiol
| B E—
q >1 1,02, | | _|_
q >11 10|21, | | _|_
| q 1> 1111011 F successive cfgs
pl /> 1|10 1|_|_|_|_
rop> 11001 | _|__
ri|>/o|1]0 21| _|_|_|_
J
si|{| =010 1) _|_|_|_|initial configuration

| f(lw)

state

Each subsequent row is obtained from the preceding

by one of the rules of M

Analogous to the edge-condition for HAMILTONIAN-PATH.
The initial cfg has state s and cursored string in >w LI* .

Successive cfgs are related by the transitions of M

(or repeat terminal cfgs).



« Example: For ¢ 2@, r

(TigAcijAlije
_)

Pirtr A Civrg A livrjr
N Negj like = livagg

= The accept state appears: V; ;,.
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Coding PTime certification

Consider a PTime-certified language L,

with a feasible certification |-.

That is, ¢ w is decided by a Turing-acceptor M ,
in time < f(|wl|), with |e| < flw|) (f polynomial).

That is, w € L iff M accepts w,c for some ¢ of length < f(|w|) in time

< f(|w]). (The comma is a separator-symbol).

We cannot construct a trace-layout for w,
because we don't have c:
The values of the boolean variables ¢y,

are unknown for j > |w|.
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Boolean satisfiability is NP-complete

But the satisfiability of the resulting boolean expression E,,

means precisely that w, ¢ is accepted by M for some such values!

The satisfiability of E,, is equivalent to
M accepting w,c for some ¢ of size < g(|w|)

in time < f(x) .

We this proved that BOOL-SAT s NP-hard.

Since BOOL-SAT is PTime certified we conclude:

Theorem. BOOL-SAT is NP-complete.

F24
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NP-COMPLETENESS OF ADDITIONAL PROBLEMS



Normal forms

= We can now prove that certain problems P

are NP-complete and therefore dangerously complex,

by defining a PTime reduction BOOL-SAT <, P .

= Defining such reductions may be challenging,

because boolean expressions can be arbitrarily complex.

Can we facilitate reductions by focusing on some that are

» Reductions to

normal forms

are all around!
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Displays immediately the order of magnitude.



Normal forms

We can now prove that certain problems P

are NP-complete and therefore dangerously complex,

by defining a PTime reduction BOOL-SAT <, P .

Defining such reductions may be challenging,

because boolean expressions can be arbitrarily complex.

Can we facilitate reductions by focusing on some that are

Reductions to | normal forms

are all around!

Decimal fractions (percents): 3/8 versus 4/11  (.375 vs .364)

Better: Normalized scientific notation for real numbers:

123.45 = 1.2345 x 102, 0.0012345 = 1.2345 x 103

Displays immediately the order of magnitude.

Polynomials are defined using +, X, — in any order.



» Putting order in the chaos:

X in the scope of —, in the scope of +.

» —((z+y)-2)-(l-y) =2-y+z -y’ -2’ —2x-y
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Normal form for boolean expressions

For boolean expressions: chaos of negations, conjunctions, disjunction

= | Normal form: | negations in scope of conjunctions in scope of disjunctions

—[(zV—-u)A(yVv)] = (—zV—y)

= | (disjunctive) clauses:

A (—zV—v)
A (uV—y)
A (uV—v)

= | Literals: | variables or their negation.

disjunction of literals (1,2,3,0... disjuncts)

= | Conjunctive normal expression (CNF):

conjunction of disjunctive clauses
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CNF and satisfiability

= More orderly SAT: ask only about satisfiability of CNFs:

CNF-SAT:

Given a CNF boolean expression E, is it satisfiable?
= We'll show that CNF-SAT is NP-hard.

= NP-hardness of problems would be made easier:

CNF-SAT <, P easier to show than SAT <, P.
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CNF-SAT is NP-hard

into an equivalent CNF expression.

which may be exponentially longer!

Method: Reduce BOOL-SAT to CNF-SAT.

Every boolean expression can be converted

But this does NOT vyield the desired reduction!

Expression E is converted into a CNF equivalent

However: NO NEED for an equivalent CNF!

Suffices a CNF whose satisfiability is equivalent

to the satisfiability of E.

We can even restrict attention to | 3CNF

where each clause has < 3 literals.

F24
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3CNF-Satisfiability

= 3CNF SATISFIABILITY Does a given 3CNF expression have a satisfying

valuation.
= SAT <, 3CNF-SAT

= Example, A is (x Ay)V (zA —(2V u))

N
A /@\?

/®\

X u



= Name with fresh variables the compound sub-expressions of A:

a = A

b = xAy

c = zAu

d = —(xAu)

e = zV—(xAu)

R
2 fi?d

X Yy
/®<

X u

@A
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» Define A~ to be the conjunction of



Equivalence in 3CNF format

(a < (bV o) aVbVe
aVb
aVc

(b (xAy)) bV z
EVy
AVETAVA/

(c & (2Ad) cVz

(d & —e) dve
e

(e < (zVu)) evVzVu



= A is satisfiable iff the 3CNF a A A~ is satisfiable.

= a A A~ is of size linear in the size of A.
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Exact-3CNF-Sat

Further tightening the normal form for boolean expression.

EXACT-3CNF-SAT:

Does a given 3CNF expression w/ exactly 3 literals per clause

have a satisfying valuation?

3CNF-SAT <p EXACT-3CNF-SAT

Given a 3-CNF A obtain p(A) by

1. Replacing clauses Ly V L by
(LoVLiVy) A (LoVL1VY) (y fresh);
2. Replacing single-literal clauses L by
(LVyVz2) A (LVyVZ) A (LVGVZ2z) A (LVGVZ)
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NP COMPLETENESS ALL AROUND



indep-set is NP-complete

= Define p: 3CNF-SAT <, INDEP-SET.
Map a 3CNF expression E with k clauses
to graph G + target k.

= A thought: each clause is mapped to a triangle of literals.

Satisfying k clauses requires then one vertex per triangle:
(x0V£1 V%Q) N ($1V52\/$3) N ($2V53V$4) N (izVilexo)

= An initial draft of G :

Xq X4 X X X 23 X X 4
ARV VA

= Choose a vertex in each triangle, eg top left.

Oops, we are trying to have both x5 and s true!



Add consistency edges

= Consistency edge for xs:

X0 Xl X X 4

Y NN N

X X

2 3
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= Additional consistency edges for xs:

N/ =7 N/ S\/
X2 X 3 X XO
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= Consistency edge for xi:

—_— —

X X X X. .-~ X

NV Ol\/ga ''''' QZ\/Os
oL---"7 7 ® ® i

X, - __ X4 Xg -~

-_— -_—
_—— _— — — —
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= Consistency edge for xj:
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= Consistency edge for xy:
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= Final graph G:

= If A has a satisfying valuation msV,
then G has an independent-set S of size ¢,

consisting of vertices true under V.

» If G has an independent set S of size ¢,
then S must have one vertex per triangle,

and the valuation that satisfies the labels of S satisfies A .
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Consequence: clique is NP-complete

= We showed that CLIQUE is NP.
» INDEP-SET <, CLIQUE

= Since INDEP-SET is NP-hard, so is CLIQUE.
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EAMPLE: DIRECTED HAMITONIAN PATH



Hamiltonian-path is NP-complete

= HAMILTONIAN-PATH (H-PATH): Given a directed graph G = (V, E) ,

does it have a path visiting each vertex exactly once.

» H-PATH has a feasible certification:

the certificate is the path.

= To prove NP-hardness show 3CNF-SAT <, H-PATH
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A diamond gadget

PN
~o

= This is an example of a gadget:

a component, often repeated, of a compound discrete object.

= Does it have an H-path?

F24
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A diamond gadget

PN
~o

O

= An H-path through the gadget must follow the rightward edges.
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A diamond gadget

/\

~o

= Dually for leftwards horizontal edges.
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A diamond gadget

/\

/Q ~—

O/

= With edges pointing both ways we get a choice between two H-paths.

F24

94



The gadget as a boolean switch

= Take each choice of H-path to represent a truth value

of a boolean variable z.
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Side trips of a H-path

,/%i —( A ]
o—»0O ®) 7@

v

e

O

= Ahamilt-bool-basic-use-positiven H-path crossing the gadget rightwards ( z true)
can optionally veer to visit an extenal vertex A

and return one step to the right.

= Not so for an H-path for false.
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Side trips of a H-path

/ \\
W s
\7\;

= Dually, an H-path crossing the gadget leftwards (= false)

can veer to visit edge B and return one step to the left.
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Side trips of a H-path

O

.
oo
-

0
= To visit up to n external vertices

the horizontal “switch-box”" must have

at least n+1 vertices (endpoints included).
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A serial panel of gadgets

For variables 1, ...x; we form a serial panel of k£ gadgets.




A serial panel of gadgets

2F possible H-paths, each representing a unique boolean valuation:

=
-

\/ represents the valuation

X
o
o= X
< <



Here are the constraints

the sub—graph

~ &

Is a "switchboard" for
boolean—dependent side tri

Given a 3CNF expression E with variables ;... zsider sequentla panel of

Each clause represented by a vertex.

Satifying a clause represented by visiting it.

Every clause risited by one literal (Hamiltonian!)
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Variable x, visits a clause
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*Variable x + 0 visits multiple clauses

s—l-5

/O\

The X, switchboard used positively by two clauses and negatively by one

ivaX
0 4 5
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Combining the switchboards

A

HAMILTONIAN-PATH is NP-complete.
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